Control Operators, the SECD-Machine,

and the X-Calculus

by
Matthias Felleisen and Daniel P. Friedman

Computer Science Department
Indiana University
Bloomington, Indiana 47405

TECHNICAL REPORT NO. 197

Control Operators, the SECD-Machine,
and the A-Calculus
by
Matthias Felleisen and Daniel P. Friedman

Indiana University
June, 1986

This material is based on work supported by the National Science Foundation under grant numbers
DCR 85-01277 and DCR 85-03279.

To appear in The Proceedings of the Conference on Formal Description of Programming
Concepts Part I1]in Ebberup, Denmark, August, 1986.

L

Control Operators, the SECD-Machine, and the A-Calculus
Matthias Felleisen, Daniel P. Friedman

Indiana University, Lindley Hall 101, Bloomington, IN 47405, USA

Abstract

Control operators like J and call/cc are often found in implementations of the A-calculus as a program-
ming language. Their semantics is always defined by the evaluation fanction of an abstract machine.
We show that, given such a machine semantics, one can derive an algebraic extension of the A,-calce-
lus. The extended calculus satisfies the diamond property and contains a Church-Rosser subcaleulus.
This underscores that the interpretation of control operators is to a certain degree independent of a
specific order of evaluation.

1. The control problem of the A-calculus

The A-calculus is a natural basis for a programming language. Recognition of this fact
led Landin to use it as a meta-language to study programming language features [9, 10].
Since the purely functional basis was insufficient to transliterate jumps and labels directly,
Landin extended the language with the non-functional control operator J[9]. Others who
used similar languages for ordinary applications followed and also added control operators.
Notably all the Scheme dialects include control facilities which are equal in power to J, e.g.
catch and throw [17] and call-with-current-continuation (abbreviated call/cc) [13]. Common
Lisp [16] is equipped with a less powerful version of cafch and throw. Label values in
GEDANKEN [14] and escape functions [15] are related to J, but more traditional in nature.

The general advantage of non-functional control operators is that they “provide a way of
pruning unnecessary computation and allow certain computations to be expressed by more
compact and conceptually manageable programs.” [18, p.16] They enhance the expressive
power of a language and give the programmer a conceptual handle for the specification of
control. Some examples will support our case.

Suppose a function L] is required which maps a tree of numbers to the sum of the
numbers if there is no 0 in the tree and otherwise returns a 0. A tree is either an empty
tree or it is a node which contains a number and two (sub-) trees. If the specification did
not include the O-exception clause, the function could be written in the ordinary, recursive
style. In the A-value-calculus it would be expressed by:

E* =Y, (rs. AL
(if (mt?¢) 0
(+(num ¢)(+(s(lson t))(s(rson t))))))

This material is partly based on work supported by the National Science Foundation ander grants DCR 85-01277T and
DCR 85-03279.

where Y, is the call-by-value recursion operator, if is syntactic sugar for a branching con-
struct, and mt?, num, lson, and rson are combinators to deal with number trees.

Given continuation-operators like J and call/cc, we can solve the problem by modifying
the recursive function. For example, with call/cc we could write:

Lo = At.call/ce(Ax.
Yo (As.AL.
(if (mt? ¢) 01
(if (zero? (num¢)) (x'0")
(+(nam &)+ (s(1son £)) (a(rson £))))))
f).

With J the definition becomes Af.(Ak. ...)(JAz.z) [15]. When £ is applied to an argument,
the operator call/cc applies its argument to a representation of the current continuation,
t.e., & becomes bound to a function-like abstraction of the rest of the program. Then the
recursive tree traversal begins. If there is a 0 in the tree, Xj sooner or later visits that
node and can then invoke the continuation on 0. The program evaluation continues as if £
had returned a value. The advantage of this approach is clear: the function differs from the
purely recursive summation function only to the extent to which the two specifications differ.
The modification is simple and, we believe, easy to understand. The function definition is
in no way obscured by auxiliary expressions. We classify this kind of continuation as an
escape continuation.

When continuations can be passed around freely as first-class objects, like in Scheme
and ISWIM, they may be used to implement more interesting control strategies. A classical
example is the coroutine facility. There are numerous situations when a program is best
expressed as two or more coroutines which simultaneously analyze input and synthesize
output files [7]. If a programming language does not have a coroutine mecahnism but has
continuation operators, this behavior can easily be achieved by passing around the current
control state in the form of a continuation [18]. The advantage of continuations is even more
apparent when bi-directional communication among the coroutines is required [5].

First-class continuations are also useful when multi-valued functions or relations are
needed in a functional language. A (functional representation of a) relation generally pro-
duces more than one result for a given argument. To this end, it can return a result with a
continuation. If more results are required, the calling function can reinvoke the continuation.
With this technique it becomes possible to implement a Landin-style embedding of logic lan-
guages [2, 6]. Intelligent backtrack strategies are realized in a similar manner by retaining
a store of appropriate continuations [4]. There are many other examples of advantageous
uses of continuation operators, but an introduction to the techniques of programming with
continuations is not our concern here.

Although this is well-recognized and control operators are heavily used in practical
programming, non-functional operators are regarded with skepticisn among language the-
oreticians. The imperative character of these operations is suspicious. Programs using
them are difficult to prove correct. Whereas function application is modeled by the g-rule,
which allows for algebraic manipulations of programs, there is nothing in the A-calculus for
reasoning about non-functional control.

This difficulty was overcome when we showed in a companion paper [3] that the A,-
calculus [12] can incorporate axioms for general control operators. The development of
this extension was rather ad hoc. The new axioms were based on our intuition about
programming with continuations. The formal, operational semantics of the control operators
had no direct influence on our work. Consequently, it was rather hard to connect the two
systems. It finally turned out that the standard reduction semantics disagreed with the
machine semantics. If the result contains continuations, the respective continuations can
differ by huge pieces of dead code, 1.e., subterms which never play a role in an evaluation.

In this paper we show that there is 2 (more) systematic way to derive a calculus for
a given machine. The approach generalizes Plotkin’s way of deriving the A,-calculus from
the SECD-machine. The main idea is to gradually eliminate components of the machine
by merging them into the program component. The outcome is a program rewriting sys-
tem. This in turn can be taken as the specification of a standard reduction function. The
transition from it to a reduction system is easy.

In the next section we define our extended programming language and its meaning. For
the latter part we revise Landin’s SECD-machine. The third section contains a derivation
of a program-oriented rewriting system from the original machine. The reduction system
is presented in Section 4. For this we assume some general knowledge of the notation and
terminology of the classical A-calculus [1, Ch. 2, 3]. Our calculus is an extension of Plotkin's
Ap-calculus since our machine defines a call-by-value semantics for applications. It differs
slightly from the one presented in our companion paper but we can still prove variations
of the Church-Rosser Theorem and the Curry-Feys Standardization Theorem. In the fifth
section we demonstrate in what sense the calculus corresponds to the machine. The standard
reduction function does not simulate the machine evaluation function, but the difference is
irrelevant. For the rest of the section we follow Plotkin’s programme for the investigation
of the Ay-calculus. The last section is a brief discussion of our results.

2. The extended programming language

The traditional term set of the pure A-calculus is the basis of our programming language.
It includes two new types of applications: C- and A-applications. For the sake of simplicity
we omit constant and function symbols, but they could easily be added. The formal syntax
specification is shown in Definition 1. In what follows we liberally omit parentheses wherever
it is unambiguous.

The notion of free and bound variables in a term M, F'V (M) and BV (M), respectively,
carries over directly from the pure A-calculus under the provision that € and 4 are symbols
which are neither free nor bound. Terms with no free variables are called closed terms
or programs. Since we want to avoid syntactic issues, we adopt Barendregt’s convention of
identifying terms that are equal except for some renaming of bound variables and his hygiene
condition which says that in a discussion, free variables are assumed to be distinct from
bound ones. Furthermore, we extend Barendregt’s definition of the substitution function,
M|z := N], to A, in the natural way: (- and A-applications are treated like applications
where the function part is simply ignored.

The intuitive meaning of the traditional constructs is approximately the same. A vari-
able represents a value. An abstraction roughly corresponds to a function. An A-application

3

Definition 1: The term sets A, and A

The improper symbols are A, (,), ., €, and A. Var is a countable set of
variables. The symbols z,k, f,v, ..., range over Var as meta-variables but
are also used as if they were elements of Var. The term set A, contains

— variables: z if z € Var;

— abstractions: (Az.M) if M € A, and z € Var,

— applications: (MN) if M,N € A.; M is called the function, N is

called the argument;

— C-applications: (CM) if M € A; M is called the C-argument;

— A-applications: (AM) if M € A.; M is called the 4-argument.
The union of variables and abstractions is referred to as the set of values.
A, the term set of the traditional A-calculus, stands for A. restricted to
variables, applications, and abstractions.

aborts the current computation and begins a new one with its argument as the starting point.
A C-application captures the current continuation of the program and passes it as a function-
like abstraction to its argument. An application invokes a function or a continuation on an
argument.

For historical reasons we use an abstract machine to formally define the semantics of A,-
programs. The machine is derived from Reynolds’ extended interpreter IV [15]. It is similar
to Landin’s SECD-machine [8] but closer to denotational semantics and, hopefully, easier
to understand. The machine works on states which are triples composed of a control string,
an environment, and a continuation code; it is accordingly referred to as the CEK-machine.

A control string is either the symbol “}” or a A.-expression. Environments are finite
maps from the set of variables Var to the set of semantic values, that is, the union of closures
and continuation points. If p is an environment, then p[z := V] is the environment which
is like p except for the point z where it is V. A closure is an ordered pair composed of an
abstraction and an environment whose domain contains the free variables of the abstraction.
A closure (M, p) is called continuation-free iff for all free z in M, p(z) is a continuation-
free closure. Continuation points are tagged structures of the form (p,«) where x is a
continuation code.

A continuation code represents the remainder of the computation, s.e., it encodes what
the machine has left to do when the current control string is evaluated. The representation
is defined in two stages. If N is a A.-term, p is an environment such that FV(N) C Dom(p),
and V is a semantic value, then a p-continuation has one of the following forms:

(stop), (xcont), (xarg Np), (xfun V),
where & is a p-continuation. A ret-continuation is of the form
(kret V)

where « is a p-continuation and V is a semantic value.

4

Table 1: The CEK-transition function
| (2,0, k) ¥ (1,8, (xret p(2)))
(2) (Az. M, p, x) GEK (3,0, (xret (Az.M, p)))
(3) (MN, p, 5} 5 (M, p, (carg N p))
(4) (3,8, ((xarg N p) ret F)) 25 (N, p, (x fun F))
(5) (1,8, ((xfun (Az.M, p)) ret V)) E=5 (M, p[z == V] &)
(6) (CM, p, &)] (M, p, (k cont))
(7) (3.8, ((scont)ret (Az.M, p))) =% (M, gz := (p,)], (stop))
(8) (3,0, ((x cont) ret (p, xo))) gEX (3,0, (ko ret (p,x)))
(9) (3,0, ((cfun (p, ko)) ret V)) g (3,0, (koret V))
(10) (AM, p,) X (M, p, (stop))

A CEK-machine state is cither a triple of the form (§,8,) where & is a ret-continuation
or a triple of the form (M, p, k) where M is a A.-term, p is an environment with FV (M) C
Dom(p), and « is a p-continuation. Machine states of the form (M, 8, (stop)) are the ¢nitial
states; for all semantic values V, ($,8, ((stop) ret V')) is a terminal state.

+ N o
The state transition function is displayed in Table 1. We use 24 ; GEK , and 22

to denote the transitive, transitive-reflexive, and reflexive closure, respectively. The rules
(CEK1) through (CEKS) correspond to an evaluator for the A-value-calculus, e.g., the clas-
sical SECD-machine. The rules (CEK6) to (CEKS8) define the operations of a -application:
the current continuation is marked, the €-argument is evaluated, and, eventually, the con-
tinuation point is passed to the evaluated argument. The last step in this sequence also
replaces the current continuation by the initial one. This is where call/cc and € differ:
call/cc is equivalent to Af.CAx.x(fx). Rule (CEK9) shows that the invocation of a con-
tinuation removes the current continuation, and moves the former one in its place. The
invocation argument is placed on the stack. According to rule (CEKI10), an A-application
ignores the continuation and starts the evaluation of the 4-argument.

In order to evaluate a program Af, the machine is started in the initial state
(M, @, (stop)). Then the machine moves into the next legal state according to the transition
function. This is repeated until a terminal state is reached. When the machine reaches a
terminal state, it stops and returns the value on the stack as the answer. We summarize
the evaluation process in the following:

evalepg (M) =V iff (M, 0, (stop)) OEXCt (3,0, ((stop) ret V)).

Since the'transition function is clearly defined on all legal states except for terminal ones, the
machine, when started in a legal state, either halts in a terminal state or never terminates.

The evaluation function returns semantic values. A continuation-free closure can be
mapped to a A.-term by substituting all free variables by the terms which correspond to

5

their environment values. A continuation point does not have an obvious association. We
accept this and do not define an unload function for the CEK-machine until later.

Convention. M, N, P, Q are variables ranging over terms in control string position. U, V,
and F stand for values. The letters s, ¢, p, and k denote machine states, control strings,
environments, and continuation codes, respectively. We use similar conventions throughout
the sequel (prowviso quod the appropriate changes). End of Convention

Given the CEK-machine, one can theoretically reason about programs with non-
functional control [18], but it is rather awkward. What a programmer really wants is a
rewriting system that allows him to think about programs in terms of program code and
related notions. In the next section, we show how to derive such a term rewriting system
from the machine definition.

3. From the CEK-machine to a term rewriting system

The CEK-machine uses environments and continuations in addition to terms for the eval-
uation of programs. Hence, if we want to have a pure term rewriting system, we need to
eliminate environments and continuations. We perform this transformation in three steps.
The first step results in a machine with two state components: control strings and contin-
uation codes. The second step is an intermediary which introduces a less machine-oriented
encoding for continuations. The last one incorporates the two remaining components into
a single one.

8.1 The CK-machine

Environments in the CEK-machine are merely a functional representation of substitutions.
It is quite natural to replace environments by substitutions which are performed at the
appropriate place. The resulting machine is called the CK-machine.

The CK-machine has control string-continuation pairs as states. The definition of control
terms needs to be adjusted. They now include continuation points at the base case. Contin-
uation codes contain control strings where they formerly had closures or term-environment
pairs, e.g. (karg Mp) becomes (k arg N) for some control string N. We leave it at these
informal revisions and define the CK-transition function in Table 2.

The substitution function is extended in the obvious way to work on control strings and
semantic values. All other definitions of the CEK-machine are applied to the CK-machine
mutatis mutandis.

For the transition from CEK-states to CK-states we adopt Plotkin’s function Real to
work on the entire control string domain:

R((M, p)) = M[z1 := R(p(x1))]. .. [2a := R(p(za))
where FV (M) = {z1,...,2a}
R({p, «})) = (p, X (x))
R({$,0) =%

Table 2: The CK-transition function
(1) {(p, mo), &) 5 (8, (x ret (p, xo)))
(2) (Az.M, k) 5 (3, (kret Az.M))
(3) (MN, &) % (M, (xarg N))
(4) (8, ((x arg N) ret F)) 5 (N, (xfun F))
(5) 4, ((x fun Az.M) ret V)) <5 (M]z := V], x)
(6) (€M, k) “E (M, (x cont))
(7) (8, (= cont) ret Az.M)) <5 (M[z := (p,)], (stop))
(8) (3, ((x cont) ret (p, o))} = (4, (o ret {p,x)))
(9) (8, ((x fun {p, ko)) ret V)) &5 (3, (ko ret V)
(10) {AM, &) i (M, (stop)).

The auxiliary function A" maps CEK-continuation codes to CK-continuation codes:

KX ((stop)) = (stop)
K((xcont)) = (K (x)cont)
X((xarg Np)) = (X (x) arg R((N, o))
KX((xfun F)) = (KX (x)fun R(F))
K((xret V)) = (K (k)ret R(V)).

With these functions we can now express in what sense the CEK-machine is equivalent
to the CK-machine:

Theorem 3.1 (CK-simulation). For any program M, R(evalcpx(M)) = evalgk (M).

Proof. The clauses of the two transition functions obviously correspond to each other. The
CK-machine has no variables in control string position, but will always contain a value in
the respective place. Thus, rule (CK1) provides the means to return a continuation point
as did (CEK1) in the CEK-machine. More formally, one can show that

CEK
(61, f1, l‘31) — (c2, p2, Nz)

implies
CK
R({e1, 1)), K (k1)) ¥ (R{c2, p2)), K (r2)).

This in turn says that, if the CEK-machine halts in (},8, ((stop) ret V')), the CK-machine
reaches the state (}, ((stop)ret R(V))). On the other hand, if the CEK-machine loops
forever on a program M, then so does the CK-machine. There are no other cases and this
concludes the proof. O '

This first transition leaves us with a machine that works with control strings and con-
tinuation codes. The expected next step would be to incorporate continuation codes into

the term components. We have found, however, that the notion of continuation codes is too
machine-oriented for a smooth transition. The next step is a replacement of continuation
codes by a more familiar concept. The final step is then quite natural.

8.2 The CC-machine

An inspection of some sample evaluations on the CK-machine reveals that the machine
repeats a two-phase procedure. In the first phase the control string is searched for either
an application of the form (FV), a C-application, or an 4-application. When one of these
subterms is found, the machine performs a computation step proper. This may either be a
substitution, the labeling of a continuation, or the throwing away of a continuation. Then
the machine re-enters the search phase.

During the search phase the machine unravels the control string and shifts term compo-
nents to the continuation part of the state. These program parts are saved for later use, 1.¢e.,
the continuation code memorizes the textual context of the next “good” application. The
term (stop) in continuation position simply means that nothing has to be remembered; the
machine is about to begin an evaluation and when this continuation is ever looked at again,
the evaluation stops. A continuation like (x arg N) recalls that the machine had found an
application with argument part N, that the context of this application was encoded in k, and
that the machine is currently evaluating the function part. Conversely, (x fun F') indicates
that the function part is evaluated and that the argument part is directing the evaluation.
A continuation of the type (x cont) originates from a €-application. The continuation code
was marked and the C-argument determines the further course of the evaluation. The ma-
chine acts as if it had encountered an application at the root of a term. The argument is the
current continuation; the {-argument stands for the function part. ret-continuations finally
express that a value has been found and that the machine has to inspect the continuation
code—or, control memory—to find out what to do next. '

With this description we are now in a position to design a term-like representation of
continuation codes. The notion of a textual context is captured in the concept of a term
context. For our special case we need contexts with one hole and, furthermore, the path
from the root to the hole may only lead through applications. However, the machine not
only needs to know the context, but it also needs to remember which part of an application
it has already seen. To this end we introduce labeled applications and labeled sk-contexts.
If M and N are A.-terms, then A e N is a labeled application of M to N; MN is the
corresponding unlabeled application. Labeled sk-contezts are defined inductively as follows:

(skC1) [] is a labeled sk-context,

(skC2) C]]P is a labeled sk-context if C|] is a labeled sk-context and P is a A.-term,
(skC3) PeC[|is alabeled sk-context if C[| is a labeled sk-context and P is a value.
Unlabeled sk-contezts are defined in the same way except that unlabeled applications are
used in the third clause. If C[| is an sk-context, then C[M] is the term where the hole is
filled with the term M; C[C'[]] is the sk-context where the hole is filled with the sk-context
C'[|. The important connection between contexts and control strings M € A, is captured
in:

Lemma (Unique context). For all control strings M there is a unique (labeled or unla-
beled) sk-context C| | such that, if M is not a value, then M = C[FV] or M = C[CN] or

M = C[AN] (or M = C[F o V], for labeled sk-contexts).

Proof. A straightforward induction on the structure of M. O

The above description of the function of particular control codes leads to the following
definition for 2 morphism € from continuation codes to sk-contexts:

¢((stop)) = |
C((xarg N)) = C[[]S(N)]
C((xfun F)) = C[S(F)e| |] } where C(x)=C[|
C((xcont)) =]Je(p,C[)
C((xret V)) = C[S(V)]

$ replaces codes in continuation points by contexts:

S((p,x)) = (p.C(x)), S(}) =3, S(z) =12,
S(MN) = S(M)S(N), S(Az.M) = Az.S(M),
S(CM) = CS(M), S(AM) = AS(M).

The new CC-machine works on states which combine control strings and labeled sk-
contexts. Control strings contain sk-contexts where they used to contain continuation codes.
The initial state of the machine is (M, | |); the machine stops when it reaches the state (§, V)
for some value V. The CC-transition function is shown in Table 3. All other notions, in
particular the one for the eval-function, are adapted in the appropriate way.

-

Table 3: The CC-transition function
(1) {tp, Col 1),Cl 15 (8,Clip, Col M)
(2) .M, O)5 (1, CpzM))
(3) (MN,C|)5 (M, c][IN])
(4) #,ClvN) S (N, ClV e[)
(5) (t, Cl(Az.M) o V]) &5 (M[z:=V],C] |)
(6) (M, Cl)5 (M,[e (p,C[1))
(7) (8, (Az.M) o (p,C[)5 (M[z:= (p,C[D[])
(8) {8, (p,Col 1) e{p,C[NS (3, Gollp, CT)
(9) {t,Cllp, Col N eV} <S5 3, GolV])
(10) (AM,C[)5 (M,]).

From the definition of the CC-transition function it follows that labeled applications are
only needed to make the CC-transition relation into a proper function. Even though there
is only one unique context surrounding the “good” subterm, the machine could still take

two different paths in case M = C[(Az.P)V], i.e., in the absence of labels it may either use
(CC4) or (CC5). A labeled application means the machine has evaluated the function and
the argument part. It is then safe to perform a computation step. Furthermore, this device
makes the CC-machine reflect the CK-machine on a rule-by-rule basis:

Theorem 3.2 (CC-simulation). For any program M, S(evalcx(M)) = evalgc(M).

Proof. Again, we can show that every CK-step is reflected by a CC-transition move, 1.e.

-

(1, k1) 5% (c2, k2) implies (S(c1),C(K1)) 5 (S(ea), C(~2)).

Hence, if the CK-machine returns a value V, then the CC-machine returns the value S(V).
Otherwise, both machines loop forever. O

Before we end this subsection we note that not all of the rules are necessary. The first
two transitions may be merged into a single rule:

wv,cl) ES 4, cv)).

Rule (CC5) subsumes (CC7) and rule (CC9) subsumes (CC8). Furthermore, the first four
rules are simply bookkeeping rules which allow the machine to remember which part of the
term it has visited. For a pure rewriting system they may be eliminated.

3.8 The C-rewriling system

The key idea for the third and last transition step is simple. It eliminates the bookkeeping
machinery of the CC-machine and directly relates control strings to each other. Every
state in the CC-machine already corresponds to a control string. If all labels are removed
from control strings and contexts, a state of the form ($, M) stands for M and a state like
(M, C[]) represents C[M]. This translation does not map continuation points to terms; the
result is like a A.-term possibly containing contexts. The precise definition of the term set
A, is given in Definition 2. Given a function J which removes all the labels from applications
including those that occur within continuation contexts, the morphism | - | from CC-states
to Ap-terms is formalized by:

I($, M) = T(M)
(M, C[) =I(C[M]).

As this correspondence is not one-to-one, the CC-transition function only induces a
relation. This is easily remedied by throwing out all the rules that just keep track of what
the machine has already seen. Together with the simplifications at the end of the previous
subsection we get the control string rewriting function as shown in Table 4. The “Unique
context”-Lemma assures that this is indeed a well-defined function.

The transition function induces the usual evaluation function:
L]
evalc(M) =N if M +Z+ N such that N is a value.

With this eval-function we can state our final simulation theorem.

10

Definition 2: The term set A,

The term set Ap and the set of sk-contexts are defined by mutual induction.
Given z € Var and a Ap-sk-context C| |,

z and {p, C[]) are in A,p.
If M and N are in Ap., then, for any z,
Az.M,MN,CM, and AM are in A,.

Variables, continuation points, and abstractions are referred to as values.
The set of Ap-sk-contezts contains

[], and,

if C[] is a Ap sk-context, P is a Ap-term, and Q is a Ap-value, then

C[P and QC| | are A,-sk-contexts.

“able 4: The C-transition function

(1) Cl(Az.M)V] S C[M[z = V]
(2) CleM] +% Mip, [)
(3) Clp, Col W]+ GolV]

(4) CIAM] Vs M.

Theorem 3.3 (C-simulation). For any program M, I(evalgcc(M)) = evalc(M).

Proof. The proof is similar to the previous ones. The major difference is that the C-
rewriting system does not mirror all CC-moves directly. One can only prove that if s; 5 82
then |s;] o Is2]- This is not surprising since the C-transition function was obtained from
the CC-machine by dropping all the bookkeeping rules. O

The three simulation theorems immediately imply:

Theorem 3.4. For any program M, I(S(R(evalcgg(M)))) = evalc(M).

.

From a different point of view this theorem stipulates that evalcgg should be redefined.
Instead of returning a semantic value, the function should unload the machine with the
function JoSoR. Since J and S behave like the identity function on A., this would certainly
make sense for continuation-free results. The results are A.-terms; the unload function is

11

equal to R which, when restricted to A, is the unload function for the SECD-machine [12].

The case when the result of a program contains a continuation needs some further
consideration. Continuations represent machine behavior. It is therefore not clear what
it means when a bafch computation returns a continuation as a (part of the) result. One
naturally wants to interpret results as numbers, truth values, efc. On the other hand, if
a machine is used for tnferactive computations where intermediate results can be saved,
the user or programmer can only be interested in getting a continuation back for potential
future use. He is then quite satisfied just to see the word “CONTINUATION.” If he wants
to know more, contexts tell him more than continuation codes. We can thus define:

evalcpx (M) = I(S(R(V))) iff (M, 8, (stop)) =5 (3,8, ((stop) ret V))

and, hence, we can consider evalpgpk and evalg to be the same function.

The C-rewriting system is certainly easier to understand than the CEK-machine. But we
have not yet achieved our goal of expressing all the rewriting rules within the programming
language A.. We still need the notion of a context in order to capture the concept of a
continuation. Although we feel that contexts are naturally related to terms and that it
is rather intuitive to reason with them, the rewriting system is not a calculus. It neither
explicitly defines program equivalences nor justifies local transformations. What we rezlly
aim for is an equational system which gives a programmer the same power over programs
as the pure A-calculus. This is the topic of the next section.

4. The A.-calculus

The traditional A-calculus can be perceived as an axiomatic theory as well as a reduction
system. The two views are equivalent. The theory can only prove terms equal that are
equal under the congruence relation generated from the f-reduction. From an operational
or computational viewpoint the reduction system is more attractive since it exposes the rule
character of the A-calculus. Reductions also lead in a straightforward way to the standard
reduction function. Thus, it is quite natural when we go the inverse direction in this section,
taking the specification of the C-transition function as the point of departure and deriving
the reduction system.

We clearly need the g-value reduction:
(Az.M)N % M[z := N] provided that N is a value. (Be)

It completely captures (C1) and the underlying A,-calculus.

Next we turn our attention to A-applications. According to (C4), an A-application
removes its sk-context. A case analysis of sk-contexts leads to appropriate notions of reduc-
tion. If an A-application AM is within an sk-context C[| and to the left of some arbitrary
term N, then first the N must be thrown away and, second, the rest of the context must
be removed. This is a recursive problem: C[| can be eliminated in favor of M by simply
placing AM in the hole. Thus, the relation should state that C[{AM)N] goes to C[AM].
Since this is independent of the sk-context, we can formulate our first notion of reduction
for A-applications:

(AM)N % aMm. (A1)

12

The second possible case, where AV is to the right of a value M, is treated symmetrically:
M(AN) 4 AN provided that M is a value. (Ar)

This covers all but the base case of sk-contexts.

The case of the empty context requires special treatment. An occurrence of AM at the
root of a term must evaluate to A, but this cannot be a proper reduction. One can only
apply this rule when the A-application is not embedded in a term. Otherwise the reduction
system becomes inconsistent. Consider, for example, the expression (AI)K. Applying the
Ar-step results in AI; the top-level rule then leads to I. When the top-level relation is first
applied to the embedded 4-application, we get: (AI)K goes to IK which, in turn, results
in K. I would equal K and this is inconsistent with the A-calculus. We therefore introduce
this top-level relation as a computation rule and use a b instead of —s:

AM o4 M. (A1)

When we build the calculus later, care must be taken to add this computation rule at the
right place.

The considerations for €-applications move along the same line. We need to satisfy
equations (C2) and (C3). Again, (C2) specifies that the context of a C-application must be
removed. So we expect that the C-reduction rules must be designed according to the position
of CM in an sk-context and that they must be similar to 4-reductions. For example, the
expression (CM)N must relate to a term € X for some term X.

For the correct design of X we appeal to the intended semantics of the €-application.
The C-application must capture the current continuation and supply it to its argument.
Hence, if X is the next C-argument, it will be applied to the continuation which stands for
the rest of the context. This continuation must be passed on to the original -argument M.
Furthermore, M’s context also includes an application with N as the argument. In other
words, if we let f be the function which must be applied to N, then the continuation of
CM could be characterized by x(fN) where x stands for the continuation of CX. Since
the continuation gets the function when it is invoked, it must be an abstraction whose
parameter is f: Af.c(fN). The term X, on the other hand, must be a function which
accepts the continuation x and passes it to M via Af.(fN). A first approximation of X is
hence Ak.M(Af.x(fN)). This satisfies (C2) since it removes the context of a -application
and applies its argument to some encoding of the context. But continuations also need to
respect (C3).

The rewriting rule (C3) demands that, when a continuation is invoked, the current
context is removed. This reflects the fact that upon a continuation invocation, the CEK-
machine ignores the current continuation. It means for our A.-continuations that the first
action must be an abort action to remove the curent context. Hence, Af.A(x(fN)) is the
correct continuation for M. The symmetric case where €N is to the right of a value M is
treated in a similar way and so we define the two notions of reduction for the C-application

by:

(CM)N & Cax. M\ f.A(K(fN))) (Cr)
M(CN) 2] CAk.N(Av.A(k(Mv))) provided that M is a value. (Cr)

13

We still need to investigate the case of the empty context, t.e., the occurrence of a (-
application at the root of a term. The €-argument M must now be applied to a function
which simulates the continuation-point (p,[]). The natural choice is Az.Az. Again, this
relation is not a proper notion of reduction but a computation rule:

CM b M(Az.4z). (Cr)

With this last rule we have derived all the reduction and computation rules that are
intuitively needed for a standard reduction function equivalent to 2y,

Defining notions of reduction is only the first step on the way to a reduction system.
The next one is to build a one-step reduction relation. A one-step reduction relation is
the extension of a notion of reduction to a relation which is compatible with the syntactic
constructors. In other words, the extended relation connects terms which are the same
except for two subterms related by a reduction rule. In our case four syntactic constructions
must be considered: abstraction, application, C-application, and A-application. The two
computation rules cannot be included in this step since they are not applicable to nested
subterms. Definition 3 contains a formal description of the one-step reduction relation —..

The last step in the development of a calculus is to make a congruence relation out of the
reduction relation, i.e., an equivalence relation which respects the syntactic constructors.
Conforming to tradition, we do this in two stages: —s. is the transitive-reflexive closure of
—; its respective equivalence relation is =.. This, however, is not yet the final goal. We still
need to build in the computation rules. Without computation rules it is impossible to find a
standard reduction function which simulates the machine evaluation: occurrences of €- and
A-applications at the root of a term cannot be removed. We extend the reduction relation
—», to a computation relation px by adding the top-level relations. Forming the symmetric,
reflexive, and transitive closure of o results in an equivalence relation = which establishes
equality among terms according to reductions and computations. All these concepts are
summarized in Definition 3.

The relation =¢ determines the Ac-calculus and we write A. F M = N if the terms
M and N are equal under =¢. This calculus is not traditional in the sense that it uses
incompatible relations. The congruence relation =, is somewhat weaker but more traditional
and we consider it as a subcalculus. We also write A, F M =, N when we refer to proofs
within the subcalculus.

The preceding derivation of the A.-calculus has produced a system which is similar
to the one described in our earlier paper [3]. The C-rewriting system and the previous
experience directed our search this time. The important difference is that the invocation
of a continuation immediately removes the current context. The correspondence of the A.-
calculus to the real machine is almost built-in. Before we can discuss this issue further, we
need to recall some earlier results on the logical properties of the calculus.

For the next section two questions are of importance:

e Are the relations = and by Church-Rosser?, and
e Is there a standard reduction function?

Since the relation b is not a compatible relation, it is clear that it cannot be Church-
Rosser in the classical sense, but that we have to check whether it satisfies the diamond
property. The reduction relation —», can be treated in a more conventional manner. The
following theorem states our version of the CR-theorem for the A.-calculus:

14

Definition 3: The A -calculus

Let L0 U & U & U & U 2 Then define the one-step C-reduction —.
as the compatible closure of =

MSN=>M-,N;

M=, N = Az.M—,.Az.N;

M N=>ZM—.ZN,MZ . NZ for Z € A
M-o.N=>CM->.CN,

M—.N=>AM —. AN.

The C-reduction is denoted by —s. and is the transitive-reflexive closure of
—+.. We denote the smallest congruence relation generated by —». with =,
and call it C-equality.

The computation by is defined by: pr=pe U4 U —=, . The relation = is the
smallest equivalence relation generated by px. We refer to it as compulational
equality or just K-equality.

The left-hand side of the reduction and computation rules are called C-
redexes. A C-normal form M is a term that does not contain a C-redex. A
term M has a C-normal form N if M =, N and N is in C-normal form.

Theorem 4.1 (Church-Rosser).
(i) The relation = is Church-Rosser.
(ii) The computation relation by satisfies the diamond property, ie., if M bg N and
M v L then there exists a2 K such that N o K and Lo K.
(iii) If M =, N then there exists an L such that M —». L aﬁd N —, L.
(iv) If M =g N then there exists an L such that M b;®* L and N op° L.

The proof of this theorem is a modification of the one for the traditional A-calculus [3].

We also need to show the existence of a standard reduction function. A standard
reduction function is the function which reduces a term to a value by performing outermost-
leftmost reductions or computation steps. It is defined in two stages. First, the relation -
is extended to a function which works on all sk-contexts. Second, the computation steps
are added. Definition 4 contains the formal specification. The respective theorem is:

Theorem 4.2. M v;* N for some value N iff M +,* N' for some value N'.

In other words, if a program can be interpreted as a value, then the standard reduction
function will produce a value. The theorem is a direct consequence of the Curry-Feys
Standardization Theorem for the A.-calculus [3]. The next question is whether the value of
a program produced by the machine is equivalent to the value produced by the standard
reduction function. This is a part of the correspondence problem discussed in the next
section.

15

Definition 4: Standard reduction sequences and functions

Given an sk-context C[| and M = N, then the standard reduction function,
e, for < maps C[M] to C|N):

C[M] e C[N].
The standard reduction function for bg extends v+, to computations:

ek =bg Ubyg Uy .

o7 and +4° stand for the transitive and transitive-reflexive closure of

ok, respectively; —.* indicates 1 applications of ~ .

5. The machine-calculus correspondence

In order to prove the equivalence of the machine semantics with the operational rewriting
semantics of A, we need to show that the standard reduction function simulates the rules
(C1) through (C4). As in the previous transition steps, we must construct a morphism from
Ap to A, since the two functions work on different term sets.

The only real task of the morphism between A, and A, is to encode continuation points—
or sk-contexts—as terms. We had the same goal when we designed the notions of reduction
for C-applications, so we can use these relations as an orientation.

The empty context in a continuation point means that the continuation was captured
with a C-application at the root of the term. Hence, [| maps to Az.Az. If the hole is to the
left of some arbitrary term P in some context C| |, then a (-application would use € to
construct the next piece of the continuation. This new piece would look like Af.A(x(fP))
where « stands for the encoding of C|] and so we are led to the following inductive definition
of the map [-], from contexts to terms:

[N.=2z4z
[Cll 1Pl = AfA(LC] 11(fP)
[CIVI Nl = Av.A(ICT 11.(V0).

The map from Q to Q replaces continuation points in Q by terms:

(. Cl N=[Cl .. 2=z, Xz M= zM, MN=MN, TM = (M, M = AM.

Given this morphism, we could now attempt to prove a simulation theorem similar to
the ones in Section 3. The f,-step, i.e. (C1), is clearly reflected in the definition of =+,;. It is
also easy to see that the two C-transition rules (C2) and (C4) are simulated by the standard
reduction function. Both rules were a major guide in the derivation of the reduction system
and the map [-], was designed according to the resulting notions of reduction:

Lemma 5.1. For any sk-context C| |,
(i) CICM] —u* M[C|]]., and

16

(i) ClAM] 4t M.

Proof. Both statements are proved by an induction on the depth of the redex in the context
8. o

We are, however, unable to show that the standard reduction function satisfies rule
(C3). This transition rule requires that a continuation invocation removes the current
context and that it continues as if the old context—filled with the argument—were the new
term. The first condition is clearly implemented since continuations immediately perform
an A-application. The second one causes problems. In the A.-calculus continuations are
constructed to simulate the behavior of contexts, but in the machine continuations are
contexts. Thus, when a continuation is to be captured after another one was invoked, the
transition in the machine and the one via the sk-function diverge. The machine simply
labels the current context which contains the old continuation context; the sk-reduction
sequence encodes for a second time the term which simulates the former continuation.

The nature of the problem is best illustrated with an example. Suppose (p, C[[|V]} is
invoked on the value F: (p, C[[|V|}F Lt C[FV]. Furthermore, assume that the application
FV evaluates to D[CP] after some fJ,-steps. Then the C-reduction sequence reaches the
term P(p,C[D|]]). According to Lemma 5.1, if K. = [C]]]., the corresponding reduction
sequence in the A.-calculus begins with:

[Cll WVII.F =ut K(FV).
The next few B,-steps for F'V are correctly performed by the sk-function:
K (FV)w—u* K.D|CP).

This last term also constructs a continuation—just like its correspondent C[D[CP]]—, but
the continuation encodes the term K. instead of the context C[|:

K:D[CP] —a™ PIK:D]]].-

One readily sees that [C[D[]]]. is not equal to [K.D[]].. This means that a naive version
of the simulation theorem fails. The best we can hope for is that the sk-simulation of the
C-transition function preserves a relation between continuation points and terms.

From the above lemma and the example one could suspect that a continuation point like
(p, C[D[]} is related to the terms [C[D[|]]. and [[C]]].D[]].. However, the situation
in our example could recur many times. Instead of having two contexts composing a new
one, we would then have several of them. In fact, we have to take into account all possible
finite decompositions of a given context into smaller contexts, including the empty one.
Each sub-context can be encoded as a term by itself; each of these encoded contexts can
be a part of a bigger context which is being encoded. We have formalized this relation in
Definition 5.

The relation a4, in Definition 5 is implicit. It is well-suited to capture the different
continuation representations from the example, but it does not expose the structure of the
terms which stand for continuation points. A brief investigation reveals that these terms
are rather similar and that they share another important attribute: they are behaviorally
indistinguishable with respect to fBy-steps in standard reduction sequences. Empty contexts

17

Definition 5: The continuation point correspondence

The relation s, relates terms of A, and Ap-sk-contexts to terms in A, and
sk-contexts. It is defined inductively by:

(P, Ol)mpKeiff
for some finite number of sk-contexts Ci[],...,Ca| | such that
C| 1= C\[Cql. . .Cn[]...]] the term K, is determined by:

E=[...ICI 18 1N.---Tal 1.

where ;[|w3,C;[| for all 1.
If Prs,P and Qw,Q, then, for all z

28,2, AZ.PR3,Az. P, PQus,PQ, CPrs,CP, APrs,AP.
For sk-contexts we have to add

[Tml]

Note, we use the notation P ambiguously for both the result of mapping P
to P and a term in A, that is related to a term P in Ap via s9p.

in the partitioning of a continuation-point context add an extra Az.Az to its representation.
On the other hand, if there is a proper term contained in the context, exactly one of the sub-
contexts will cover it. Therefore, each subterm appears exactly once in the representation.
Putting this together, we see that the terms that are related to a continuation point are the
same modulo some occurrences of Az.4z:

Lemma 5.2. Define K;41 = Az.A((Az.Az)(K;z)) to be a term sequence which is parame-
terized with respect to its first element K. Then the relation of a continuation point to a
term is characterized by exactly one of the following three statements:

(i) {p,[|)pK; where Ky = Az Az, or
(i) {p,C[| |P))sspK; where Ky = M. A(K.(fP)), (p,C[|)n:K, and Pss, P, or
(iii) {p,ClU|]|)nspKi where Ky = Av.A(K:(Uv)), (p,C[|)npK., and Uss,U.
Furthermore, we can generalize this to

Proof. First note that (i), (ii), and (iii) cover all possible cases of sk-contexts. One of
them must match a particular sk-context. Furthermore, the proof of all three statements is
naturally divided into two parts: one for { = 1 and one for ¢ > 1. The latter is the same in
all cases. For the former we demonstrate how to prove case (ii) as a typical example.

From the definition of &3, we know that for any context C|[[|P] and finite number of
contexts C;[] which compose C[|]P], we have

(2. Cll 1Pl ---IICil 11Cal J)e---Cal -

18

For the base case we assume that Cy[| # [|. Then, in (ii), Ci| | = D]]|P] for some
context D[| since P is the term next to the hole in the continuation-point context. This
implies that

[.--[[C .Gl IL.--- DIl [Pl = AAWL---[ICil 1.Cal 1.--- D1 1L(SP)).
On the other hand, C| | = Cy|... D[]...] and thus

(p.C[Dl MG N.Co lc--- D[1.

This proves the case for { = 1.
For the case where § > 1 assume that the last few, say j > 1, contexts in this sequence
are empty, i.e. equal to [|. By factoring out the first one, we get

[-.-[[C Nl -1 =224 Nl MG NG - -1.2)
= Az Az Az)([... ([T DT L. 12)).

Thus we see that, as mentioned above, every empty context adds one term Az.Az. Hence,
{(p,C|[|P])mp K4y and this concludes the proof.

The generalization follows immediately. O

Lemma 5.2 verifies our claim about the behavior of the terms in the representation set
of {p, C[]). They invoke a continuation and, since continuations always remove the current
context, none of the Az.4z will ever play a role in an evaluation.

Proposition 5.3. Define three series K; as in Lemma 5.2. with the initial terms Az 4z,
M. A(K:(fP)), and Av.A(K.(Uv)). Then we can show:

K; = Az.4... (i-times)...z,
K; = Af.A...(i-times) ... (K.(fP)),
K; —=. \v.A. .. (i-times) ... (K. (Tv)),
respectively.
Remark. If we had formalized standard reduction sequences, we could replace —». by

standard reduction steps. End of Remark
Proof. Clearly, K; = Az. AM{ for some (open) term M. Hence,

Kiyy —»c Az A((Az.Az)((Az. AM])z))
—: Az A((Az.Az) (AM] [z := 2]))
—o. Az A(AM]).

But, the three M?’s for the base cases are z, (K.(zP)), and (K.(Uz)), respectively. O

All continuations that are related to a continuation point behave similarly when invoked;
the difference is the number of abort operations. Thus, we can show that evaluations via
o and 2y only differ in their outcome. First, we prove that ., mirrors C-transition
steps as long as no continuation is invoked:

Lemma 5.4. Assume C|[|,C| |, Ps,P, and Uss,U. The simulation of the rules (CI),
(C2), and (C4) via v+ 4 respects fp:

19

(i) if C[(Az.P)U] v+ C[P|z := U]] then D|(A\z.P)U] . D[P[z := U)] for any sk-
context D[|;
(i) if C[AP) v+ P then C[AP) s+ P:
(iii) if C[CP] v P(p,C| |) then TICP] it PITY |-
Proof. The first statement reiterates that f-steps are simulated independently of the
context. Points (ii) and (iii) are consequences of Lemma 5.1. O

Things get more complicated when a continuation is invoked. The sk-reduction sequence
contains a series of auxiliary moves in order to simulate the jump to a different context in
the C-reduction sequence. Since proper simulation steps are interspersed in this detour,
it is impossible to prove a corresponding lemma for (C3). However, a direct proof that
continuation invocations are correctly implemented by ++,; is possible:

Lemma 5.5. Suppose (p, Co| |)nspKo, V3,V and Uss,U. Then,
+ -
Clip, Col WV]+5" U i T[KoV) ot U.

Proof. The condition C| |n,C| | is unnecessary for the antecedent since a continuation

immediately performs some A-applications.

The equivalence is proved by an induction on the unique number of steps, n, in the e

reduction sequence from C[{p, Co| |})] to U. We proceed by a case analysis on the structure
of Co[]:
(skC1) Co[] =[]: This case is trivial. It implies that

Ko = Ky =Mz. Az or

Ko = K2 =22 A((Az.Az) ((A2.AT)z)), ele.

In any case, we have

(P, Col NV 5V and KoV =yt V.

(skC2) Co[| = D[|P] for some Ap-sk-context and term P. Now we know from Lemma

5.2 that
Ko= K1 = M.A(Kp(fP)), or

Ko = Ky = Az. A((Mz. A7) (K, 7)), ete.
where (p, D[])Va,Kp and Pws,P. The two reduction sequences start out with

Clip, Col W]+ DIV P)

and

ClKoV) =u* Kp(V P).

Next, we consider the possible evaluations of VP and V' P. The previous lemma
reassures us that as long as the rule (C1) is used the context plays no role and, more
importantly, the relation #s, is preserved. The first transition step which does not
conform to (C1) is the distinguishing criteria for the rest of the reduction sequence.
Since this sequence is finite, four cases must be analyzed:

20

a)

b)

d)

+
VP '_C*(c;) W where W is a value. This means that V P .+ W and we have
the following development for the C-transition:

o4 -+
DIVP]— D|W].
For the one according to ++,; we get
Kp(VP) +sut KpW.
By assumption we know that
g m 5
DW]+— Uwithm<n-2.

m m+1
From the definition of ~+ we see that, D[W] T Ut (p, Dl W+ UL
Thus, we can safely replace D[W]| by (p, D[])W since m+ 1 < n— 1. But note,
(p, D[|}~y Kp and so, by inductive hypothesis, we get the desired conclusion.

VP .iy{c” E[AQ] and V P —,* E|AQ] for some term @ and sk-context E[|.

Comparing the two reduction sequences
c.* C
D|VP]+—— DI[E[AQ]| — Q

and

Kp(VP) ' KpE[AQ] —a* Q,

we see that both continue with related terms. From this point on, two devel-
opments are possible: the rest of the sequence either uses the (C3) rule or it
doesn’t:

bl) If Q 24" U does notuse (C3), then according to Lemma 5.4 Q ++,.* U is
immediate.

b2) Suppose (C3) is used a first time. That means, that Q s Fl(p, Fo|)W]
and also by Lemma 5.4 that @ +,* F[KrW] such that {p, Fo[]}, KF.
Since the reduction sequence is at least one step shorter, we can now apply
our inductive hypothesis and this finishes case b).

L]
VP rﬁ+(cn E[CQ] and VP ++,* E[CQ]. The reduction sequence according to
—,; continues as:

Kp(VP) ' KpE|CQ| =t QIKDE[]..

The transition rule (C2) accomplishes the capturing of this continuation in one
step:
o 4
D[V P]+—= DIE[CQ]| — Q(p, DIE[]])-
By assumption {p, D[|}apKp and, hence, (p, D[E]]])Hp[KpE[]] by Lemma
5.2. The rest of this subcase is as in b).

Ve '_'(cu El{p, Eo| 1)\W] and VP v ,* E[KgW] such that (p, Ey[|)mpKE.
This is an instance of the inductive hypothesis and the case (skC2) is finished.

21

{skC3) Co| | = D[P|]] for some Ap-sk-context and value P. Again, the respective continu-
ations are characterized by Ky = Av.A(Kp(Pv)), etc. The two reduction sequences
immediately arrive at the same constellation as in (skC2):

Cl{p,Co| V] =+ D[PV]

and

C|KoV] —=a* Kp(PV).
The rest is analogous to the previous case. O

Putting the previous two lemmas together, the following theorem is obvious:

Theorem 5.6 (Sk-simulation). For any program M € A, values V, V such that Vs,V
+
ME ViFM eyt V.

Since Va3,V implies V =V for V € A, the theorem can be specialized:
Corollary 5.7. For any program M € A, whose result V is continuation-free,

+
ME ViFMeat V.

Finally, we can note that evalggg is only defined if the program is equivalent to a value:
Corollary 5.8. There exists a value N such that A, M =; N iff evalgpg (M) is defined.

Informally, these results mean that the CEK-machine is characterized by a standard
reduction function (and sequence) of a calculus modulo some syntactic difference. In order
to eliminate this difference, we would have to change the standard reduction function in
such a way that a term K(CM) evaluates to MK for a continuation K. From the above
definition of [+], one can see that recognizing terms as continuations is possible. But, a user
could easily construct such a term K and then the normal evaluation sequence would be
preferable: without knowing the history of a term, it is impossible to know when to apply
the new rule.

Although the difference cannot be eliminated, it is not stringent. Since—as dicussed
after Theorem 3.4—the result of a computation is generally considered to be some kind of
ground value, e.g. number, boolean value, tree, list, efc., and not a continuation, we are
safe. Corollary 5.8 assures us that we get the correct result back if we encode ground values
in A, or even better in A. If continuations are a legitimate part of the result, then it is their
potential behavior that is interesting. In this case we are safe because of Proposition 5.3.
All terms that are related to a continuation point are behaviorally equivalent. Thus, we can
indeed assume that evalcpg and the operational semantics of A, are equivalent.

A disadvantage of the above theorem and corollaries is their dependence on the standard
reduction function of the calculus. One would prefer to interpret terms in a less operational
way using = instead. Traditionally, one thinks of terms as functions from some set of basic
constants to basic constants. Since we have neither a model for our calculus nor constant
names in our language, we follow Morris’s example [11] and define the set of basic values
to be the set of closed normal forms in A. This definition is not restrictive because ground
values can all be encoded in a normal-form representation, and on the other hand, it allows
us to compare values syntactically.

22

Next we define two interpretations of terms [11, 12]. For all n > 0, the calculus inter-
pretation of a term M is the function I = {{Ny1,..., Na, U)[JAc F MN; ... Ny =¢ U} where
the N; and U are basic values. The machine tnlerpretation of a terrn M is the function
M3 = {{N1,..., Na, U)levalceg (MN; ... Ng) = U}.

With these interpretations we can show that the correspondence of the CEK-machine
to the A.-calculus is independent of a standard reduction function:

Theorem 5.9. For any program M in A, its calculus and machine interpretation are the
same for all n > O:
Ine = My,

Proof. The proof is a straightforward consequence of the Church-Rosser Theorem, Corol-
lary 5.7, and Corollary 5.8. O

Theorem 5.9 essentially says that the machine and the calculus interpret a program as
the same function. Given that the classical A-calculus is for reasoning about the equivalence
of these functions, the question naturally arises what proofs in A, mean.

Since the relation =g is not a congruence relation, it is clear that M =; N does not
mean that M3, = M} for any n > 0. The relation =; only compares programs that are
already supplied with all their input arguments. Intuitively, the equivalence relation =g is
equating the global control intentions of programs. The subrelation =, is more like =4: it
compares the functionality and local control structure of terms.

The question can also be generalized to what equality in A, means for open expressions.
In Morris’s words, we ask whether equality is preserved under all possible interpretations;
for Plotkin it is the question if equations in A, are true with respect to the machine. For
this last step in our investigation we adapt Morris’s o and Plotkin’s 9y relation. M is
operationally equivalent to N, M ~cpg N, if for any program context C| |—a term with
one hole at an arbitrary position—, C[M] and C|N] are programs, evalcgk is undefined
for both, or, if it is defined for both programs, it produces the same basic value. From the
above discussion about = and =., we know that only =, implies operational equivalence.
For =, we need to make sure that the terms behave equivalently in all cases, then it also
implies operational equivalence:

Theorem 5.10. For M, Nin A,
(i) ifAc+ M =, N, then M ~cpg N, and
(ii) if A¢ F C[M] =g C|N] for all sk-contezts C[|, then M ~cpg N.

Proof. The proof of (i) is easy. It is essentially a transcription of Plotkin’s corresponding
proof for the Agy-calculus.

Part (ii) deserves some elaboration. Assume the hypothesis and w.l.o.g. assume that A
and N are in A, proper. Let D[| be a context such that D{[MN] is closed. Now, suppose
that evalcpx(D[M]) is defined and, furthermore, that it is a basic constant. By Theorem
4.2 and Corollary 5.8

Ac k D[M] = evalcpx(D[M]).

Depending on the role of the fill-in term during the evaluation, we have to distinguish
two cases. It is possible that the term in the hole is never a direct component of an sk-redex.
Then it gets thrown away since the result is a basic constant. The conclusion is immediate.

23

Otherwise, at some point a closed form of M or N is an immediate component of some
sk-redex in some sk-context. But note, A, F C[M] = C[N] clearly implies A\, F C[M|z :=
L]] =¢ C[N|[z := L] for all values L. Therefore, with the necessary generalization to multiple
substitutions, we have

A b evalcpx(D[M)) =¢ evalcpx (CM[Z = L)) =4 evalcpx (C[N[Z := LJ)).

Hence, by the Church-Rosser theorem, D[M] and D|[N] produce the same basic value. O

The inverse of both statements is false. This is inherited from the A,-calculus for which
Plotkin has already shown that it is consistent but not complete with respect to ssy.

The second point of Theorem 5.10 is important. Although =g is only an equivalence
relation it induces a natural, consistent extension of =.. Instead of requiring C[M] =¢ C[N]
for any context in the antecedent, sk-contexts are sufficient. Since sk-contexts represent con-
trol contexts and nothing else, this statement reaffirms that =; compares control intentions
in programs.

6. Discussion

In the preceding sections we have demonstrated how a calculus can be derived from an
operational semantics of a programming language. Our particular example involved the
derivation of a calculus for a language with non-functional control operators.

Two points deserve mentioning. First, the derivation produced a symbolic evaluation
function which works on the level of programs and related concepts. This is an important
tool when tracing of programs is required. Until now programs with control operators could
only be understood in terms of machine implementations. Second, the existence of a calculus
which corresponds to the machine stipulates that many aspects of control are independent
of a particular evaluation order. The two-part definition of the calculus expresses the fact
that the imperative nature of our operators only shows up at isolated points. These results
also encourage us to continue our research on other, seemingly imperative programming
constructs.

Acknowledgement. We thank Carolyn Talcott for her careful reading of an earlier draft.
Her comments led to a simplification in the presentation of the proofs of Theorem 3.1 and
Theorem 3.2.

24

References

1.

10.
11.
12.
13.
14.
15.

16.
17.

18.

BARENDREGT, H.P. The Lambda Calculus: Its Syntaz and Semantics, North-Holland,
1981.

. CARLSSON, M. On implementing Prolog in functional programming, New Generation

Computing 2, 1984, 347-359.

. FELLEISEN, M., D.P. FRIEDMAN, E. KOHLBECKER, B. DUBA. Reasoning with Con-

tinuations, Proc. Symp. Logic in Computer Science, 1986, 131-141; also available in
extended form as Technical Report No. 191, Indiana University Computer Science De-
partment, 1986.

. FRIEDMAN, D.P., C.T. HAYNES, E. KOHLBECKER. Programming with continuations,

in Program Transformations and Programming Environments, P.Pepper (Ed.), Springer-
Verlag, 1985, 263-274.

. HAYNES, C.T., D.P. FRIEDMAN, M. WAND. Obtaining coroutines from continuations,

Computer Languages, to appear.

. HAYNES, C. T. Logic continuations, Technical Report No. 183, Indiana University

Computer Science Department, to appear in the proceedings of the Third International
Conference on Logic Programming, London, Springer-Verlag, 1986.

. JACKSON, M. A. Principles of Program Design, Academic Press, New York, 1975.
. LANDIN, P.J. The mechanical evaluation of expressions, Computer Journal 6(4), 1964,

308-320.

. LANDIN, P.J. A correspondence between ALGOL 60 and Church’s lambda notation,

Comm. ACM, 8(2), 1965, 89-101; 158-165.

LANDIN, P.J. A formal description of ALGOL 60, in Formal Language Description
Languages for Computer Programming, T.B. Steel (Ed.), 1966, 266-294.

Morris, J.H. Lambda-Calculus Models of Programming Languages, Ph.D. Thesis,
Project MAC, MAC-TR-57, MIT, 1968.

PLOTKIN, G. Call-by-name, call-by-value, and the A-calculus, Theoretical Computer
Science 1, 1975, 125-159.

REEs, J. (Ed.) The revised® report on Scheme, Joint Technical Report Indiana Univer-
sity and MIT Laboratory for Computer Science, 1986, to appear in SIGPLAN Notices.

REYNOLDS, J.C. GEDANKEN-—A simple typeless language based on the principle of
completeness and the reference concept, Comm. ACM 13(5), 1970, 308-319.

REYNOLDS, J.C. Definitional interpreters for higher-order programming languages,
Proc. ACM Annual Conference, 1972, 717-740.

STEELE, G. COMMON LISP—The Language, Digital Press, 1984.

SUSSMAN G.J., G. STEELE. Scheme: An interpreter for extended lambda calculus,
Memo 349, MIT Al-Lab, 1975.

TALCOTT, C. The Essence of Rum—A Theory of the Intensional and Erxtensional As-
pects of Lisp-type Computation, Ph.D. dissertation, Stanford University, 1985.

25

