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Abstract

The quadtree representation of matrices is explored,
particularly as it admits a parallel matrix inversion algo-
rithm. A version of Gaussian Elimination (full matrix piv-
oting) is described as an applicative program which min-
imizes process dispatch by folding the pivot search into
the preceding pivot operation. The tree structure incorpo-
rates incremental decomposition (for arbitrary, but small,
numbers of processors), aids in load balancing, and pro-
vides a uniform representation for both scalars and sparse
matrices that eliminates all compatibility /bounds checking
within the important algorithms. Like other algorithms

- particularly suited to larger problems (where parallelism
pays off), it may be used at the higher level in a hybrid
strategy, for example, over pipelined vector-processing on
smaller, conventionally represented submatrices.

Section 1. Introduction

Consider a scenario of parallel or multi- processing
with realistic constraints. A machine with p processors is
available to implement a matrix algebra package for sparse
matrices of size, say, n X n. Restrictions are that 7<p<<n
and that the cost to dispatch/recover a processor is signif-
icantly greater than the cost to perform simple arithmetic.

Those restrictions [12] preclude some popular solu-
tions wherein processes are dispatched whenever a proces-
sor might be (wished) available and often on processes that
are so simple as to be trivial. For an algorithm to be useful
under these restrictions, it must admit isolation of substan-
tial subprocesses, sufficiently high in the computation tree
(of the the chosen algorithm) in order to assure that the p
processors can be loaded using as few process dispatches as
possible while balancing the load and avoiding duplication
of effort. To do that requires identification of independent,

arbitrarily large processes as high in that tree as possible—

particularly for the cases where p is indeed very small.
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What is really needed first is an algorithm, present-
ing such a tree with the suggested decomposition proper-
ties. This paper presents such an algorithm, matrix in-
version via classic Gaussian elimination, over a new data
structure—the quadtree representation for matrices—in a
purely applicative style [3, 5]. This formulation lends itself
to satisfying the restrictions set forth above, regardless of
the particular values of n and p.

Applicative programs are necessarily presented as ex-
pressions without assignment statements or control state-
ments except for (pure) function application. Such pro-
grams implicitly solve the problem of decomposition into
independent processes [4] because each subexpression with-
in the program is necessarily independent; therefore, the
syntax tree may be strongly associated with the tree for
process decomposition. Intermediate binding still allows
intermediate results to be shared—rather than recomputed.
While these matrix results are interesting and useful as

" they stand, an implicit goal of this paper is to encour-

age further study of algorithms for parallel computation
through the philosophy enforced by applicative (or func-
tional) programming style.

Gaussian elimination is hardly new, so what can be
said that is really novel? Certainly, no improvement to
well-studied asymptotic behavior will be offered. Three
results, however, are offered that, together, promise a thor-
oughly practical algorithm under the envisioned constraints,
whether or not their ultimate realization follows the disci-
pline of applicative programming.

First, the relatively new idea of quadtrees for repre-
senting matrices [10, 11] is developed further, in a way
that unifies our approach both to matrix/scalar algebra
and to sparse/dense matrix manipulation. All scalars, z,
also represent diagonal matrices, blurring the distinction
between scalar and matrix, between sparse representation
and dense representation. We shall see that one family of
algorithms handles all pathologies.

Second is a version of matrix-inversion via Gaussian
Elimination, through Pivot Step [6] with the pivot element
selected as the largest candidate (in magnitude) from the
entire matrix before each pivoting. Known to be most sta-
ble, this algorithm is also shown to present a pattern of par-
allelism. Each pivot step naturally decomposes by quad-
rants which, most interestingly, is a pattern suitable for the
search tree for identifying the next (largest in magnitude)
pivot candidate. There is, therefore, no question whether
a search for the next pivot element should be implemented
using parallelism or on a cheaply-dispatched uniprocessor.
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While such a search surely could use parallel processing,
eliminating the explicit search phase by folding it into each
(sparse) pivot saves search time, and better amortizes the
overhead to dispatch each pivoting process.

Finally, an interesting relationship between padding
and processor allocation is proposed to balance the load
across independent processes. The quadtree matrix rep-
resentation appears to be suited only to representation of
2™ x 2™ matrices. When the size of a matrix is not a power
of two, some padding is necessary which only wastes space
proportional to m. What is interesting is that, having em-
bedded an n x n matrix in (the lower right of) a 2™ x 2™
one, processor allocation can make profitable use of the
value of (2™ — n) in partitioning the p processors among
subproblems. The argument is cast in terms of familiar
matrix operations.

The remainder of this paper is in four parts. The
quadtree representation is introduced first, including dis-
cussions of its restriction to vectors and generalizations to
higher dimensions. The second section explores a Gaus-
sian elimination algorithm under the new parallelism, as
outlined above. The third offers a strategy for allocation
of processor resources to discount the padding that might
be necessary to fill out the quadtree representation. The
final section offers some conclusions and hopes for further
work.

Section 2. Matrices

Let any d-dimensional array be represented as a 2%-ary
tree. Here we consider only matrices and vectors, where
d = 2 suggests quadtrees, and d = 1 suggests binary trees.

Matrix algorithms will be arranged so that we may
{without loss) perceive any scalar, z, as a diagonal ma-
trix of arbitrary size, entirely of zeroes except for z’s on
the main diagonal; that is, z = [z6;,;]. Thus, a domain is
postulated that coalesces scalars and matrices, with every
scalar-like object conforming also as a matrix of any size.
Of particular interest are 0 and 1, which are at once the
unique additive and multiplicative identities, respectively,
for scalar/matrix arithmetic, Similarly, the scalar z as a
binary tree is interpreted as a vector of arbitrary length,
each of whose components is z (much like Daisy’s [7] nota-
tion (z*).) Inferring the conventional meaning from such a
matrix now requires additional information (viz. its size),
but we can proceed quite far without size information; it
only becomes critical upon Input or Output.

Lest it appear that this coalescing of hitherto dis-
joint types hides too much, it is useful to draw a anal-
ogy from ordinary computation on floating-point numbers
(FPNs), where details of internal representation are also
suppressed. The point is that the way that quadtree-
matrices (and FPNs) are commonly represented outside
the machine has little to do with their internal represen-
tation. There are, in fact, conventional styles for writing
matrices on paper—in row-major order (and for writing
FPNs in scientific notation), but these may differ wildly
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Figure 1.
A 515 band matrix
embedded in an 8x8
quadtree representation.

)

from the way that they (and FPNs) are to be represented
within the machine. Although the algorithms for translat-
ing between such representations are elegant, they are so
complicated that they are surely not the first thing that
should be shown to those unfamiliar with the nature of
these internal representations. Thus, an unfortunate bar-
rier rises in the path before those who would tinker on
them: one must first write the I/O translators, which are
among the least comprehensible, least efficient, and least
exercised programs over the structure.

A matrix (of otherwise-known size) is either a vague
‘scalar’ or it is a quadruple of four equally-sized subma-
trices. So that this recursive cleaving works smoothly, we
embed a matrix of size n x n in a 2/'8 »1 x 20'8 #] ma.
trix, justified at the lower, right (southeast) corner with
zero padding to the north and west, except for nonzeroes-
preferably ones—padded along the northwest diagonal (to
avoid introducing an unnecessary singularity; see Figure
1.) The matrix is justified to the southeast, rather than
the northwest, so that its eliminant [2] is properly defined.

There is also a normal form convention. Under this
quad representation, no submatrix will ever be composed
of four ‘scalar’ quadrants, of whom the northeast and south-
west are zero, and whose northwest and southeast coincide.
Such a matrix would be represented, instead, by the lat-
ter ‘scalar,’ standing alone. Thus, the two important iden-
tity /annihilator matrices are represented uniquely by 1 and
0. If we require that the northwest padding, as in the pre-
vious paragraph, is necessarily one, then a canonical form
results.



Elsewhere [10] I observed how algorithms for matrix
addition, transpose, and multiplication follow the desir-
able pattern of decomposition, generally into 4™ or 8™
independent processes that can be dispatched high in the
computation tree, up to the capacity of the execution en-
vironment. Of note is the role of 1 and, especially, of 0
as a constituent quadrant to such an operation. When
any addend’s quadrant is 0, the effort for matrix addition
immediately simplifies by 25% because it is, therefore, un-
necessary to descend and to traverse the corresponding
quadrant of the other addend; all we need is a borrowed
reference to it as one quadrant of the result. A factor’s
quad of 1 reduces Strassen’s decomposition [9] of Gaussian
multiplication from eight recursive multiplications to six;
not only does a 0 quad similarly annihilate two recursive
multiplications, but also it avoids two of the four subse-
quent additions, as well.

These properties are particularly valuable for matrices
with regular patterns of non-zero entries, especially those
that are sparse or in diagonal form. No special code is nec-
essary to accelerate conventional operations on them (but
one can wish for hardware that accelerates specialized tests
like the ubiquitous tests for O submatrices.) It is, however,
necessary to maintain the normal form so that, like ra-
tional numbers being always "reduced to lowest terms”,
matrices are reduced to their corresponding scalars when-
ever zero southwest\northeast quadrants and coincident
northwest /southeast quadrants permit.

Another advantage shows up upon deeper study of
several matrix manipulation programs over quadtrees: al-
gorithms written to accept canonical-form operands need
not be sensitive to the usual compatibility requirements.
That is, ordinary quadtree algorithms for various opera-
tions will work regardless of the depth of their tree/oper-
ands; when operands are of different depth, the shorter
paths—ending at a scalar—will be interpreted as all-con-
forming, diagonal matrices. Although their meaning may
be questionable, the algorithms will run to completion in-
stead of crashing with array-bounds-violations. In terms of
domain theory, we have raised these operations to a higher
point in their respective function-domain (given them more
meaning by defining results where others fail because of in-
compatibility), while simplifying the code (by eliminating
all the incompatibility tests and signaling thereof),

A “header” above each matrix quadtree might use-
fully contain two values needed for output translation: the
length of the diagonal padding, and the exponent, m, for
a 2™ x 2™ matrix. The value of m also suffices for run-
time compatibility checking. Another bit there indicates
whether the quadtree is to be interpreted as transposed,
recursively interchanging southwest\northeast quadrants
upon any access. Thus, not only does quadtree represen-
tation allow us to transpose an entire matrix in constant
time—at the cost of building a new header—but also it
allows row and column traversal at equally high efficiency,
at the cost of symmetric-order traversal [6] of the appro-
priately projected binary tree.
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Figure 2. Knuth's Problem 2.2.6-18 [6, p. 556], worked.

Section 3. Pivot Step and Inversion

This section describes an algorithm for matrix inver-
sion, extended from Knuth's [6] for an entirely different
data structure (also sparse). His terminology is used be-
cause it is readily available. Figure 2 outlines this algo-
rithm applied to his problem, and should be compared
against the solution that he provides. The algorithm is
Gaussian elimination with full pivoting (although Knuth
only selects pivots rowwise.) Much of the description ap-
plies to a single Pivot Step, but its most interesting prop-
erty relates one such step to the next. It is easily simpli-
fied to one that only finds the root of the linear equation,
Az =y, for Matrix A and Vector y.

Let a non-singular matrix, M, be represented with a
quadtree as described in the previous section. Each non-
terminal node, however, is to be decorated with additional
information: the magnitude of the largest element in that
quadrant, and its local horizontal and vertical coordinates.
(It will be necessary to qualify the decoration further to
exclude any element in an already-pivoted row or column
from decorations. At this point, however, assume that no
pivoting has yet occurred.) These coordinates need not
be traditional indices—though it is easy to think of them
that way. A cheaper implementation is just a pair of bits
at each node selecting one subtree; the catenation of these
subtrees identifies a path through each quadtree to the
appropriately largest scalar. ;



Let us consider an algorithm to invert A, a matrix

represented as a canonical-form quadtree, padded along

its northwest diagonal as described in the previous section.
The first step in computing the inverse of M, therefore, is
to traverse its tree representation in postorder, installing
these decorations at all internal nodes. (Sibling subtrees,
of course, may be traversed in parallel.} Call the deco-
rated matrix Mp. Decorations appear in florets in Figure
2; to save space, however, only the local maxima (no local
coordinates) are shown.

Also needed are two trivial binary trees, each initially
the scalar O indicating a boolean vector of all zeroes, and
one trivial quadtree, Py, also initially O, similarly. For
each i, Quadtree F;, indicates the exact position of the
first i pivot elements—none so far; it will be filled in to
become a permutation matrix, Pam, by the time the fully
pivoted matrix, M=, is computed. The boolean vectors
indicate which rows/columns have already been pivoted;
they will be filled with 1I's until they both indicate that
all rows/columns have been eliminated. The two vectors,
therefore, are merely row (column) projections from the
corresponding F;, but in a format useful for directing sub-
sequent decorations.

Having established the initial values of M; and F;, for
the next of 2™ pivot steps, we discover that the decoration
at the root of this tree identifies the next pivot element.
We presume here that M; is not a scalar. If it were (and
thereby identified as the pivot scalar), then its reciprocal
is the pivoted matrix.

Otherwise, the M; may be decomposed into quad-
rants, each distinguished by the decoration. One is piv-
otquad, distinguished because the pivot element lies within.
Another is rowquad, named because it lies horizontally
from pivotquad. The third is columnguad, because it lies
above or below pivotquad. The last is offquad, so called
because it does not coordinate on pivolquad, but lies diag-
onally from it.

The description that follows discusses the transforma-
tions on the four quadrants in reverse order from that just
above. It turns out that offguad’s transformation is sim-
plest, but it does depend on intermediate results derived

" from processing the other three quadrants. So many addi-
tional results are needed from handling pivoiquad, more-
over, that its description will be considerably eased by
working backwards in order to justify them.

An important property of functions is that one invo-
cation may return several results of differing types. This
feature has been lost in many programming languages (per-
haps because their designs presume that a computer has
but one accumulator,} but it is critical to applicative style
and allows one function invocation to return all these in-
termediate results.

Knuth’s transformation of the matrix,

where a is the pivot element, b is any element in the pivot
row, ¢ is any element in the pivot column, and d is any off
pivot element coordinating on b and ¢, is

Bfem vo e
. BlE e
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- respectively. This is the transformation to be made, though
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it is to be done here recursively and (likely) in parallel.

The transformation of offquad requires the values of
d contained therein, and two vectors of values b/a and ¢
coordinating on each d, occurring in the pivot row and col-
umn, respectively. Since these two vectors, represented as
binary trees in normal form, occur in rowquad and column-
quad they will have been extracted as intermediate results
while processing those quadrants. If either of these vectors
is zero, however, then the transformation collapses to the
identity function; all values of be/a = 0 and not even the
internal decorations in offguadchange, as neither the newly
eliminated pivot row nor pivot column cross it. (This is
the savings of sparse representation for Pivot Step.)

When offquad is a scalar, d—even if it is a normalized
representation of a larger matrix (notably if d = 0) and b/a
and ¢ are vectors—then the correct transformation is the
decorated form of d’s difference with their outer product,
d — bc/a. In order to decorate the difference, the appro-
priate halves of the boolean vectors identifying rows and
columns eliminated from M; are necessary parameters. (If
d is scalar and these vectors are non-trivial, then d must

be expanded into ) and decomposed, as below.)

d 0
0 d
When d — be/a is a scalar, either zero or its absolute value
becomes its decoration, depending on whether if lies in an
already pivoted row /column, or not.

When offquadis decomposed into four quadrants, then
each of these is treated as an offquad, with the vector pa-
rameters cleaved in half to provide the four sets of vector
arguments, and the four results decorated and normalized
into the transformed quadtree.



The treatment of rowquad and culumnquad are simi-
lar, so only that of the former is presented here; the latter’s
is nearly dual to what follows. The treatment of rowquad
requires the inverse of the pivot element, @, and a vector
that is the portion of the pivot column that lies in piv-
olquad, but for the pivot element, itself. It is sufficient to
represent both as a copy of the pivot-column vector with
1/a in place of the pivot element (which will have been
extracted during the treatment of pivolquad). Also needed
are a relative index locating the pivot row and halves from
the boolean vectors indicating which rows/columns cross-
ing rowquad have already been eliminated.

Results are the transformed rowquad and half of the
pivot row (as a binary tree) extracted from rowgquad for
use in handling offqued. That vector is also needed for
handling most of rowquad, itsell because, unless rowquad
is trivial, it must be decomposed into two subrowquads and
two suboffquads, the latter of which coordinates on that
half of the pivot row.

Thus, the transformation of rowquad focuses first on
the pivot row., When the row index indicates that rowquad-
call it b— is entirely within the pivot row, then the residue
column vector is just 1/a, and the needed results (matrix
and row-vector) are each the product, b/a. Decorated as a
matrix, the local maximum is 0 because this row is being
eliminated.

If rowquad is to be decomposed into submatrices, then
the local index will indicate whether the pivot row crosses
the upper or lower half. Accordingly, the pivot column and
boolean vectors (identifying already eliminated rows/col-
umns) are split, and those two containing the pivot row are
treated (as rowquads) first. The pieces of the pivot row,
extracted thereby,.are joined at a binary node to become
the vector-result of treating rowquad, and are passed as
arguments with the other two quadrants for treatment as
offquads. Then these four quadrants are assembled and
decorated into the matrix-result of this treatment.

Finally, we consider the treatment of pivotquad, upon
which all the other three quadrants’ treatments depend;
it must occur first and yield as a partial result the trans-
formed, decorated version of pivofquad; and as intermedi-
ate results: the row and column indices of the pivot ele-
ment, and vector copies of the pivot column (with 1/a in
place of the pivot element) and pivot row (with ~1/a in
place of the pivot element). Moreover, while locating the
pivot element, updated versions for F;, the permutation
matrix (which will only change in the quadrant correspond-
ing to pivotquad), and for its projections, the two boolean
vectors of eliminated rows/columns should be constructed.
That’s eight results, four of which are intermediate—not
to be included directly in an answer, but to be used in
treating sibling quadrants,

Three observations complete this description. First,

the treatment of pivotquad is the same as the treatment
of the whole matrix, M;; the only difference is the un-
needed, extra four results, beyond My, P4y, and the

two boolean vectors projected therefrom. Secondly, the
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arguments to each Pivot Step (and pivoting successive psy-
otquads) are M;, P;, and the two boolean projections from
F; (and the corresponding quadrants/halves therefrom.)
The last three arguments are used as seeds for updated
results, and the last two also help to place 0 decorations.

Finally, if M; (correspondingly, pivotquad) is a scalar,
@, then all eight results are trivialk M;y; = 1/a and is
decorated as 0 (now that both it’s row and column have
been eliminated); Piy; =1 and both its projections are 1,
also; the pivot column is 1/a, and the pivot row is —1/a;
and both relative indices are 1.

When M; is not scalar, it decomposes into four quad-
rants, one of each type considered above. Algorithms for
three of them (rowguad, columnquad, offguad) have been
discussed above, and the fourth (pivotquad) is to be treated
recursive as a Pivot Step, with basis stated the preceding
paragraph.

The parallelism in this algorithm manifests itself in
the interdependence of these recursive decompositions. For
instance, treatment of successive candidates for pivotquad
must precede transformation of all other quadrants; the
depth of this recursion is at most m. After each is com-
pleted, its associated rowguad and eolumnguad may be dis-
patched simultaneously, and, of these, half must be trans-
formed before the other half. Again, the depth of recursion
is at most m. Thereafter, however, all offquads at all lev-
els of the quadtree may be treated simultaneously. They
generate most of the effort in a Pivot Step, but and thier
transformations are mutually independent.

It should be clear that a pivot step can change lots
of decorations from those in M;; is there, then, sufficient
information to restore them? Yes, because decorations will
only change where scalar values have changed, or because
a local maximum is disqualified because it resides in ei-
ther the current pivot row or current pivot column. Such
decorations have already been visited by this algorithm!
(This point is most important when inverting sparse ma-
trices, where little traversal is necessary.) We need only
arrange that, as each interior node in the quadtree (that
becomes the pivoted matrix) is reassembled, it must be re-
decorated with the appropriate maximum and local coor-
dinates. Therefore, the position of each scalar encountered
is resolved against the boolean vector indicating already-
eliminated rows and columus; if it is to be excluded, treat
its magnitude as zero for the purposes of finding the maz-
imum local magnitude. If all four local maxima are zero,
then the subtree is decorated with zero (and the local co-
ordinates may be left undefined.) :

As the four new quadrants are reassembled, it is neces-
sary to find the maximum of their decorations and its two-
bit coordinates, according to which of the four quadrants
it came from. Internal zero decorations do not propagate,
because some decoration must be positive if the original
matrix was non-singular.



That completes the description of a single pivot step,
M; — Mji4,. Tt only remains to observe that the results of
one step, including the pivoted, decorated matrix, the two
vectors (binary trees) of eliminated rows and columns, and
the building permutation matrix are passed from one step
directly along to the next. There is no need to search for
the nezt pivot element, because it has already been located.
Moreover, it has been located by parallel processes already
dispatched for the pivot step, itself, in parallel. Thus, there
is no dispatch/recovery overhead for the parallel search!

Finally, observe that the desired inverse, M~! is read-
ily available after permutations:

M‘F! =.P;:-XM2--XPT...

In fact, the code in the appendix builds up PT, rather than
P, anticipating this transpose..

This entire algorithm proceeds on non-singular matri-
ces without any counters; even the outer control over of
2™ successive pivot steps may be set up as a loop until
decoration becomes zero. In some sense, then, it is more
abstract, and more useful, than algorithms that depend
heavily on size declarations and bounds tests.

Section 4. Subprocess Balancing

Suppose an n X n matrix is embedded in a 2™ x 2™
matrix, where k = 2™ —nand 0 € k < 2™~ ! asin Figure 3.
Section 2 suggested that the values of k£ and m might need
to be available to the system at run-time, even though
they remain unnecessary to (in particular) the abstract
multiplicative operators. This section proposes another
use for this same information: load balancing among the

processors.

n > |

2™ V2

2(m-1)

[¢6—™—>

[é—om1—>|

2 > |

Figure 3. Areas within quadrants,
excluding padding of k rows/columns.

The following discussion does not depend on dense-
ness or sparseness of matrices. It does presume that the
distribution of non-zero entries is uniform; if more patterns
are known, then further inferences might be possible. The
values of m and k indicate the size of a matrix and what
proportion of it is trivial. From them we can determine
what portion of each of the four quadrants is serious, i.e.
likely to cause serious effort for the processors, and we can
use this information to distribute the p processors among
the four quadrants.

Consider matrix addition, for instance. The quad re-
cursion pattern is simple; each quadrant requires addition
effort in proportion to its “serious” area (Figure 3). The
serious area of such a matrix is (2™ — k)3. It is divided up
among its four quadrants in the following proportions:

Quadreny Relative share of area
Northwest 2["2':—_—’;}:_
Northeast r‘-(_;w-_%;—_k)
Southwest _'«’_':‘;Eé(:":‘___;)—;k)’
Southeast [_21:_(%

It is unlikely that these proportions have integer prod-
ucts with p. If only a fraction of a processor is available
to a quadrant, a good solution is to combine quadrants on
shared processors in a way that the individual requests for
a processor sum to an integer. A likely grouping is to set
the northwest, northeast, and southwest sums (the partial
quadrants) on one processor, and to set the southeast sum
alone on another.

Therefore, if one had p processors to add such matri-
ces, one could use this information to distribute them to
four quadrant process in these proportions in a top-down
pattern. As mentioned in the introduction, it is important
that processor allocation be done as high in the data struc-
ture/computation tree as possible, so that the overhead of
process dispatch /recovery not be paid repeatedly.

In this way it is likely that larger quadrants (south-
east) gets more processors. When a quadrant receives but
one processor to compute its result, it operates as a unipro-
cessor; if it receives more than one, it can apply the same
idea to divide up its processor resource once again, and so
forth. The first three quadrants make the most interest-
ing further processor allocations; the southeast quadrant
is presumed to be uniform and so its share will just be
divided in even fourths.

These same proportions could apply to the Pivot Step
algorithm above. Unlike addition, however, we saw that
there was some serial behavior to Pivot Step. Thus, (using
terminology from before) rowguad and columnguad may be



dispatched together, but they are only two of four quad-
rants. Nevertheless, their computational effort may also
be approximated by the relative size of two areas (diag-
onal from each other), in the table above. Although we
may not know which processors until run time, we may
select the proper proportion then and split the processor
resources in that manner.

Gaussian matrix multiplication (under Strassen’s for-
mulation [9]) easily decomposes into eight products, which
are pairwise summed to form a four-quadrant answer. Ex-
cluding the effect of scalars (f.e. a quadrant of 1 or 0
avoids a quadrant multiplication) and asserting that the
O(n®) algorithm does require a processor resource propor-
tional to (2™ — k)3, we determine the proportion of this
resource that each of the eight products needs. This was
done by setting two matrices, as in Figure 3, as multipli-
ers and extrapolating the effort to multiply each of eight
sub-products from the areas of the sub-multipliers (quad-
rants.)

The eight ratios are best described by combining them
pairwise, as their associated products are to be added, to
yield the proportion of effort invested in building each of
the four sums that become the matrix product. The four
ratios coincide with those already derived above! Further-
more, proportions associated with each of the eight prod-
ucts may be obtained by multiplying each of these four
ratios by 2™~! /(2™ — k) and by (2™~ —k) /(2™ — k), re-
spectively. Thus, the four-quadrant ratios are exactly as
before, and the eight-quadrant ratios are uniform exten-
sions from these.

Such process allocation could be determined statically
at compile time [8] when the language requires matrices to
be of declared, constant size and uniform sparseness, The
algorithms proposed here do not require bounds declara-
tions, but if they were available, it would be possible to
avoid much communication with, and system saturation
of, a dynamic scheduler.

Section 5. Conclusions

Because we assumed that the number of processors,
p, is small compared to the size of the matrix, n, we need
to cleave matrix manipulations into a few subprocesses of
balanced size, so that the resource p can be allocated de-
liberately. If one cleaving does not consume all the pro-
cesses, the pieces may be further split. Avoiding repeated
dispatch and recovery, these algorithms have the virtue of
splitting at the base of the quadtree—at the root of the
problem.

Although these algorithms are described as if only
scalars could be leaves of the quadtree, that arrangement
is not necessary. It is perfectly possible that sizable matri-
ces dwell at the leaves, matrices that might be represented
in traditional row-major order, and manipulated using tra-
ditional iterative and pipelining algorithms, programmed
in FORTRAN et fils. (Pipelines would need an extra in-
put stream of bits, identifying candidates for updated local

maximum, and each could then compute updated vector
decorations during a vector update.) The size of such leaf
matrices should be chosen to balance the efficiencies of
existing style and existing machinery against the obvious
need for multiprocessing techniques to accelerate large ma-
trix computation.

Derived from a purely applicative approach, they bet-
ter suit a computing environment with many processors,
with memory banked at varying distances from the differ-
ent processors, and with contention for access to shared
resources as a real constraint on efficiency. The quadtree
approach shows us how to represent matrices so that use-
ful pieces may be localized where some processor can make
computational headway on the problem without excessive
interference from all its brethren. It has long been known
[4] that applicative style solves the problem of decompos-
ing an extant algorithm; the problem addressed here is the
discovery of good algorithms that cleave into usefully sized
pieces.

One last issue raised by this work relates to all sparse
matrix techniques. I have seen only vague definitions of a
what makes matrices sparse, possibly because sparse rep-
resentations are so different from one-another, and maybe
because sparseness has been purely an operational concept.
Quadtrees, as we have seen, offer a reasonable representa-
tion for sparse matrices that is consistent with what we
would use for dense matrices; based on that observation,
alone, I suggest a measure of sparseness for matrices:
the ratio between its average path length in its quadtree
representation (from root to leaf) and the logarithm of its
size. Ratios closer to zero indicate sparser matrices..

Quadtree representation of matrices was motivated by
studies in applicative programming and as part of an effort
to study its impact on Matrix Algebra for MIMD multi-
processors. The results of the effort are more than satisfac-
tory: not only does the technique apply to a well-worked
problem, but also it yields new insight (through a distri-
bution of searching across Pivot Step) on optimal hard-
ware/software solutions. Thus, there we have more sup-
port for using applicative programming (and its algebra)
for programming parallel architectures and a suggestion
that those architectures provide a multi-banked heap.

There is already interest using quadtrees as fhe uni-
form representation for matrices in a large computer alge-
bra system [1), a sophisticated piece of software running
on fairly conventional hardware. They also have an im-
portant role to play within conventional languages used on
very sophisticated hardware, an experiment that remains
to be done.
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Appendix
The following examples, all of which evaluate to 1, are
useful as an introduction to the Daisy [7] code that follows.
They exemplify a new style of applicative programming
that depends on functional combination and deta recursion
[5] to specify multiple and interdependent results without
cognizance of a necessary sequence of evaluation.
All primitives used here, however, have been in Daisy from
its birth. The forms
let:[ identifierStruc binding result]
rec:[ identifierStruc binding result]
return result computed in an environment enhanced
with identifierStrue bound to binding. Evaluation is lazy,
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and the list structure of binding must match the struc-
ture of identifierStrue, wherein bound identifiers become
bound according to their position within that list. Func-
tional combination [4] is indicated by a list structure as a
function, to the left of the colon, the “apply” operation.
In the layout below, one may perceive that the constituent
components of that combination is applied vertically to the
(transposed) argument matrix. Thus, the intermediate re-
sults of all the functional combinations below is that of
{10(3 1)}).

let: [ [sum [quotient remainder]]
<add <div rem >>:<
<6 < 10 3 >>
<4 < 3 * >> >
remalinder]
divide = “)\[a b].<dlv:i<a b> rem:<a b>>
let: [ [sum [quotient remainder]]
<add divide >:<
<6 10 >
<4 3 > >
remainder]
rec: [ [sum [quotlient remainder]]
<add divide >:<
<6 sum >
<4 3 > >
remainder]

The skeleton of the Daisy code for Pivot Step fol-
lows. It presumes that quadtree-matrix arguments/results
are decorated at non-terminal nodes. This code has been
cut back to remove all provision for normalized (sparse
matrix) representation and for permuting the quadrants.
Normalized matrices may require expansion of scalar ar-
guments into a quadruple (two of which are zero; two of
which are the scalar) upon function entry, and collapse of
such quadruple patterns to the scalar upon exit. With-
out provision for permuting, this code will pivot only on
the northwest-most (upper left) scalar entry; the expanded
code tests two bits of “decoration” (fbit and jbil), and pro-
vides permutations on arguments and results to translate
to/from this northwest orientation.

Notice that the instances of functional combination in
PIVOT, ROW, COLUMN, and OFF are

[PIVOT ROW COLUMN OFF),

[ROW OFF ROW OFF),
[COLUMN OFF COLUMN OFF),
|[OFF OFF OFF OFF),

respectively, reflecting the recursive decomposition of each
kind of quadrant. It is also important that OFF immedi-
ately tests whether either vector argument (the projection
from the pivot row or pivot column) is Zero, and acts as an
identity function in that instance. Also, this code builds
the transpose of the permutation matrix (PF from the pa-
per) directly.



PIVOT = ") [decoratedMtx ellimrow-col PermutT]. if:<
Scalar?:decoratedMtx let:[ inverse reciprocal:decoratedMtx
< lnverse [TRUE TRUE] 1 <negate:inverse inverse> [1 1]> ]
let:[ [[max ibit jbit] ! mtx]

decoratedMtx :
let: [[ [epivot [] [] [eright ebot]] [permutHEAD ! permutTAILJ ]
spread4:elimrow-col PermutT
rec:[
[ (1 [eleft etop] permutPIVOT [pleft ptop] [ipos jpos] 1
[11 pright] [i11 pbot] iv
<PIVOT COLUMN OFF>: <
mtx
<eplvot <eright etop> <eleft ebot> <erlight ebot>>
<permutHEAD ptop pleft <pright pbot>>
<[] lpos Jpos ) 3 » >

let: f [elimrow-col pivotrow-col]
<<<eleft eright> <etop ebot>> <<pleft pright> <ptop pbot>> >
<decorate:<elimrow-col <i 11 111 iv> >
elimrow-col <permutPIVOT ! permutTAIL>
pivotrow-ceol <twlce:lpos twice:jpos> > 1111>

ROW = "\ [decoratedMtx elimrow-col pivcol index]. if:<
one?:index let:[ BoverA
decorateproduct:<elimrow-col pivcel decoratedMtx>
<BoverA BoverA> ] :

let:[ [iresidue ibit] divide:<index 2>
rec:[ [ [1 left] [11 right] 111 iv ]
<ROW ROW OFF OFF >:<
tall:decoratedMtx

spread4:elimrow-col
let: [ [top bot] pivcol
<top top <bot left> <bot right> >]
<iresidue Iresldue - liresidue iresidue > >
< decorate:<ellmrow-col <i i1 1ii 1v>> <left right> > ]]>

COLUMN = ") [decoratedMtx elimrow-col prow index]. if:<

one?:index
<decorateproduct:<elimrow-col prow decoratedMtx> decoratedMtx>
let: [ [jresidue jblt] divide:<index 2>
rec:[ [ [i top] i1 [111 bot] iv ]
<COLUMN OFF COLUMN CEF >z <
tall:decoratedMtx
spread4:elimrow-col
let: [[left right] prow
<left <top right> left <bot right>>]
<jresidue jresidue Jreslidue Jjresidue > >
< decorate:<elimrow-col <i il iii ilv>> <tcp bot > > ]]>

OFF = ")\ [decoratedMtx elimrow-col prow-col index]. 1f:<
anyzero?:prow-col decoratedMtx
one?:index decoratedifferencE' <elimrow-col decoratedMtx
decorateproduct:<elimrow-col prow-col> >
decorate:<elimrow-col
<CEF OFF OFF OFF >3 <
tail:decoratedMtx
spread4:elimrow-col
spread4:prow-col
<half:index half:index half:index half:index> > >>
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