The Mystery of the Tower Revealed:
A Non-Reflective Description of the Reflective Tower

By

Mitchell Wand
Northeastern University
Boston, Massachusetts 02115

and

Daniel P. Friedman
Indiana University
Bloomington, IN 47405

TECHNICAL REPORT NO. 196

The Mystery of the Tower Revealed:
A Non-Reflective Description of the Reflective Tower
by
Mitchell Wand, Northeastern University
and Daniel P. Friedman, Indiana University

May, 1986

This material is based on work supported by the National Science Foundation under grant numbers
MCS 83-04567, MCS 83-03325 and DCR 86-05218.

This report to appear in the Proceedings of the 1986 ACM Symposium on LISP and Functional
Programming.



The Mystery of the Tower Revealed:
A Non-Reflective Description of the Reflective Tower

Mitchell Wand, Northeastern University
Daniel P. Friedman, Indiana University

1. Abstract

In an important series of papers [Smith 82, 84], Brian
Smith has discussed the nature of programs which are al-
lowed to have knowledge of their text and of the context in
which they are executed. He called this kind of knowledge
reflection. Smith proposed a programming language, called
3-LISP, which embodied such self-knowledge in the domain
of meta-circular interpreters. Every 3-LISP program is in-
terpreted by a metacircular interpreter, also written in 3-
LISP. This gives rise to a picture of an infinite tower of
meta-circular interpreters, each being interpreted by the
one above it. Such a metaphor poses a serious challenge
for conventional modes of understanding of programming
languages.

In our earlier work on reflection [Friedman & Wand
84], we showed how a useful species of reflection could be
modelled without the use of towers. During the question
period following that presentation, Smith challenged us to
extend our techniques to give a model of towers as well. In
this paper, we meet this challenge by giving a semantic ac-
count of the reflective tower. This account is self-contained
in the sense that it does not employ reflection to explain
reflection.

This Material is based on work supported by the National
Science Foundation under grant numbers MCS 8303325,
MCS 8304567, and DCR 8605218.

Authors’ addresses: Mitchell Wand, College of Computer
Science, Northeastern University, 360 Huntington Avenue
#161CN, Boston, MA 02115. Daniel P. Friedman, Com-
puter Science Department, Indiana University, Lindley Hall
101, Bloomington, IN 47405

To appear in the 1986 ACM Symposium on LISP and Func-
tional Programming.

2. Modelling Reflection

Let us first consider how a conventional denotational se-
mantics models the context in which a computation takes
place. In a conventional language, an expression is evalu-
ated in a context which includes several parts:

1. An environment that ‘describes the bindings of iden-
tifiers, which, depending on the language, might be
values or locations.

2. A continuationthat describes the control context. This
is typically modelled by a function whose job it is to re-
ceive the answer from the current expression and then
finish the entire calculation.

3. A store that describes the “global state” of the com-
putation, including the contents of locations and the
state of the input-output system. In this paper, we do
not deal with the store part of the context.

These pieces of context are taken into account by pass-
ing them as arguments to the valuation or interpreter. Thus
the type of the interpreter or valuation is

£ :(Ezp) = Env— K — A =depr. ...

where A is some domain of answers. Thus we can think of
€ (once we have written it out) as defining an interpreter
which manipulates three registers, e, p, and «.

In [Friedman & Wand 84| we showed how Smith's con-
cept of reflection can be decomposed into two processes,
which we called reification and reflection. We used the
term reification for the process by which the contents of
the interpreter registers, e, p, and &, are passed to the pro-
gram itself, suitably packaged (or reified) so the program
can manipulate them. We think of this process as convert-
ing program into data. Conversely, reflection is the process -
by which program values for an expression, an environment,
and a continuation are re-installed as the values of the inter-
preter registers. This process may be thought of as turning
data into program.

Following Smith, we built reification into our language
by using a special class of procedure (called, albeit confus-
ingly, reflective procedures). Such a procedure, when called,
bound the reified contents of the interpreter registers to the
formal parameters and then executed the body. This mech-



anism generalized the Lisp Fexpr mechanism. Reflection .

was built in using a function called meaning which took
three arguments and installed them as the values of the in-
terpreter registers (thus generalizing Lisp’s eval). With
this model, we were able to generalize the conventional
treatment of special forms by making them first-class cit-
izens. All this was done without having to introduce the
concept of reflective towers.

Having shown that the concept of reification was inde-
pendent of the idea of the infinite tower, we then were led
to consider the question of providing a reasonable model of
the tower itself. Reflective models (as in [Smith 84]) were
unsatisfactory for foundational reasons: they depended on
an understanding of reflective towers in the defining lan-
guage, when that was precisely the feature we hoped to ex-
plain. The only non-reflective models ([Smith 82, Chapter
5; Smith & des Riviéres 84b]) were extremely operational.
Indeed, it was not clear whether the techniques of denota-
tional semantics were adequate to describe the tower.

In the next section, we shall show how denotational
semantics can be used to describe a tower of computations.

3. Modelling the Tower

3-LISP adds to the reflective structure a serious com-
mitment to the idea of meta-circular interpreters. Every 3-
LISP program is interpreted by a metacircular interpreter,
also written in 3-LISP, which in turn is interpreted by a
metacircular interpreter above it, and so on. This leads
to an infinite tower of interpreters, each manipulating an
expression, an environment, and a continuation. Each in-
terpreter runs in a context consisting of the states of the
interpreters above it.

This yields a slightly different picture of reification and
reflection. When reflection occurs (by invocation of the
function meaning), 2 new interpreter is spawned below the
current one. When the lower interpreter exits, control re-
turns to the interpreter which spawned it. When the lower
interpreter invokes a reflective procedure, its registers are
reified and passed to the body of the reflective procedure,
as in our earlier model. In 3-LISP, however, the body of
the reflective procedure is then executed as if it were in
the upper interpreter. Thus, 3-LISP’s reflective procedures,
like Lisp’s special forms, effectively add new lines to the
interpreter.

Our standard treatment of contextual information gives
a straightforward way of modelling this situation. We sim-
ply change the type of the semantic function so that it takes,
in addition to the usual expression, environment, and con-
tinuation, a new piece of context information that we call
a metacontinuation. Hence the type of £ is now

E:(Fzp) - Env— K -+ MK — A

The problem is characterizing the domain MK . A meta-
continuation represents the state of the upper interpreter
(and by implication that of the tower above it) waiting for

a result from the lower interpreter. Thus MK will have the
form

MK=R— A

where R is the domain of interpreter results. Our next task
is to determine the domain R. To do this, we will think
primarily about what happens when the lower interpreter
invokes a reflective procedure and returns to the next level.

When the lower interpreter executes a reflective pro-
cedure, the body of the procedure is run at the place the
meaning function was called in the upper interpreter. What
do we mean here by “body?” Clearly we mean an object
built from an expression (the body of the procedure) and
an environment (built from the lexical environment of the
procedure extended with the formal parameters bound to

"the actuals)—in other words, a thunk. Looking at the func-

tionality of £, we see that combining an expression and an
environment gives us an object of type K — MK — A.
When a reflective procedure is invoked, the appropriate
thunk is built and passed to the metacontinuation. Thus
the domain of metacontinuations should be

MK =K - MK — Al — A
How is this thunk built? It is an object built from the
body of the procedure and an environment consisting of
the lexical environment of the procedure with the formal
parameters bound to the actuals. In the case of a reflective
procedure, the actuals are the e, p, and k, suitably packaged
(or reified) so that the body can use them.

What do we mean here by “place?” We mean the con-
tinuation (and metacontinuation) in force at the time mean-
ing was called. When a new interpreter is spawned at con-
tinuation & and metacontinuation u, we expect it to return
a thunk # which will be run on continuation x and meta-
continuation w. Thus, the lower interpreter should be run
with metacontinuation

Ab.fkp

That is, the operation of building this new metacontinua-
tion is
meta-cons = Akuf.0ku

In Scheme, this might be written as:

(define meta-cons
(lambda (k)
(lambda (mk)
(lambda (theta)
((theta k) mk)))))

This combinator is just Church’s pairing combinator
[Barendregt 81, p. 129], so it is not far wrong to think of a
metacontinuation as a list of interpreters (or continuations).
Writing this functionally, however, allows us to form an
infinite tower using the standard fixpoint combinator:



Poo = Y (Ap.meta-cons kg p1)

where k¢ is the initial continuation used to initialize each
interpreter in the tower.

In Scheme, this might be written as

(define tower
(letrec
([loop
(lambda (n)
(lambda (theta)
((theta (R-E-P n)) (loop (addi n)))))1)
(loop 0)))

where (R-E-P n) generates the initial continuation (a read-
eval-print loop) for the interpreter at level n. Thus each
interpreter begins with a continuation which is a read-eval-
print loop.

What about termination of the lower interpreter? Let
us imagine that we want to terminate the lower interpreter
with value v. To do this, we must pass v to the continuation
K waiting in the upper interpreter. Thus we must pass to
the metacontinuation a thunk which, given «, passes v to it.
This can be done by invoking a continuation initk defined
as follows:

(define initk
(lambda (v)
(lambda (mk)
(mk (lambda (k) (k v))))))

4. Up and Down the Tower

In this section we will give a glimpse of some of the pro-
gramming techniques that are made possible in the tower,
and try to compare these with the towerless reification of
[Friedman & Wand 84]. Our understanding of this powerful
tool is still sketchy, but we will attempt to share what we
do understand.

We call this language Brown. Its surface syntax is fa-
miliar. It has identifiers, abstractions (for which we use the
notation (lambda (id ...) body), and combinations of
any number of arguments. This much of the language be-
haves like the conventional applicative-order language.

Reflection is built into the language through two prim-
itives, meaning and make-reifier. meaning takes three
arguments: an expression, an environment, and a continu-
ation, and starts a new interpreter with these three values
as the initial contents of the registers. make-reifier takes
a 3-argument abstraction and turns it into a reflective pro-
cedure that, when called, reifies the registers e, p, and &
into Brown values, creates a suitable thunk, and passes it

to the metacontinuation. Such a reflective procedure be-
haves as if its body were being executed by the interpreter.
Consider for example:

(make-reifier
(lambda (2 r k)
(meaning (car (cdr e)) r
(lambda (v)
(k (set-cell! (r (car e)) ¥v))))))

This builds a reifier, which, when invoked on an ex-
pression consisting of two arguments, does the following:
First, the second argument is evaluated, yielding a value v.
Then the environment is queried using the first argument
(unevaluated) to supply a cell, the resulting cell is modified
(using the primitive set-cell!) and the resulting value
sent to the continuation k. This would be an appropriate
reifier to be bound to the name set!. We can do this by
using it on itself, in the following code (to be executed in
Brown!):

((lambda (setter)
(setter set! setter))
(make-reifier
(lambda (e r k)
(meaning (car (cdr e)) r
(lambda (v)

(k (set-cell! (r (car e)) v)))))))

Once we have defined set!, we can do all further defini-
tion inside the language. Hence in this paper, all definitions
performed with set! are in Brown, and all definitions per-
formed with define are in Scheme. So, for exarnple, we
can execute the following in Brown:

(set! if
(make-reifier
(lambda (e r k)
(meaning (car e) r
(lambda (v)
(meaning
(ef v
(car (ecdr e))
(car (cdr (cdr e))))
r k)

This code defines if so that in (if expO expl exp2),
expO is evaluated first, in a continuation which evaluates
either expl or exp2, depending on the value returned by
exp0. The code uses the “extensional if” function ef, which
takes a boolean and two values and returns one of the two



values. Unlike if, ef is purely functional; it may be defined
in Scheme as:

(define ef
(lambda (beol x y)
(if bool x y)))

We may now begin exploring the vagaries of the tower
world. We begin with quote, which may be defined as:

(set! quote
(make-reifier
(lambda (e T k) (k (car e)))))

This function, when invoked, takes its first argument
and passes it unevaluated to the call-time continuation.
This is, of course, just what quote is supposed to do. Now
consider

(set! jump
(make-reifier
(lambda (e r k) (car e))))

This function, when invoked, merely returns its first
argument unevaluated. But returns it to what? In a tow-
erless world, this would simply terminate the computation.
With the tower, however, the effect is to terminate the cur-
rent interpreter and return this value to the continuation
waiting in the upper interpreter. Thus:

W
A
v

(boot-tower) ; start the tower

: starting-up
(jump foo)
foo

(jump bar)
: bar

(jump baz)
baz

1 I 1
v Vo W

W Wk KN OO
T 5y % by
LV

and so on. A function which evaluates its argument and
then exits might be written as follows:

(set! exit
(lambda (x)
((make-reifier
(lambda (e r k) %)))))

When invoked, this function receives a value x. It then
creates and immediately invokes a reifier that exits from
the current interpreter with x as its value.

We can open up a new read-eval-print loop using open-
loop:

(set! openloop
(lambda (prompt)
((readloop prompt) ‘'starting-up)))

Here readloop is a primitive function which takes a
prompt and produces a Brown continuation (see Section
5.6 below). We invoke readloop to create the continuation
and then invoke it with an arbitrary value, starting-up,
which is printed as the first response of the readloop.

Thus we might get the following dialog:

0:: starting-up

0-> (exit ’foo) ; exit from this reader
; and go up the tower.
1:: foo ; here we are at level 1.
1-> (exit ’'bar) ; let’s do it again.
2:: bar
2-> (exit ’baz) ; and again.
3:: baz
3-> (openloop ’N) ; now let’'s open up a
: new loop under loop
; number 3. Prompts

; are arbitrary.
N:: starting-up

N-> (exit ’bow) ; now we'll go back to
i the creator of this
; loop,

3:: bow ; which is number 3, as
; expected.

3->

Now we can define call/cc as follows:

(set! call/cc
(lambda (f)
((make-reifier
(lambda (e r k) (k (£ K))))N

This function receives a function, immediately reifies
(as exit did above), and applies £ to the continuation k. If
the invocation of £ returns normally, control should return
to the continuation k. Thus

(call/cc (lambda (k) ’3))



should be the same as *3. What happens, however, if k is
invoked within £? In a towerless world, the invocation of
a continuation is a “black hole”: the current continuation
is thrown away and the new one is installed in its place.
In the tower model, things are not so simple. Consider the
following example [J. des Rivitres, private communication|:

‘0:: starting-up
0-> (call/ce
(lambda (k)
(cons (k '2) (k ’3))))

Here k becomes bound to the level-0 readloop. Then
(cons (k *2) (k ’3)) is evaluated by the upper inter-
preter. When it invokes k on 2, it prints the 2 and con-
tinues with the level-0 readloop, remembering (via meta-
cons) that the lower interpreter was invoked from inside
the cons. Thus, when the lower interpreter terminates, the
value it returns will be passed as the first argument to cons.
The next step is to evaluate the second argument to cons,
in this case (k ’'3). Again, since k is bound to the level-0
readloop, level O is started again. So, if we do an exit,
we do not get to the level 1 readloop, but we immediately
bounce down to level 0 again:

0-> (exit ’foo)
0:4.3 ; instead of 1:: foo

If we cause the level-0 readloop to exit, its termination
value becomes the value of (k ’3). Level 1 then does the
cons, and passes the value to k, which restarts the level-0
readloop (for the third time):

0-> (exit ’'bar)
0:: (foo . bar)
0->

What would happen if we used a different variant of
call/cc, closer to that analyzed in [Felleisen et al. 86)?

(set! new-call/cc
(lambda (f)

((make-reifier (lambda (e r k) (f k))))))

This is similar to the previous version, except that it
expects (f k) to terminate by invoking k. This will behave

in exactly the same way as the previous example, except
that when the cons terminates it sends its value to the
level-1 readloop instead of re-invoking level 0, so that the
last few lines would be:

0-> (exit ’'bar)
1:: (foo . bar)
1->

Other bizarre things are possible. Consider

(set! strange
(lambda ()
(new-call/cc
(lambda (k) (set! new-k k)))))

This is a function which, when invoked, sets a global
variable new-k to the current readloop and then exits the
current readloop. A subsequent invocation of new-k will
jump back to the readloop from which strange was called.
If that readloop is terminated (via exit or even via strange
again) then control will return to the readloop from which
new-k was called. :

Clearly we have only begun to explore the possibilities
inherent in the tower model.

5. The Model

In this section, we begin a commented tour of the model.
We have expressed it in “pure” Scheme, without side-effects

or call/cc, except for use in the interface between the im-
plementation and the outside world. We believe that this
is sufficiently close to denotational semantics t- allov a rel-
atively straightforward transcription. The rod:z as pre-
sented here is also complete and testable. Most of the code
is included in the text; a few help functions are left for an
appendix.

5.1 Currying

Almost every function in the semantics is fully Cur-
ried. This allows us to delete extraneous arguments, as is
typically done in semantic specifications. To make this eas-
ier, we begin with some syntactic extensions which allow
us to proceed without fully parenthesizing all the applica-
tions and nested lambdas. We do this using the macro-
declaration tool extend-syntax [Kohlbecker 86].

(extend-syntax (C)
[(Cmn) (mn)]
[(Cmnp ...} {C(mn)p ...2DD



(extend-syntax (curry)
[(curry (i) b ...) (lambda (i) b ...)]
[{curry (1 § .22 b ...)
(lambda (i)

(curry (j ...) b ...00D)

With these, we can re-write meta-cons as follows:

(define meta-cons
(curry (k mk theta)
(C theta k mk)))

5.2 Denotations

The main function in the semantics is denotation, which
branches on the syntactic type of an expression and then
dispatches to one of three semantic functions:

(define denotation
(lambda (e)
(cond
[(atom? e) (denotation-of-identifier e)]
[(eq? (first e) ’lambda)
(denotation-of-abstraction e)]
[else (denotation-of-application e)])))

In keeping with the functionalities discussed above, each
semantic function is of type

Ezp —+ Env - K —+ MK — A

An expression is represented as a list structure in the usual
way. An environment is represented as a function of two
(curried) arguments: an identifier and a continuation wait-
ing for the L-value associated with that identifier. A contin-
uation or metacontinuation is represented as a function of
one argument. Metacontinuations do not appear in the se-
mantic functions, since (for the moment) we are modelling
only a single interpreter. They will appear in some of the
primitives, since it is through the primitives that reflection
and reification occur. (This is analogous to the conven-
tional presentation of denotational semantics, in which, for
example, a store argument almost always appears in the
definitions of the primitives, rather than in the main se-
mantic equations. This is one way in which the equations
may be made modular).

If the expression is an identifier, then the identifier is
.passed to the environment, along with a continuation to
dereference the returned cell. By convention, a cell is re-
turned even for an unbound identifier.

(define denotation-of-identifier
(curry (e r k)
(Cre
(lambda (cell)
(let ([v (deref-cell cell)])
(if (eq? v 'UNASSIGNED)
(wrong
(list "Brown: unbound id " e))

(k v

In order to accomodate reification, Brown uses call-by-
text. A Brown function has functionality

BF = Ezpx — Env — K - MK — A

It gets the text of the actual parameters, the call-time envi-
ronment, and the call-time continuation and meta-contin-
uation, and from this information computes an answer:

(define denotation-of-application
(curry (e r k)
(C denotation (first e) r
(lambda (f) (C £ (rest e) r k)))))

If the expression is an abstraction, we produce the usual
procedure object—a function which accepts a sequence of
values and then evaluates the body of the abstraction in a
suitably extended environment—convert it to a call-by-text
function using the auxiliary F~>BF, and pass the result to
the-continuation:

(define denotation-of-abstraction
(curry (e r k)
(k (F->BF
(lambda (v*)

(C denotation (third e)
(extend r (second e) v#)))))))

The function F->BF takes an element of F (= V —
K — MK — A) and turns it into a Brown function which
evaluates its actual parameters in the call-time environment
and passes the list of results to the function:

(define F->BF
(curry (fun e r k)
(C Y (curry (eval-args e k)
(if (null? e) (k '())
(C denotation (first e) r
(lambda (v)
(C eval-args (rest e)
(lambda (w)
(k (cons v w)))IIN)
e (curry (v+* mk) (C fun v* k mk)))))

This code uses the applicative-order Y combinator (see
Appendix).

5.3 Reification

We next turn to the reifying functions. These functions
take objects from the underlying domains K and Env, and
turn them into Brown functions which can be manipulated



[Friedman & Wand 84]. An environment is turned into a
one-argument brown function which evaluates its argument
and passes the result to the environment:

(define U->BF
(curry (r1 e r k)
(if (= (length e) 1)
(C denotation (first e) r
(lambda (v) (C r1 v k)))

(wrong (list
"U->BF: wrong number of args "
e)))))

Continuations are treated similarly. Here k1 is the con-
tinuation to be converted, and e, r, and k are the Brown
interpreter’s registers at the point that ki is invoked. Since
a continuation is regarded as restarting a lower interpreter,
we save the continuation k by putting it in the meta-continu-
ation with meta-cons, as discussed in Section 3:

(define K->BF
(curry (k1 e r k)
(if (= (length e) 1)

(lambda (mk)

(C denotation (first e) r

ki (C meta-cons k mk)))
(wrong (list

"K->BF: wrong number of args "

e)))))

Here is where the tower model begins to be radically
different from the non-tower model. We have two contin-
uations to deal with, but without the tower we have only
one continuation register. The presence of the metacon-
tinuation gives us a place to save the second continuation.
In the corresponding function schemeK-to-brown in [Fried-
man & Wand 84|, we simply threw away the continuation k
corresponding to the point that (K->BF k1) was invoked.

5.4 Building Reflective Procedures

We need to write a function which takes a simple brown
function and converts it into a reflective procedure: a brown
function that reifies its arguments and passes the resulting
thunk to the metacontinuation. A first try at this might
be:

(define make-reifier
(curry (bf e r k mk)
(mk (bf
(list e (U->BF r) (K->BF k))))))

where U->BF and K->BF reify environments and continua-
tions, respectively.

This version does not quite work, however. fhe prob-
lem is that bf is a call-by-text function which takes a se-
quence of texts (the actual parameters), not a list of values.

How can we fool a call-by-text function like bf into tak-
ing values instead? We assume that bf is a simple abstrac-
tion, which will evaluate its arguments. In that case, one
approach, which we used extensively in [Friedman & Wand
84], was to wrap the values in quote. This fails in the cur-
rent context because we would like to define quote using
make-reifier. An approach which does work is to pass
to bf three identifiers and an environment in which those
identifiers are bound to the right values. This approach is
preferable even where quote would work (as in the reflec-
tion functions below), because it is no longer dependent on
the correct definition of quote, and it furthermore avoids
the use of handles [Smith 82]. This leads to the following
definition:

(define make-reifier
(let ([ERK '(E R K)])
(curry (bf e r k mk)
(mk (C bf ERK
(extend r ERK
(list e (U->BF r) (K->BF k))))))))

Here E, R, and K are the three identifiers which are
bound to the right values. This defines make-reifier as
a primitive operation in Scheme, of type BF — BF. It
may then be imported into the initial environment by the
techniques we shall explain below.

This code assumes that bf is a simple abstraction. It is
possible to do a variety of interesting things by writing code
in which bf is not a simple abstraction. For example, the
names of the formal parameters E, R, and K may be detected
by invoking the following function on no arguments:

(set! find-make-reifier-formals
(make-reifier
(lambda (a b ¢)
((make-reifier
(nake-reifier
(lambda (x y z) (¢ x))))))))

In [Smith 82, 84], analogous techniques may be used
to detect essentially all of the text of the interpreter; thus,
as Smith points out, any change to the 3-LISP interpreter,
no matter how minor (including change of bound variables)
results in a different language. By restricting such access in
Brown, we get the benefits of a tower model while maintain-
ing the traditional distinction between the defined language
and defining language. By this choice, we learn more about
the design space for reflective languages.



5.5 Reflection

We next turn to the reflection functions. These take
Brown functions and turn them back into objects of type
K, or Env. As with make-reifier, the technical problem
here is that the brown function bf will typically be a call-
by-text function which evaluates its arguments (probably
created by evaluating an expression of the form (lambda
(...) ...)). As we did with make-reifier, we solve
this problem by passing to the function an identifier as an
actual parameter, along with an environment in which that
identifier is bound to the correct value,

(let ([z *(W])
(define BF->K
(curry (bf v)
(C bf z
(extend global-env z (list v)) initk)))
-(define BF->U )
(curry (bf v)
(C bf =
(extend global-env z (list v))))))

These functions are used when we start a lower inter-
preter. This is done via the function meaning which takes
a list of Brown values representing an expression, an envi-
ronment, and a continuation, and which starts a new inter-
preter. The continuation at the time the new interpreter is
started is built into the new metacontinuation, as in K->BF:

(define meaning
(curry (erk k mk)
(C denotation
(first erk)
(BF->U (second erk))
(BF->K (third erk))
(C meta-cons k mk))))

5.6 The tower

We are now ready to write the read-eval-print loop and”
the tower. We rewrite the tower here in our Curried style.

(define R-E-P
(lambda (prompt)
(Y (curry (leop v)
(C denotation
(prompté&read
(print&prompt prompt v))
global-env
loop)))))

(define tower
((Y (curry (loop n theta)
(C theta (R-E-P n) (loop (addl n)))))
0))

We also define a version of readloop suitable for im-
porting as a primitive into Brown:

(define readloop
(lambda (prompt)
(K->BF (R-E-P prompt))))

We start the system by calling boot-tower:

(define boot-tower
(lambda ()
(C initk ’'starting-up tower)))

5.7 The Initial Environment

Before we can start the tower, we must supply it with
a suitable global environment, which will be shared by all
the interpreter levels.

We first define extend, which extends a given environ-
ment by binding a list of names to new cells containing a
list of values. This is relatively routine; the only coding
trick we have performed is to use a function rib-lookup
which takes a name to be looked up, a list of names, a list
of corresponding cells, a success continuation to which the
matching cell is to be sent, and a failure continuation (a
function of no arguments) to be invoked in case of failure:

(define extend
(lambda (r names vals)
(if (= (length names) (length vals))
(let ([cells (map make-cell vals)])
(curry (name k)
(rib-lookup name names cells k
(lambda () (C r name k)))))
(wrong (list "extend: "
"Formals: " names
"Actuals: " vals)))))

(define rib-lookup
(lambda (id names cells sk fk)
(C Y (curry (lookup names cells)
(cond
[(null? names) (fk)]
[(eq? (first names) id)
(sk (first cells))]
[else
(C lookup
(rest names)
(rest cells))]))
names cells)))

We choose to import values from Scheme by name. To
do this, we use the function id->BF. This takes an iden-
tifier, finds its global binding in Scheme, converts it to an
element of F (a function that takes a list of arguments and



a continuation), and then converts that to a simple Brown
function:

(define id->BF
(let ([host->F
(curry (f v+ k) (k (apply £ v*)))1)
(lambda (x)
(F->BF (host->F (host-value x))))))

We can now describe the creation of the initial envi-
ronment. The function boot-global-env creates an initial
rib, consisting of a list of names and a corresponding list of
cells containing the appropriate values. The name list con-
sists of a few special cases along with a list of names, called
primop-name-table, of functions that are to be imported
from the host. Corresponding to these names it creates
a list of cells; for the imported functions, the values are
imported using id->BF.

The function global-env is then created; it is a func-
tion which merely calls rib-lookup with this initial rib
and with a failure continuation which specifies what to do
in case of a lookup of an identifier which does not appear
in the global environment. This failure continuation adds
a cell to the global environment corresponding to the pre-
viously unknown identifier. This allows us to accomodate
run-time extension of the global environment, as in the def-
inition of if above.

(define boot-global-env
(let ([id->F-cell
(lambda (x) (make-cell (id->BF x)))1)
(lambda ()
(let ([initnames
(append
(list ’nil 't ’wrong ’'meaning)
primop-name-table)]
[initcells
(append
(map make-cell
(list ’'nil 't
(K->BF wrong)
(F->BF meaning)))
(map id->F-cell
primop-name-table))])
(define global-env
(curry (id k)
(rib-lookup
id initnames initcells k
(lambda ()
(let
([c (make-cell 'UNASSIGNED)])
(set! initnames
(cons id initnames))
(set! initcells
(cons ¢ initcells))
kec)NNMIN

5.8 Side Effects

A purely functional language which had no side-effects
whatever (including printing its results!) would be useless,
as it would have no capability for interaction with the real
world. Hence it is necessary to build some side-effecting
interface. The key problem in managing this interface is
the need to make sure that operations with side-effects are
done at the right time. In an applicative-order language like
Scheme, this is done by wrapping each possibly destructive
operation in a lambda; we are then assured that the oper-
ation is not performed until the function is applied. In our
case, we wrap each destructive operation in (lambda (mk)
...), so no side-effect is performed until the denotation is
really applied to a metacontinuation. Thus we report errors
using

(define wrong
(curry (v mk)
(writeln "wrong: " v)
(C initk 'wrong mk)))

and the error will not be reported until (wrong v) is ap-
plied to a metacontinuation. Similarly, since arbitrary func-
tions imported from Scheme may have side-effects, we made
sure to write

(curry (v* mk) (C fun v* k mk))

in the definition of F->BF; since F->BF is used as part of the
importation process, this assures that ne imported primi-
tive is executed prematurely.

6. Are Metacontinuations Necessary?

One might ask whether the introduction of metacon-
tinuations is necessary, as they are not reifiable and the
tower maintains strict stack discipline: there is nothing in
the tower like the non-local jumps that mandated the in-
troduction of conventional continuations in the interpreter.
One can, in fact, formulate a plausible “direct” semantics
for towers. In this semantics, rather than having £ be
tail-recursive with the metacontinuation appearing as an
argument, we would keep the old functionality of £ and
have the lower interpreter spawned non-tail-recursively, via
something like

1(E[e]or)

The initial metacontinuation (the tower) would be con-
structed as the value of

Boo = Y (Ap.pu(€ [ea] poxo))

This semantics would be far more appealing in Smith’s
methodology, as it would avoid introducing a non-reifiable
component. Unfortunately, the term for po is an unsolv-
able term of the A-calculus: it has no head normal form.
Thus it denotes the bottom element in any sensible model of

_the A-calculus [Barendregt 81], including all the standard



models. Hence, making this semantics non-trivial would
require a very non-standard model of the A-calculus.

7. Conclusion

We have given a semantic account of Smith’s tower
of metacircular interpreters by introducing a new context
component, called a metacontinuation, that abstracts the
state of the tower above the current interpreter. This ac-
count is purely functional, makes a minimum of implemen-
tation decisions, and does not employ reflection to explain
reflection.

Acknowledgements

The authors wish to acknowledge the contributions of
Bruce Duba to this paper. In particular, the self-defining
set! and the trick for avoiding the use of quote are his.
Thanks also to Matthias Felleisen for his comments.

References

[Barendregt 81]
Barendregt, H.P. The Lambda Calculus: Its Syntaz and
Semantics, North-Holland, Amsterdam, 1981.

[Felleisen et al. 86]
Felleisen, M., Friedman, D.P., Kohlbecker, E., and Duba,
B. “Reasoning with Continuations™ Proc. First Ann.
IEEE Symp. on Logic in Computer Seience (Cambridge,
MA, June, 1986).

[Friedman & Wand 84]
Friedman, D.P., and Wand, M. “Reification: Reflec-
tion without Metaphysics” Proc. 1984 ACM Sympo-
stum on Lisp and Functional Programming (August,
1984), 348-355.

[Kohlbecker 86]
Kohlbecker, E. Syntactic Ertensions in a Lezically Sco-
ped Language, Ph.D. dissertation, Indiana University,
to appear.

[Smith 82]
Smith, B.C., Reflection and Semantics in a Procedu-
ral Language, MIT-LCS-TR-272, Mass. Inst. of Tech.,
Cambridge, MA, January, 1982.

[Smith 84]
Smith, B.C., “Reflection and Semantics in Lisp,” Conf.
Rec. 11th ACM Symp. on Principles of Programming
Languages (1984), 23-35.

[Smith & des Riviéres 84]
Smith, B.C., and des Riviéres, J. “The Implementa-
tion of Procedurally Reflective Languages,” Proc. 1984
ACM Symposium on Lisp and Functional Program-
ming (August, 1984), 331-347.

10

‘(define

Appendix: Help Functions

This appendix lists all the help functions necessary to
make the code in the text runnable.

; applicative-order Y combinator

(define Y
(lambda (f)
(let ([d (lambda (x)
(f (lambda (arg)
(C xxarg))])
(4 dn

; decomposing expressions
(define

(define
(define

first car)
second cadr)
third caddr)

rest cdr)

; cells
(define deref-cell car)
(define make-cell (lambda (x) (cons x *())))
(define set-cell!

(lambda (x y) (set-car! x y) y))

; input/output with prompts

(define promptiread
(lambda (prompt)
(print prompt) (print "-> ") (read)))
(define print&prompt
(lambda (prompt v)

(writeln prompt ":: " v) prompt))

; find the global binding of an identifier

(define host-value
(lambda (id) (eval id)))

; list of names to import from host

(define primop-name-table
(list 'car ’edr ’cons ’eq? 'atom? ’symbol?
'null? 'not ’addl ’subil
'set-car! 'set-cdr!
'print ’length 'read ’'newline ’'reset
'make-cell 'deref-cell ’set-cell!
’ef ’'readloop 'make-reifier))

‘Zero? '+ '~ '%



