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Answers to the Exercises

Particular thanks goes to my coauthor, Cynthia Brown, and to the members
of the 1985 analysis of algorithms class at Indiana University, Myung-Ki Choi,
Moon-Sung Han, Rhys Price Jones, Cheng-Chee Koh, Verghis Koshi, Chao-Tai
Mong, You-Fang Pan, Brad A. Pierce, Shing Shong (Bruce) Shei, and Wan-
Cheng Wang, who found many corrections to the book and who provided answers
to some of the exercises.

1-1. You should use the polynomial time algorithm because it is faster. (Normally the
polynomial algorithm will be better even for moderate values of n, but if the
constants associated with the polynomial time algorithm are particularly large
and the constants associated with the exponential algorithm are particular small,
then the exponential algorithm may be faster for moderate n.)

1.1-2. The time is likely to be too small to measure. Thus if the algorithm needs 20
microseconds and the computer has a clock that ticks each millisecond, it will be
difficult or impossible to measure the time. This can sometimes be overcome by
putting the straight-line code in a loop and doing it 10,000 times (one needs to
compare the time for the loop with no code inside to the time for the loop with
the code inside). On time sharing systems, several runs of the same program are
likely to lead to different measured times.

1.1-3. Hopefully the two methods will give about the same time. If not, there are sev-
eral possibilities to consider. You may have made a mistake in one of the two
methods. The instruction timings in the manual may be wrong. The computer’s
clock may not measure what it claims to measure. The computer’s clock may
not measure what you think it does.

1.2.1-1. Tn+8. (Step 1 has two assignments. It is done once. Step 2 has three arithmetic
operations and two assignments. It is done n+1 times. Step 3 has one comparison
and one goto. The comparison is done n + 1 times, the goto n times. Step 4 has
no operations of the type you were asked to count.)

1.3.1-1. Tn+ 8.

1.3.1-2. Tn +12. [Step 1 has one assignment. Step 2 has one assignment, one comparison,
one arithmetic operation, and one goto, but the goto is done only once while the
rest of the operations are done n+ 2 times. (There are plausible arguments that
the assignment and/or the arithmetic operation could be done n4-1 times, which
would lead to a total time of 7n + 10 or 7n + 11.) Step 3 has two arithmetic
operations and one assignment. Step 4 has one goto.]

1.4-1. The value of W is dpb™ +dp— 16"~ + -+ - +dob°. The value of W mod b* is congruent
t0 dp_16*"1 + dp_2b¥=2 + -+ + dy because W = (db"* + dp_1b"F1 +... 4
dib®)b* + di_1b51 + dp_ab* % 4+ --- + dy where the first term is an integer
times a number divisible by b*. Now the size of dj_16*~1 + dp_2b*2 +--- + dp
is between 0 (obtained by setting each d; to its smallest possible value) and
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2 ANSWERS TO THE EXERCISES

(bF~1 452 ...+ 8%)(b—1) (obtained by setting each d; to its largest possible
value). The sum of the geometric series b*~1 + b2 4+ ...+ 4% is (B¥ —1)/(b—1)
(see section 2.4), so the upper limit is 4* — 1, which is less than . Since
dp1 V¥ +dj_9b" 2 + - - - + dy is between 0 and b — 1 and since it is congruent
to W mod b*, it must be equal to W mod b*.

1.4-2. The value of W/b* is (dpb™ % + dyu 16" %1 + -+ + dpb®) + (dp—1 0¥ + dp2bF 2 +
-+« +dg)/b*. The first term is an integer and the second term is between 0 and
1 (but not equal to 1) (see the previous solution) so the integer part of W/bF is
equal to the first term.

1.4-3. Prove that |—z| = —[z]. Let t = n+e€ wherenis an integerand 0 < e < 1. If e = 0,
then |—z| =-z=—[z]. Ife >0, then |-z| =-n—-1=—-(n+1) =—[z].

1.4.1-1. 12n + 5. Step 1 takes 1 time unit, Step 2 takes 3n + 4, Step 3 takes 3n, Step 4
takes 5n if you assume one unit each for the divide, the mod, the integer part,
and each of the assignments (the instruction sets on most computers suggest 3n
is also a reasonable answer for this step, since it usually takes one instruction
to compute the integer part of the quotient and the remainder), and Step 5
takes n. In counting the time for Step 2, we are assuming that the normal case
(continuing the loop) has an add, a store, and a compare. When we fall out of
the loop we have all that plus a goto. (If we skip the add on the first time of the
loop, then the answer is reduced by one, but you probably need one more go to
to do this, resulting in no change from the given answer.) The justification of
the answer is as important as the exact value obtained.

1.4.2-1. Let a = gom + 74, b = ggm + 714, T = gzm + Tz, and y = gym + 7y, Where each
g is an integer and each 7 is between 0 and m (but not equal to m). Since
a = b (mod m), r, = ry. Likewise r, = ry. Now (¢ + =) mod m equals r, + 7 if
To+7: <mand ro+ry;—mifr,+7; > m. Likewise (b+y) mod m equals ry+ry if
ro+7y < m and ry+ry—mif ry+ry > m. Thus (a+z) mod m = (b+y) mod m,
so a+z = b+y (mod m). The proofs for subtraction and multiplication are
similar to the proof for addition.

1.4.2-2. az = by (mod m) implies that az = by + im for some integer i. a = b (mod m)
implies that a = b + jm for some integer j. Replacing b in the first equation
gives az = (a — jm)y + im, or a(z —y) = (i — jy)m. The right side of this last
equation is a multiple of m, so the left side must be also. If a is relatively prime
to m this is possible only if z — y is a multiple of m. But if z — y is a multiple
of m, then £ = y (mod m).

1.4.2-3. z = a (mod p) implies ¢ = a + ip, y = b (mod p) implies y = b + jp, and
y # 0 (mod p) implies y = ¢ + kp for some ¢ # 0, where 4, j, and k are
integers. To have z/y = a/b (mod p), we need (a + ip)/(b+ jp) = a/b+ kp or
ab + ibp = ab + jap + b%kp + jbp? for any prime p any integers a, b, i, j, and
some integer k. Solving for k gives k = (ib— ja)/(b? — jp?), which is not always
an integer. (For examplea =1,b=2,i=1, j=1, p=3 gives k = —1/5.)

1.4.2-4. Since for any integer k, b* = (0¥~ +b*~2 + ... + %)(b — 1) + 1, where the first
term is an integer times (b— 1), b* =1 (mod b— 1). Using this with eq. 15 gives
dpb* = dp (mod b — 1). Using this with eq. 13 gives the final result.

1.4.2-5. Use b* = (b¥1 —b*—2 +... £8°%)(b+ 1) F 1, where the upper signs apply for even
k and the lower signs apply for odd k. Proceed as in the previous exercise.
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1.4.3-1. 67231.

1432 11=1,2"1=541=75"=271=4 8 1=8

1.5-1. 1g(3/2) =1g3 —1g2 =1g3 — 1 s0 1 + 1g(3/2) = lg3.

1.5-2. Since |lgn| < lgn, 218" < 2187 — 5 The lower limit is more difficult to prove. Let
n = 2% 4+ j, where 0 < j < 2*. Then 2"} = 2% (which does not depend on j),
while (n +1)/2 = (2% + j + 1) /2. The largest value for (n + 1)/2 is obtained by
setting j to its largest value, 2% — 1. So the largest that (n 4 1)/2 can be (for a
fixed k) is (2¥ +2%)/2 = 2%, Thus (n+1)/2 = 2U8"] for n one less than a power
of 2, while (n+ 1)/2 < 2U87] for all other values of n.

1.5-3. 22lg= — lgz® _ 22

in (14 £ 0=l ) 10210 (14 H=1nG=p)
1.54. Lety =2~ ~=0-» . Thenlny = — “(_Tnu_p“ = A
In2 In2
In (1 - W) P soy = (1 + ﬂ;l;—;g_—p))) ~"7 | See the following
problem.
1.5-5. Let z = z'"¥. Then Inz = Inzlny = Iny™*. Raising e to the Inz power gives
Inx
=g

1.5-6. n(3/2)8™ = n3'6n /28" — 38" From the previous exercise we have that 38" = nl&3.

1.5.1-1. If we assume that the array is initialized so that zo is smaller than any other
element, then we can change the Binary Search Algorithm (Algorithm 1.6), so
that starting at Step 5 it reads:

Step 5. If g =z then exit.

Step 6. Fori« ndowntob+1 do:
Step i Tip1 — Ty
Step 8. zpy1 —q.

If g can be smaller than any element in the table, then we should change Step 5
to

Step 5. If ¢ = z; then exit; otherwise if ¢ < zg, then b — —1.

1.5.1-2. Using subscripts to distinguish various times around the loop, at the end of Step
4 of the Euclidean Algorithm we have ¢; = d;_;1, d; = 7;_1, and ¢; = ¢;d; + 7,
where 0 < 7; < d; and ¢; < 1 for ¢ > 1 (if we did not have the condition that
n < m, then the first time through the loop, ¢; could be zero). Considering
consecutive values of i gives r; = giyoriy1 + a2 and rip1 = ipaTits + GigoTits.
Combining these two equations gives r; = (gi12¢i+3 + 1)Ti42 + giroTiys. Since
Tits = 0, 75 > (GiraQits + 1)riyo. Since gip1gi4s > 1, 73 > 27442, Thus, except
for the first time through the loop, every two times through the loop results in
r going down by at least a factor of 2. Using ¢ = 0 to index the initial time
through the loop, when we go through the loop an even number of times we
have 19 < n, which gives 2'ry; < n, ro; <127, 19; < 1fori >lgn, or rp < 1
for k > 2lgn. The algorithm does not go around the loop again when r < 1.
When the number of times around the loop is odd, it will be 1 more than what
was just calculated.
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1.6.2-1. The rest of the digits get initialized at Step 8.

1.6.2-2. The answer can never be too big. The biggest possible answer is obtained by
squaring the biggest n-digit number. The result is (b" — 1)2 = > — 2b™ + 1.
The program has enough memory for any 2n digit number, so it can handle any
number up to b*" — 1. Thus, the amount to spare is 2b™ — 2. For b > 2, this is
positive for n > 1.

1.6.2-3. In Algorithm 1.8, change n to m in Steps 1, 4, and 8. In Step 9 change 2n to
m + n. Also fix up the explanation by changing n to m as needed.

1.6.2-4. Tt uses 2n words for z, n words for =z, and n words for y, for a total of 4n words.
If one counts the storage for the single word variables, an additional 4 words are
used, for a total of 4n + 4 words (The words for simple variables are often not
counted.) If you count two words for p (which needs to store values with twice
as many digits as any other variable), then a total of 4n + 5 words are used.

1.6.2-5. The algorithm normally taught in grade school uses O(n?) time and n%+5n storage.
The two initial numbers are written down (2n digits), the partial products are
written down (n rows of at most n + 1 digits), and the answer is written down
(at most 2n digits). Some children use additional storage to write down carries
during the addition. Some may say you should also count the ¢ — 1 places at the
right of the i*" row. Doing this increases the total by n(n — 1)/2.

1.6.4-1. Essentially the same calculation is being done if you replace the multiplication and
addition in the Matrix Multiplication Algorithm with addition and minimization
respectively. The order of the loops in Matrix Multiplication can be changed to
agree with Shortest Path (but not vise versa). Finally, the initialization is a little

different.

1.6.4-2. Step 1, n+ 1. Step 2, n®> +n. Step 3, n® 4+ n2. Step 4, n®. Step 5, n®. Step 6, n’.
Step 7, n.

1.7-1. 5050.

1.7.1-1. (m+1)(n+ 1). Multiplications are done for each k =4 — j in the range 0 < k < n.
For each k one multiplication is done for each j in the range 0 < j < m.

1.7.1-2. The two sums are the same (term by term) for the terms that are included in the
sum of the previous exercise. The terms for j < 0 are zero because a; = 0 for
J < 0. The terms for j < i — m are zero because b;_; is zero for 1 — j above m
(when j <2 —m, i —j > m). The terms for j > n are zero because a; = 0 for
j > n. The terms for j > i are zero because b;_; is zero for i — j < 0. Thus the
additional terms that might be in the sum for this exercise are all zero.

1.7.1-3. Algorithm 1.8 will do the job if all occurrences of b are replaced by infinity.
(To obtain a reasonable algorithm, initialize all of z to zero, change Step 5 to
Zitj < ZiYj + Zitj, and drop Steps 6 and 8.)

1.8-1. 1/n.

1.8.1-1. (A) mutually exclusive. (B) mutually exclusive. (C) club is a subcase of black.
(D) independent.

1.8.1-2. (A) 0. (B) 0. (C) 1/4. (D) (1/4)(1/13) = 1/52. (E) 1/13 4+ 1/13 = 2/13. (F)
1/4+1/2=3/4. (G) 1/2. (H) 1/4+1/13 —1/52 =4/13.

1.8.2-1. (1/2)* =1/8. '

1.8.2-2. 3/8.

1.8.2-3. 1/6.
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1.8.2-4. (1/6)".

1.8.2-5. (1/2)% =1/8.

1.8.2-6. 3/4.

1.8.2-7. (1/2)(9/19)(8/18) = 2/19. Notice that this is a little smaller than the answer to
Exercise 5.

1.8.2-8. You need anything except three reds or three blacks. 1 —4/19 = 15/19. Notice
that this is a little larger than the answer to Exercise 6.

1.9-1. Since Tworst case = maxi<i<k 13 and Thest case = mini<i<k T3, Thest case < T <
Tworst case- Multiplying by p; and summing gives Y ; piThest case < 2; 2iTi <
> PiTworst case- Factoring out Thegt case and Tworst case, using 3., p; = 1 and
the definition of average gives Thest case < Taverage < Tworst case-

1.9-2. If the number of items is 2% + j where 0 < j < 2%, then 2* — j of the items can be
found in k searches and the other 2j items require k + 1 searches. The average
number of searches is

2k _ 4 n — 2lisn]

2j .2 ..
k+ n(k+1)—k+ = —|_1gnj—|—2n_ngnj+2

Using A = |lgn|+2(n—2U8"] /n, the average time is t; +ta +ts5 + A(ta +t3+14).
1.9-3. The average of the square of the number of searches is
2k —j

27 2 2j j
ol ) * (e Sl s 1)=|lgn]>+2=(2k+1
m +n( +1) k+n(2k+) lgn|® + n( +1)
—9lgn]
= |lgn]? +2£—i—(2|_lgnj +1).

Subtracting the square of the average gives

(2|lgn] + 1) —4|lgn]

— 9llgn] _9llgn|
22(&) (1_273_2__)_
T n

Using V = 2[(n — 2U8™))/n][1 — 2(n — 2V87])/n], the variance of the time is
V(ty + t3 + t4)2.

1.9.1-1. The best case occurs when the elements are already sorted. In this case Step 4 is
done n — 1 times. It can clearly not be done a lesser number of times because it
must be done at least once each time the outer loop is done.

1.10-1. O(nmp). tsnmp+ O(nm).

1.10-2. The worst-case time is  (t3-+t4+t5+t6)n? + (b +ta+ 5 ta+ sta+ Sts+2to+ts+to)n—
(t2+t3+1tg+1t9), with reasonable assumptions about the size of t;. Regardless of
the size of ¢, the worst-case time is O(n?) and it is 3(t3 + 14 +t5 +16)n* + O(n).
The average time is O(n?) and it is }(t3 + 4 + t5 + te)n? + O(n). The number
of times that Step 4 is done is no more than the number of times that Step 3 is
done and no less than the number of times that Step 3 is done minus (n — 1).
Therefore we know that Step 4 is done ;n* + O(n), which is accurate enough to
answer this problem.

T

_ 9lign) _olign] _olign|\?2
2n 2 n—2 _4(n 2 )
n n
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1.10-3. If fi(n) is the function on row i, then f;(n) = O(f;(n)) for j > 4, but fi(n) #
O(f;(n)) for j <i.
1.10-4. g(n) = O(f(n)) is proved following eq. (77). To prove f(n) = O(g(n)), chosee = a/2
in eq. (78). This gives ||g(n)|/f(n) — a| < a/2, which implies |g(n)|/f(n) —a >
—a/2, or |g(n)|/f(n) > a/2. Since g(n) > 0, the absolute value signs on g(n) can
" be dropped. This gives f(n) < 2g(n)/a = O(g(n), since a is a positive constant.
1.11-1. The relation “congruent mod n” is reflexive because, for any z, we have z mod n =
z mod n so £ = « (mod n). The relation is symmetric because, for any z and any
y where z = y (mod n), we have z mod n = y mod n, which implies y mod n =
x mod n, so z = y (mod n) implies that y = z (mod n). The relation is transitive
because for any z, %, and z where £ = y = z (mod n), we have z modn =
y mod n = z mod n, which implies z modn = zmod n, so £ = y = z (mod n)
implies that £ = 2z (mod n). Since the relation is reflexive, symmetric, and
transitive, it is an equivalence relation.

1.11-2.
x (0] 1 [2] [3] [4
0| [0] [o] [0] [0] [O]
Ao [ 2 B M
210 2] [4 [ B
Bl B [ [4 [
4ol @ B R[N
1.11-3.
+ 0] [ (2] [8] [4] [5]
[ (0] [ [2 (B8] 4 B
w6 e e o
12 B [4 (B [0 [
Bl B M [ [0 [ 2
4| B o [1 2 B8
81 (6] [o] [ [2] (8] [4

x |0 [ (2] B] (4 [5]
[0] | [0} [o] [0] [0] [0] [0]
[0 [ 2 8 4 [
(211 [0] [2] [4] [0] [2] [4]
Bl B] [0 (8] [© 3]
[4)[0] [4 [2] [0] 4 [
(511 [0] [5] [4 [31 2 [1]

1.11-4. Define z < y if and only if either |z| < |y| or |z| = |y| with £ > y. There are many
other orderings. This orders numbers by their absolute value, with a positive
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number being smaller than the negative number with the same absolute value.
With this ordering zero is the smallest number.

1.11-5. Define ajaz...e; < b;by...b; if and only if either ¢ < j or i = j with the a string

preceding the b string in lexicographic ordering. This question has many correct
answers.

1.11-6. Define

if my < ma,
(m1,n1,p1) < (Mg, n2,p2)  {if m1 =my and 7y < s,
ifm; = Mo, M1 = N9, and P < pa.

This question has many correct answers.

1.12-1. Base case (n = 0): 3, ;4" = 0 and (2n + 3n® + n)/6 = 0, so the result

is true for n = 0. Assume the result is true for n — 1. Then 3, .., =
Picicna 0 =2(n =1 +3(n—1)*+ (n—1)]/6+n? = (2n® — 60 +6n —
24 3n® —6n+3+n—1+6n2)/6 = (2n® + 3n 4+ n) /6, so the result is also true
up to n.

1.12-2. Base case (n = 1): 3 g¢;c, @' = 1+ z and (a™! - 1)/(z-1) = (2> -1)/(z - 1) =

z + 1, so the result is true for n = 1. Assume the result is true for n — 1. Then

Eogign zt = Zﬂgegn_1 g™ = (o — 1) /(e — 1) + 3% = [@™" — D/(z-1),
so the result is true up to n.

1.12-3. Do induction on the length of the formula. The base case is formulas of one symbol.

1.12.1.2-1.

Such formulas consist of just one constant, so ng = 1 and n; =0 for i > 0. In
this case the proposed formula reduces to 1 = 1, which is true. Now suppose the
formula has been proved for all lengths up to k—1. Consider a formula of length
k > 1. It consists of a main operator and subterms, say f; and t1, t2, ..., tq,.
Fach subterm has length no more than k — 1, so the formula holds for them. Let
n;; be the number of operators of degree ¢ in subterm j. For each subterm t;, we
have ngj+nyj+ng;+: - +nyj = 1401542055+ - -+ Nny;. Also, by counting the
number of operators of each degree, we have n; = 3, <j<d, Mij+0iq,- Adding the
first equation over j, we obtain Zlggm T +lej5d1 ny;+ Zigjgm ngj+---+
Di<i<a PNi = di + 215;,-5&; ny+ -+ Nzlgjgd; ny;. Replacing each sum
by the appropriate n; (or ng, —1 wheni = d;) gives ng +ny 4+ no+---+ny—1 =
di +n1 +2ng + --- + Nny — d;, which simplifies to ng +n; +na +-+-+ny =
1+ mny +2ns + --- + Nny. Thus, the result is true up to length % also.

In order to use eq. (96) to evaluate C, ,,_s¢, it is necessary for n — 2¢ to be

odd. It is also required that m < (n—1)/2—2!~! [the condition on eq. (96) says
that the second index minus one, divided by two, must be greater than or equal
to the first index for the formula to apply]. This requirement can be written as
2m + 1 < n — 2%, Clearly this means that 2m < n, whatever the value of ¢'is.
But then, since ¢ = |Ig(n/m)], we have ¢ > 1.
Now consider the possible values of ¢, and what conditions we need on m and n
tomake2m+1<n—2 Fort=1,we have 2m+1<n—2, or 2m + 3 < n.
For t > 2, the fact that t = |lg(n/m)] < lg(n/m) implies 2! < 2'8(*/™) = p /m,
son —2" > n(l —1/m). Also n > 4m (since t = |lg(n/m)] > 2), so n — 2! >
4m(1 — 1/m). Thus for ¢ > 2 the condition 2m + 1 < n — 2! is satisfied when
2m < 4m(l-1/m) - 1.
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Dropping the —1 and factoring out 2m, we have 1 < 2 —2/m, or m > 2. Thus
the use of eq. (95) on Cy, ,_o¢ is okay if m > 2 and n > 2m + 3, provided n — 2*
is odd. But for t > 1, n — 2! is odd when n is odd, and n > 2m + 3 implies that
t > 1. Thus eq. (96) can be used on Cy, n_o¢+ Whenever m > 2, n > 2m + 3, and
n is odd.
It is okay to use eq. (96) on the other term in eq. (104) (Cin—1,n) provided n is
odd and 2(m — 1) < n— 1, which is less restrictive than the condition in the last
paragraph.
So we have that Cppn = 1+ max{Cp nja—2t-1 +m, t + Cp_yns2 + m} =
1 + max{Cp nj2—2t-1, t + Cp_1,n/2} +m provided n is odd, m > 2, and n >
2m +3. By eq. (103) 1+ max{C,, n/2_2:-1, t+Cp_1 n/2} = Cm n/2, S0 We have
Cmn = Crmy2 +m. when nis odd, m > 2, and n > 2m + 3, provided our
induction hypothesis is true.

1.12.1.2-2. Suppose m = 1 and n = 2t + 1 for some integer t. Then using eq. (103) gives
01,2!4_1 =14+ ma,x{C'l,l: t+ 00,214_1} =1+4t. Use of eq. (96) on 01,2t+1 gives
1+ Cj 5:-1. Now we can use eq. (110). This gives Cy 5:-1 = ¢, which agrees with
the previous result, so the proposed solution is working for m =1, n = 2t 1.

1.12.1.2-3. When n = 2m + 1, t = 1. Applying eq. (96) to the left side of eq. (103) gives
Cmom+1 = Cmm + m. Applying eq. (97) gives Cry 2m+1 = 3m — 1. The right
side of eq. (103) is 1 + max{Cm 2m—1, 1 + Cm_1,2m+1}. We can use eq. (97)
to obtain Cpy 2m—1 = 3m — 2 and eq. (96) and eq. (97) to obtain Crn_12m+1 =
Cm—1,m + m = 3m — 2. Therefore in this case the right side of eq. (103) reduces
to 3m — 1, which is the same as the left side.

2.1-1. Fo<i<|(n-1)/3) 93i+1 OF 3 1<i<n Gi.
RSt imod3=1

2.1-2. ap41 — a1.

2.1-3. [n(n+1)/2)%.

Tl TS = T i P B8 B S Vi T S Bl (Wost of the
terms in the two sums cancel out). Solving for S gives § = (z"! —1)/(z — 1).

2.1.1-1. The probability that the step is done ¢ times is 1/n for 0 < i < n—1, so the average
is (1/n) Zogign—l i=(n-1)/2.

2.1.1-2. /(n? — 1)/12. The variance of z; and z; — 1 are the same, so eq. (26) can be used.

2121 3 % = lilineson X imgt® = Billin oo (2" =1) /(£ —1) = (M, 00 2™ 1) /{2~
1). If || < 1, then lim, o 2"+ = 0 and the answer is 1/(1—z). fz > 1
the original sum is of positive increasing numbers, so the original sum diverges.
If ¢ < —1 the original sum diverges with the terms increasing in absolute value
with oscillating signs. For z = —1 the original sum (up to n) oscillates with n.

2.1.2-2. The sum diverges when |z| > 1. For |z] < 1, Y50 82" = limp o0 3 450 i2° =
lim, 0 ((n—1)2™! —nz™+2) /(£ —1)% = (limp_0o(n— 1)z —limpy_,00 nz™ +
z)/(x —1)? = z/{z — 1)°.

2.1.3-1. The sum is zero with either convention.

2.1.3-2. The sum is zero with the first convention and —1 — 2 = —3 with the second
convention.

2.2-1. 2{n?} = {(2n® + 3n? + n)/6}.
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2.2-2. I{i?} = {32} E{i?} = {i+ 2} = {i2+2i + 1}, A{i®} = {2i + 1}, E{zz} =
{(23+3i%+4) /6}, AE{i?} = {2i+3}, EA{i%} = {2i+3}, TA{s?} = {i>+2i+1},
AX{i?} = {i* + 2i + 1}.

2.2-3. E{Gt} = {ag+1}. AE{G,} = {Gﬂ.z —~a,:+1}‘ A{ai} = {G.,'.].l ——a,;}. EA{Gg} =
{ait2 — ai;1}. Thus for any sequence AE gives the same result as EA.

23-1. 3y +3)2 = 24{3<n+3¢ =2(rn+3P°+3(n+3)2+(n+3)]/6—(2-3°+3-
3+ 3)/6 = (2n® + 21n? + 73n) /6.

2.3-2. The number of multiplications for the clever way is 2i<i<n ZK k<it—k+1) =
Z1<1<n[ﬁ(3 +1)—i(z+1)/2] = Li<i<n i +1)/2= (2n® +3n% + n)/12 + n(n +

1)/4 = (n® + 3n® + 2n) /6. The number for the traditional algorithm is n®. For
large n, the clever method uses about 1/6 as many multiplications. Using blg 0]
notation, the ratio is 1/6 + O(1/n).

2.3.1-1. You don’t need the bottom one because the element z, which is taken from position
xy, serves as a sentinel. You do need the top one in the case where Step 6 sets ¢
beyond 7.

2.3.1-2. The time is O(n). Assuming normal instruction timings, the worst case occurs
when the elements are in reverse order and the splitting element is the middle
most element. This causes the algorithm to move every element.

2.3.1-3. The worst case occurs when the file is always split so that one part has n — 1
elements and the other part has none. Since the time to Split n elements is
O(n), the time for this case is given by 3, ;.,, O(i) = O(n?).

2:3.1-4. The variation still has the case where one part has size n — 1, so the worst-case
time is the same as for the previous algorithm.

2.3.1-5. The worst case occurs when the first part has n — 1 elements. In this case, n — 1
stack cells of three words each are used, for a total of 3n — 3 words. The use of
tail recursion does not help the worst-case space for this algorithm.

2.3.1-6. For the variation, the second part is always as large as the first part. When tail
recursion is used, the worst case occurs when the two parts are equal. This
results in the size of the first part decreasing by a little over a factor of two on
each call, so the number of cells is no more than lgn. (If you want an exact
value, you need to use the technique of Section 5.2.1.) If tail recursion is not
used, the worst case occurs when the second part has n — 1 elements. In this
case n — 1 stack cells are needed. So, the alternate algorithm uses much less
stack space, provided it is implemented with tail recursion. If tail recursion is
not used, the variation uses the same space. It has the disadvantages of being
slightly slower and slightly more complex.

241-1. k/N >1/2.

24.1-2. k/N =1/2.

2.4.1-3. Uy = (1/k) Zusi-ck 5

2.4.1-4. (d/dN)(N?/(N —k)) = N(N — 2k)/(N — k)2. To minimize, set the derivative to
zero to obtain IV = 2k. (The solution N = 0 is not suitable because we need at
least k slots in the table.)

2.4.1-5. Proceeding as in the previous exercise, (d/dN)[ab+aN +bN/(N — k) + N?/(N —
k)] = a—bk/(N — k) + N(N — 2k)/(N — k)%.. (a+ 1)N? —2(a + 1)kN +
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—bk=0. N =[2(a+1)k+ /4(a + 1)2k* — 4(a + 1)(ak? — bk]/[2(a+1)] =
k+k(k+b)/(a+1).

2.4.1-6. There is no known way to generate an entirely random sequence of hash values.
Still, the analysis is quite useful in suggesting how more realistic algorithms can
be expected to behave.

2.4.1-7. One approach is to look up the item that you want to delete and delete it. Then
start a series of linear scans of the table. Rehash each item in the table. If any
item moves, do another scan. Continue until no items move. This clearly takes
a time that is at least proportional to the size of the table. If the table is very
full, then the time will be much worse.

25-1. Yo i~ ity 00 Y g<icn i°2°- Now use summation by parts with b; =
and ¢; = 2*/(z — 1) to obtain im0 X Sg<icn i?2t = lim, o [n?z"/(z — 1) —
Yocicn(2i+ 1)z /(2 —1)] = limp 00 {n? [ (z—1) - 2[(n—1)2"2 —nz"+! 4+

22 /(z—1)3]—z(z" —1)/(z—1)*}. The original sum clearly diverges for z > 1 and
for z < —1. For —1 < z < 1, the limit of =™ goes to zero faster than any power of
n goes to infinity, s0 3,5, i*z¢ = —22%/(z—1)* +z/(z-1)* = (z+2?)/(1~2)>.

2.5-2. Y5, %00 = (z+ 4% +2%)/(1 — z)4, for |z| < 1.

2.5-3. This problem has an error and it should probably be moved to section 3.2 after it is
corrected. Tt should read as follows. Express Y .., k™z* in terms of sums for
the form Y .p <, k7211, where j < m. Use summation with aj = 2¥/(z—1) by
parts to obtain Zugkm Emak = n™z"/(z—1) 'Zo<k<n[(k+ 1)m™ _km]zk+1/(z_
1)=n"2"/(z—1) — 205]{.(\0. Eogz‘an (T)kizk+1/(z —4];

2.54. Y5, %2 = (z+2°)/(1 - 2)° and };5, 02" = z/(z — 1)?, s0 T —aa =
(22%)/(1 — z)3. (This answer is not right.) -

2.5.2-1. As the text explains, Step 2 of Heap is done as often as any other step, and Step
2 is done at most lg V times each time Heap is called. Heap is called less than
2N times. Thus the time is no more than 2¢Nlg N (where ¢ is the time for all
the steps), which O(N1g N).

2.5.2-2. |lg(N/i)] = |lgN —lgi]. For N > 1 and N equal to a power of 2, IgN is an
integer. In this case, |lgN —1gi] = IgN — [Igi]. Also [lgi] = 1+ [lgi],
except when lgs is an integer (which happens |lg N| + 1 times). From eq.(2-
83) we get 3, iy llgi] = N[lgN] - 2Ue NJ+1 4 |]g N| + 2. From the above
discussion we get 3 ;<< n[1gi] = N|lgN| + N — 28N+ 4 1. Thus, the
expression reduces as follows: |N/2] +21<icny218(N/8)] = N/2+(NlgN)/2—-
Yicicn/2N8il = N/2 + (N1g N)/2 — (N/2)1g(N/2) — N/2 + 28N+ 1 =
(NlgN)/2—-(N1gN)/2+ N/2+ N —1=3N/2— 1. For the case where N is
not a power of 2, |lg N —lgi] =1g N — [lgi] + €(i), where —1 < (i) < 1. Thus
the answer changes from the above calculation by no more than +N/2 (plus a
small constant when N is odd).

2.5.2-3. See the reference.

2.6.1-1. Since 1/(i% — 1) = 1/2[(i — 1)] — 1/[2(i + 1)], the sum simplifies to (1/2) + (1/4) —
1/(2n) = 1/[2(n+1)] = 3/4 —1/(2n) — 1/[2(n + 1)].

2.6.1-2. Since 1/[i(i + 1)(i + 2)] = 1/(23) — 1/(i + 1) + 1/[2(i + 2)], the sum simplies to
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1/2+4+1/4-1/2-1/(n+1)+1/2(n+1)]+ 1/[2(n+2)] =1/4—-1/[2(n+1)] +
1/[2(n + 2)).

2.6.1-3. Nothing cancels.

2.7-1. (z +z?) /(1 — z)®.

3-1L H1<1~<n a* = exp (Zl‘(vinzlnﬁ‘) = PXP{[’”'(“ +1)/2]Ina} = o™ /e

3.1-1. 1.3 x 1012

3.1-2. In(n!).

3.1.1-1. 1

3.1.1-2. abe, abd, abe, ach, acd, ace, adb, ade, ade, aeb, aec, aed, bac, bad, bae, bea, bed,
bee, bda, bde, bde, bea, bec, bed, cab, cad, cae, cba, cbd, cbe, cda, cdb, cde, cea,
ceb, ced, dab, dac, dae, dba, dbe, dbe, deca, dcb, dce, dea, deb, dec, eab, eac, ead,
eba, ebe, ebd, eca, ech, ecd, eda, edb, ede.

3.1.3-1. g;— i1 = (RYND[(N—i+1)1/(k -—a'+1)*—( — i)/ (k—i)1] = [k{(N —2)l]/[N!(k—
DI —i+1)/(k—i+1) - 1] = RN — )1/ [Nk — )N — )/ (k — i+ 1)] =
[KN(IN = )]/[NWk -2+ DN — k).

3.1.3-2. We need ¢, > 1/2, which gives k/N > 1/2.

3.1.4-1. Base case: Since 0! = 1 and I'(1) = 1, I'(n + 1) = n! for n = 0. General case:
Assume that I'(k + 1) = k! for ¥ < n. Then I'(k +2) = (k + 1)I'(k + 1) and
(k+1)! = (k+1)kl for kE < n. Using k =n—1 gives '(n + 1) = nl'(n) =
n(n — 1)! = nl, so the result is also true for k = n.

3.1.4-2. See reference.

3.1.4-3. (1-t/m)™ = emW(1-t/m) _t/m > In(1-t/m) > —t/m(1—t/m)~! (eq.4.17). Now
for 0 < ¢, —t/m(1—t/m)~1 > —t/m+ (t/m)?, s0 In(1 — t/m) < —t/m+ (t/m)?.
This gives et > (1 — t/m)™ > e~te’ /™. Now e*zﬂ"m 2 1 —l—tz/m (eq. 4.14),

so0<et - (1 —t/m)™ < 27 /m. fom e~ 214t — f(}m ~HE= dt —
A=)l d = f “itz Lt +
I (et — (1= £)™) t*~! dt. Now for large enough m, t*~te~%/2 < 1, so the first

integral is less than [ e~*/2dt = e~™/2 for large m, which goes to zero as m
goes to infinity. The second integral is between zero and 1/m [ t?e~*dt = 2/m,
so it also goes to zero.

3.1.4-4. T(p+ 2) = ( -3l -3) =@-3)p-3Tp-%) =---=(@-3)-
$)---23T(3) = (2p—1)(2p—3) - -- 1I'(3) /27 = (2p)'T(3 )/[2”(239)(2;)*2)---2]:
X (2 )‘F( )/[2"2”9‘ (2p)'0(3)/[2%7p!)-
3.2-1. (,2) = 3(-3)(-3) - (—n+3)/(n+1)! = 1(-1)(=3) --- (20 +1) /2" (n+1)!] =
(=1)"1-3---(2n /[2“+1(n+ ] = (-1)*2n)/[2" (n +1)12-4---2n] =
(—1)* zn)r/[22ﬂ+1(n +)nl] = (-1)*(*M)272"1/(n + 1).

32-2. (})=nn—-1)---(n—k+1)/[k(k —1)---1] = nk/kL

3211, 3:4(7) =3 (D) =n2=L,

3.2.1-2. Zuqm;z ( ] Zoamxz '”'( 1) = zogigu,‘zq “(ﬂ:l)- Each term in the range
from 0 to n/2 — 1 has a matching term of the same value in the range from n to
n/2 + 1, so the sum is equal to one half of the sum over the full range, except
that for odd n there is a correction for the terms near the middle. For odd n the
answer is n2"~* 4+ n (|75 ) /2, while for even n the answer is n2"?
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3218 %, () () = 5 () (8 = 5 () (7)o = (A 1+ 2.
3.2.14. ¥, ()2t = 37, (") z* = (1 - )~™ s0 long as all the sums converge (|z] < 1).

n

3.2.1-5. X, (25 (3) = Tuln — iyml/[(n — m)i(m — ilil(n — i) =
n!/[(n —m)lm!] 3, m/[(m — i)lil] = (7)2™.

3.2.1-6. Left side: (") =(-n)(-n—1)---(-n—i+1)/(1-2---i) = (-1)i(n+i—1)(n +
i—2)---n/(1-2---i). Right side: (7'7') = (=i—=1)(=i—2)---(=i—n+1)/(1-
2.--n=1))=(-1)"n+i-)n+i-2)---(i+1)/(1-2---(n —1)). For
most values of n and 7, one of the two products has terms that cancel. Suppose
i > n. Then the left side product becomes (—=1)(n+i—1)(n+i—2)---i+1/(1-
2---(n—1)), so the two products differ by a factor of (—1)"++1. If { = n—1 the
two products are the same. If 7 < n — 1, terms in the right side product cancel,
and again the two products are equal except for a factor of (—1)»T#+1.

3.2.1-7. Define Sm = 3 g<icn ()" Use summation by parts to obtain S = (1)z"/(z —
1) = Socicn (- 1) E==. Apply this result repeatedly to obtain Sy, = [z"/(z —
1) Y o<icm (mei)lz/(@ = 1)) + [—z/(z — 1)]™So. The sum S can be worked
out directly to obtain Sp, = [2°/(z — 1) Xgcicm (mi) 2/ (@ = VI + [~2/(z —
1)]™[(z™ — 1)/(z — 1)]. This is a simplification provided m < n. For m > n the
sum is zero (because the binomial is always zero in this case).

3.2.2-1. See reference.

324-1. k(N +1)(N —k)/[(N —k+1)*(N —k+2)] = {kNN - k)/[(N — k+ 1)*(N —
kE+ 231+ 1/N) = {kN(N — k)/[(N = k+ 1)3(N —k+ 2)]}[1 + O(1/N)] =
{EN(N =k +2)/[((N = k+ 1N —k + 2)]}[1 + OQ/N)][1 — 2/(N — k)] =
[kN/(N — k + 1)?)[1 + O(1/N)][1 + O(1/[N — k])] = [kN/(N - k + 1)?][1 +
O(1/N)+O(1/[N=k]))+O(1/[N(N=k)])] = [kN/(N —k+1)*][1+O(1/[N—k])] =
[kN/(N~k)*|[(N —k)/ (N —k+2)]P[1+O(1/[N ~k])] = [kN/(N-k)*|[1-2/(N -
k+2)P[1+O0(1/[N~k))] = [kN/(N-k)*|[1+O(1/[N - k])]* = [kN/(N-k)*][1+
30(1/[N—k])+30(1/[N—Kk]2)+30(1/[N—=k]?) = [kN/(N—k)?|[1+0(1/[N—K])]-
(See Chapter 4 for a detailed explanation of why each step is true.

3.2.4-2. The terms with ¢ > k+ 1 are zero because ¢! is infinite for integer 2 < 0. The terms
with ¢ < 1 are not zero.

3.3-1. Y1 Yogick_1 /N1 = (G/N)] = limnoo Yicicn Logjch-1 G/N)THL =
(3/N)] = limn 00 D g<ick 1 Elgign(j/N)i_lil - (§/N)] =
timp o0 D 0< i<k (L= (G/N1=(G/N)")/(1=3/N) = Y ocjc-1[1 - (G/N[1-
limp, 00 (7/N)"]/(1 — §/N). Now lim,_,(j/N)" is zero for j/N < 1, one for
J/N =1, and co for j/N > 1, so the double sum reduces to 3 5 cp_y (1 -
J/N)J(1—j/N)=kfor N>k—-1tok—1for N=k -1, and to —oo for
N<k-1

3.3-2. Interchange the order of summation to obtain ) 02" (c;cpn_q CiCnoi-1 =
Y50 Ci Taig1 2"0nic1 = 230450 2°Ci L ip1 27 1C0ni1. Let j = n —
i—1(n=j+i41)toobtain 235,50 7°C; ¥ 50 2°Cj.

3.3-3. ZDSi{n y = ZDSj{n yﬁ"«':‘ = ZI]ﬁi{'n ZUSj-cn yi(j"k]-’”:f =
Yo<ienTi So<icn ¥ Tf 497k £ 1, then the sum over i is (yU

—k)n
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1)/(y"9=*) — 1), and the final result is Po<jcn TP — 1) /(30 1), 1f
y?=*% =1, then the sum over i is n and the final result is 1Y o<icn Ti-

3.3-4. 3. 2 X Yo, ity (M)Pic1,8,(0) = (B, Ty, Pi-1,1,(m))
(Zﬂ Z:zg Pi-1,t, (n))-

3.3-5. The average time is (1/2%) 3, <,y Picjcnlto(l = 8i5) + t1li — j|] =
(1/n?) stgn Zlgjgn to(1 — 6i5) + (1/n?) Z1g¢gn 215;;9; tili — j| = [n(n -
D/nlto + (11 Ty cign (Crgiaili = ) + Dicienli =) = (1 = 1n)to +
(1/n2)ty ¥y cignlili = 1) — (6 — 1)/2+ n(n + 1)/2 — i(i + 1) /2 (n — i)i = (1
1/n)to+(1/n?)t 301 cicnli® —i+0% /24 n/2—ni] = (1-1/n)to+ (1/n®)t1 [n? (n+
1)/2+ (2n® 4+ 3n® +n) /6 — n(n+1)2/2] = (1 — 1/n)tg + t1(n — 1/n)/3.

3.3-6. Eml,mz,‘,,,mk HlSiSk(ml)mi (n?,—)mmi =
v tnn i Wicpsieg =)™ (;i)xm‘ (Emk (f:k)(_x)m*) -

Pl Iicicp 1 (1™ [r:‘,)xm" (1 — z)™. Repeated application gives

3.3.1-1. The average of the sum of the squares is }_, ; i2ai; = X, Npi/k << j2 =
> Npi(2i® + 3i% + i)/ (6k) = N/(6k) 3,(2i® + 3i% + i) (i‘) (N = 1)FiN-F =
(N/k) 32:2(3) +3(3) +9) (5) (N = )*=iN—F = (N/R)[k/N + (3/2)k(k — 1)/N? +
(2/6)k(k—1)(k—2)/N3 = 1+(3/2)(k—1)/N+(1/3)(k—1)(k—2)/N2. Subtract-
ing the square of the average gives the variance: 1+ (3/2)(k —1)/N + (1/3)(k —
1)(k—2)/N? =14 (k—1)/2N]? = (k — 1)/(2N) + (k*> — 6k + 5)/(12N?).

3.3.1-2. Although there is a simple relation between the average time to build a hash tables
and the average time to look items up, there is apparently no such relation
between the variances. ‘

3.4-1. Zj @ = 3 even @i + .Zj cad @ and 3 . (—1)a; = Zj even @ — 2-j odd @js SO
% Zj_“’j - ‘gl‘z_f;(—l)'?ﬂfj': Zj odd @j- i

3.4-2. Zj (2?;')“”";rl = Zj (2’;) (zlﬂ)% ~ Zj even (;l) ($1f2); = %[(1 + xl_.f'?)n. + (1 . ml)’2)n]_

3.4-3. Zj (2?) xz‘f = Zj even (::) (T)J = %[(1 _+ "‘ﬁ:)n + (1 — w)n]_

3.4-4. Y ocicns2 (23':-1)3’2““ =i oaa (7)%* = {1 +2)" — (1 — 2)"].

3.4-5. 37, (f;) = §[2" + (1 +49)™ + 8no + (1 — 4)"]. Continuing with the techniques of the
next section gives £[2" + (2v/2)" cos(mn/4) + 6no + (—2v/2)" cos(3n/4).

3.4-6. See Exercise 3.4.1-2. _ :

BAT. 3 oy @ = § >0+ i}:j(é)—"laj + 1 >i(=1)"a; + 4 G a2

3.4.1-1. (z+iy)(z —iy) =22 —i%y? =22 4+ 4% =12

34.1-2. Yyoienw ™ Y witay = 30 21 Yoo W™, Now Yacjcn WFmI = (1 -
wlk=miny /(1 — wF=™) = 0 provided w*—™ #£ 1, i.e., if k #m. If wF~™ = 1, then
the sum is n. Therefore, (1/7) Y o< cp WM oy = SN Gt = e

3.42-1. See Ex 2. The answer is i
(1/5){2™ + 2[2 cos(/5)]" cos(wn/5) + 2[2 cos(27/5)]" cos(2mn /5)}-

3.4.2-2. See Ex. 3 and make the simplification z = 1.

34.2-3. 3. (nin)? = (1/m)z=*m 3. (m;_'_k](x”m)mj‘”‘ =
(1/m)z=k/m ZGSI<m Z;‘ wi=H) (?) (z/™) =
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(l/m 2~ MY e 1w (G @™y = (1/m)a™ Yo em w1 +
1g1/m)™_ To remove the complex numbers, use w = cos(2wn/m) + ¢ sin(27n/m)
and polar representation of complex numbers. (1 + w'z!/™) =
V1 + z1/™ cos(2xl/m)]? + [z1/™ sin(27l/m)]? times a complex unit vector,
which simplifies to 1/2 + 2z1/™ cos(27l/m) times the unit vector. The unit vec-
tor has angle n arcsinfsin(27/m)//2 + 221/™ cos(2nl/m)]. In the sum over I,
the terms with 1 < [ < m/2 have the same real parts an opposite imaginary
parts as the terms with mm —1 > [ > m/2. Taking just the real part of the terms
gives 3~ (m;"Jrk)zj = (1/m) Yocreml2 + 2z1/™ cos(2ml /m)]™*/? cos{2nkl/m +
n arcsin[sin(27l/m)/+/2 + 2z1/™ cos(27l/m)]}. When z = 1 the sum simplifies
more, as suggested by exercise 2.

3.5-1. For positive integer r and s, (1+2)™+* =3, ("}*)z™, so the coefficient of 2™ in (1+
D)7+ is (1) (+2) (1+2)° = (X, (=) (2. (Q)=") = L. 2. Q)= =
LR B et = E (Z (D) (s }) z", so the coefficient of z" is
3 (0 (%) Since the two expressions are equal for all z, they must be equal
term by term. Therefore, ("*°) =3, (7)(,%;) for positive integer r and s. As
explained in the text, this result must also hold for all » and s because both
sides are polynomials in 7 and in s, and both sides are equal at a large enough
number of points

3.5-2. The coefficient of z¥ in (1 + :t:)""”‘ is (3. Q+2z+2)m =), (m] 2z +2%)™% =
3 (7) 5 ()P0 = 3 () 5, (o5 )Pl Bquating

powers of T gives (2;“) =
¥ (7) Grai;)2°™ %74, Applying eq. (53) gives 7 =
2 (D) (w2

3.5-3. Both sides are polynomials in s of degree n + r, and, by the derivation, the two sides
are equal for all positive integer s. Therefore the two sides must be equal for all
s.

3.5-4. The substitution used in the derivation of eq. (167) works when s and r + s are
nonnegative integers, so eq. (167) is true in this case due to the derivation.
Now both sides of eq. (167) are polynomials in s of degree r + n. The previous
argument shows that the two sides are equal at an infinite number of points.
Since both sides are polynomials in s, they must be equal for all s.

3.5-5. With n > s > 0, the lower summation limit in eq. (168) is greater than or equal
to zero. It can, however, be replaced with zero, because (sf) is zero for n > s,
i > 0. This proves the result solong asm < r. Whenm > r (and n > s), the sum
has no terms, so it is zero (this also works with the other summation convention
because the resulting negative terms produced by the other convention are zero)
and the right side is also zero.

3.5-6. Apply eq. (69) to the second binomial in eq. (167) to obtain

Dt L s—Lbntd) (_q)mti = (712). Use eq. (53) to obtain

31Y1ﬁ+1 n+i _ $ﬁ2 —_—g = g — =
Zi(i)( (=D = () Letn' = —s—1,8 = -s—1+n(s=

—n' — 1, n = s’ —n') to obtain Y, () (*F*) (-1)* = (-1)*(]37=})- Apply

T+s5—n
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eq. (69) followed by eq. (53)to the right side of this to obtain 3", () (*1*)(~1)! =

(=17 (,po_,)(=1)7(,2,)- These steps all work if n, r, and s are nonnegative
integers. Since both sides are polynomials in s that are equal for an infinite
number of points, the equation is true for all s.

3.5-7. Apply eq.(72) to the first binomial in eq. (167) to obtain
5 (S () (1) = (7H). Tetm = —r — 1,7 = = —i— 1, and
i'—t=n+i(i=i—-r"—-1,r=-m—1,and n = ' — ¢t + 1) to obtain
i (2= = (=)™ (TR F0). Apply eq. (53) to the right side
gives (—1)m—"+1 (_"]T;_l;"jt) Applying eq.(71) gives (—1)!(7-27%).

3.5-8. By eq. (169), we have that the sum is equal to (—1)™( ° ) which is equal to
(=1)™6bmn-

83.5-9. Yo tmattm=p Licick(D™ (n)2™ =

T TR, TR —1 1<i<k—1

(=™ (ﬂ’:;)xmi (p—nu»—mﬁ.‘.._mkﬂ] G i e B

i i, 5 ngfgk—z(—l)mi(r:;)xmi

ka-x (P'ml"m;i'”_mk—l) m:_i)(_z)p—m1—mz—“-—mk—1(_m)mk—i) -

Zml,mz,,..,ﬂak_z Hlfifk—2(_1)m‘l (?:;)xm‘l

N A T I

Eml,mg,,,,,m;‘_g ngigk—2
(1™ ()™ (s oo _y) (— )P ™1 ~M2="Mi-2_ Repeated applica-
tion gives ().

3.6-1. Zn:m-F-ne-!-----!-m (H;T::::,::%) = Zn=ﬂ1+nz+-‘-+ni (nt:::tznt:;::ii}lnllnz sl =
(I+14+---4+1)" =i" where 1 4+1+---+1 is short for ¢ ones. The sum
is done by the multinomial theorem.

371 % = 2, {5 (O3t s0 D1 (D)i* = D=1 (D) T, {3 (it =
¥ (51 DN () = Z5 (53(-1"8m = {}mi(=1)™. Now {}} =0
for k <m and {}} =1 for k = m, so the result follows.

3.7-2. Show that 3, (*)(~1)%™ = (—1)"n!{™}. This can be done with the same technique
as exercise 3.7-1.

3.7-3. Consider a permutation of n objects which has k cycles. The last object either is
in a unit cycle or it is in a larger cycles. The number of permutations with the
last item in a unit cycle is e,_1 x—1, because in this case removing the last item
gives a permutation with n — 1 objects and k — 1 cycle and each permutation
with n — 1 objects and k¥ — 1 cycles can be obtained in just one way. The
number of permutations with the last item in a cycle of more than one element
is (n — 1)en—1,k, because each such permutation can be obtained in one and only
one way by starting with a permutation of n — 1 item and % cycles and adding
the n'P item. There are ¢,_; ; permutations to start with and for each one there
are n — 1 places to insert the n'? item. Thus ¢ = (n — enea gt iy pos

3.7-4. The recurrence of the previous exercise can be used to compute ¢,y for all positive
integer n and k provided we are given cgr and cpo. With zero objects, the
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permutation must have zero cycles, so cor, = dpx. The only way to have zero

cycles is to have zero objects, s0 ¢no = d,0- Since ¢, obeys the same recurrence

as [’;] , since it obeys the same boundary conditions, and'since the values can be

computed (using the recurrence) from the boundary conditions, the values must

be the same. If you want a more formal argument, use proof by induction.
3.7.1-1. A good order is py; for 1 <i <5, py; for 1 <4 <5, ete.

N | Pnl Pn2 Pn3 Pnd Pns
Tofi oL 4050 B0
11
Son e AL
Bl g1 70
4! 3 25 7 = 0
5l 3 8 % 1 L
5 12 24 12 120

3.7.1-2. Base case (n = 0). For n = 0, Step 4 is done zero times. General case (n > 0).
Eq. (194) was proved in the text. Assume pn; = [,7,]/n! for n < n,. Then

Pr.i = (1/n04) [“'g."l]/(n* — 1+ ((ne — 1) /n.) [':"Jr_ll]/(n* -1 = [“‘_1] + (7 —
D31/ nad =[] /na!, for the result is also true for n = n,

3.7.1-3. ["'“;1] = Y 1<i; <ig<oooin_y<ns1 4182 - “in_1. This is n — 1 increasing numbers in
the range 1 to n, so each number must be one more than the one below it,
except that one number is left out. Thus the sum has n terms, and its value is

5 cicn i
3.8-1. 3 (1) (u3%) = Zirlsl/ [l (r—i)l(n+i) (s —n—d)]] = rls! 3, (=7)i(—s+n)¢/[ilrinl(s—
Wi(n + 1)i] = (2)2Fi[-r, —s + n;n + 1;1] = (5)[p!(r + 8)!/(n + r)ls!] = (r +
)Y/ [(n +m)s —n)1] = (7F3)-
3.8-2. % % =Y yso Uml(w+v—Dl(n+m—w—v)!/[(w-1){(n—w)w(m-

v20 (ntm) (L5757
v)(n+m)!] = nlm!/[(w — D —w)l(n+m)]> so(w+v—-Dlin+m-w-
)/ [l(m—2)!] = nlm!/[(w - 1)(n—w)i(n+m)] 3,5, (w—1)w”(=m)*(n+m—
w)!/fotm!(~n m o+ uy =
nl(n+m —w)!/[(n - w}’(n +m)] 3,50 W' (=m)7/[ol(—n — m + w)*] = nl(n +
m — w)l/[(n — w)l(n + m)l]oFi[w, —m; —n — m + w; 1] = nl(n + m — w)!/[(n —
w)l(n+m) ' (—n—m+w)I'(—n)/[T(-—n— m)I‘(—n+w)] =nln+m—w)!/[(n—
w)l(n+m)](-1)*T(n+m+1)C(n—w+1)/[(-1)*T(r+m—-w+1)I'(n+1)] =
nl(n+m — w)!l/[(n — w)!(n + m)![(n + m)!(n — w)/[(n +m — w)ln!] = 1.

3.8-3. 3,50 ﬁ%z—{_q = Du>1 {—ﬂ—% =Y nml(w+v -Din+m—w—
v)!/[(w - Dl (n —w)l(v — DI(m —v)l(n+m)l] = 30 5 nlmi(w+v)!(n+m—w-
v — 1)7/[(1.'.1 — Dl(n — w)lv!(m — v — D(n + m)] = n!m!/[(w — 1)(n — w)!(n +
m)] 3 se(w+v)(nt+m—w—v—-1)1/p!l(m—v-1)!] = nlm!/[(w-1)(n—w)!(n+
m)]] Z’u;ﬂ w(w+1)’(-m+1)’(n+m—-w-1)/[pl(m-1)(-n—m+w+1)" =
al(n+m—w—1)mw/[(n—w)l(n+m)]| 3 5 (w+1)"(=m+1)"/[l(-n —m+
w+ 1)) = almwn + m —w — D!/[(n — w)l(n+ m) o Alw+1,-m+1;—n —
m+w+ 1;1] = {nlmw(n + m —w — 1)!/[(n — w)!(n + m)!}}{l"(—n —m+w+



3.84.

3.8-5

3.8-6

3.9-1

3.9-2.

3.9-3

3.9-4

4.1-1

4.1-2
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DI(—n —1)/[I(=n - m)['(-n +w)]} = {nmw(n +m — w — 1)!/[(n — w)(n +
m)IH(-1)® VT (n+m+ D (n — w+ 1)/[(-1) @D (n+m — w)T(n + 2]} =
{ntmw(n +m —w - D!/[(n — w)(n + M) |H(n + m)(n - w)!/[(n+m—w —
Din+1)!]} = mw/(n+1). This all works only when w < n, because otherwise
the original sum has a division by zero.

S4i(3)° = X ninl/[i1G — 1))(n ~ )i(n — )] = (a)?2 X, [(—n)T2/[i(-1)107(n1)?] =

/(=D Fy[-n, —n;0;1] = 1/[(-DIT(0)T(2n)/[T(n)]* = (2n — 1)}/[(n — 1)!?

().

- T et = (20)! Tiso /(@) [(n — 6)2) =

(2n)! i [(=n) 2 /[()01 ()] = (21)!/ ()25 Fy[~m, —n;1;1] =

2n)!/(n)’T()L(2n + 1)/[T(n + 1)]* = (2n)!/(n1)?(2n)!/(n!)? = (2::)2.
2

. The answer is (37), at least for integer j, n. This can be proved by induction. If you

try the method of this section, you get that the sum is [(2n + 1)!5!/(2n)!)s [ +
1,-n,—n+3; %, J—2n+1;1], which is almost (but not quite) formula ITI.16 from
Slater. Does Slater have an error? Is this a new result for hypergeometric series?
Is the answer true for non integer §, n? (Send your answers to the authors.)

. The number of permutations with no cycles of length one is equal to the total number

of permutations minus the number with some cycles of length one. The number
of permutations of n objects is n!. The number of permutations with the first
i items forming one-cycles (and the remaining n — ¢ items doing anything) is
(n —4)!. To have at least i one-cycles, there are () ways to select 7 items to
be one-cycles. This, of course, overcounts the cases which have more than i
cycles. Putting this all together with inclusion and exclusion gives the answer

A+ T cign (D () (0 = ) =0l (14 Dy o (DH/il) = 0l Ty (1) /i1

If you put at most a; pigeons in the first hole, at most ay pigeons in the second

hole, ..., and at most a, pigeons in the n'® hole, then you have put in at most
a; + as + --- + a, pigeons. To put in one more pigeon, at least one hole must
have an extra pigeon.

. See Alan Tucker, Applied Combinatorics, John Wiley and Sons New York (1984),

pp. 313-314.

. This problem is like 3.6-1, except for the n; > 1 condition. The principle of inclusion

and exclusion can be used to express this sum in terms of the sum with n; > 0

and the sums obtained with various n; = 0. D (“;T’:fji“) =

i : ﬂ=n1-i-n2+‘---‘i-nli ]
LD (3) Smimoma=o,..me=0 (024 4) = 53, (~1)F (3) (6 — k)" =
n=n1+nz+---+n;

Zi()HG)R =7}

. €® = 14z+x%e/2 where0 < c < z,s0forz > 0, 1 +2+2%/2 < e® < 1+z+22e%/2.

The lower limit is the lower limit needed. From the upper limit we get e®(1 —
z?/2) < 1+ z. For |z] < /2, the term in parentheses is positive, so in this case
e* <(1+z)/(1-22/2). For —v2 <2 <0,1+z+2%%/2<e® < 1+z+2%/2,
50 the limits are just reversed.

. Proceed as in the last problem, but carry the expansions out to n terms.
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4.1-3. In(1 + ) = z — z?/[2(1 + ¢)?] for some ¢ in the range 0 < ¢ < z, so In(1 + z) <
z—22/[2(1 + 2)?]. In(1 + ) = = — 22/2 + */[3(1 + ¢)?] for for ¢ in the range
0<c¢<zs0lIn(l+z)>z—2%/2

4.1-4. Use eq.(16). For 0 < ¢ < |z|, the smallest [(=1)"c"*1/[(n + 1)(1 + ¢)"*!]| can be is
0 and the largest it can be is [(=1)"z"*!/[(n + 1)(1 + )" *1]|.

4.1-5. sinz = z — ;z* sinc for some c in the range 0 < ¢ < z. For 0 < z < 7/2, the last
term is between 0 and —$z*sinz, so z/(1 +2%/2) < sinz < z.

4.1.1-1. The tree is too large to give here. It should have 16 in its root node, a (g) tree for
the down tree (see Fig. 4.2) and a (5) tree for the right tree.

4.1.1-2. The number of leaves in a tree is one if the tree just has a root and it is the sum
of the number of leaves in the children otherwise. The children of the root of

a () tree are a (dgl) and a (j‘::i) tree. Thus, letting Ly, be the number of

leaves in a (g) tree, we have Lgp, = Lg_1p + Lg—1,n—1 when d > h. Also Lgyy
and Ly are 1. Thus, the numbers Ly, are generated by the same set of rules
as the binomial coefficients are, so they must be the same. (Actually, the rules
are slightly different when d = h, but the answer is still the same.) This can be
given more formally as a proof by induction.

41.1-3. (WM A1) — ((RIN)Y/R 4 b — ][(RIN)Y/P 4+ h— 2] - - [(RIN)/*]/R!. Replacing
each factor on the top with (A!N)Y/* makes the top smaller (or the same when
h<1).

4.1.1-4. Prove by induction. Now d((;)) = 0 and d((:)) = 0 because the tree has a
single node which is a root. In particular d((;)) = d((})) =0. Fori > h >0,
d((})) = max{1 +d((*;)),1 +d((;~}))}. By the inductive hypothesis, this
reduces to d((})) =max{l+i—2,1+i—2}=i—1forh<i—1. Forh=i—1,
it reduces to d((; *,)) = max{1,1+i—2} = i—1. Now consider h(T); h(()) =0
and h((!)) = 0 because the tree has a single node which is a root. For d > i,
h((%) = max{h((*;")), 1+ ((¢7}))}. By the inductive hypothesis, this reduces
to h((f)) = max{i,1+i—1} =i fori <d-—1. Fori=d—1, it reduces to
h((,%,)) = max{1,14+i -1} =i.

4.1.1-5. To prove that the method is not optimal consider Figure 4.2 with the circled node
14 modified so that its right son is a circled node 15. The down child of this
15 is a leaf with a 15 (we cannot afford to do a test on the down child, because
all the tests have been used up) and the right child is a leaf with a 16. Thus it
is possible to decide among 16 values using at most 5 test and 2 failures. This
leaves the interesting question of what is the best method for doing destructive
testing. The binomial tree algorithm is optimum if there is a limit on the number
of failing tests and a limit on the number of successful tests rather than a limit
on the number of failing tests and a limit on the total number of tests.

42-1. gf(z-1) =1+ '+2 2+ 3+ 3/(z-1)=1+2 ! +272+0O(z®) for
z > 1 + ¢, where € is any positive constant.

4.2-2. 1/(14cz) < 1/[1+0(z)] < 1/(1—cz) for some ¢ > 0 and all z > 0 with |z| below some
limit, e. Therefore, for such z, 1 —cz/(1+cz) < 1/[1+ O(z)] < 1+ex/(1 - cx).
A similar calculation is needed for z < 0. For |z| below the minimum of 1/(2¢c)
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and €, we have 1 — 2ez < 1/[1+ O(z)] < 1+ 2cx, so 1/[1 + O(z)] = 1+ O(x).
The second part of the problem is false. Consider the function 1/1 + 2z. As z
approaches —1/2, there is no limit on the size of the function, whereas 1+ O(z)
stays below some limit.

42-3. Fore>0,C =c¢, and C' = ¢, Cf(z) = ¢f(z) = C'f(z) for all z with C > 0 and
C'>0.

4.2-4. logyz =Inz/Inb, solet C = C' = 1/Inb. (It is essential that b is a constant and
not a function of .)

4.2-5. It is necessary to assume f(z) > 0. With that assumption, |g(z)f(z)| = |g(z)|f(z) <
cf(z) = O(f(x))-

4.2-6. It is necessary to assume f(z) > 0. With that assumption, g(z)f(z) > cf(z) =
Q(f (). '

4.2-7. O(O(f(x))) means all the functions in the range ¢i¢o f(z) to czeq f(z) while O(f(x))
means all the functions in the range ¢s f(z) to cgf(z). These two ranges are the
same since any positive ¢s can be expressed as the product of some ¢; and ¢z,
where ¢; and co are positive. Likewise any positive pair ¢;, ¢z correspond to
some positive ¢5. Similar remarks are true for ¢3, ¢4, and cg.

4.2-8. From the first © we have C f(z) < ©(f(z)) < C{ f(z) and from the second one we
have C3f(z) < O(f(z)) < C3f(a), s0 (C1 + Ca) f(x) < O(f(2)) + O(f(2)) <
(C] + C4)f(x). Since Cy + Cy > 0 and C] + C4 > 0, this implies O(f(z)) +
O(f(z)) = ©(f(x)). If the plus signs are changed to minus, then you do not
know the sign of C; — C or of C] — Cj, so you can not conclude that the result is
O(f(z)); it might be too small. Eq. 41 is a big O result, so we only need an upper
limit. More precisely, —(C; + C2) f(z) < O(f(z)) = O(f(z)) < (C1 + Ca) f(z),
so O(f(z)) = O(f(z)) = O(f(x))-

4.2-9. f(z) = Q(g(z)) implies f(z) > Cg(z) implies |g(z)| < f(x)/C, provided g(z) is
positive. (The result is not always true for zero or negative g(z).

4.2.1-1. By eq. (13) e® = 3 1 cicn f—1 + e°z™*1 [(n + 1)! for some ¢ in the range 0 < ¢ < =,
80 €% = Y gcicn /i1 + O(2"+!) with C' = e"/(n+1)! and C = 1/(n+ 1)! in
the definition of © [eq. (23)].

4.2.1-2. By eq. (16) In(1+2) = — 32y ;e (= 1) i+ (=1)"/(n + D/ (1+ O™ for some
cintherange 0 < ¢ <z, s0 In(1+z) = = 3, ;e (12t /i + (—1)"O(z)"*!
with C' =1/(n+1) and C = 1/[(n+ 1)(1 + ¢)**!].

4.2.1-3. (Notice that direct application of eq.(49) does not work, because 7 must be fixed.)
Note: this solution is for a corrected version of the problem. (1 + a/z)* =
explzIn(1+a/z)] = exp[—a+a?/(27)—O(1/2?)] = e~® exp[a?/(22)—O(1/2%)] =
e %[1 + a?/(2z) + ©(1/2?) — ©(1/2?)], where the first © term comes from the
square term in the power series expansion of the exponential function and the
second © term comes from the © that had been in the exponential. This gives
us (1 —a/z)® = e °[1 + a®/(2z) + O(1/2?)], but it does not give a big © result
because we don’t know the sign of the difference of the two © terms. The next
exercise shows that the difference can be positive, negative, or zero.

4.2.1-4. Note: this solution is for a corrected version of the problem. (1 + a/z)* =
explzIn(1+a/z)] = exp[-a+a®/(22) —a®/(32?) + O(1/°)] = e~ exp[a®/(2z) -
a®/(3z%) + O(1/23)] = e 1 + a?/(2z) + a?/(22%) — a®/(32%) + O(1/2%)] =
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e~ °[1+a?/(2z) + (3a* — 2a%) /2% + O(1/2%)]. The (3a* — 2a%)/2? is positive for
a>3/2 and for a < 0.

4.2.1-5. See Cohen [23, p 131].

4.2.2-1. 1/[1+0O(1/z)] is the set of functions between 1/(1+C/z) and 1/(1— C/x) for some
constant C' and for x > xy. By long division, these limits are 1—(C/z)/(1+C/z)
and 1+ (C/z)/(1 — C/z). Choose z; = max{zy,2C}. For z > z;, the upper
limit is smaller than 1 + (C/z)/(1 — C/z;) and the lower limit is larger than
1-(C/z)/(1—-C/[z1),s01—C"/]z < 1/[1+ O(1/z)] <1+ C'/z, where C' =
C/(1-C/z;) > 0. So 1/[1+ O(1/z)] =1+ O(1/x).

4.2.2-2. afv goes to zero as v goes to infinity, but a does not change size. You can expand
e~% in a power series, you just don’t know whether the error term will be small.

4.2.2-3. eV =1+ 1/z+1/22%) + 0(1/2%) so e/*(1 — 1/z) =1 — 1/(22?) + O(1/z%).

4.2.2-4. ¢* — O(1/v) stands for the set of function in the range e™® — Cy /v to e™® — Cy /v
for some positive constants C7 and C». e~ + O(1/v) stands for the set of
functions in the range e~ + C'/v. The first set is contained in the second one.
e 4+ 0(1/v) = e ?[1+e*0(1/v)] = e °[1 + O(1/v)] since e® is a constant.

4.2.2-5. (1—a/v®)”" = exp[v?In(l — a/v®)] = exp[-a/v + O(1/v%)] = 1+ O(1/v).

4.2.2-6. In(141/22) = 1/22—1/(22*)+1/(32%) - 1/ (42®) + O(1/°), s0 In(1+1/z%)e!/=* =
1/2% — 1/(22*) +1/(32%) — 1/(42®) + O(1/2"%) + 1/2° — 1/(2z7) + O(1/=°) +
1/(228)+0(1/2'%) = 1/2%—1/(22*)+1/2°+1/32°—1/(227)+1/(42%)+0O(1/=°).

4.2.2-7. [1 = 12/(2n) + O(t® /n®/?)]" = exp{nIn[l — t2/(2n) + O(t*/n1/?)]} = exp[-t*/2 +
O(t3 /nl/2) + O(t* /n)] = exp[—t?/2 + O(t® /n}/?)].

4.3-1. Since |lgi] < lgi < |lgi] +1, (N +1)|lgN] —2UeNI+1 p o0 < >~ . ylgi <
(N+1)|lgN] —2UeN+1 4 24 N, (N+1)(IgN-1)—-2N+2< Y, ;enlgi<
(N+1)igN-N+2+N, NlgN-3N+lgN+1 <Y, ;. nlgi < NlgN+lg N+2,
gN1g N-3N+1 < Nl < 2ngN+lgN+2’ 16(N/8)N+1 < Nl < 4NN+1_

4.3.1.1-1. The probability that a clause contains variable z; is p. The probability that it
contains z; and its negation is p?. To have an average fraction f of a set of
clauses containing z; and its negation, it is necessary that f = p®.

4.3.1.1-2. The probability that a clause does not contain z; and its negation is 1 — p?.
The probability that a clause does not contain any variable and its negation is
(1—p?)?. Therefore, the probability that it does contain a clause and its negation
is 1 — (1 — p?)* and the answer to the problem is f =1 — (1 — p?)".

4.3.1.1-3. This problem is worked in the text. See eq.(110)

4.3.1.1-4. This problem and the next refer to eq.(111). Start with eq.(120). When
limy oo vp = 0, (1 — p)"*! = exp[(v + 1)In(1 — p)] = exp(—vp + O(vp?)) =
1 —wvp+ O(v*p?), so N;, = explvln2 + ¢ — tvp + O(tv?p?)]. This simplifies to
N;, = exp(vin2 + t — top)[1 + O(tv*p?)]. Eq.(110) implies that ¢ < O(1/p).
When lim, o vp = 00, (1 — p)**! — 0, so the logarithm can be expanded in a
power series to give N;, = exp{vIn2 — t(1 — p)**! + O[t(1 — p)>*+1]}. When
t(1 — p)**! — 0 this can be further simplified.

4.3.1.1-5. See reference [78] and apply the technique to this problem.

4.3.1.1-6. See reference [78].

44-1. Forn>2, Y cicpt! =nl+m—1)+n-2)1+n-3)43 cicns @ =nl{l+1/n+
1/[n(n=1)]+1/[n(n-1)(n—=2)]+0(1/n*)} = n{1+1/n+1/[n(n—1)]+0(1/n%)}.
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4.4-2a. The answer is a constant, so there is no useful big O answer. 10" < 37, '
< 10%%%(1 4 10(9/10)1°%) < 1.0003 x 101,

4.4-2b. The answer is a constant, so there is no useful big O answer. 1000%:990.000
Socaci000 £-000000 < 10001:000:000(1 +1000(999/1000)1-9%0:990) . The upper limit
is less that one part in 105°° larger than the lower limit.

44-2¢. o< icr000 85 = 1000°[1 + O((999/1000)%)].

142d. Ty pe, i = n7{1+O[(1 — 1/n)q]}.

448 YhoicnG 1™ — 3 g ™ = 0. T s also equal to Y g, ™ +
Pogicn(m + Di™ + 0(n™) + O(1) — Ty giepsn i™ = —(n + )™ +
Zﬂ{1<n(m+ 1)i™ +0(n™) + O(1). If we assume m > 0, this gives Y y;c, (m+
1)i™ = (n+1)™* + 0(n™). But (n+1)™* =n™H + O(n™), 50 Y gcicn(m+
™ =™ L Q™) for m- 0.

4.4-4. 20<1<’n(£ pu 1)m+1 El*(e(n—i-li mH o= 0. zﬂ-(zén g g (m+1) Zﬂ<t<n +
(m+1) Zﬂ<g<n S Q) — Z]{1<n+1 ™+ =0, so (m+1) Eos:gn =
(n+ )™+ — g+l — (M) S i + O(n™ ). Expanding (n + 1)™*
with the binomial theorem and using the result of Exercise 3 for the right
side sum gives Y g ;o i™ = 2™ /(m + 1) + n™/2 + O(n™"1). Now carry-
ing the calculations out to one more term, 3, i+ + (™) Zoqm PR

%) Yogicn T (") Zogiga ™2 + O(n™%) - T, <i<np1 ¥ =0,50
(AN Y ociand® = O+ 1] P8 (BERHL 17
- (m:;'-l) ansgn FEERT. Zug;‘gn i = 2™ /(m+ 1) + n™/2 +
mn™1/12 4+ O(n™"2),

4.4-5. For large z, the highest power with a nonzero coefficient is most important.
b3y (jfi):c’: = (?)xj[l 4+ O(1/z)] if j < n. If j > n, then the answer is
(;2.)=" 1 +0(1/2)).

4.4-6. For small z, the lowest power is most important. ), ( )( %
j <n. If j > n, then the answer is (J )mf‘“[l + O(z)].

4.4-7. The biggest term is for j = n/2, so for even n the sum is greater than (n/2)?* and
smaller than n times that amount. For odd n, replace n/2 by (n —1)/2.

4.5-1. f(;u—l 712 dg < Zl(’i{n il/2 < fln 21/2 dz, %mar’zﬁ]‘"l < 21(1{{?1 §1/2 < gm:ﬁzl?’
%(ﬂ - 1)3’;2 S Z;gq; 3.1!2 S %(n:ﬂz - 1) »

45-2. YicicnJ) = Xicicm ) + > m<i<n f(i)- Apply €q.(146) to obtain the final
answer.

453, Fisicm® 4 [n2 5L B tient * € Enpem o+ [ 272 d
Di<i<m a2 Y icicn gV Zl£i<mi_2 = $_1|m' 15 21<icm b a3
m —(n)"! < Picicnt ? £ Digiemi -+ m-1)1 - (n-1)"1. So thc'
constant in the lower limitis ), ., ., ©"2+m ™! and the one in the upper limit is
Li<icmt 24 (m—1)"L. Form =1, 2, 3, 4, the constant part of the lower limits
arel,14+1/2=3/2,1+1/4+1/3=19/12,1+1/4+1/9+1/4 = 29/18, and the
constant part of the upper limits are 1/0 =00, 1+1/1=2,1+1/4+1/2="7/4,
1+1/4+1/9+1/3 =61/36.

")et = ()1 +0) if
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4.5.1-1. 21(1{11. = fln g/2dg — L(n'/? = 1) + [ Bi({z})(d 2!/ /dz) dz = Zn3/? -
n nl/2 — L Bl (z)z~1/? dz. Now, —1/2 < By({z}) < 1/2, so
-2 :c‘lﬂda: < L By 1Py £ L [PeriAgn, L e Rdp= L
' /2p = L(1—aV 2). Putting the pieces together gives the answer.

4.5.1-2. Do it the same way as 4.5-2.

4518, By i = Dyaram 72+ [0~ do— L0~ —m2)+ [7 By ({z})(da~2/dz) da
;215i<mi_2 +mt—pt - %(n 2-m?)-2["B {:r})m"3 dz. The last
integral is bounded by £1(m~2 —n~2). Thereforc Digicm ¥ m T —nl £
SBIE S E R T +m‘1 —nl4+m2—n2 Form=1,2, 3,4,
the constant part of these limits are 1, 1 +1/2 = 3/2, 1+ 1/4+1/3 = 19/12,
141/4+1/9+1/4 = 29/18, and 1+1 = 2, 14+1/2+1/4 = 7/4, 1+1/4+1/3+1/9 =
61/36, 1+ 1/4+1/9+1/4+1/16 = 241/14.

4.5.2-1 21<3{n it? = [PatPdz — LM - 1) + £ = 1) = (0?2 - 1) -

8 s J{ Bo({zh)z 2 dz =3 3"2 s -+t e -
L[ B2({z})z 3/ dx. By eq(168) the error term is no more than the last term.
This gives a final answer bctween 2n¥? — int/2 — 390 4 Lp-1/2 _ Aon=b/2
and 2n3/? — 1nl/2 — L 4 Lp=1/2

4-5.2—2. Zlgi{ﬂ ?:_2 == lei{k 3'_2 _|_f; x—z da;-_ %(ﬂ’—z . k—2) ot é( —3 —3) _|_ 310( —5
_5)"‘51}:‘ B4({$})$_6 dz = Elgi{ké_zﬁ'k—l_n—l—;( n?— 2) (

k=3 + (% —k~%)+5 [ Ba({z})z® dz. The error term is no more than the
last term, so for k =1, 2, 3, the lower limit is £ —n~! — In=2 — %n‘3 + 95m75,
179 _ 21 _ 1.2 1. -3, 1 __5 23983 _ 21 _1__a2° 1 -3 5

o IR t"ﬂ1 .{;30? 1 450 7 ¢ 1 A 2 6? 3+§3f}3n ai.nd
theuppcrhmltlsg—n ~gh gl g g R e
in=2 - 1ln-3,

4.5.2-3. (Assume k > 2 and constdnt for small k the answer can be obtained directly.)

Tnciznt® =4 et de— ’,‘3"/2+J<;<rr,"‘_1/12+[Is7(;?c—1)/2]j;‘"Et’g({x}):.e’“_2 dr =
n* 1 (k+1) +n*/2+ kn*=1 /12 + [k(k —1)/2] [’ B2({z})z*~2 dz. The last term

can be bounded in absolute value using (2/72) [’ 2¥~2dz = 2n*~1/[z2(k — 1)].
This gives Y pc;cn i’ = n**1/(k + 1) + n*/2 + O(n*~1), where the constant
implied by the big O is between k{1/12 4 1/[x2]} and k{1/12 — 1/[#2]}.

4.5.4-1. See [39, pp 527-528].

4.5.4-2. By eq. (167) the error is no more than 3zn~1°.

4.5.4-3. (") [Hppr — 1/(m+ 1)]. See [9, p 75).

m+1

4.5.44. Zl{t‘(’ﬂ 2 214&{00 £ s Zn€s<mi_2 - %ﬂj i Zn{t‘(ooé_Q i %?Tz -
[Pr2de—in?—in 35 [ By({z))r Ode = in? —n~l - ln24+ 1n-3 4
O(n_s)

454-5. 1< Y5017 2% <1+ [P 272 dz =1+1/(2k—1) < 2, for k > 2. Direct evaluation
of the first few terms of the sum leads to much more accurate results.

4.5.4.1-1. Use eq. (184). to obtain 5[~ In(.8) — O(1/(N — k))] = 1.12 — O(1/N).
4.5.4.1-2. 1/N? < 1/(N — k)? in the range of interest (0 < k < N) so the O(1/N?) term
can be absorbed into the O(1/(N — k)?) term.
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4.5.4.1-3. Neither term can account for the error over the entire range of interest. The first
big O term is dominant for k near N/2 while the second one is dominant for k

near zero and near N.

4.5.4.1-4. In eq. (182) approximate the H (but not the Hy_y) to obtain A = (N/k)[In N—
Y+ 1/(2N) + O(1/N?) — Hy _4].

45415, A=3051(1/k) Cocjcra JUN = DUN = /[N — i+ D] = (1/k) Tocjch
Yo (N = D)GIN = 7)/[NI(7 — i+ 1)!]. From eq. (3-93), the sum over i is
equal to (N +1)/(N —j+1),50 A= [(N+1)/k] Y pcijcp 1 YN -G +1) =
[(V + 1)/RI(HN+1 — Hy—k41)-

4.6-1. 100.

4.6-2. 31 (-1)'/i = 351 [F1/(2 =D +1/(29)] = = X5, 1/[25(25 = 1)) T4 (-1) /i =
=142 (1) i= =143 55, [1/(25) - 1/(25+1)] = -1 +20551 1/[25(25+1)].

4.6-3. By repeating the previous exercise with upper limits, you get >, .., (—1)!/i =
~ Thgjen V2325 = 1] a0d 5y girnyn(~1)/i = 14 Ty e, 1/123(25+ D).
Now, applying eq. (203) (replacing n with co and k with 2n) gives the result.
The value of the sum from n+1 to infinity can be approximated with an integral.
About 25 terms are needed for accuracy +0.01.

4.6-4. Base cases. (1) Yoc;cp(=1)'ai = Ygicn(—1)ia; for k=n, (2) Yocici(—1)'a; =
Yo<ickir(F1)ai +an < Ygeicn(—1)%a; for k =n —1 and k even, (3)
Yocick(—1)'a; = Zogigkﬂ(_l)i‘ai —an < Ypcicn(—1)a; for k = n -1
and k odd. Suppose } o ;i (=1)'ai > Yocicn(—1)'ai < Focich._1(-1)as,
where k is even. Then Y o .., o(-1)fa; = Yy icr(=1)a; — (@p_1 — ax) >
So<ick(—1)%a;i > Y gcicn(—1)%a;, which establishes the upper limit for k =
k. —2. In a similar way the lower limit can be established. Thus, if eq. (203) is
true for k., (possibly with the greater thans replaced with equals), then it is true
for k, — 2 (with no replacement of the greater thans). The base cases provide
the two required starting values.

4.7-1. zo =t, 7 =te~t, zp = te " = [l — te~t + O(t2e~ )], x5 =
—te—HHTIHOMWE™) = {1 _p412%e~—O (e 2)+(1/2)[~t+t2e O (e 22+
O(t*)}. (Perhaps more details would help.) This sequence is not converging. The
error term is getting bigger. The problem is that e~* is changing its relative size
too quickly. The form with the logarithm is much better behaved.

4.7-2. Let £ = Int — Inlnt — a(Inlnt/Int) and plug in. The left side is Int — Inlnt —
a(lnlnt/Int) and the right side is In¢ — In[lnt — Inlnt — e(Inlnt/Int)] = Int —
In{lnt[l - (Inlnt)/Int - a(lnlnt)/(Int)?]} = In¢ —Inlnt+In[l — (Inlnt)/Int —
a(lnlnt)/(Int)?] =Int —lnlnt + (Inlnt)/Int — a(lnlnt)/(Int)? +
O((Inlnt)?/(Int)?). The first two terms on each side are equal. The third terms
are equal for @ = —1. All the remaining terms are much small (for large t) than
the third terms. Therefore for large ¢ and @ > —1 the left side is bigger while for
a < —1 the right side is bigger. Each side is a continuous function of a, so the
two sides must be equal near ¢ = —1.

4.7-3. Write the equation as * = vu+Inz. Starting with 7o = /u, we get ; =

VJu+ilnu = u/T+ (Inw)/(2u) = vl + (Inw)/(4u) + O((Inw)?/u?)] =
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w'/? + (Inw)/(4u'/?) + O((lnu)? /u®/?),
25 = /u+In[ul/? + (Inu)/(4ul/?) + O((Inu)?/u/2)] =
V{1 + In[u2(1 + (Inw)/(4u) + O((Inw)?/u?)])/u}’? = u{l + In[ul/?(1 +
(Inw)/(4u) + O((Inw)*/u?))]/ (2u)
— [Infu’2(1 + (Inw)/(4u) + O((Ilnw)?/u?))]?/(8u?)} = ML+ (ma)/ () +
(Inw)/(8u?) + O((ln u)? /u®) + 3(Inw)?/(16w?) + O((Inu)? /u®)]
= /u[l + (Inw)/(4uw) + 3(lnu)?/(16¢?) + (Inw)/(8u?) + O((Inw)?/u?)] = v}/ +
(Inu)/(4u'/?) + 3(Inw)?/(16u3/2) + (Inw)/(8u3/2) + O((Inu)?/u3/?)]. x3 is the
same as Ty to the calculated accuracy. You can prove that zs is the solution
using the same technique as the used in the previous exercise.

5.2-1. T,, = Toa™ + b(a™ — 1)/(a — 1).

5.2-2. T, = a™ + b(a™ — 1) /(a — 1).

5.2-3. T,, = Tonl.

52-4. T, =Tp + n(n + 1)/2.

5.2-5. By eq. (29), the solution is T, = Tp [1; <;<,, @n- If ay, is a rational function of n, then
it can be factored (using complex numbers) into the form (n — ;)%
(n—22)** -~ (n — 2;)% [[(n — 1) (n - 3»'2)f2 -+ (n — ye)*], so
Tn = ITicicn (= 20) Tlicicn G — 22)° - - [licicn (6 — 25)%/
Mli<i<n( y1)7 [Ticicn(i— y2) - Tlicicn(® — wa) 1.
Since Hl{?‘,‘fn(i —z) =I'(n-2)/T(-2), Tn =
Ty ([C(—y1)]* [M(=y2) ]'f #-= D=l (=2 )] I (ma)lt - [T(—Ir»)]”‘})
(IC(—z1)]* [F(—Iz )12 - - [D(=2x)]™ AT (=y))* [T (=92)) 2 - - - [D(=yw)}*})-

5.2-6. Up = agnlUn_1 + bon =Tp Hl{e<n as; + 21{‘{,1 ba; H3<3<n @z;,
Vo = af2n+1V L §E 52n+1 Tl H] <i<n Qi1 + 2143{” b23+1 H,(\J{ﬂ 2541,
Tn = (14 (=1)"Upn/2/2+ (1 = (=1)")V(5s—1)/2/2. (You can object to the answer
because U and V have not been defined for half integer indices, but the answer
works for any definition.)

5.2.1-1. The solution to the secondary recurrence is d; = (3n —4)/(3-4%) +4/3 = (2-4*~ 4
4)/3 where k = $1g(3n—4)—%. (n must have the form 2-4% /3+4/3.) The solution

to the recurrenceis Ty, = 2-3% —1 = 2(3n—4)2 '3 /31/2_1 ~ 1.155(3n—4)* 7921,

5.2.1-2. 3 to 4 = 0.75.

5.2.1-3. In this case for eq. (39), Tn = 3* + 2n[($)* — 1], where k = Ign — g3, so the
ratio for large n is 7/3'8% to 4 ~ 0.307. This method is fairer because if the
second algorithm takes one unit of time to do problems of size 3 then the first
one probably does also.

5.2.1-4. The algorithm needs time ¢; time to go through the current level of the recurrence.
‘When there are 2n + 1 item, there is one chance in 2n+ 1 that the item is found.
Otherwise (with probability 2n/(2n + 1)) it is necessary to solve a problem of
size Ty,. Problems of size 1 can be solved directly.

5.2.1-5. The solution to the recurrence of the previous exercise has the secondary recurrence
2d;+1 + 1 = d;, which has the solution d; = (n + 1)/2° — 1. Letting k =
lg(n + 1) — 1, the solution to the recurrence is T, = t2 [[p<;oz[1 — 27/(2n +
D]+t Cocick Hocjcill —27/(2n+1)]. To finish the problem, it is necessary to
determine how this answer behaves for large n. On computers which do not have
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three-way branch instructions, it is necessary to multiply this result by a factor
to account for the fact that on the average it takes about 11 two-way branches
to do a three way branch. (The factor is smaller than 1.5, because much of the
loop concerns computing the index rather than comparing; an analysis of the
assembly language code would be needed to determine the exact factor.)

5.2.1-6. The secondary recurrence is d7,, /2" = d;, or 2]gd;4; — r = lgd;. The solution of

the secondary recurrence for the boundary condition dy, = 4" is d; = gr(2"~i+1)
Perhaps the easiest thing to do is to write the original recurrence in terms of F;
where F is defined to be T'(27(2'+1)). This gives F; = 272" +1) f;_, 4.22r(27'+1),
which has the solution Fy = Fp2r(2"+k=1) 4 por(2*+k+2) /(1 _9-7) _por(2*+1) /(1 —
277). Now k =lIg[(lgn)/r — 1] so

o flgn N\ (T@) b\ bn
T(n)_zn(«r 1) ( 8" +1_2_,.) 1—2—7

5.2.2-1. The second method is faster for ¢ < 2. It might be faster for z = 2 (unlikely

in practice). For the second method, the time is linear for z < 1, O(nlnn) for
z =1, and O(n®) for z > 1.

5.2.2-2. The second method is better for & < 8. From the information given, you cannot tell

which method is better for k = 8 (in practice the first probably will be better).

5.2.3.1-1. Let T}, be the time for going down to n = 3, U,, be the time for going down to

n = 18, and V,, be the time for nonrecursive algorithm. T, = Vz(n — 2)18% +
6(n —2)'¢% —6(n —2) — 1 =18(n — 2)'83 — 6n + 11. U, = (V15/3%)(n — 2)'8% +
(6/3%)(n — 2)'83% — (6/2%)(n — 2) — 1 = (116/27)(n — 2)'83 + (3/8)n — 1/4. For
large n the leading terms are the most important, and the ratio of the coefficients
is 18/(116/27) = 486/116 ~ 4.19, so the analysis suggests that stopping the
recurrence at 18 instead of 3 increases the efficiency by over a factor of 4. This
is the answer intended by the authors. It is actually too large. The analyses for
T, and U, were based on upper limits rather than exact equations. Use of the
exact equations would make the analysis much more difficult, but it would also
give a lower (and correct) answer for the amount of improvement. See Exercise
5.2.3.1-3 for an indication of what must be considered in a more careful analysis.

5.2.3.1-2. When students at Indiana University did this problem, they found break points

5.2.3.1-3.

in the 18--36 range for programs written in Pascal. The students with the better
(faster) programs often found the higher break points.

Using the assumptions from the text with even n, n2 + n. = (n./2 + 1)2 +
(ne/2 4+ 1) + 2(n./2)? + 2(n./2) + 3n,, or n%/4 —9n,/2 — 2 = 0. The solution
is 9 &+ /89. The positive root is between 18 and 19. For odd n, n? + n, =
2(n. /2 +1)? +2(ny /2 + 1) + (ne/2)? + (14 /2) + 30, 0T N2 /4 — 9, /2 — 2 = 0.
The solution is 11 £ 1/137. The positive root is between 21 and 22. Thus, at
least one recursion should be done for n = 20 and for n > 22, but the direct
approach should be used for n = 21 and for n < 19. In practice, one would
probably chose to have a single break point (remember it would take extra time
to have several break points). The break-even point calculated in the text is too
large by over a factor of two. For a real program there are additional factors
such as the time for parameter passing. For this reason it can be very valuable to
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check an analysis against some actual measurements. Measurements don’t lead
to analytical answers, but they usually do not omit important effects. Comparing
an analysis with measurements can uncover effects that might be missed using
either technique by itself.

5.2.4-1. The sequence was chosen so that the middle element was first and so that each call
to Split algorithm interchanges only one pair of elements (the last element in the
first part is interchanged with the middle element). After this one interchange,
the group of elements less than the middle element obeys this property as do the
elements larger than the middle element. The same is true of the two parts, and
the same continues to hold for the subparts.

5.2.4-2. See the previous answer.

5.2.4-3. For each call to the algorithm, steps 3 and 6 together are done a total of 2F = n+1
times. If we exit at Step 7 without going around the loop, then Steps 1 and 2
are done once, the test in Step 4 is done once, Step 5 is done once and all of
Step 7 is done once. Steps 8 and 9 are done once. The algorithm also generates
two recursive calls, one for a problem of size n; and one for a problem of size
n—mny —1 (all elements except the splitting element go into one set or the other).

5.2.4-4. This type of problem is discussed in much more detail in Section 7.4. Use induction.
Assume that the result has been shown for all £ < n. Then T, = an+ b+
a[(n1 +1)/2]1g[(n1 +1)/2]+ (b—a+c)n1/2+(c—a—b)/2+a[(n2+1) /2] 1g[(n2 +
1)/2]+ (b—a+¢)nz/2+ (¢ —a—b)/2 = (a/2){(n1 + 1)Ig[(n1 + 1)/2] + (n2 +
1)1gl(nz +1)/2]}(a + b+ ¢)n/2+ (¢ — a — b)/2. Only the first term depends on
n1. Replacing ny with n — 1 — n;, we must find the value of n; that minimizes
(n1+1)1g[(n1 +1)/2]+ (n—n1) Ig[(n—n1) /2]. Taking the derivative with respect
to n; and setting it equal to zero gives lg[(n1 +1)/2] +1 —1g[(n —ny)/2] -1 =0
or lIg[(ny + 1)/(n — n1)] = 0. Raising 2 to the power given by the equation gives
(mi+1)/(n—ny1) =1,2ny =n-1,0r ny; = (n—1)/2 and ny = (n—1)/2. These
values give a minimum (rather than a maximum) because the derivative is an
increasing function of n;.

5.2.4-5. By eq. (38), Tor+1_1 = 281140 Y gy 2225 1) 403 ) cicp 2F = 28 +a(R2F -
(28 = 1)) +b(2F - 1) = c2¥ + a(k— 1)2* + a + b(2F — 1). Expressing everything in
terms of n gives T, = c(n+1)/2+a{lg[(n+1)/2] - 1}(n+1)/2+a+b(n—-1)/2 =
a(n+1)lg[(n+1)/2) +cn/2 —an/2+bn/2+¢/2 —a/2 - b/2.

5.2.5-1. If you write down what is calculated you get 51 = Aa; + Aaa, S = A1 + Agz — Ans,
Sz = A11—An, 84 = An+A12— A —A22, S5 = Bia—Bi1, S¢ = Bii+Baa—Baa,
S7 = Bay—Bia, Sg = B11+Bap— B1z—B21, My = (A1 +Ass— An ) (B +Baa —
Bi1s) = —AuBu + AnBiz — A1 Bas + A2 Biy — A21 Bia + Ag1 Baz + A2 Bi1 —
AosBi2 + Az2Boz, My = AnBu, Mz = AjeBay, My = (A1 — An)(Ba2 —
Bi2) = —A11Bia + A1 Baa + A21 Bi2 — A21Baz, M5 = (A21 + As2)(Bi2 — Bn) =
—Ag By + AnnBia — A22Biy + A2eBia, Me = (A1 + A12 — Aoy — A22)Byp =
A11 B3y + A12Byy — Ag1 Bay — A2z B, My = Ag(Bu + Bag — Biz — Bm) =
Ago B —Ags Big— A2a Boy + A2 Bop, T = A1 Biz— A11Baz+ A1 Bin — A Bra +
A2 Bag+ Ay Bry — Aga Bis+ A2z Bao, T = A1 Bi1 + Asa Bii — A2 Bia + A2 Bas,
Cn = AuBu + A12Ba, Ci2 = A1 Big + Az Ba, Cn = A1 B + A Bo,
Caz = A21B12 + A2 Bas.

5.2.5-2. T, = nl87 s n231,
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5.2.5-3. T, = n'87 4 n? Zog£<lgn(7/4)i = n'87 + n2[(T/4)'8" — 1]/[(7/4) — 1] = n'87 +
(4/3)n'87 — (4/3)n? = (7/3)n'87 — (4/3)n? ~ 2.3n281,

5.2.5-4. The time for the 3 x 3 method is O(n!°8s¥), while the time for Strassen’s method is
O(n'87), so for the 3x 3 method to be fast, we need logs k < Ig7, k < 387 = 21.8.
Similarly, to be better than the classical method requires k < 27.

5.2.5-5. an®+bn? = 7(an®/8+bn?/4) + cn? /4, (a/8)n® = [(3/4)b+c/4]n?, n = (6b+2c)/a.
(The roots at n = 0 do not give the break-even point.)

5.2.5-6. See Spiess [131] for an indication of what answers to expect.

5.3.1-1. Consider the sum 33y ;< (Fit2 — Fiy1 — Fi) which is equal to zero by the defi-
nition of Fibonacci numbers. It is also equal to Yosichsa Bo— Tacicann B —
Zoqan Frpo+Fnp1—1-1-Fopi+1- Eo<e<n Fi = Fupa—1- ZU{:{n
Since this sum is zero, we obtain ZI]<3<11 F; = Fp1» — 1. This technique can be
extended to do the sum 37, ;. Fiz*, as shown in Knuth [9, Section 1.2.8].

5.3.1-2. bF, 41 + aFy,. The recurrence is the F1b0na.cc:1 recurrence, S0 you can just consider
how much of F,, and F,_; you need to match the boundary conditions.

5.3.1-3. Let A, be the number of additions needed. Then 4, =1+ 4,,_; + A,_2 with
boundary conditions 4y = 4; = 0, because to calculate F;, one addition is done
on the results of recursive calls to the procedure with parameters n—1 and n—2.
Let G(z) = Y ;50 Aiz'. Then G(z)—Ag—2z4A; = 22/(1-2)+2G(2) -z Ae+22G(2),
80 G(z) = 22 [/[(1-2)(1—2—2%)] = —-1/(1 - 2)+1/(1—2—2%), and A, = F, - 1.

5.3.1-4. One addition is done for each time around the loop, so n — 1 additions are done.
For large n, this algorithm uses many fewer additions than the previous one.

5.3.3.1-1. The answer is twice that given by eq. (158). Eq. (158) was determined by the
amount of output needed. The answer to this problem is determined by the
amount of input plus output, which is just twice the amount of output.

5.3.3.1-2. This has the same answer as the last exercise. Each number that is output needs
to be rewound.

5.3.3.1-3. This time the answer is three times that given by eq. (158).

5.3.3.2-1. The answer is twice that given by eq. (178).

5.3.3.2-2. The answer is twice that given by eq. (178).

5.3.3.2-3. The answer is three times that given by eq. (178).

5.3.3.2-4, 5, 6. The comparison is the same as the one given in the text following eq. (158).

5.4-1. For year n let z,, on, t,, and f, be the number of new born foxes, the number of one
year old foxes, the number of two year old foxes, and the total number of foxes
respectively. Then z, = 0, + tn, 0n = 2Zp—1, tn = On-1, and fn = z, + 0n + tp.
The first three equations can be combined to give 2z, = zp,—1 + Zp—2, S0 2, =
c1Fn + ¢y F,_1, where F, is the n'? Fibonacci number. The boundary conditions
are zg = 0 and z; = 1, so z, = F,. From the second and third equations we
have 0, = F,_1 and t,, = F,,_3 (for n > 1), s0 f, = F, + Fy1 + Fo_o = 2F,
(for n > 1). Also (by direct calculation) fo = 1 and f; = 2. Thus, fo =1 and
Fu=2F, form-2 1:

5.41-1. M ¥ i ak—iX* = O then (replacing i with k — i) 3o ;i A= =90, so
Y o<icr @A~ =0 unless X = 0.

5.4.1-2. T, = Tpi + Tnj + O(n®).
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5.4.1-3. Let b;; be the largest solution of the equation 1 — b;j" — b;}j = 0. The requested
solutions are by = 2, bz = (1 + V/5)/2 & 1.6180 byp = v2 ~ 14142, by =

L2 4 34/93)13 + (2 + 3v03)'/3] ~ 1.3493, bos = (3 + 54/ E)P + (4 -

LBV & 13247, by = 2/ x 1.2599, bi = 1.3803, byy = /(1 +V5)/2 ~
1.2720, bgs = 1.2207 byy = 2174 =~ 1.1892.

5.4.2-1. The general solution is T}, = ¢; + can, so the particular solution is T, = n.

5.4.2-2. F, = cyn+ ¢y works when ¢;(n+2) +c1(n+1) + e;n+ 3¢g = n. This is true when
3c; = 1and 3¢g+3c; = 0,0r¢; = 1/3 and ¢p = —1/3. The characteristic solution
of the homogenous equation is 22 +2z+1 = 0, which has roots z = (—1%+/=3)/2.
Letting \; = (=1 +1v/3)/2 and Xz = (—1 — i4/3)/2, the general solution is
F, =1 AT + A% + n/3—1/3.

5.4.2-3. Look for solutions of the form Fj, = an?2™ + bn2™ + c2™. a(n + 3)22"*3 + b(n +
3)27+3 4 273 —a(n +2)22"2 — b(n + 2)2"2 — 2™2 +a(n + 1)227F + b(n +
1)27+1 4 27 — gp22" — b2 — 2" = n?2". (5a — 1)n®2"™ + (36a + 5b)n2" +
(58a+18b+5¢)2™ = 0. Since each coefficient must be zero, a = 1/5, b = —36/25,
and ¢ = —358/125.

5.4.2-4. Correct the problem to read T,, = 47, _; — 5T,_2. The general solution is T,, =
a(2 +1)™ + b(2 — i)™. The particular solution is T}, =4(2 +1¢)"/2 —i(2 — ©)"/2.

5.4.2-5. Let = arctan(1/2). Then (2+1) = v/5(cos@+ising) and (244)" = 5™/2(cosnf +
tsinnd).

5.4.3-1. The average length is 3,50 ki = (1 — p) X550 k0 = p/(1 — p).

5.4.3-2. po =1 — p. Letting [ be the average queue length, [ = p/(1 — p), so p = 1/(1+ 1),
po=1/(1+ 1), and I = (1 — pp)/po- To have 20 percent idle time, [ must be 4.
To have 10 percent idle time, ! must be 9.

5.5.1-1. In this answer, we will stick all the effects of rounding up and of rounding down into
a big O term of the recurrence. For ¢ = 7, we have C(n) = C(n/7) + C(5n/7) +
(16/7)n+0(1). Letting C(n) = an+p3, we get (1-1/7—5/7)a = 16/7, or & = 16,
which is worse than @ = 142. For ¢ = 11, we have C(n) = C(n/11)+C(8n/11)+
(30/11)n + O(1). Letting C(n) = an + B, we get (1 — 1/11 — 8/11)a = 30/11,
or o = 15, which is worse than a = 142.

5.5.1-2. For n a multiple of 18, the question is when is S(n) > S(n/9 + 1) + S(13n/18 +
4) + 22n/9, where S(n) is the time used to sort » numbers. If you assume
S(n) = n[lgn] — 271 41 (see [11, p. 184]), then the recursive method uses
less comparisons for n > 90.

6.1-1. G(2) — a1z — ag = 2G(2) — agz + 2°(d G(2)/dz) + 2°G(2). 2*(dG(2)/dz) = (1 —z—
22)G(2) + (ap — a1)z + ag, 2°(dG(2)/dz) = (1 — z — 2%)G(z) + 1.

6.1-2. The last element is either in a 1-cycle or a 2-cycle. If it is in a 1-cycle, then the
remaining n— 1 elements form an involution of n—1 elements. If the last element
is in a 2-cycle then there are n — 1 possible elements for second element of the
2-cycle. In these cases, the n — 2 elements that are not part of that 2-cycle form
an involution of n — 2 elements. Thus, t, = tn_1 + (n —1)tp—a2.

6.1-3. The boundary conditions are g = 1 and ¢; = 1, so this exercise has the same answer
as Exercise 1.
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6.1.2-1. The generating function obeys the differential equation G" — 2G’ — 3G = 0 subject
to the initial conditions G(0) = 2 and G'(0) = 2. Therefore the generating
function is G(z) = € +e7® = 3, ([3' + (~1)i]z/i!, and F, = [3" + (=1)"]/n!

6.1.2-2. G(z,2) = (1 — 2zz + z2)~1/2,

6.1.2-3. The correct recurrence is Jn41(2) — ZJ,(2) + Jo_1(2) = 0, G(z, 2) = exp[z(z —
=), |

6.1.2-4. You can show that the given hypergeometric function is a solution by plugging it in.
The following indicates how you can obtain a general solution to the equation.
First, there are several special cases that are easy to solve, including (1) ¢ = 0,
(2) a=b=0, and (3) a = 0, ¢ = —1. Expressing the solution to these special
case cases as hypergeometric functions gives some clue to the form of the general
answer. The author found the general solution by looking up known results on
the hypergeometric function in [16, p. 558] and adjusting coefficients so that the
exercise looked like eq. 15.2.10 of [16]. Using capital letters for the parameters
in [16], the two equations match when A = ne/(Z — 1), B = (a + b)/Z), and
C=b-n-nc/(Z~-1) for any Z. Choosing Z—1=cand Z —1 = —c gives the
general solution Fy, = K12Fi[n, (a+b)/(1+c); b1+ ¢] + Koo Fy [—n, (a+b) /(1 —
c);b—2n;1—¢.

6.2.1-1. To calculate B(n) of the recurrence ao(n)B,, + a1(n)Bn_1 + az(n)Bp_s + --- +
ar(n)Bn_r =0, use B, = —[a;(n)By—1 + az(n)Bp_g +--- + ax(n)Bn_i]/ao(n)
(so long as ag(n) # 0. This gives zero if B,y =0, By_y =0, ..., Bp_ = 0. If
you have zeros up to n, and you have at least k zeros in a row, then this gives
you zeros up to n + 1 and you still have at least k zero in a row. To calculate
Bp_i use Bn_ = —[ao(n)Bn + a1(n)Bn_s + -+ + ax—1(n) Bp_i11)/ar(n) (50
long as ay(n) # 0. The rest of the argument is similar to the previous case.

6.2.1-2. Consider the following set of k solutions to a recurrence in the form of eq. 41,
where i (0 < ¢ < k—1) indexes the solution and j A;(n) = &;, for0<n <k —1,
Ai(n) == —[a1(n)Ai(n — 1) + az(n) Ai(n — 2) + - - + ax_1(n) Ai(n — k)] /ao(n)
for n >k, Ai(n — k) == —[ao(n)Ai(n) + a1(n)Ai(n — 1) + -+ - + ag_1(n) As(n —
k + 1)]/ax(n) for n < 0, Suppose you have some other solution Ax(n). Define
B(n) = > gcick-1 Ar+1(i)Ai(n). Then B(n) — Ax(n) = 0for0 < n < k — 1.
Also B(n) — Ak(n) is a solution of the equation since any linear combinations of
solutions is a solution. Finally by the previous exercise, B(n) — Ax(n) = 0 for
all n, so Ay is a linear combination of the other A;.

6.2.1-3. Wn = B] (??,)Bg(n + 1) — B]_(?’E + I)Bg(ﬂ) Wn+1 = Bl(n + I)Bg(ﬂ. + 2) = Bl(ﬂ +
2)82('3’!, + 1) B,(n + 2) = [+al(n =t 2)3,;(??: + 1) - ﬁ;z(?% T 2)Bi(n)]/ag(n + 2) for
1=1,2,80 W1 = B; (n+ 1)[—&1 (n-f-?)Bg (n+ 1) —az(n+2)B, (n)]/ag(n +2)—
Ba(n+1)[~ai(n+2)Bi(n+1) — ay(n+2)Bi(n)]/ag(n+2) = —=By(n+1)azx(n+
2)Bz(n)/ao(n+2)+az(n+2)B;(n)Ba(n+1)/ag(n+2) = —az(n+2)W, /ag(n+2).

6.22-1. r1 = (n—2)%, ry = —n + 2, D, = 2D,/[(n — 2)'nl], giving a solution of F, =
C‘ln + 02 Z2$£Sﬂ 1/[(% s 2)73']

6.2.2-2. Sec Bender and Orszag (21, p. 43, Example 5].

6.2.2-3. Write the recurrence as Fn — [(2n — 3)/(n — 2)]Fa_y + [(n — 2)/(n — 3)]Fp_g =
(r=1)(n-2). n(r)=n-1,72(n) =n-1-[2n-3)/(n-2)|(n—2) = —n+2,
r3(n) = n—1-[(2n-3)/(n—-2)](n-2)+[(n~2)/(n—3)](n—3) = 0. (n—1)D, =
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(n—2)Dp—y. Dy =Dy/(n—1). B, —Bp_1 =c¢f(n—1). B, = By +cHp;.
Ap =b(n—1)+c(n—1)H, is the solution to the homogeneous equation. Trying
a polynomial for the particular solution gives F,, = (n — 1)(n® — 3n? 4+ 8n)/3, so
the general solution is F,, = (n — 1)(n® — 3n? + 8n)/3 + b(n — 1) + c(n — 1) H,.

6.2.2—4. See Bender and Orszag [21, pp 44-46].

6.2.2-5. This is an Euler recurrence equation. r(r — 1) +r—1/4 =0, r = £1/2. F, =
al'(n + 1/2)/T'(n) + bI'(n — 1/2) /T(n).

6.2.2-6. 7(r —1) —1/4=0. r = (1 £2)/2. F, = al'(n+ (1 +v2)/2)/T(n) + bT'(n+ (1 —
v2)/2)/T(n).

6.2.3-1. Clearly any permutation of one object leaves the object fixed, so there are zero
derangements of one object. There are two permutations of two objects, (1)(2)
and (12). The second one is a derangement and the first one is not, so Dy = 1.
Now consider a derangement of n objects. The last object is either part of a
2-cycle or it is part of a larger cycle. If the last object is part of a 2-cycle, then
removing the last object and its partner leaves a derangement of n — 2 objects.
Each derangement of n — 2 objects along with a choice for the partner of the
nth object leads to a unique derangement of n objects, and every derangement
of n objects with the last object in a 2-cycle can be obtained in just one way.
There are n — 1 choices for the partner. This explains the (n — 1)D, term in
the recurrence. If the last object is not part of a 2-cycle, then dropping the last
object from its cycle gives a derangement of n — 1 objects. Each derangement
of n — 1 objects along with a choice of an object to permute into the n*" object
leads to a unique derangement of n objects, and every derangement of n objects
with the last object in a cycle with more than two objects can be obtained in
just one way. There are n — 1 choices for the object to permute into the n*t
object. This explains the (n — 1)D; term in the recurrence.

6.2.3-2. Write the recurrence as Dy, 45— (n41)Dpy1 — (n+1)D, =0, E’D,, — (n+1)ED,, —
(n+1)D, =0, E’D,, — E(n+2)D, — (n+1)D,, = 0, E*D,, — E(n + 1)D,, -
ED, - (n+1)D, =0, [E+ 1J[E — (n + 1)]D, = 0. Solving (E — 1)¥; =0
gives ¥; = (—1)’c, where c is a constant. Solving [E — (n+1)]D,, = (—1)%c gives
Dy =0l e (~1)HL L

6.2.3-3. The sum is the first n terms of the power series for e™® with z = 1. It is an
alternating sum where each term is smaller in absolute value than the one before,
so the difference between the given sum and the corresponding infinite sum is
less than the last term in the sum.

6.2.6-1. The roots of the characteristic equation are ¢; = (—1+ 1/3i)/2 and ¢ = (-1 +
\/3i)/2. The easiest way to finish the problem is to try to find a particular
solution of the form ¢2™ (this works because 2 is not a root of the characteristic
equation). 2™/7 is a particular solution, so the general solution is F,, = a¢l +
be +2™/7.

6.2.6-2. The short-cut of the previous exercise does not work in this case. The roots of the
characteristic equation are both 2. Letting B,, = 2™ and D,, = n2", W,, = 2"(n+
I)ontl _gntlpan — 22+l B — a2P4bn2"—2" 3, .. [(1—1)21127] /[42%°] -
n2" qu‘:n[?i_l?]/[‘u%_s] =a2"+bn2" 2" 3 ) icn(i-1)—n2" 35 i 1=
a2" + bn2® — 2p(n — 1)/2 — n2%(n — 1) = @27 + b'n2™ — n227-1.
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6.2.6-3. G, = 1 is a particular solution to the homogencous equation. Reducing the or-
der gives 1 = n?, ro = —n, n®D,, = nD,, D, = ¢/n!. The gencral solution
to the homogeneous equation is G = @ + b3, ;c, 1/il. Wn = 1/(n — 1)L
Gn =a+ 3’21993 1/it — 22<s<n [2¢ Zl(;ﬂ(n 1 1/3! ]/[1/ (<33 —
Pr<ign(1/3) Yacical2]/[1/ (G = 3)Y] .
= bZlgsgn 1/il — (1/n!) Zzgign[zz]/[l/(é -3 =a+ 52151:91 18—
Do<icn 2(i = 3)!/nl.

6.2.6-4. See Bender and Orszag [21, p 50].

6.2.6-5. Letting A = (=3 + $v/23)*/%/4 ~ 0.376 and B = (-3 — 4/23)!/3/4 ~ —0.528,
be roots of the characteristic equation are ¢; = A+ B — 1/4 = —0.402, ¢ =
(A+ B)/2—-1/4+ (A - B)V3i/2 =~ —0.326 + 0.782i, and ¢3 = (A + B)/2 —
1/4 — (A — B)V/3i/2 ~ —0.326 — 0.782i. A particular solution to the equation is
given by a low degree polynomial, and it is most easily found by undetermined
coefficients. Trying an+b gives (4+3+2+1)a=1and (4-3+3-2+2-1)b=0,
so the gene:ral solution is Fy, = ¢7 + ¢% + ¢F + n/10.

6.3-1. If Go(z) = Ga(2)Gp(2), then G (z) = G4(2)Gp(2) + Ga(2)Gg(2), so G(1) =
G4 (1)Gg(1) + Ga(1)G'5(1) = G%4(1) + G'5(1), and Ac = Ag + Ap. Like-
wise, G(2) = G4(2)Gp(2) + Gy ()G (2) + Cy(2) Gy (2) + Ga()Gh(2), 50

c(1) =G )93(1)+G (DGp ( )ik G’A(l)Gig( ) +Ga(1)Gg(1) = G4(1) +

ZG’A(I)G’B( )+ G (1)Gy (1) + G%(1). Now V = G"(1) + G’(l) G'(1)2, so

Ve = Gg(1) + G (1) — Gp(1)? = G4(1) + 2G4 (1)GR(1) + G(1) + G4(1) +
g’s(l)v [G’ (1)+G (P = GA)+GH()+GU(1)+C(1) -G (1)*+GB(1)* =
A+ Vg

6.3-2. C'(z) = [dA(B(z))/dB(z)][dB(z)/dz] A'(2)B'(z), so C'(1) = A/(1)B’(1) and
Ac = Aadp. C"(2) = d[dA(B())/dB(2)][d B(2)/dz)/dz =
d[d A(B(z))/dB(z)]/dz [d B(z)/dz] + [d A(B(2))/dB(z)][d* B(z)/dz?] =
[ A(B(z))/dB(2)*][d B(z)/dz][d B(z)/dz] + [d A(B(2))/dB(2)][d* B(z)/dz*] =
A"(B(z))B'(z)* + A'(B(2))B"(2), so C"(1) = A"(1)B'(1)? + A’'(1)B"(1), and
Ve = VAA% + VpAuy.

6.3-3. The generating function for one roll is (z + z? + 2° + z* + 2° + 2°) /6. The generating
function for n rolls is [(z + 2® + 2 + 2* + 2° + 25) /6]". The average for one roll
is(1+2+3+4+5+6)/6= 3% and the average for n rolls is 3%1@. The variance
for one roll is (1 4+4 + 9+ 16 + 25 4 36)/6 — 49/4 = 21} and the variance for n
rolls is 212

6.3-4. The generating function for one roll is (1+z+z*+- - +xm)/m which, in closed form,
is (1—z™*1)/(1—2). The generating function for n rolls is [(1 —z™+')/(1—-z)]".
The average for one roll is (14+2+---+m)/m = (m+1)/2 and the average for n
rolls is n(m+1)/2. The variance for one roll is (1+4+---+m?)/m—(m+1)%/4 =
(m? —1)/12 and the variance for n rolls is n(m? — 1)/12.

6.3-5. G(z) = (1 + z + 2%)/3. The generating function for generation n can be ob-
tained from Gp(z) = [1 + Gp_1(2) + Gn-1(2)?]/3. (It is too complicated to
write out directly.) The average and variance can be obtained by differenti-
ating the recurrence. G7,(z) = [G},_,(2) + 2Gn-1(2)G),_,(2)]/3 and Gi(z) =
[Gi_1(2) + 2G},_1(2)? + 2Gn-1(2)GE_1(2)]/3, so GL,(1) = G'_;(1) = 1 and
Giu(1) =Gp_1(1) + 2G,_,(1)* = Zn. Therefore A, =1 and V,, = 2n.
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6.3-6. Set z = 0 in the recurrence for G,(z) obtain G,(0) = [1 + Gpn-1(0) + Gr-1(0)?]/3.
This recurrence does not appear to be easy to solve. The first few terms are
Go(0) =0, G1(0) = 1/3, G1(0) = 13/27.

6.3-7. If there is a limiting probability, then it must be the case that for large n, G,(0)
is nearly the same as G,,_1(0), so the limiting probability can be obtained by
solving the equation G (0) = [1 + G (0) + Goo(0)]/3, to obtain G (0) = 1. So
the elephant is almost sure to eventually have no descendants.

7.1.1-1. You can solve the equation to obtain 7,, = 2", but the solution has no relation to
the full history problem [eq. (1)], because the solution to the full history equation
agrees with that of first order equation only for n > 1.

7.1.1-2. The sum is zero for n = 1, so a suitable boundary condition is ¢; = 1. For n > 2,
the recurrence is equivalent to £, = t,_1 + 1. The solution is £, = n.

7.1.1-3. The sum is zero for n = 1, so a suitable boundary condition is ¢; = 1. For n > 2,
the recurrence is equivalent to ¢, = 3t,—1 + 1. The solution is ¢, = (3" — 1)/2.

7.1.1.1-1. Pnk = 20£5<n i Zj Di,iPn—i—1,k—j—n—1- The _’,i index says how many compar-
isons are used in the first part (which has i elements). For the total number of
comparisons to be k, the second part (which has n — 1 — 1) elements must use
k — j —n — 1 comparisons because n + 1 comparisons are used for splitting.

71.12-1. (n+ 1)U, —nlUp—y =2+ Up—1 or Uy, = 2/(n+ 1) + U,_1. The solution is
Up=2[0/n+1)+1/n+---+1/2]+Up =2Hp41 — 2.

7.1.2.1-1. Consider two cases: (1) the root and (2) all other nodes. Case (1): A tree with
no left subtree of the root consists of a root and a right subtree with n — 1
nodes. There are C,,_; such trees. Thus, there are C,, — C,,_1 trees where the
root has a nonnull left subtree. Case (2): Suppose there are ¢ nodes on the left
subtree and n — 4 — 1 node on the right subtree. For such trees and a fixed right
subtree, there are L; nodes in the left subtrees that have nonnull subtrees. For
each left subtree there are Cj,_; 1 right subtrees. For right subtrees we have
Ly _i—1 nodes with nonnull left subtrees (for each left subtree of the root) and
a factor of C; to account for the number of left subtrees of the root. Totaling
the cases gives L, = Cp — Cn1 + Y_; LiCri—1 + Y_; Ln—i—1C; which reduces
to the required answer after a change of variable on the last summation.

7.1.2.1-2. Multiplying the recurrence by z", summing, and using Ly = 0 gives L(z) =
Yons1 (Xogicn—1 2LiCni—1 + Cp — Cpy)z™ =
z( 2 iom L) Y aso Cut™) +2 50 Cng" —1-2 37 5 Cpa™ = 22L(z)C(z)+
C(z) — 1 — xC(z). Solving for L(z) gives the final result.

7.1.2.1-3. L(z) = 1/(2z+/1 — 4x) — 3/(2+/1 — 4z). Expanding the square roots with the
binomial theorem gives (after much algebra) L(z) = ¥,.~,(n — 1)(*")/[2(n +
Dle™, Ln = (n — 1)(%)/[2(n + 1)] = (n — 1)Cn/2.

7.1.3-1. f(z,z) = e**=/2,

7.1.3-2. z/(e* — 1). See Knuth [9, Section 1.2.11.2].

7.1.3.1-1. A(t,v) = atv +2%; ()p'(1 — p)t*A(t — i,v — 1). Eq. (94) becomes G,(z) =
0 o<ico(V—1)2'(1=p)'ze* = aze*{[2(1-p)+v][2(1-p)]' - (v+1)[2(1-p)]} /(1 -
2p)?, s0 A(t,v) = at{[2(1-p)+2][2(1-p)]°— (v+1)[2(1-p)]} /(1 —2p)®. When v
is large and 2p is much less than 1, this is about v times larger than the previous
case.
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7.1.3.1-2. Transform the recurrence to lgT,, = 1g T,y + lgT,,_» with boundary conditions
lgTy =0 and lg Ty = 1. The solution is 1g Ty, = Fj,_1, so T}, = 2F~-1, where F,
is the n'? Fibonacci number.

7.1.3.1-3. Letting F,, = Tp/Th_1, Fn = nF,_1, 50 F, = an!, and T, = an!T,_, =
anl(n—1)(n—2)!---1.

7.1.3.1-4. Let]: Tn = 3(1—Sn). Tn=[1-(1—271)%"""]/2. See Bender and Orszag [21, p
53]

7.1.4-1. Cp = B[(n+1)Hp+ 1]+ c1(n+1) +¢2(=1)"(2). See Green and Knuth [6, Section
2.1.2.2].

7.1.4-2. See Purdom and Brown, SIAM J. Comp. 14(1985) pp 943-953.

7.2.1-1. g, satisfies the equation gnt+19n + (@ + A)gny1 + (b+ A)g, = 0 and h,, satisfies
the equation (b + A)hny1 + (a+ A)hp +1 =0, 50 hy = [~(a + A)/(b+ A)"C
gn =[-(b+ A)/(a+ A)"C", fo =[( b+A/(a+A)]”C’+A _

7212 Let L, =1gT,. 1gT,, =1gT, 1 +1gTy_9,80 Ly, — L1 — L5 =0, with Ly =0
and L; = 1. Therefore L,, = F},, the n** Fibonacci number, and T,, = 2F~.

721-3. Let L, =InT,. mT,—2InT,, 1 +InT,,_s =Inn,or Ly,—2L,_1+L,_s =Inn. The
solution to the homogenous equation is L, = a + bn. Variation of parameters
gives Ln = a+bn— 3, ;c,[(i — 1) Ini] + n 375, (In). The last sum is nnl.

The general solution is T}, = exp (a +bm+ (n—1)n! - Zlgsﬂiin i)

7.2.1-4. aSp41+b = 2(aS,+b)(1—aS,—b), or aSn+1+2a%S2 +2a(2b—1)+b(2b—1) = 0. For
a = —1/2 and b = 1/2, this reduces to Sp4+; = S2. The solution to this equation
58, = Sézn}, so the solution to the original problem is 7,, = (1 — 5'02") /2, or
Tor= [L== (L= 22" /2.

72.11-1. [ 2 FInzdsr < [(lan)/a] [° 2 %2 ds
= [(Inn)/n] [n/In2 4 1/(In2)?] e "2 < 21gn2~", s0 P, = O(nK?").

7.2.2-1. A tree of height n consists of either two subtrees of height n — 1, a left subtree of
height n» — 1 and a right subtree of height n — 2, or a left subtree of height n — 2
and a right subtree of height n — 1, which gives the recurrence. There is one such
tree of height zero (consisting of just a root) and three of height one [the three
are (1) the complete binary tree with three nodes, (2) the tree with a root and
a leaf on the left, and (3) the tree with a root and a leaf on the right].

7.2.2:2. Yok Xy =T b Bt Tt Toet, = (T F Tia P T T 086 K=
X2 A Tua—T2 5 =X2 |+ 2T, 2Ty 3. This leads to X, = [6*"| and
T, = |67 | — 62" ) +---£1, where 6 ~ 1.43684. See Knuth [11, Section 6.2.3]
for additional details.

7.2.2-3. Write the recurrence as ToT} ---Th—o = Tp,_1 — 1, and replace TpT; --- Ty _o with
T,.—1 — 7 in the original recurrence to obtain T}, = (T_1 — r)Ty_1 + 7. Let
Tp = Xn + 3r. Then X, + 31 = (Xpo1 — 37)(Xno1 + 37) + 7, 50 T = 1767
for the appropriate value of @ (which depends on 7). For 7 = 2, 8 = /2, and for
r =4, § = 2(1+/5). See Greene and Knuth [6, pp 33-34] for more details.

7.2.3-1. The “main” operator has one or more items before it and one or more after. Thus,
it can be at position ¢, where 1 < i < n — 1. If the main operator is a position
t, then the items before it can be associated W; ways and the items after it can
be associated W,_; ways. There is just one way to associate one item. Letting
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W; =Y;_1 gives Y,y = 21*(1’(71—1 Y;—1Y,—i—1. Replacing n by n + 1 and 7 by
i+1gives Yp =3 gcicn_y Yi¥n—i1, with ¥y = 1, 50 Y,, = Oy, the n*® Catalan
number, and W,, = Cp_:.

7.2.3-2. Number the vertices consecutively. Any two adjacent vertices are members of
some triangle. Consider the triangle formed by vertices 1, 2, and some third
vertex (say ¢). The line from 2 to 7 divides the polygon into two parts. The
part that is opposite vertex 1 has ¢ — 1 vertices. Likewise, the line from 1
to ¢ divides the polygon into two parts, and the part opposite vertex 2 has
n — ¢t + 1 vertices. The triangle 1, 2, 4, the part with ¢ — 1 vertices, and the
part with n — i + 2 vertices just cover the polygon. There are T;_; ways to
triangulate the ¢« — 1 part and 7,,_;;» ways to triangulate the n — 2 + 2 part.
Thus, T = 3 s Bi-1To—iva =% pescny Tilhiia. When = 2 or § there
is just one way to triangulate the polygon (do nothing).

7.2.3-3. Define Sn—Z = Tn. Then Sn_z = Z24i<n—1 Sq'_gsﬂ_.g_l = ZD<£<7&—3 SiSn_17+1.
Replacing n with n+2 gives S, == Z_OQKR_] 5;Sp_i_1, with Sy = 1. Therefore
Sp = Cy, (the n'® Catalan number), and T}, = Cy,_».

7.2.3-4. ¢p = 0 because with zero flips the coin cannot land heads up. ¢; = p because
with one flip, if the coin lands heads up, then it has for the first time landed
heads up once more than tails up. Now consider general n > 2. If the first flip
is heads, then the case does not contribute to ¢,. If the first flip is tails then
you must first get back to even and then get ahead by one. The probability of
getting a tail, then catching up in ¢ flips and then getting ahead by one for the
first time at the n*® flip is (1 — p)¢dn—i—1 since these are independent events.
The contribution for each value of 4 is disjoint, so the recurrence is obtained by
summing over i.

7.2.3-5. Let G(z) = 30,50 #n2™. Then 30,50 9nz™ = (1 - p)z( X5 9iz’) (X0 $527) +
pz, 50 G(z) = [1—+/1 — 4p(1 — p)z?]/[2(1—p)z]. (Using the plus sign in front of
the square root would lead to divergence for = near zero.) The average is given
by G(1)" = 3p/[2(1 - p)].

7.2.3-6. For even n, ¢, = 0; for odd n, ¢, = 2p("+1)/2(1 — p)(n-1)/2 ((n":im)/(n +1). This
can be written with Catalan numbers as ¢, = p"*1)/2(1 — p)("=D/2C,,_yy 5.

7.3-1. If n is even, then |n/2] = n/2, and n and n/2 have the same number of one bits.
Therefore if D,/ = n—dy s, then by eq. (178) D, = n+n—dp/e = 2n—dy. Ifn
is odd, then |n/2] = (n—1)/2, and n has one more one bit than |n/2]. Therefore
if D(n__l}fg =mn—1—d(,_1)2, then by eq. (178) D, =n+(n—1) — d(n—l);’2 =
2n — d,. By definition Dy = 0, so Dy = 2n —d, for n = 0. Putting the
pieces together, we have Dy = 2n — d,, and we have D, = 2n — d,, implies
Dy, = 2(2n) — dap, and Dapyy = 2(2n+ 1) — dan+1, 0 by induction the result is
true.

7.3-2. When n is even, eq. (181) is T), = 1+ T, /3. Forn =1, eq. (183) gives T} =3-2=1,
which is the correct value. Using in eq. (183) on the right (for n > 2) gives
1+ |lgn| —1+3 -2 /(n/2) = |lgn] + 3 —2UenI+1 /n 50 the formula works
for even n (provided we can also show that it works for odd n). For odd n where
n is not one less than a power of 2, T|,/3) and Ty,/s) have almost the same
value, so the right side of eq. (181) is 1 + |lgn| — 1+ 3 — 28" {[(n +1)/2]/[(n +
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1)/2] + [(n — 1)/2]/[(n — 1)/2]}/n = [lgn] + 3 — 2U'87I+1 /5 56 the works for
odd values of n that are not one less than powers of 2. When n is odd and
one less than a power of 2, we can write n as 2¥*! — 1, and the right side of
eq. (181)is 1+ [2"/(2“1 1)](k+ D+[(2F-1)/@ - D)k +1-2/(2*-1)] =
14+ {[(k + 1)254 — k — 1]/(2F+ — 1)} — 2/(2%! —1) = k + 2 — 2/(2F+1 _),
which is the same as the value for Toe41_; given by eq. (183).

7.3-3. T, = n[lgn] — 2871 4+ 1. Notice that this problem is similar to the recurrence in
eq. (181).

7.3-4. The answer varies about like n'8%. Number evaluation shows that in the range
512 < n <1024, 3.44n'83 < T, < 3.73n'83. The smallest coeficient occurs at

= 549 where T,, = 75738 and the largest occurs at n = 880 where T}, = 172856.
At n =512, T, = 69500 and at n = 1024, T,, = 209537.

7.3-5. nl is the product of the numbers from 1 to n. Every other one is evenly divisible by
2, so there are [n/2] of the factors that are evenly divisible by 2. Every fourth
factor is also divisible by 4, and every 2! factor is evenly divisible by 2¢. This
gives the summation. The recurrence can be obtained by noticing that |n/2| of
the factors are divisible by 2, and that after a factor of 2 is divided out of each
even factor, the even numbers are transformed into the integers from 1 to |n/2],
T\|ns2) gives the number of additional factors of 2 that can be divided out. The
summation would have a solution of 2n if it was not for the floor function. The
floor function causes the answer to be a little smaller. If you think of dividing by
two as shifting the binary representation of the number to the right one place,
then you can see that the difference between n/2' and [n/2?| is that in the latter
case the bits shifted below the binary point are lost. This does not manner when
the bits are zero, but it does when they are one. The total effect of the “lost”
bits in the summation is d,, the number of one bits in n.

7.4-1. Use proof by induction to show that fi(z) = zln(z/k). Base case: fi(z) =
ming<y<z{yIny} = zlnz because yIny is an increasing function of y. Assume
fr(z) = zln(z/k) for k < k.. Then fi, (=) = ming<y<{yIny+ fr, _1(z—9)} =
ming<y<:{yIny + (z — y) In[(z — y)/ (k. — 1)]}. At the minimum, the deriva-
tive with respect to y is zero, so (d/dy){yIny + (z — y) In[(z — y)/(k. — 1)]} =
Iny+1-In[(z—y)/(k. —1)] -1 = 0. This gives y = (z—y)/(k. — 1) or y = z/k,
at the minimum. Plugging this value in gives fi, (z) = (z/k.) In(z/k.) + [(k, —
l)m/k*]ln(x/k ) = zln(z/k,). Therefore if the result is true for all k < k, then
it is also true for k = k..

7.4-2. The minimum is at 2; = 1/n. The value of the minimum is 1/n.

7.4.1-1. A complete restricted three way tree has 3 - 2¢=! nodes on level i for i > 1. One
third of these are terminal nodes. A tree that is as close to balanced as possible
with n = 2¥+1 — 1 terminal nodes has 3 - 2¥=1 of its terminal nodes on the
bottom level. A tree with n = 281 — 1 4 1 terminal nodes has 3 - 2¢¥—1 — 1
terminal nodes on the next to the bottom level (which was the bottom level
when there was one less node) and 2 nodes on the bottom level. A tree with
n = 28+1 — 1 4 2 terminal nodes has 3 - 25=1 — 1 terminal nodes one the next
to bottom level and 3 nodes on the bottom level. Then the pattern of increases
repeats. A tree with n = 28+! — 1 4 3 terminal nodes has 3 - 28~ — 2 terminal
nodes on the next to the bottom level and 5 nodes on the bottom level. A



36 ANSWERS TO THE EXERCISES

tree with n = 25! — 1 + j terminal nodes has 3 - 2¥=1 — [;/2] terminal nodes
on the next to bottom level and [3j/2] nodes on the bottom level. The path
length for such a tree is Engi<ki2‘_1 +(3-281 —[j/2])k + [35/2](k+ 1) =
k2k+1 _ 2% 4 ik 4+ [35/2] +1Since k = |lg(n+1)] —1 and j = n — 21 + 1,
Cn = k281 — 2F 4 jk + [35/2] + 1 = |lg(n + 1) |2Us(r+DI+1 _ olle(nt+1)]+2
(n — 2UE+D1)[lg(m + 1)) ~ 1) + [3(n ~ 208+ /2] + 1.

7.4.2-1. See Reingold and Tarjan [127].

7.4.3.1-1.

7.4.3.1-2.

Yoo=0

Yio =Yic10+ Do, fori>1,

Yo =Yo,j-1+ Dy, forj>1,

Yi; = mindYic14-1 + Casp; o Y15 + Doy, Yo + I} ford, 521

These can be solved in time O(mn) by solving in order of increasing ¢ and for
each value of ¢ in order of increasing j.

Algorithm 7a.1  Edit: Input: Cost matrices I, D, C; strings a1...anm
and by ...b,. Output: Matrices ¥ and A where Y;; gives the cost of converting
ay...a; to by...b; and A;; has the action for last step of the transformation
of the first string into the second string. The actions are: delete i (delete the
character that was originally in position ¢ from the first string), insert s; at ¢
(insert the symbol s; at the end of the characters that have so far been added
at the original position ¢), and change i to s; (change the character that was
originally at position i to s;). No entry for A;; indicates that no change is
needed. From this information, you can start with A,,, and construct the entire
transformation step by step.

Step 1. Yy« 0.

Step 2. Fori«— 1tomdoYy « Yi_19+ D, and A «— delete i.

Step 3. Forj+«— ltondoYy; « Yo -1+ L-,,. and Ag; « insert s; at 0.

Step 4. Fori« 1tomdo

Step 5. For j «— 1 to n do

Step 6. Yij < Yi_1,j—1 + Ca.p; and A; ; — change i to s;.

Step 7. K Yy >Yia,;+ Dy then ¥y <« Y 5 + Dy, and Ay —
delete 1.

Step 8. HY; >Y;;1+5h, then¥; > Y; 3+ 1, and 4y
insert s; at 1.

Step 9. End for.

Step 10. End for.



7.4.3.1-3.

7.4.3.14.

7.4.3.1-5.

7.4.3.2-1.
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The time is given by the recurrence Tj; =ty + (j — i)tz + >, (Tisk + Tht1,5)
with the boundary condition T};; = t3. Since the solution just depends on the
difference between ¢ and j, we can write S;_; = T ; and obtain the recurrence
S; =1t +ita+2 Zog j<i S; with the boundary condition Sy = t3. Elimination of
history gives S;y1 — S; =ta+25;, 0r S; =t +35;,_1 =1, (3i_1 - 1)/2 + 315,
Since S1 = t1+2to, Ti.n = Sn—1 = t2(3""2—1)/2+(t1 +2tp)3" 2. The algorithm
is so slow (O(3™)) because it does not remember the answers to subproblems and
must frequently recompute them.

This algorithm does each subproblem only once. The time T} ; equals tp for
1= j and t; + (j — i)tz for ¢ < j plus the time for subproblems. This leads to
Tin=31<i<j<nS;; whereS;; =ti+(j—i)tz fori < jand S;; = t,. Let
Rj_,' = 4,5~ Then T]_,n = Zl S ;7 S j S nRj_,; = E 1 ﬂ i S nziq‘m Rj—-f'. =
ylgig RZ:ogjgn—i R; = Eog_fgn—l >Y1<i<n-jR; = 2o<j<n—1(m —
J)R; = nto + t1[n(n + 1)/2] + t2[(n® — n)/6] = O(n?). Fast is so much faster
because it does not have to rework subproblems.

Fast must work all the subproblems for 1 < i < j < n, but Faster may skip
some of them due to the if test in step 6. It is difficult to analyze because it is
difficult to tell how many subproblems will be skipped. The time for Fast does
not depend on the input, but the time for Faster does. Furthermore the time for
Faster depends on the data in a rather complicated way.

Let C; ; be the number of comparisons needed to find items ¢ through j when
they form a minimum cost search tree. Then C;; = 0, because you can find
the item with no searches (C;; = 1 if you need to verify that the item is in
the tree). If a tree is built for nodes ¢ through j with node k at the root and
with minimum cost search trees for the left and right subtrees, then C;; =
pi+Dpiy1+---+pj +Cir—1+ Ci ;. The minimum cost subtree has for the root
that node k& which minimizes this expression. These equations can be solved in
time O(n®) by first computing C;; for j = i, 1 < i < n, then for j =i +1,
1<i<n-—1,etc

8.1.1-1. T, =Ty _1 + 8n—1, Sn = Tn_1. The solution is T, = 1 A} + e2A%, Sn = a1 A{‘_l +

A5, where Ay = (=1 +1/3i)/2 and Ay = (—1 — /3i)/2 and i is the square
root of —1.

8.1.1-2. The general solution of T,, = 275,41 is T, = 2™Ty. The general solution of

T, = 3T,1 — 2T, 2 is T, = ¢; + ¢22". The general solution of the original
recurrence can be obtained from the general solution of the new recurrence by
setting the parameters in the new solution appropriately, i.e., ¢; = 0 and ¢y = T.

8.1.1-3. From eq. (11) we get that T, = ¢; + ca(—1)™ + ¢32™ + c4(—2)". From eq. (8) we

get that S, — Sp_1 = dea(—1)" + 232" + Lea(—2)", 50 Sp = €5 + 2¢4(—1)" +
3c32™ 4 %ca(—Q)“. We have 5 parameters, which is one too many. Fitting these
answers to eq. (6) with n = 2 gives ¢ +cs+3¢4 = 0, or ¢c; = —c¢3 — 3¢q. Plugging
this in gives T, = €1 — (3 + 3ca)(—1)™ + 32" + c4(—2)", Sp = ¢5 +2¢a(—1)" +
3es2™ + %c,;(—2)“. This problem can also be solved by a simple extension of the
method of Section 8.1.3., which requires solving the equation

1-x71 N el

det| ox-149x2 1-p—t [=0
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8.1.1.1-1. The big O term in eq. (34) is largest for small ¢, since ¢ > 0, eq. (34) implies that
t > In M;/1n[(3 + v/5)/2] + O(1). Plugging this lower bound on ¢ into the right
side of eq. (34) gives

5+5 In M. / In[(34+-v5)/2]+0(1

t= - o
3+v5 . 3+v3 3++6
In In
2 2
545
2 In M; X In 10 +0 (Mln[(s—\/g).r’(3+\/3)]} 1n[(3+~/§)f21)
3+5 3+/5 ;
In 5 In 5

8.1.1.1-2. Mg is given by MH.Q e 5M¢+1 + Mt = 0 with boundary conditions MD = ]_,
My = 4. My = [(21+ 3v21)/42)[(5+ v21)/2]* +[(21 - 3v/21) /42][(5 — v21) /2],
P, = (V21/21)[(5 + v21) /2] — (v21/21)[(5 — v21)/2]".

8.1.3.1-1. Adding 1/X times the last row to the next to the last row gives a next to last
row with 1 4+ 1/X in the first column, —A in the next to last column, and zero
in the other columns. Continuing the process of subtracting rows from the one
above gives an i*" from the bottom row that has 1 + 1/A + --- + 1/A? in the
first column, — A in the ¢ from the last column and zero in all the other columns.
The first column has A less than this in the first column because it started
with 1 — A rather than with 1, so the first row of the first column becomes
~A+1+41/A+---+1/X""L The resulting matrix has no nonzero entries above
the main diagonal, so the value of the determinant is the product of the entries
on the diagonal, (—1)"(A" — A"~1 — An=2 ... — 1). Setting this to zero and
dividing by (—1)" gives the final answer.

8.1.3.1-2. Eq. (106) is the significant equation. From Table 8.1, we get that the algorithm
uses time 24-3413-54+7-9+4-174+2-31+1-57+1-105 = 492 time units,
where a time unit is the time to process a block of length one. Eq. (106) says
that this time is approximately 0.590N1g N =~ 415.9 in the same time units, so
in this case the formula is too low by about 15 percent.

8.1.3.1-3. See Knuth [11, Section 5.4.2].

8.1.4-1. If 0 < k < n then, there will be k running at time ¢ if (1) there were k at
time ¢ and nothing happened: (1 — Adt)¥(1 — pdt)Pi(t) + o(dt) = Pi(t) —
kAPy(t)dt — pPy(t)dt + o(dt), (2) there were k — 1 at ¢ and one was fixed:
(1 — Xdt)* (udt) P (t) + o(dt) = pPy(t) dt + o(dt), (3) there were k + 1 at t and
one broke: (1—\dt)*(k+1)Xdt(1— pdt) Py (t)+o(dt) = (k+1)APyy1(t) dt+o(dt),
(4) other cases: o(dt). Adding the cases gives Pi(t + dt) = Py (t) + [pPr-1(t) —
(kX — p)Pe(t) + (k + 1)APry1(t)] dt + o(dt). Subtracting Py (t), dividing by dt
and taking the limit as dt goes to zero gives

dPi(t)

o = HPe-1(8) = (RA = p) P () + (k + 1)APk41 (2)-




8.1.4-2.

8.1.4-3.
8.1.4-4.
8.2.1-1.

8.2.1-2.
8.2.1-3.

8.2.1-4.
8.2.9-1.
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For k = 0 case (1) does not apply, so we get

dPy(t
;t( 1o —uPy(t) + APy ().
For k = n case (3) does not apply, so we get
d Pa(t)

g = HEn-a(t) = nAP(2)-

The equations for the steady state solution are
—uFPy + AP, =0
uPi_1 — (kA + p) P+ (k+ 1D)APy; = 0
wPy_1 — kAP, = 0.

The solutions are Py, = p* /[k/(X ;< p*/i)], where p = u/A.

See Fisz [28, Section 8.5.C]. T

See Fisz [28, Section 8.5.C].

Consider a set with k elements that are selected from the integers from 1 to n and
that satisfy the restriction. If the element n is in the set, then n — 1 is not and
the remaining k£ — 1 elements are from the set of integers from 1 to n — 1 and
they obey the restriction. If n is not in the set, then there are k numbers in the
range 1 to n — 1 and they obey the restriction. These two cases include all the
possibilities, each one counted once.

fln, k) = (")

Replacing n with n—1 gives Fj,_1 ; = (n—1)Fn_2,i+Fn_2;1. Letting Gp; = F,_1 ;
gives Gn; = (0 — 1)Gp_1,i + Gn-1,i-1, 50 Gy = 3; 05[], or Fre = 3, ai [T,
is a general solution.

= [,
The indices for each term on the right side are lexicographically less than the indices

for the term on the left side, so this can be proved by induction. Assuming
the proposed solution works for the terms on the right side, you can show that
the left side is given by the proposed solution. Plugging the proposed solution
into the right side and factoring out common factors gives (¢; + i+« + 4, —
DY (nlia!...in) (i1 +iz+- - +cn) = (B2 4) | which is what F}, 5, 1, was
claimed to equal..

8.2.2.1-1. See Knuth [11, p. 427].
8.2.2.1-2. Let n' = n, i' =mn —1 to obtain Fn,n—é = g(i)Fn—.l’ﬂ_i + F, —1,i—1- Let Fn,n—i =

Gn, to obtain Gn; = Gn_1,i + 9(1)Gn-1,i~1. Let h(i)H,; = Gy,;. For h(i) =
ITi<k<: 9(k), this gives Hp; = Hp 1 + Hn-1,i-1, 50 Hps = ), a; (i:fj), Gni =
2595 (;1;) icrei 9(K), and

Fri = 3505 (, %4 5) Thicren—i 906) = X2, b (i35) i <k<n—i 9(K), where the a’s
and b’s are arbitrary constants.

8.2.2.1-3. First work Exercise 4 or 5. Then use the definitions to show that (;‘)q =1 and

(g)q = 0. Finally do a proof by induction. From the recurrence, you have that

if (“gl)q and (z:i]q are polynomials, then so is (7).
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8.2.2.14. [(¢" - /(q DI =D/ =D)]...[(¢" " =1)/(¢ - 1)] - [(¢"* - 1)/(g—-
Dlig™* — 1)/(g ? =) g™ e 1)/_(9‘ -] =[g" -1~ (¢""* - D][(g"* -
1)/(a-Dll(@**-1)/(a —1)1--;[(qn“"“—l)/(qﬂ—l)l =g [(¢" ' -1)/(¢—
DIl(g™ 2 -1)/(@®* - 1)]---[(¢"* = 1)/(¢" - 1))

8.2.2.1-5. [(¢" ~1)/(g— Dl(g" " ~ D= 1] .. [lg™ = =1/ =)= (¢ = 1)/ (g=
D[(¢"?-1)/ (q -D]... [(¢" T -D/(¢ -] = [(¢"-1)/(¢* - 1) - 1][(¢"*
1)/(q —1)][(q”' —1)/(q -] (@ =1)/(¢ - 1)] = ¢fl(¢* T — 1) /(g -
D(¢*2 - 1)/(¢* - 1))...[(¢"* - 1)/(¢" — D)].

8.2.2.1-6. Proof by induction. Base case n = 0: 1 = (0) q°z®. If it is true up to n — 1,

then the left side is
(1 g gn-—lx) Z[I(i(n-l (n—jl)qqi(évl)iji - 1+qn—1+(n—1){n~2)g’2mn

+ Yo<icn-1 [(“;1)qq‘“‘”f2 - (“;1)qq“—1+(i—1)(€—2}a’2]
=14V 4+ T [(nzl)q _ (nfl)qqé(i—l)}'z] gl-D/25 —

1

> ocicn (?}qqi("l}fzmi, so it is also true up to n.

8.2.2.1-7. Notice that (¢" —1)/(g—1) = ¢" ' +¢" 2+ --+1==[1+(¢-D]"  +[1+(¢—
1)]*24---+1=n+O(g — 1). Dividing top and bottom by (g — 1)* leads to
(1), =[n=1)-(n—i+1)+0(g—1))/[1-2---k+0(g— )] = () + O(g—1).
The last term vanishes when the limit as ¢ — 1 is taken.

8.2.2.1-8. Let F,; = n!Ty,;/i!. Then Fy; = (n —4)Fp_1,-1 + Fro1,4. Using i = n — 14,
n' = n gives Fo; = tFn—1n—i—1 + Fo_1n—i. Letting Hy; = Fp oy gives Hy; =
1H, 1,4+ Hn_1,i—1, 50 Hp; is a linear combination of Stirling numbers of the
second kind. This gives Tn; = Y ak(n!/if){izf}. The boundary condition
Ty; = i (a two node tree always has exactly one node of degree one) gives
T = (/i {772).

8.2.2.1-9. Transform the indices using egs. (142-143) witha =0, b =1, ¢ =1,d =1,
p=0,g=1,7r=1,and s = 0 to obtain Fy; = 2F,_14+ Fr_1,4-1, Or $Fp; =
F, 1:+ %Fn_l,g_l. Let f(n)g(i)Hn; = Fyn;, with f(n) = 2™ and g(z) = 274
Then Hy; = Hp—1,i + Hn—1,-1, so Hyp; is a linear combination of binomial
coefficients, i.e., Hni = 3_; a; {." j]. A useful boundary condition for this problem
is Nyo = ko, which gives For = ro. Since 2" H,; = Fy;, Ho; = i, 50 a; = 8o
and H,; = (?) Thus Ny = Frs = gn—i (n)

T
8.2.3-1. Replacing m + 1 with m gives the recurrence mFp,,, = nFy_1,,-1, which is a
one dimensional equation. The solution is Fynn = Frn—no/(7) for m > n and
Frn = Fon-m(2) for n > m.

9.1-1. Subgraphs that are four single node graphs and the 10 graphs with edges ({1,2}),
({2,3), ({2,4}), ({3,4}), ({1,2},{2,3}), ({1,2},{2,4}), ({2,3},{3,4}),
({1,2},{2,3},{2,4}), ({1,2},{2,3},{3,4}), ({1,2},{2,4},{3,4}). The last four

graphs are spanning trees.

9.1-2.
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= 1 2 4 5
L
9 7 6
L
9.1.1-1. First transform the answer to Exercise 9.1-2 into
— 1 2 4 5
10 —‘
9 7 6
Ld
The edge flow multigraph is
1
— 1 34 [J3
4
u 5
5,8,10 - 6.7 [ 16
—L—
9.1.2-1. The single exit flow graph is
3
— 1 2 7

41
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The edge flow multigraph is

The edges e, es, es form a spanning tree, giving the fundamental cycles eg : ey
€z 1; €4 : e3; €5 : €5 er : es. This gives the independent flow equations
E,=Ey=1, E3=FE4, E5 = Eg + E5. .

9.1.2-2. The single exit flow graph is

i 1
- 1 2 4 5 7 8
3 6
A
|
The edge flow multigraph is
; 8
I
2 5
- 1 Ll 4 = gt L2 3 = 6,7 1 8,A
—L—

The edges e, es, €4, €5, €7 form a spanning tree, giving the fundamental cycles
€p: €1,€2,€4,€5,€7; €3 1 €2; € €5 €5 €2,€4,€E5,7. Lhis gives the independent
flow equations E) = Eg =1, Ey = E3 + Eg, By = Ey = Eg, E5 = Eg + Es.
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9.1.2-3. The flow graph is

i |
—~ 1 A B C 2 3
) [
1
D 4
B et 1019 e 1§ et i slemediipe =t i

oo [ T

The edge flow multigraph is

ol At m g‘ B,C
2 Ll i
5 B 2 [ |
311 = 410 = 5,89 ) ¢ 8 p7
| i [l
e 8 D

The edges €1, ec, €2, €3, €4, €5, eg form a spanning tree, giving the fundamental
cycles ep: e1,€2;€4: €o;€CR ;€D I, €7 €5,€6; €31 €9 €4; €10 ez. This
gives the independent flow equations By = Ey = Eg =1, E4 = E¢, E3 = Ej,
E4=E9,E5=E6=ET- :

9.2.2-1. The number of inversions of A with respect to B counts the number of pairs (3, 5)
such that ¢ < j and k; > k;. Since the mapping between ¢ and k; is one-to-one,
this is the same as the number of pairs (k;,k;) such that k; < k; and j > i,
which counts the number of inversions of B with respect to A.

9.2.2-2. Deleting creates no inversions. It removes x. The time is k¥ and the credit time is
k — z. In the text it is shown that k — z < ¢, so eq. (8) applies to deletions as
well as insertions, and the rest of the analysis is the same as that for insertions.

9.2.2-3. The analysis in the text applies so long as an item is moved forward. If an item
is moved backwards, assume that the cost is proportional to how far backwards
it is moved. (This is a realistic assumption for algorithms that do not have any
additional pointers, but it is not realistic for an algorithm that keeps a pointer to
the end of the list.) Consider moving an item backwards j positions. The effect
of the Move to Front algorithm is as given on page 382; it creates k — 2z — 1
inversions. The move backwards increases the number of inversions by j. The
cost of algorithm A accessing the i*® item and moving it backwards is i + j. The
amortized cost for algorithm M is no more than 2(k—x)—1+j5. Since k—2 < 4,
the cost is no more than 2 — 1+ 7, so we still have that Cjs < 2C4 — 1, and the
rest of the analysis is the same as that that follows eq. (8). Notice the importance
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of the having j in the cost. The analysis does not apply to algorithms that can
cheaply move items backwards a long distance.

9.2.2-4. Assign a credit of one every time the algorithm follows a right link. Pay back one
unit of credit every time the algorithm visits a node. The credit cost of Steps 1
and 3 is then zero, while the credit cost of Step 2 is 2. Since each node in the
tree is eventually visited and since each node has at most one right link (exactly
one if nil links are counted), the total credit is zero or less once all the nodes are
visited, so the total cost is no more than 2 times the number of nodes.

9.2.2-5. As stated, algorithm 1.4 takes time ©(k) to add any two k digits numbers. It is
possible to do better than this only if the algorithm does an in-place add and
stores the output over the input. The easiest way to modify the algorithm to add
one quickly is to set ¢ « 1 in Step 1, change Step 2 to while ¢ > 0 do, change
Step 3 to Set s « z; + ¢, and change z; to z; in Step 4. With the modified
algorithm, |n/2] of the numbers in the range 0 to n — 1 cause the loop to be
done once, |n/4| cause it to be done twice, etc., so the total number of times
around the loop is no more than 2n.

9.2.3-1. As explained in the hint, the time for the strategy of doing k& Unions to build a path
of length k followed by n — k finds on that path is T = kt; + (n — k) (t2 + kt3).
The maximum occurs at k = 0, k = n, or where dT'/dk =0. At k =0, T = nt,,
at k = n, T = nt;. For dT'/dk = 0, t; + nt3 — t2 — 2kts = 0, which gives
k=mn/2+4 (&1 —t2)/(2t3), and T = [n/2 + (41 — t2)/(2t3)]t1 + [n/2 — (t; —
t2)/(2t3)]{t2 + [nts/2 + (t1 — t2)/2]} = n?t3/4 + O(n). For large n, the place
where dT'/dk = 0 gives the largest value since it grows like O(n?) while the other
two values are linear in n. Any other strategy that used k Unions would take less
time, because it would take the same time for Unions, but less time for Finds.

9.2.3.1-1. Let h, be the height of the tallest tree that can be built with n calls to Union
with Weights. Then h, = 1+ max0 <1 < |i/2]{h;} with hy = 0. Since
hn is nondecreasing, h, = 1+ hjjj3) = 1+ [lgn]. It is better to do all the
Unions first. For ¢ Unions and n — i finds, the time is max;{i + (1 + |1gi])(n —
1)} = n+ max;{(1 + |lgz])(n — 4)}. Setting ¢ = n/(lgn) gives a lower bound of
nlgn —nlglgn + (nlglgn)/(lgn). Setting i =n inlgi and ¢ =0 in n — i gives
an upper bound of n + nlgn, so the worst-case time is nlgn + O(n).

9.3.1-1. The i*" component of the vector F~'(F(z)) is given by
(1/7) Zocsen(Eoghan Tr? 0™ = (1/7) T jcn Dogian T~ =
(1/1) Yockan Tt ocjcn WM. Now, Yoo ;o 0¥~ = 6 because for i # k,
S ocien @ = (1 —w=97) /(1 — w*~7) and for i =k,
(1/n) Xocran Tk 2o<icn wk=D7 = Yo S Y, o 15, S0, the
i* component is (1/n) Yocp<n Tk Do<jcn Wik = Ti-

9.3.1-2. The m'™ component of (FA) (FB) is Y g<pan Zo<i<n apw™b;w™ =
Socien Dogjcn Gkbjw™HHH). Let j' = j+ kand ¥ = k (j = 5/ — K, k = ¥)
t0 obtain )< ep Dp<jcnik Gkbj—kw™ for the m*® component. When B has
period n, b_f_; = b;, this can be written as

; mj i pik ol
EUSk(n (Zkfj‘(n akb}_kw 2o Zn£j<k akbj—kwm‘?) =



ANSWERS TO THE EXERCISES 45

Yo<k<n 20<j<n WB(i—kymodnw™ . The m*" component of F(A®B) is

-
205j<n Zngn ﬂ-kb(j—k)modnw 7,

9.3.1-3. See Knuth [10, Section 4.3.3.A].

9.3.2-1.

Algorithm 9a.2 Add one: Input: Arrays 4 and B with elements indexed
0 to k—1 which represent a number m in forward and in reverse binary. Qutput:
Arrays A and B which represent the number m+1 in forward and reverse binary.

Step 1. j+«0.

Step 2. While A; =1do
Step 3. Set Aj <0, Byy1—j «0,and j « j+1.
Step 4. Set Aj « 1and Bryi—j + 1.

9.3.2-2. Step 11is done 1+ Ign times. Step 2 is done (n+ 1)(1 +1gn) times. Step 3 is done

1+ lgn times. Step 4 is done n + 1 times. Each step can be done in constant
(amortized) time if care is taken. (See the remarks following the algorithm.)

9.3.2-3. In the inner loop both algorithms must do one addition, one subtraction, one

adding of indices, four indexing operations, and one calculation of odd. If the
calculation of odd is done by tabler look up, it will use one multiplication, one
masking operation, -and one indexing operation. The FFT also uses some bit
operations, which will be quick on most machines. The RFFT also needs to do
n subroutine calls which pass 2n + 23", .;; 272" = 2n + 2nlgn parameters.
On many machines the time for the subroutine calls will be some what larger
than the time for the calculation. All in all one should expect RFFT to take
between 150 percent and 300 percent of the time of FFT.

9.3.3-1. See Aho, et. al. [1, Section 7.3].
9.3.3-2. w™? = —1 (mod w™? + 1), 50 Yggjep Tiwi™? = To o 3 (1),
9.3.3-3. The value of n is 8, the value of w is 4 (2 is not big enough), the value of m is

w"/? 41 = 257. The inverse transform needs w=* = 193 and 1/n = 225. The
following tables summarize the calculation of the Fourier transforms and the
inverse transform.

g1 2 3 "t i B < T i 1 2 3 ¢t 1/8
zp 11 4 10 10 y 55 12 26 26 =z 3 7 7 40 40 ' 5
£1 22 6255 56 y 66 14 255 139 2z 74209 33 231 128 16
xp 3 3255223 223 gy, T T 255223 223 2z, 128 0 7 15 15 34
z3 44255 30 97 y3; 8 8255 30 52 2z 161 81 128 256 223 60
z4 01 49 56 255 g4 05 117 139 255 2z4 4 256 15128 231 61
z5 02 66 42 42 y; 06 134 95 95 z; 135 196 195 159 159 52

z¢ 03210 97 30 w6 07 150 52 30 zg 129 256 240 223 256 32
7y 04195 66 66 gy 08 135 248 248 2, 177 241197 0 O 0

In the table 7 indicates initial data (or z;y; for z), the numbers on the top line
indicate the various values of j in the FFT Algorithm, ¢ indicates the results of
Step 4 of the FFT, and 1/8 indicates the effect of dividing by 8 (multiplying by
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225) when computing the inverse transform. The value w = 4 was used during
the transform and the value w™* = 193 was used during the inverse transform.
The 1/8 column has the final answer.

9334 w=4,m=15n=2 42 =1 (mod 15), 41 =4#1 (mod 15), 4°+4'=5%
0 (mod 15).

9.4.3-1. O(k®). The i*® multiplication multiplies a number of size O(i) words by a one-word
number. There are k such multiplications.

9.4.4-1. w = 4,616,628/98,636,952 = 384,719/8,219,746, = = 455,172/98, 636,952 =
37,931/8,219,746, y = 3,158, 742/98, 636,952 = 526,457/16, 439,492,
z = 5,504, 568/98, 636,952 = 229, 357/4109873. Mod 20011, the determinant is
14,098 and w = 14,098, x = 14,930, y = 17,015, z = 1543. Mod 20021, the
determinant is 18,814 and w = 11,798, z = 14, 710, y = 15,445, z = 18,814.

10.1-1. n clements must be output, so time O(n) is required. (Also the answer depends on
all 2n input elements, so the amount of input also shows that time O(n) must
be used.)

10.2.1-1. lg(5!) = 6.9 which rounds up to 7.

10.2.1-2. See Knuth [11, p. 184].

10.2.2-1. The obvious algorithm for merging is to compare the first two elements of each
list and output the smaller element. Repeat this process until one list is empty.
After one list becomes empty, output the rest of the other list. The remaining
length of the other list will be between 1 and m, so this algorithm uses 2m — 1
comparisons in the worst case.

10.2.2-2. Consider a set with n + 1 distinct elements, one of which is g. There are n ways
to select n distinct elements one of which is ¢, and there is one way to select
n elements none of which is g. Thus, there are n + 1 cases, and any correct
algorithm must be able to isolate the one case where ¢ is not in the set. This
gives n+ 1 < 2%, where k is the number of comparisons, or k > lg(n + 1). Since
k is an integer, k > [lg(n + 1)].

10.2.2-3. Consider a set with n+k distinct elements, &k of which are the same as the elements
of the k queries. There are (7) ways to select ¢ particular query elements and
n— i nonquery elements. For each ¢ there are (":) possible choices for the i query
elements. This is a total of 3, (¥)(7) = ("}*) cases. Any correct algorithm
must be able to isolate the one case where none of the queries are in the set.
This gives ("}*) < 2¥, where k is the number of comparisons, or k > Ig (”:").
Since k is an integer, k > [lg ("’1”‘)]

10.2.3-1 to 3. See Knuth [11, Section 5.3.3].

10.3.2-1. If M(n) = ©(n?) then the analysis in the section implies that there is some upper
and lower bound on the limit, but it does not give much information about what
the value of the limit is. If M (n) increases more rapidly than n? then you can ob-
tain the following limits. Eq. (13) gives M (n) < T'(3n)+0(n?). The n? algorithm
for transitive closure gives T'(3n) < 27T(n), so M(n) < 27T(n) + O(n?). If the
O(n?) grows more slowly than the other terms, then lim,, o, T'(n)/M (n) < 1/27.
Eq. (25) gives lim, o T'(n)/M(n) > 3 under the same assumptions.

10.3.2-2. The transitive closure of A, and the transitive closure of Ay; V A1o [TV (Az22) 1] 4s:.

10.3.2-3. No. The time would be O(n'8?)
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10.3.2-4. Since the matrix A can be embedded in an array of no more than twice the
original size, T'(n) < T(2F) < 3M(2*) 4+ O(2%) where 28~ < n < 2*. Since
the time for matrix multiplication is no more than 2%, M(2%) < 23M(n), so
T(n) < 24M(n) + O(n?). '

10.3.2-5. Let’s consider the extreme case where n = 2¥~141. In this case, the algorithm that
uses the actual size rather than size 2* is probably almost as fast the algorithm
are on problems of size 2. In other words, for large problems it is faster by a
factor of between 4 and 8 (depending on how fast Boolean Matrix Multiplication
can be done). Let Mxyz(n) where X, Y, and Z can be 0 or 1, be the time to
multiply a matrix of size n + X by n+Y with a matrix of size n +Y by n+ Z.
Let Axy(n) be the time required to add to matrices of size n + X by n + Y,
which is Cn? + O(n). The time for copying matrices is similar to the time for
adding. Then the time for the algorithm that uses the actual size is T(25141) =
T(Zkhg + 1) + T(2k_2) + Mo11 (2k_2) + Mgw(Z’”"Q) + Mg10(2k_2) + Myo (Qk_2) +
Mi00(2¥=2) + My01(2%2) + Kn? + O(n), while the time for the algorithm that
uses powers of 2 is (for problems of size 28— T'(2%1) = 2T(2%=2) 4 Mypo(2F~2) +
Moo (252) + Mooo (25 ~2) + Moo (2%72) + Mooo (28 ~2) + Moo (252) + Kn? +O(n).
The difference of the two recurrences is T'(2¥1 + 1) — T(2¥-1) = T(2¥2 +1) —
T(2572) + Mo11(2872) — Mooo(252) + Mp10(2F~2) — Mogo(25~2) + Mp10(2F2) —
Mooo(2F72) + Moo1(257%) — Mooo(2872) + Moo (28~2) — Moo (28-2) +
Mio1(2%7%) — Moo (2%=2) 4+ O(n), which is a recurrence in T'(2% + 1) — T'(2%).
The size of difference of Mj19 — Mggo, etc. should be small compared to the
size of M. (For n® matrix multiplication algorithm, the difference is O(n?).) If
Mi10 — Moo, etc. have about the same size as Mygo then the two approaches
give similar times.

10.3.2-6. Eq. (21) only gives an upper bound on the value of T'(n). (If T'(n) turns out to
grow only as rapidly as n?, the big O term would permit an equal sign.)

10.3.2-7. See Lawler [12, Section 4.2].

10.4--1. Hi,—p(n) V Hi,—-p(n)-l—l Voo VH}}F(“) for0<1 < p(n), —Hij V-Hy for0<i < p(n),
Zp(n) <5 < k < p(n).

10.4-2. The first group has p(n) + 1 clauses of 2p(n) + 1 literals. The second group has
[p(n) + 1]2p(n)[2p(n) + 1]/2 clauses of 2 literals.

10.4-3. Sij1 V Sija V- -+ Sz’le'| for 0 <7 < p(n), —p(n) < j < p(n) and Sijk V Sy for
0<i<p(n), —p(n) <j<pn), 1 <k<k LT

10.4-4. 2p(n)*+ p(n) clauses of length |T'| and (2p(n)? +p(n))|T|(|T|—1)/2 clauses of length
2.

10.4-5. Let s be the number of states in the machine. There are p(n)(2p(n) +1)|I'|s clauses
of each of the following three types: ~Qu V—H;; V-Sii VQiy1.k, 7Qix V-Hi; V
=StV Hip,5-1 (or “Qax V-Hy; V-8V Higy ja1), Qi V-HijV-SiitVSiqa g -
The total is 3p(n)(2p(n) + 1)|T|

10.4-6. Simi V 2Sit1,m1s Bimt V Sit1,m,1, for 0 <1 < p(n), —p(n) < m < p(n) with m # 3,
1<1<[T).

10.4-7. 4p(n)?|L).

10.4.1-1. The proof that the problem is in NP is given in the problem statement. To
prove that the problem is NP hard, consider any 3-satisfiability problem. Let
the i*" clause be l;; V ljs V ;3. The 3-satisfiability problem has a solution if and
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if only the problem A;(Q1(li1,a;) A Q2(li2, a;) A Q3(liz, ;) has a solution. (Tt is
understood that when [ is a negative literal, Q;(l,a) is shorthand for Q}(', a)
where I’ is the variable of [.) If there is some setting of the variables that satisfies
the 3-satisfiability problem, then setting the corresponding variables for the ¢}’s
the same way. Set a; to j if j is the smallest index such that [;; is true. (There
must be such a value for j because each clause in the 3-satisfiability problem -
must have at least one true literal.) If there is some setting of the variables in
the problem with the @, then for each literal l;,; set the corresponding variable
in the 3-satisfiability problem in the way that corresponds to making the literal
true. Any variables that are not assigned a value by this process can be given
any value.

10.4.1-2. The following procedure works in polynomial time on predicates where each clause

has no more than two literals.

Algorithm 10a.3 2-Sat: Input: A predicate P that is the conjunction of
clauses where each clause consists of no more than two literals. Output: “Yes”
if the predicate is satisfiable and “No” if it is not. Initially, no variable has its
value set.

Step 1. Simplify the predicate by dropping all clauses with a true literal and
by dropping all false literals from clauses. If any clause becomes
empty, output “No”. If the predicate becomes empty, output “Yes”.

Step 2. If the predicate has any clause of length one, set it to the value that
makes it true and go to Step 1.

Step 3. If any variable appears in only positive literal (literals without a not
sign) or only in negative literals, set it to the value that makes the
clauses true and go to Step 1.

Step 4. At this point every clause has length 2 and every variable appears
in both positive and negative clauses. Pick any unset variable and
consider both setting it to true and to false. For each value do Steps
1-3. (Use a procedure that has just those three steps.) If either
value leads to the output “Yes” for the subcalculation, then set the
variable to that value and go to Step 1. (For greatest efficiency, do
the two calculations in parallel and use the one that finishes first.
Also retain the results of the variable settings done in Steps 2 and
3, and just repeat Step 4 instead of going to Step 1.)

The reason that this algorithm can work correctly in polynomial time is that
at Step 4 when a variable is set, it forces the setting of the other variables that
depend on it (either immediately or after other variables are set) so we can tell if
a value is going to work without having to consider two values of other variables.
In 3-satisfiability things are not so simple. When one variable is set, there are
two variable, either of which can be set in an attempt to satisfy the predicate.

10.4.2-1. See Garey and Johnson [4, p 54].
10.4.2-2. See Garey and Johnson [4, p 54].
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10.4.3-1. The number of nodes in the constructed graph is e + K where e is the number of
edges in the original graph and K is the bound on the vertex cover. The number
of edges is 16e + Kwv.

1L1-1. Flz) = 0forz < 2, Fx) = 1/36 for 2< £ < 3, Flz) = 3/36 for 3 < = < 4,
F(x) = 6/36 for 4 < z < 5, F(z) = 10/36 for 5 < = < 6, F(z) = 15/36
for 6 3 < 7, Flg) =21/36for 7T <z <8, F(z) =26/36for 8 <z <9,
F(z) = 30/36 for 9 < z < 10, F(z) = 33/36 for 10 < z < 11, F(z) = 35/36 for
11 <z <12, F(z) =1for z > 12.

111-2. F(2) = (3)" Locics (3)-

11.1-3. F(z) =1— (k/N)#-L for > 1, F(z) = 0 for z < 1.

1114, F(z) =1- (,f_4)/(..]_0)-

11.2-1. The null hypothesis 1s that either method is equally likely two games of a pair.
Under the null hypothesis, the probability that one method would win 70 or more
games out of 95 (two tail test) is 27 (Y <;ca5 (%) + rocicos () =4x 1074

11.2-2. To be 95 percent sure that the coin comes up heads more often than tails we need
the smallest n such that }°, <o, (7)(2/3)'(1/3)** > 0.95.
Yonsacicn (1) 2/3)(1/3)" =33 1scicn ()28 The answer is that 22 coin
flips are needed. 22 flips gives 99.42 percent confidence, while 21 flips only gives
94.7 percent confidence. Suppose you want to test a coin for bias at the 95
percent confidence level. If we do a two tailed test with n flips and call the
coin biased if we get either k or less heads or n — k or more heads, then the
confidence level of the test is 27"}, .. . (':) If the probability for the coin
being tested is p, then the probability that the coin being tested will test okay
is Y pcicn—r (3)P'(1 —p)"~*. The number of flips we need to have a 95 percent
chance of detecting that the coin is biased depends on how sure we want to be
that we are correct. If we want to be 95 percent sure of being correct while
having a 95 percent chance of detecting a coin that comes up heads 95 percent
of the time, we need to choose n and k so that 27" %, ... . (7) > 0.95 and
37" jeicnok (7)28 < 0.05. If we assume that the binomial distribution is

approximately normal (with mean pn and standard deviation 1/p(1 — p)n) then
the first condition is equivalent to n/2 — k & (1.92/2)y/n or k &~ 3n + 0.98y/n.
The second condition is equivalent to (3n — Fn —0.98\/n)/(3v/2n) ~ 1.96. This
givesn = 133 and k = %n +11. To obtain an exact answer it would be necessary
to explore various integers near these values. Informally, the reason the second
calculation requires such a large n is that n must be larger enough that n/2 and
2n/3 are far enough apart that a point in between can be about /n away from
each one. The first calculation just required that n/2 be about /n away from
2n/3.

11.3-3. The answers change and become much harder to calculate exactly. It is a good idea
to approximate the binomial distribution with a normal distribution. The mean
for n flips of the coin is 0.51n and the standard deviation is +/0.51-0.49n =~
0.504/n. For the first part of the problem we need (0.51n — 0.50n)/(0.50\/n) ~
1.65 or n = 83. For the second part we need (0.51n—0.50n—0.98+/1)/(0.50\/n) ~
1.96 or n ~ 38416. With slightly biased dice you have to be really patient to
obtain good evidence that the dice are biased.
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11.4-1. The mean is ff;" tdF(t) = [ pte " dt+ge™r1 = —te P[]+ [ e~Pidi + e~ =
e M (—q—1/u)+1/p+ge 9 = (1—e#9)/pu. The average of t? is f:r:: t2dF(t) =
Jl pPertdt + P = —e ] + 2 [ pte~Htdt + e = e7H(—¢? -
2/u—1/p?)+ 1/ +1/p+q?e 1 = 1/p* —e™#9(2g/pu+1/p?). The variance is
1/p? —e7#(2q/p+1/p?) — (1 —e7#9)? [p? = e 49 [ (1 - 2g/p) + (—e~2#9) /1%,

11.4-2. f(t) = pe "t for t >0, and f(t) =0 for t <O0.

11.4-3. o(t) = fjﬂ? e dF(z) = Yocicn (F)PA — D" Fe® = [(1 - p) + pe¥]* = [1 +
p(e* = 1)]".

11.4-4. k; = (d?/dt?)In ¢(—it)li=o. For this problem, x; = (d’/dt?) In[1 + p(e* — 1)]" =
n(d? /dt?) In[1+p(e' —1)]|¢=0. The first few values of k are k; = np, k3 = np(1—p),
k3 = np(1 — p)(1 —2p), and k4 = np(1 — p)(1 — 6p + 6p?).

11.5-1.

b=

11.8-1. The theory and experiment differ for Ey by 0.006/0.032 =~ 0.2 standard devi-
ations. One would expect a larger deviation about 84 percent of the time.
Nothing is suspicious about this. The theory and experiment differ for W; by
0.1006/0.0011 = 91 standard deviations. The probability of this happening by
chance is about 1 in 1082, which is to say that it is virtually impossible. The
authors notice that something was wrong but they thought the random number
generator they used might be to blame when in fact it was their calculation.
People find it easy to put the blame in the wrong place.

11.9-1. For a given z and u, let p = p/z. With this p the mean is indeed p and the
probability that the distribution gives a value greater than or equal to = is u/x.

11.9-2. The mean is p(z — y) + y and the variance is (1 — p)y® + pz® — [p(z —y) + y]* =
p(1 —p)(z — y)?. Now z occurs with probability p, and z is (1 — p)(z — y) above
the mean. The value of 02 /z? is p(1 — p)(z —y)? /¢*. The value of y in the range
0 to = that makes this as large as possible is y = 0. With this value of y we get
a ratio of p(1 — p). As p approaches zero this approaches the Chebyshev bound.

11.9-3. Direct calculation: (1/2)*%° 3. oo (*9°) & 5.00 x 107, Normal distribution: the
deviation is 6 standard deviations, which gives Prob(X > 80) ~ 9.87 x 10710
Markov bound: Prob(X > 80) < 50/80 = 0.625. Chebyshev bound: Prob(X >
80) < 25/6400 ~ 3.81 x 1073. Chernoff bound: solve 80 = 100e%/(1 + €®)
to obtain a = In4 and Prob(X > 80) < e~80In4(1 4 1¢In4)100 = 22605100
4.3 x 1072.

11.10.1-1. The value of e; is given by ), ep;:(€). Multiply eq. (108) by e and sum over e,
t1, and t5. Multiply eq. (107) by e and sum over e. Add the two results together
to obtain
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1 e—1
i=(1—5)+—b(1—)( z(e'—l,l 5 i1tz
e—1

+ Pi-1,t, (T) ;Pﬁ—l,h (m))
+='3PZP£—1,¢1 (m)pi_1,4,(e —m — 1))

= -0+ 30 (Tenra (57) Tpralm)

e,t1 m,ts
T P Lt Pi-1,6,(m)
2
l'.‘,tz m:t'l
+00 Y > picra ()epioi gy (e —m — 1),
m,ty e, iz

The first sum over m and t; is 1, as is the sum over m and . In the first sum
over e, we need the change of variables ¢’ = (e — 1)/2 (e = 2¢’ + 1). Normally
this transformation would not be permitted because e’ is noninteger when e is
even, but the p;_1 4 ((e — 1)/2) factor is zero for even e, so no problem arises.
The same transformation is also needed for the second sum over e. The last sum
over e needs the change of variables e’ =e—m+1 (e =€’ +m — 1). Applying
all this gives

B (1 - b) 4 b(l — p) Z(Ze + 1)P£—1,t1 (6)

et
+bp Y Y i (m)(e+m—1)pi14,(e)
m,ty e,ds
=(1—0)+b(1—p)+2b(1—pleis +bp Y epi 1,1, (e)

e,ta

+bp Z mpi—1,, (m) — bp Z Pi-1,4,(m) ZP;‘.—I,:&; (e)

m,ty m,t etz
= (1 == b) + b(]_ = p) + 25(1 — ple;—1 + 2bpe;—1 — bp
=1+ 2(’)8‘7__1

11.10.1-2. Proceed as before, except multiply by e? instead of by e.
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e;=(1-b)+ %b(l < p)( > ¢ (Pz‘_l,:; (e ; 1) ;13;‘—1,:2 (m)

e,t1,t2

e—1
+Pi-1t, (T) Zpi—l,h (m))
e

+bPZPs—1‘tl (m)pi—1.t,(e —m — 1))

T

=(1-b)+ %b(l - p) (Z Epi-14 (L;—l) z Pi—1,t,(m)

ety mta
a2 e—1
+ ge Pi—1,ts (——2 ) mzhpi—ml (m))
+bp Z Zp‘i—l,h (m)ezpi—l,ig (e—m—1).

m,ty etz

=(@1-8)+b(1-p) Y (2e+1)pi1,s(€)

ety

+bp > Y Pt (m)(e+m—1)"pi14,(e)

m,ty e,dz
= (1-8) +b(1 - p)(4si-1 +deims + 1) +0p Y €*pi1,0,(e)
e,ta
+bp Z m®p;_1,4, (m) + bp Z Pi-1,t,(m) zpi—l,tg (e)
m,t1 m,ty e ta
— 2bp Z epi-1,t,(€) — 2bp Z mp;—1,¢, (m)
e,ts m, ity
+20p > mpi_14,(m) Y epio1 s (€)
m,ty etz

H

(1 —b) +b(1 — p)(4si—1 + 4e;—1 + 1) + 2bps;_1 + bp — 4bpe;_1 + 2bpe?_,
=14 2b(e;—1 + pe?_y) + 2b(2 — p)si—1
11.11-1. The equations are 4a + 49b = 56 and 49a + 809b = 850. The solution is a =
3654/835 ~ 4.4, b = 656/835 2 0.79. The variance of the error is 2988 /835 = 3.6.
11.11-2. See Purdom and Stigler [124].
A-1. Zlgig;‘gn T
A-2. 3 cicichn TiTi Tk



