Reasoning With Continuations

by

Matthias Felleisen, Daniel P. Friedman,
Eugene Kohlbecker, Bruce Duba

Computer Science Department
Indiana University
Bloomington, IN 47405

TECHNICAL REPORT NO. 191
Reasoning With Continuations
by
M. Felleisen, D. Friedman, E. Kohlbecker, and B. Duba
May, 1986

This material is based on work supported by the National Science Foundation under grants number
MCS 83-03325 and DCR 85-01277.

Reasoning With Continuations 1

Reasoning With Continuations
Matthias Felleisen, Daniel P. Friedman, Eugene Kohlbecker, Bruce Duba

Indiana University, Bloomington, IN 47405, USA

Abstract

The A-calculus is extended with two operations and the corresponding reduction rules: €,
which gives access to the current continuation, and 4, which is an ebort or efop operator.
The extended system is a sound and consistent calenlus. We prove a standardization theorem
and adopt the standard reduction function as an operational semantics. Based on it, we
study the access to and invocation of continuations in a purely syntactic setting. With
the derived rules, programming with continuations becomes as easy as programming with
functions.

1. Deficiencies of the A-calculus

“The lambda calculus is a type-free theory about functions as rules, rather
than graphs. ‘Functions as rules’ ... refers to the process of going from ar-
gument to value,”! No other words can better express why computer
scientists have been intrigued with the A-calculus. The rule character of func-
tion evaluation comes close to a programmer’s operational understanding of
computer programs and, at the same time, the calculus provides an algebraic
framework for reasoning about functions. Yet, this concurrence was also a
major obstacle in the further development of the calculus as a programming
language since it was based on simplicity rather than convenience.

The one and only means of computation in the pure calculus is the -
reduction rule which directly models function application. Although this

1), ps

3 Reasoning With Continuations

suffices from a purist’s point of view, it is in many cases insufficient with
respect to expressiveness and inefficient with respect to the evaluation pro-
cess. For example, when a recursive program discovers the final result in
the middle of the computation process, it should be allowed to immediately
escape and report its value. Similarly, in an erroneous situation a program
must be able to terminate or to call an exception handler without delay. We
could easily lengthen this list of examples, but the thrust is clear: functions-
as-programs need more control over their evaluation.

The most general solution of the control problem within the functional
realm originated in denotational semantics. A program can be evaluated by
evaluating its pieces and combining the results. When one particular compo-
nent is being evaluated, one can think of the remaining sub-evaluations and
the combination step, i.e. the rest of the computation, as the continuation
of the current sub-evaluation. The crucial idea is to write programs in such
a style that functions can be used to simulate continuations. In other words,
these programs always pass around and explicitly invoke (a functional rep-
resentation of) the continuation. They are thus able to direct the evaluation
process: they may decide not to use the current continuation, to save it in
a data-structure for later use, or to resume a continuation from some other
point in time. However, such programs look clumsy and are hard to con-
struct. It is better to introduce linguistic facilities which give programs access
to the current continuation when needed. Programs using these facilities are
“much simpler, easier to understand (given a little practice) and easier to
write. They are also more reliable since the machine carrying out the com-
putations constructs the continuations mechanically ...”2 Typical examples
of such facilities in A-calculus based languages are the J-operator [5], label
values [8], escape functions [9], call-with-current-continuation (abbreviated
as call/cc) [2], and catch and throw [11].

Non-functional control operators “provide a way of pruning unnecessary
computation and allow certain computations to be expressed by more com-

2 (. Talcott about the introduction of note into Rum, a lexically-scoped dialect of Lisp [12], p.68.

Reasoning With Continuations

pact and conceptually manageable programs.” 3 If they make continuations
available as first-class objects (unlike in COMMON LISP), as in Scheme or
ISWIM, it is easy to imitate any desired sequential control construct, e.g.
escapes, error stops, search strategies as applied in logic programming [4],[6],
intelligent backtracking [3], and coroutining [12]. Even though this is widely
recognized, control operators are still regarded with skepticism. Their addi-
tion seems rather ed hoc, since it only advances a particular implementation
of the calculus as a programming language but leaves the algebraic side be-
hind. There are no rules reflecting the new operations; proofs of program
properties can no longer be carried out in the syntactic domain. They must
be based upon a semantic interpretation in terms of abstract machines or
denotational definitions [12]. In this paper we show that the A-calculus as an
equational system can incorporate control operators and that non-functional
control may be characterized in a purely syntactic manner.

Since we are interested in reasoning about a call-by-value language, i.e.
Scheme [2], we use Plotkin’s A-value-calculus [7] as the starting point. We
do not expect that the reader knows this variant, but we assume familiarity
with the notation and terminology of the conventional A-calculus [1]. In the
next section we extend the basic set of operations by two new ones that give
access to and control over the current continuation of a program evaluation.
The extended system is consistent in the sense that two different derivations
starting with the same term are confluent. Hence, it permits algebraic calcu-
lations in the familiar style. A standardization theorem provides the means
to tackle the major goal of this paper: to prove theorems about how to reason
with continuations as programming tools. The four theorems of Section 4
show that one can understand access to and resumption of continuations as
syntactic operations of terms on their contexts. The last section before the
conclusion contains examples demonstrating how to use the theorems.

8 C. Talcott wrote this remark in the context of escape mechanisms, but the spirit of her dissertation
makes clear that it is also applicable to jump operations in general [12], p.16.

4 Reasoning With Continuations

2. The A.-calculus

Plotkin’s Ay-calculus constitutes the basis of our control calculus, A,. For
the sake of simplicity we concentrate on constant-free expressions and the
By-reduction. The inclusion of constants and an associated §-rule would
make the calculus more realistic but not more interesting.

The set of expressions of A, denoted by A., subsumes the original set
of A-expressions and includes two new types of applications: €- and 4-
applications. The formal definition of A, is displayed in Definition 1. We
adopt the notational conventions of the classical A-calculus and write Azy.M
for Az.Ay.M, LMN for ((LM)N), and also M for (CM), ete. where this

is unambiguous.

The notion of free and bound variables in a term M carries over directly
from the pure A-calculus under the provision that € and 4 are symbols
which are neither free nor bound. Terms with no free variables are called
closed terms or programs. Since we do not want to get involved in syntactic
issues, we adopt Barendregt’s convention of identifying terms that are equal
modulo some renaming of bound variables and his hygiene condition which
says that in a discussion, free and bound variables are assumed to be distinct.
Furthermore we extend Barendregt’s definition of the substitution function,
M]z := NJ, to A, in the natural way: C- and 4-applications are treated like
applications where the function part is simply ignored.

The intention behind the two operations € and 4 can easily be explained
informally. 4 represents an abort or stop operation which terminates the pro-
gram and returns the value of its argument. Whereas some operation like
A is commonly found in traditional languages, € and its relatives are only
available in A-calculus based languages. It is a form of the call/cc-mechanism
in Scheme. The operation applies its argument to the current continuation,
t.e. an abstraction of what has to be done in order to complete the pro-
gram after evaluating the C-application. This step is also called labeling—or
capturing—of continuations with reference to label values in more traditional
languages. The continuation is represented by an abstraction; we generally

Reasoning With Continuations 5§

Definition 1: The term sets A; and A

The improper symbols are A, (,), ., €, and 4. Let V be a countable
set of variables. The symbols z, k, f, v, efc. range over V as meta-
variables but are also used as if they were elements of V. The term
set A, contains

— vartables: zif z €V

— abstractions: (A\z. M) if M €A, and z € V;

— applscations: (MN) if M, N € A, M is called the function, N is
called the argument;

— C-applications: (CM) if M € A, and M is called the C-argument;

— A-applications: (AM) if M € A., and M is called the 4-argument.

The union of variables and abstractions is referred to as the set

of values.
A, the term set of the traditional A-calculus, stands for A. restricted
to variables, applications, and abstractions.

refer to it as a continuation function. It is snvoked—or thrown to—by ap-
plying it to a value, just like a function. The C-operation and call/cc only
differ in a minor point: call/cc implicitly invokes the current continuation
on the value of its argument; € leaves this to its argument. Given €, one can
define call/cc as A f.C(\k.k(fk)).

The formal semantics of A. is defined by a continuation-passing style
translation (abbreviated cps) into the A-calculus:

[z] = Ak.kz, (cpsl)
[(Az.M)] = rx.c(Az.[M]), (cps2)
[(MN)] = Ax.[M](Am.[N](An.mnk)), (cps3)

6 Reasoning With Continuations

[(CM)] = Ax.[M](Am.m(Avk'.k0)]), (cps4)
[(AM)] = Ax.[M]L (cps5)

The third equation, (cps3), expresses the left-to-right and by-value evalua-
tion of applications. The equations (cps4) and (cps5) reflect the informal
definition of € and 4: € applies its argument to a functional object, encap-
sulating the current continuation «; 4 throws away the current continuation.

An alternative, but equivalent definition of € and 4 highlights their ap-
plication character:

[CM] = k.M K S (S QR (o)) D)) AL IMI (A frmn)) (epsd’
[AM] = Ac.(A" .£'(Avk.v)) (A f.[M](Am. fmk)). (cps5')

The two equations treat C- and A4-applications as if they were applications
and as if € and 4 were ordinary abstractions in A, which map to the under-
lined parts, respectively. Yet, it is easy to see that neither € nor 4 are the
images of values in A.. Hence, both operations cannot be explained by the
ordinary f-reduction.

With these definitions in mind we turn to the reduction rules. First, we
recall Plotkin’s call-by-value version of the g-rule:

(Az.M)N & Mz := N) (Bv)
provided that N is a value.

Restricted to A, it is the basis of the Ay-calculus, which is an accurate re-
flection of a higher-order applicative language with a by-value semantics [7].
For the control operations € and 4, we need new reduction rules.

Given the expression ((M)N, we know that M should be applied to a
function which simulates the continuation and that the continuation should
be replaced by the initial one. The expression M(Af.(fNN)) almost satisfies
the requirement when the application is not nested within other expressions.
We need to know the continuation of the entire application in order to send

Reasoning With Continuations 7

the result of fN to the rest of the computation. So the reductions are:

(CM)N & CAx. M(AL.5(fN)), (Cz)
M(CN) 21 CAx.N(Av.k(Mv)) (Cr)
provided that M is a value.

To derive the 4-reductions, we proceed in the same manner. The 4-
application must abort all pending computations. Suppose that (4M) is in
the argument position of an application, e.g. N(AM). 4 should prohibit this
application and make M the result of the program. Since we want reductions
that can be applied to subterms, we must assure that M is not only the result
of this particular application but also that of the whole expression. (4AM)
achieves this effect. The reasoning for the dual case of (AM)N is similar and
so we define the following reductions:

(AM)N % aMm, (Ar)
M(AN) % 4N (Ar)
provided that M is a value.

So far our relations can deal with programs where - and 4-applications
are proper subterms. Next we have to consider occurrences of - and 4-
applications at the root of a term, such as CAx.K(xI) or A(KI). The above
definitions of € and 4 stipulate that these programs can be further reduced,
but neither of the above rules can evaluate them any further. We need two
top-level evaluation rules.

Intuitively, the program CAx.K(xI) is about to grab the current contin-
uation and pass it to Ak.K(xI). But what is the current continuation? In
principle, there is nothing left to do after evaluating the €-argument, and
that is exactly what we model. The top-level continuation object should,
when invoked, stop the evaluation and make its argument the final value of
the entire program, e.g. CAx.K(xI) should evaluate to I. A natural repre-
sentation for this abort continuation is Az.Az. A quick check shows that the

8 Reasoning With Continuations

sample program almost reduces to the desired value:
CAx K(kI) = (A K(xI))(Az.Az) = K((Az.Az)I) — 41,

except that we still don’t know how to evaluate programs of the form AI.

The case A(KI) is easy to deal with: the program should abort and
deliver the value of the A-argument as the final result. On the other hand,
there is nothing else left to do but to evaluate the 4-argument. Therefore,
it is quite natural to say that 4(KI) results in KI.

Although it seems that we have the basis for an adequate calculus, there
is still a problem: neither of the top-level rules is compatible* with the syntac-
tic constructions. Put differently, the top-level relations are not applicable
to subterms. If they were, the equational system would not be confluent.
Consider the program K(4I): the rule Ag leads to AI, which in turn would
evaluate to I, but an application of the top-level rule to the subterm (AI)
results in KI and a final value of Azy.y. On the other hand, the top-level
relations are needed to reflect the semantics of ¢ and 4. We therefore ad-
mit them with a special status: instead of making them first-class reduction
rules, we define them to be computation rules and indicate this by using >
in place of —:

CMve M()\z.4z), (Cr)
AMbv4 M. (Ar)

Since we need both reductions and computations for a strong enough
calculus, care must be taken in formulating the equivalence relations. Con-
gruence relations are only formed over the reduction relations; the notion
of compatibility is extended to €- and 4-applications. The result is a sub-
calculus of A.. By throwing in the additional computation rules we obtain
the complete control calculus. The formal definition is shown in Definition 2.

4 [1), p-s0

Reasoning With Continuations 9

Definition 2: The A -calculus

Let $=S%UuSB U U U2, Then define the one step C-reduction
—, as the compatible closure of -

M5 N=>M-.N;

M—=,N = \x.M—,Az.N;

M- . N=>ZM—,ZN,MZ -, NZ for Z € Ag;
M—.N=(M-—.CN;

M —.N=> AM —. AN.

The C-reduction is denoted by —». and is the reflexive, transitive
closure of —,. We denote the smallest congruence relation generated
by —». with =, and call it C-equality.

The computation by is defined by: b = g Ubg U —»,. The relation
=g is the smallest equivalence relation generated by px. We refer to
it as computational equality or just K-equality.

The left-hand side of the reduction and computation rules are called
C-redezes. A C-normal form M is a term that does not contain a
C-redex. A term M has a C-normal form N if M =; N and N is in
C-normal form.

When we refer to equations in the traditional A-calculus, we use =g instead
of =, and =,.

We now have an extended A-calculus programming language that can
handle first-class continuations. The meaning of the programs is defined by
the cps-transformation; furthermore, we have derived computation and re-
duction relations that we claim describe equivalences and evaluations among
Ac-programs. In the next section we investigate the major syntactic proper-

10 Reasoning With Continuations

ties of the A -calculus.

3. Fundamental Properties of the A-calculus
The development of the A-calculus raises three questions:

— Are the rules sound, ¢.e. do they preserve meaning?
— Is the equational theory consistent?
— And, do the relations define an operational semantics?

As for soundness the proof is a tedious but straightforward calculation.
The soundness of the §y-reduction is known from Plotkin’s investigation of
the Ay-calculus [7]:

Theorem 1 (Soundness). Let L € A be an abstraction and let M € A,

be a closed term, let — stand for either g'i, ﬁ, ﬁ, or ﬂ, and let b stand for
either b¢ orpg:
If M — N, then [M]L =g [N]L and,
if M> N, then [M]I =5 [N]L

Proof. The proof is a two-step procedure which for the most part can be
carried out by a program. First, the left-hand side and the right-hand side
of each rule is translated into the A-calculus via cps. Then the resulting
expressions are reduced until no f-redexes are left. For the Cp and Ap cases
one then needs the assumption that L is an abstraction; in all other cases,
the respective left-hand and right-hand terms are already equivalent.Od

The consistency problem is equivalent to proving the confluence of reduc-
tions in —¢ and by, respectively. The proof of the Church-Rosser property
for = is an application of Martin-Lof’s method for showing the correspond-
ing result for L Since our presentation follows rather closely the one of
Barendregt, we only state the necessary lemmas and demonstrate some of
the major modifications to the proofs.

First, we define a version of the parallel reduction relation for <. For
the proof of the standardization theorem we also need to define a notion of

Reasoning With Continuations

the length or size of a parallel reduction: see Definition 3. Note that if M is
a value and M—=» N then N is a value.

The following lemma shows the relationship between —», and —». Its
proof is obvious and omitted.

Lemma 2. -C—.C —» C —..

Next we need to prove that in —» unlike in —, the expression M|z := N]
reduces to M'[z := N'] in one step if M and N reduce to M’ and N', respec-
tively. However, for the proof of the standardization theorem we will also
need to know that this reduction is shorter than the one from (Az.M)N to
M|z := N']. The two proofs have the exact same structure and, therefore,—
following Plotkin’s example—we have put them together:

Lemma 3. Suppose M-» M', N—=» N', and N is a value. Then the following
are true:

(i) M[z := N]-» M'[z := N']
(ii) 3R = 8M[z:=N]» M[z:=N"] < 8L = 8(Az M)N ~» M|z:=N']
Proof. The proof is a structural induction on the reduction M-» M'. We

have omitted the cases which are similar to the given ones or are the same
as in Plotkin’s proof.

(P1) M-»M'= M.
The result follows by induction on the structure of M. We demon-
strate it for the subcase M = CP = CP' = M'.
(i) (€P)[z:= N] = (CP[z := N])=» (CP'[z :== N')) since P is smaller
than M.
(ii)
8R = 8P[z:=N]-» P[z:=N'|
< 8p-e P + 1(2, P')sy o nv by inductive hypothesis
<n(z,P)sywn+1=3s; since PP=P.

(P3) M= (AP)Q-»M'= AP' and P-» P'.

11

13 Reasoning With Continnations

Definition 3 : The parallel reduction —=» .

The parallel reduction over A, is denoted by —». 8M - N OF just 8
is the function of the size of the derivations M—» N. n(z, M) is the
number of free occurrences of z in M.

(P1) M-sM, =0
(P2) M-s M',N-» N,
N is a value = (Az.M)N-» M'[z := N'],
8=8M-or +n(z,M')sy o +1
(P3) M- M' = (AM)N-» (AM'),
8=8M-M + 1
(P4) N-» N', M is a value = M(AN)-» AN',
8=8Non+1
(P5) M- M',N-» N' = (CM)N-p» CAx. M'(Af.6(f N'")),
S=SM-oM t+ NN+ 1
(P6) M-» M',N-» N',
M is a value = M(CN)-p CAk.N'(Av.c(M'v)),
s=sM.i.Mr+sN_l.Ns+l

(P7) M-» N = A\z.M-»\z.N,
8§=S8M-»N

(P8) M-» N = CM-»CN,
8§=5M-»N

(P9) M-» N = AM-» AN,
8= 8M—N

(P10) M-»M' N-»N'=>MN-»MN',
8=8M-oM + SN-wN'

Reasoning With Continuations 18

() (AP)Q)[z := N] = (AP[z := N))Qlz := N]-» APz := N] by
inductive hypothesis for P[z := N]-» P'[z := N'|.
(ii)
SR = 8P|z:=N]e Plz:=N"] + 1
< spep +n(z,P')sy o x + 1 by inductive hypothesis
< (spwp +1) +n(z, P')sN-l-N' +1=s;g.

(P6) M =P(CQ)-»M' = CAe.Q'(A\v.k(P'v)) and P-» P' Q—» @', and P
is a value.
() (PCQ)lz == N] = P[z := N|(CQ[z = N])-»CAx.Q'[z :=
N')(Av.k(P'[z := N'|v))
by inductive hypothesis for P and @ and the fact that P[z := N]
is a value.

(ii)
SR = 8P|2:=N|(CQ[z:=N]) 1 CAx.Q[z:=N"| Av.x (P|z:=N']))
= 8P[z:=N] o Plz:=N'] T 8Qe:=N]p @[z:="] + 1
< spp + n(z, P')SNT.N- +8Qe@ + n(:r:,Q')aN_l.N- +1
by inductive hypothesis for spj,.- N]~o Plz:=N"]
and 8g(z:=N] @lz=N')
<(spp+ 8Q»@ +1) +n(z, M)SN-,»N' +1=3sp.

(P9) M=(CP-s»M'=(CP and P-»P'.
(i) (CP)[z := N] = CP|z := N]-»CP'[z := N'] by inductive hy-
pothesis.
(ii)
8R = SP[z:=N]-» P[z:=N'|
< sp—p + n(z, P')sy — & by inductive hypothesis
< 8.0

14

Reasoning With Continuations

In addition to Lemma 3. we have to show that two contractums of -
or Cp-redexes reduce to each other in one —»-step if the respective subterms
do. Again, the second and fourth claim of the following lemma are actually
needed for the standardization theorem:

Lemma 4. Suppose M—» M' and N—» N'. Then the following are true:
(i) CAe. M(Af.k(fN))-»CAc.M' (A f.£(fN"))
(ii) sr < sp where

SR = 8CAx.M(Mx(fN)) = CAx.M'(Af.£(fN'))
8L = 8(CM)N <o CAx M'(\[.&(fN"))-

And if M is furthermore a value then
(iii) CAk.N(Av.k(Mv))=» CA&.N'(Av.x(M'v))
(iv) sp < sp where

SR = 8CAx.N(Av.x(Mv)) <o CAx.N'(Av.c(M'v))
SL = SM(CN)~= CAx.N'(Av.c(M'v))-

Proof. We show (i) and (ii) by straightforward calculations:
(i) N=» N' hence Af.(k(fN))-»Af.(x(fN")),
M-» M’ hence M(Af.(k(fN)))» M'(Af.(k(fN"))),
and Ak.(M(Af.(k(fN))))=» Ax.(M'(Af.(£(fN')))),
and therefore CAk. M(Af.k(fN))-» CA.M' (A f.6(fN")).
(i) sSR=8sMpM + 3NN < SMwM +SN-o N+ 1= 5]
The propositions (iii) and (iv) are proven in the same manner.O
Now everything is in place to state and prove the diamond lemma:

Lemma 5. The relation —» satisfies the diamond property, i.e. if M—» L;
for ¢ = 1,2 then there exists an N such that for each i Li=p» N.

Proof. Again, the proof is an induction on the structure of the reduction
M-» L;. We will only discuss two cases. The rest of the possible cases are

Reasoning With Continuations 185

either similar to some of the presented ones or can be found in Barendregt’s
corresponding proof.

(Pe)

(P10)

M = P(CQ)—» Ly = CAk.Q1(Av.£(Pyv)) and P—-» P;,Q—-»Q;, and P

is a value.

There are two possible cases for the reduction from M to L since P

is a value and €Q is not:

a) L2 = P(€CQ2) and P-» P;,Q-» Q2.
Note that P is a value. An application of Lemma 4 gives us
N = C)k.Q3(Av.k(Psv)) where P; and Q3 are the terms which
must exist for P=» F; and @Q-» Q;, for ¢ = 1,2 according to the
inductive hypothesis.

b) L; = CAk.Qz(\v.k(P3v)) and P—» P2, Q—» Q>.
Again, an application of Lemma 4 and of the inductive hypothesis
for P—» P;, Q—=» Q;,¢ = 1,2 produces terms P3, @3 such that we
can take N = CAx.Qs(Av.x(Psv)).

M= PQ—ll' L= P|Q1 and Pﬂ B, Q—,* Ql.

This time we have to distinguish 6 possible subcases:

a) Ly = Rylz :== Q2] and P = Az.R,R—-» R;,Q-»Q>, and Q is a
value.
But then P; = Az.R;, R—» Ry, and Q) is a value. By inductive
hypothesis we must be able to find R3 and @3 such that—using
Lemma 3—we can take N = Rs[z := Q).

b) Ly = AR; and P= AR,R-» R,.
Again, P, = AR; and R-» R;. By inductive hypothesis we can
find an Rg such that we can take N = ARs.

c) L= AR; and Q@ = AR, R-» R;, and P is a value.
This case is like b).

d) Ly =CAe.Ry(Af.£(fQ2)) and P = CR,Q-»Q2, R—» R,.
Now we must have that P = CR;, R—» R;. An application of
the inductive hypothesis and Lemma 4 quickly shows that we can

16 Reasoning With Continuations

take N = CAx.R3(Af.x(fQ3))-
e) Ly =CAk.Ry(Av.k(Pv)) and Q@ = CR, P-» P2, R-» R;, and P is
a value.
This case is like d).
f) L = PQs. Trivial.O
Putting things together we get the Church-Rosser property for —:

Theorem 6. The relation — is Church-Rosser.

Proof. —», is the transitive closure of —». Since —» satisfies the diamond
property so does —»..0

An alternative proof of the above theorem is based on the Hindley-Rosen
method for showing that the gn-reduction is CR. This requires checking that
each reduction is CR and that they commute with each other. In our case
the second part would be laborious since five (!) different rules are involved.
The above proof also has the advantage that it neatly ties in with the proof
of the standardization theorem in the second half of this section.

Based on Theorem 6 we can easily show that by satisfies the diamond
property which is sufficient to establish consistency:

Theorem 7 (Consistency). The relation by satisfies the diamond prop-
erty, i.e. if Moy L; for i = 1, 2 then there exists an N such that for each i
L,‘ b N.

Proof. We proceed by a case analysis on M b; L;.
(‘T) Mvog Ly and M = (AL]).
Then there are only two possible cases for the step from M to L:
a) M—».(AK>).
But then Lyj—».K3 and we can take N = Ks.
b) Mg Ls.
Trivially, M = (AL)) = (AL3) and N = L, = L,.
(Cr) Mp¢ Ly and M = (CL). This case is just like (A7).

Reasoning With Continuations

(—2c) M—»L;.
Here three cases are possible. Two of them are symmetric to the
previous ones. The third one is: M—s.L;. But then we just apply
the Church-Rosser Theorem for .00

The proof of the theorem shows that —. and g or by, respectively,
commute. The theorem establishes the following traditional corollary:

Corollary.
(i) If M =; N then there exists an L such that M} L and N} L.
(ii) If M has a C-normal form N then Mo} N.

(iii) A term has at most one C-normal form.

Proof. (i) relies on the previous theorem. (ii) and (iii) use (i) and the fact
that a normal form cannot be further reduced.I

Furthermore, we can now prove:

Theorem 1’ (Incompleteness). There are M and N such that for all ab-
stractions L, [M]L =g [N]L but M#;N.

Proof. The proposition is a consequence of Theorem 7 and the fact that
Plotkin’s value calculus is a sub-calculus. An example is given by: M =
(ww)y and N = (Az.zy)(ww) where w = (Az.zz). O

More interesting, from a computational perspective, is the existence of
standard reduction sequences since they fix an operational semantics for the
programming language independent of a machine. A standard reduction
sequence for the A-calculus is usually defined with respect to the position of
redexes within a term and their residuals. Plotkin gave an equivalent, but
much more elegant and intuitive definition. It requires the definition of a
standard reduction function which reduces the first—top-down and left-to-
right—redex in a A.-term not inside an abstraction, a C-application, or an 4-
application. This function is then extended to standard reduction sequences
by forming something like a compatible closure: see Definition 4.

The theorem which we want to prove can now be stated as:

17

18 Reasoning With Continuations

Definition 4: Standard reduction sequences and functions

The standard reduction function, —¢., for — is defined:

M v4pe M 2> MN w4, M'N;
M is a value, N 4 N' = MN ., MN'.

A standard reduction sequence of type C, abbreviated C-srs, is defined
by:
z€V =z is a C-srs;
Ny, ...,Npis a C-srs =
Az.Ny,...,Az. N, CNy,...,CNi, and ANy, ..., AN, are C-srs’s;
M vy Ny, and Ny,...,Npisa C-srs=> M, Ny,..., N is a C-srs
M,...,M; and Ny,..., Ni are C-srs’s =>
MlNl, SEEE AJJ'Nl’ Sy AJJ'N;: is a C-srs.

The standard reduction function for A, extends w4, to computations:
o= D¢ UDgU 4y .

A standard reduction sequence of type K, K-srs, is defined by:

Ny,...,Npisa C-srs=> Ny,..., Ni is a K-srs;
M —4 Ny and Ny, ..., Ng is a K-srs = M, Ny,..., N is K-srs.

The notation H;';.. and +3, stands for the transitive and transitive-
reflexive closure of ., respectively; Hik indicates ¢ applications of
o, M H,{,;‘.”} N means that either ¢ or § applications of ~4 reduce
M to N.

Reasoning With Continuations

Theorem 8 (Standardization). M} N if and only if there exists a K-srs
Ly,...,Ly with M = Ly and L, = N.

The proof is divided into two parts. First, we show that there is a
standardization theorem for the —,-reduction. Second, we give a method to
reshuffle pz-reduction sequences into K-srs’s. It is based on the first standard-
ization theorem and the fact that the top-level reductions and —, commute.

The standardization theorem for the —.-reductions is:

Theorem 9. M—» N if and only if thereisa C-srs Ly, ..., L, with M = L,
and L, = N.

Proof. The direction from right to left is trivial. For the opposite we
follow Plotkin’s plan for the corresponding theorem about the A,-calculus.
First, the sequence of —-steps is replaced by a sequence of steps using the
parallel reduction —» . This follows from Lemma 2. Then we show with the
following lemma that one can recursively transform the resulting sequence
of —» reductions into a C-srs.O

Lemma 10. If M—» N; and Ny, ..., N; is a C-srs then there exists a C-srs
Ll,-..’L” thbMELl aﬂd L“ ENJ'-

Proof. The proof is a lexicographic induction on j, the length of the C-srs
Ny, ..., Nj, on the size of the proof M=» Ny, and on the structure of M. We
proceed by a case analysis on the last step in M~» N; and omit all the cases
which are similar to the presented ones or which are treated by Plotkin:
(P3) M= (AP)Q-» Ny = AP, and P-» P;.
But then we also have M +,, AP and AP—» AP, by a proof which
is shorter than the proof M—» N;. Hence, by inductive hypothesis
we find a C-srs from AP to N; and can then build the required C-srs
from M to Nj.
(P6) M = P(CQ)—» N1 = CAe.Q1(Av.k(Pyv)) and P—-p» P;,Q-»Q,, and
P is a value.
Again, M can immediately be reduced to CAx.Q(Av.x(Pv)) by .

19

20 Reasoning With Continuvations

(P9)

(P10)

By Lemma 4 we know that

C(Ax.(Q(Av.(k(Pv))))) = CAx.Q1(Av.x(P1v))

by a proof that is shorter than the one for M—» N;. Therefore, by
inductive hypothesis, we can find a C-srs from CAx.Q;(Av.£(Pyv)) to
Nj; from which we build the required C-srs from M to N;.

M= CP-p M'=(CP and P-» P'.

Here N; = CNjforallé,1 < ¢ < j. Now consider P=» N}, ..., N;.. Pis
obviously smaller than M and we can apply the inductive hypothesis
to find a C-srs from P to N; Wrapping every element into (€ .) we
have constructed the required reduction sequence.

This case does not differ from Plotkin’s corresponding case but it
requires that M=» N +,. L can be transformed into M ++,. K-» L
for some appropriate term K. This is proven in a separate lemma.]

The next lemma shows that —» and ~,. commute as required by Lemma 10,
case (P10):

Lemma 11. If M—» M' —,, M" then there exists an L such that M v
L-» M".

Proof. Plotkin’s proof—an induction on M—» M'—of his Lemma 8, section
IV goes through with almost no change. For the cases (P5) and (P6) we need
Lemma 4 but structurally they are just like case (P2). Case (P10)—M =
(PQ)=» M' = (P'Q")— deserves some explanation. Consider the following
subcases:
a) M'= (AP})Q v M" = AP}.
So we have P—» AP;. But then we claim that there exists an L such that
P v} L-» AP{ and L is an A-application. With the rules for ++, we
get that (PQ) %, (LQ) e L-» AP} = M™.
b) M' = (CP])Q" —ec M" = CAk.P{(Af.6(fQ")).
We proceed just like in a). Given that P—»CP, we again claim that

Reasoning With Continuations 21

there is an L such that P +} L-»CP; and L is a C-application. The
rest is similar to a).

All other cases for €- and 4-applications are treated similarly. O
There are four propositions left that we have claimed or that we need

through our adoption of Plotkin’s proofs. All the necessary proofs are quite
straightforward, but for the sake of completeness we state the lemmas:

Lemma. If M-» (AN) where M is an application then there exists an L
which is a A-application and M 7}, L-» (AN).

Lemma. If M—-»(CN) where M is an application then there exists an L
which is a C-application and M —} L—» (CN).

Lemma. If M-» (Az.N) where M is an application then there exists an L
which is an abstraction and M —} L-» (Az.N).

Lemma. If M-» z where z is a variable then M —} z.

Equipped with this first standardization theorem for —,, it is easy to
finish the proof of Theorem 8. But before, we need to clarify one more fact:

Lemma 12. If Ny,..., N is a C-srs then there exists a j,1 < j < k such
that for all i,1 < ¢ < §, N;j ¥4 Ni41, and for all 1,5 < ¢ < k,N; =, Njyy
a.lld N‘ %.c N" + l.

Proof. A straightforward induction on k.03
And here is finally the proof of the main result of this section:

Proof of Theorem 8. The proof is an induction on the number of com-
putations, p¢ and by, used in the evaluation of M to N. If there are no
top-level computations involved, we can form the C-srs for reducing M to N
and we have the desired result. Now suppose there is at least one reduction
of type b4. Then we have the following situation:

M= Mlbk...DkMkEﬂMD‘Mk+IEM1Dk...DkMuEN.

232 Reasoning With Continuations

By forming the C-srs for the reduction from M; to M; we get by Lemma 12:

M=M, ch-..chMEﬂﬂl;—'c...—*chEﬂM;
PaAMpi1 = Mpop...op My = N.

Now, since —, and b4 commute—see the remark following Theorem 6—we
can move the top-level computation forward:

MEMIH'c...chMEAMD‘M:_’C..._’cMka..-D‘kMuEN.

By inductive hypothesis we get a similar reduction sequence for the reduction
from M] to N. Since M +}, M| we can form the desired K-srs from M to
N.

The dual case of bg-computations is treated similarly. O

Beyond the satisfaction of a theoretical need, standard reduction se-
quences are interesting from a practical point of view. A standard reduction
function determines an operational semantics for the programming language
of the calculus. A chain of =, -applications leads from the program to its
value if and only if the program is reducible to a value. We therefore con-
sider a series of ++4;-applications to a program as an evaluation. In the next
section we study the behavior of continuations with respect to evaluations.

4. A syntactic characterization of continuations

All previous attempts to reason about the usage of continuation functions
in programs relied upon a cps-like interpretation of programs [3], [12]. The
Ac~calculus and its standard reduction semantics allows us to understand the
labeling and invocation of continuations in terms of symbolic evaluations.
However, it is obviously quite difficult to work directly with the calculus and
the sk-evaluation function. The basic system not only has seven reduction
rules but one must also keep in mind that two of them are only applicable
to the root of the term. Fortunately, we can prove some regularities about
the evaluation of €- and A-redexes which can be formed into meta-reduction

Reasoning With Continuations 28

Definition 5: Sk-redexes, the depth of a redex, and sk-contexts.

The sk-redez of a term M and its depth dﬁ‘, is defined as:
(SK1) M if M is a C7- or an Ar-redex and dj’d‘r =0
(SK2) P if P is the sc-redex of M and d% = d3g-

The sc-redez of a term M and its depth dj; is defined as:

(SC1) M if M is a —»-redex and d%5 = I;

(SC2) Pif M= KL, K is an application and P is the sc-redex of K
and dfy =d¥ + 1,

(SC3) Pif M = KL,K is a value and P is the sc-redex of L and
di; =dif + 1.

An sk-contezt is a term with one hole:

(C1) |] is an sk-context, or

(C2) if C[] is an sk-context and P is any A.-term, then C[|P is
an sk-context, or

(C3) if C[] is an sk-context and P is a value, then PC][| is an
sk-context.

rules. These meta-rules are simple and greatly facilitate the reasoning with
continuations. First we need more terminology to talk about evaluations
with the sk-function.

Given a term, the sk-function picks the outermost C-redex not inside
an abstraction and reduces it. The textual context of this redex stays the
same. We refer to this outermost redex for the sk-function as the sk-redez;
its depth is the distance from the root of the term to the redex. Both notions
are formally defined in Definition 5. We sometimes prefix sk-redex with €,
A, or B for clarification.

24 Reasoning With Continuations

The concept of a textual context of a redex is formalized in the notion of
a Ac-sk-contezt which is a A.-term with a hole; see Definition 5. C[|,C"[|,
etc. denote contexts. C[M] is the term where the hole of the context C[| is
filled with M. If C[M] contains an sk-redex, the redex must be in M or M
is at least a part of the redex. Although in general, free variables of M may
become bound through the filling-in operation for contexts, this is not true
for contexts. By definition of ++4 an sk-redex cannot be within the scope of
an abstraction. The next two lemmas connect contexts with sk-reductions.

Lemma 1. If M w4 N then for some sk-context C| |, M = C[P],N =
C(Q], and P =, Q, Pv¢ Q, or P> g Q. Similarly for +»,,.

The proof of this first lemma is trivial and omitted.

Lemma 2. Let C[| be an sk-context and let ® stand for either 4 or C,
and let Q = (®R) for some R. Then
(i) C[Q] contains an @-sk-redex
(ii) Q is the @-application part of C|Q]’s sk-redex, and,
(iii) if P 2% Q or P 28 Q, then d% o < d%p.

Proof. (i) and (ii) are trivial. The argument for (iii) is an induction on the

structure of the sk-context C|]. To make the proof more readable, define

M = C[P] and N = C[Q).

(C1) M = P. But then N = Q = (®R) and N is a ®-sk-redex with
dfv" =0.

(C2) M = MjM;, M, is an application and contains M’s sc-redex. By
inductive hypothesis My —, N; such that N contains the ®-sk-
redex with djf < dff. If Ny = Q then N = QM; is the sk-redex we
are looking for and d§f = 1 < di. Otherwise there is an sk-context
C'[| # |] such that M; = C'[P] and N; = C'[Q)]. Since C'[| does
not change during the reduction, N = Ny M, contains its redex in Ny,
the redex in Nj is of the desired form, dfv" = df\’fl +1< dﬁfl +1 = d%,
and the case is finished.

Reasoning With Continuations

(C3) M = M;M>, M is a value and M, contains M’s sc-redex. This case
is just like (C2).0

Equipped with this lemma we can prove that 4 behaves like an abort oper-

ation. Once an A-redex becomes the sk-redex, the 4-argument is the final

result:

Theorem 3. Let M = Cn|[AL] for some term L and sk-context Cpg| |, i.e.
M’s sk-redex is an A-redex whose A-application is AL. Then M evaluates to
the A-argument, i.e., M —}, L.

Proof. The proof is an induction on the depth of the sk-redex and uses
Lemma 2 for the induction step.O

The situation with a C-sk-redex is similar. Sample evaluations indicate
that the respective C-application is removed from a term and that at the
same time the current continuation is computed from the context of the -
application. More precisely, a C-sk-redex causes a sequence of evaluation
steps with two halves: a construction phase, where the continuation is built
piecemeal, and a collection phase, where the fragments are put together.

The construction phase propagates the C-application from deep inside the
term to the root via Cg- and Cr-reductions. Unlike with an 4-application,
this process does not remove but rewrites the context. In case the (-
application is part of a Cy-redex, say (CP)Q, it builds a continuation frag-
ment of the form Af.x(fQ) and applies P to it. The free variable x hereby
represents the rest of the continuation which is yet to be computed from the
rest of the context. The symmetric case of a Cp-redex is dealt with in a
similar manner. When the €-application finally reaches the root of the term,
it is removed, and its argument is applied to Az.4z.

The collection phase is just a series of F,-reductions. The argument is
always the continuation which has been built up so far; the function part
matches either Ak.P(Af.£(fQ)) or Ak.Q(Av.c(Pv)). In both cases, the §,-
reduction results in the application of a former C-argument to its current
continuation. The collection phase comes to an end when the argument of

26 Reasoning With Continuations

the original C-redex is reached. Then the current continuation has been
computed and is passed to the expression which requested it.

Since every single step of the construction and collection phase is de-
termined by the structure of the context around the €-application, one can
define a function which computes the current continuation of a term M with
respect to its C-redex:

[(CP),k]. =«
[(PQ),x]. = [P, Af.£(fQ)], where P is an application
[(PQ),«x], = [@, Av.k(Pv)], where P is a value.

This function simulates in a top-down fashion the chain of €-reductions in a
construction phase. At the same time it collects all the pieces in its second
argument which represents the continuation that has been built up so far. If
the function’s second parameter is the initial continuation Az.4z, the result
is indeed the current continuation requested by the €-sk-redex:

Theorem 4. Let M = Cn|CL] for some term L and sk-context Cy| |,
i.e. M’s sk-redex is a C-redex whose C-application is CL. Then the current
continuation of CL is [M, Az.Az], and M —} L[M, rz.4Az],.

Proof. We prove our claim by induction on the depth of the sk-redex in M.
Assume dff = 0. Then M = CL =}, L(Az.4z) and [M, Az.42], = Az.4z.

Otherwise d§ > 0. Without loss of generality assume the redex is a
Cr-redex. By Lemma 1 and Lemma 2 we know that for some sk-context
cl],

M = C[(CL)Q] e N = C[CAk.L(Af.£(fQ))]

that CAk.L(Af.x(fQ)) is the C-application of a new C-sk-redex in N, and

Reasoning With Continnations

that df\r" < dif. Hence, we can apply the inductive hypothesis to N and get:

N w3, (. LOS(fQ))IN, Az.Ad],
et L(ALIN, Az.42),(£Q))

since [-, -], is always a value
= L[M, \z.Az],
by Lemma 6 below.O

From this theorem we can immediately deduce a corollary about the structure
of continuation functions:
Corollary 5. All continuation functions have one of the following forms:
Ki: \z.Az
K2: Av.K(Mv) where K is a continuation function and M is a value

K3: \f.K(fM) where K is a continuation function and M is an aribtrary
term.

The proof of Theorem 4 depends on:

Lemma 6. Let C|] be an sk-context.
(i) It M = C|(CP)Q], N = C[CAx.P(\f.£(fQ))], then [M,)z.Az], =
AN, Az.Az] . (fQ).

(ii) If M = C[P(€Q)], N = C[CAk.Q(\v.k(Pv))], and P is a value, then
[M, \z.Az], = Av.[N, Az.4z] (Pv).

Proof. Let us assume for the moment that [C[P],], = [P, [C[CX],«].],
holds for all P and any arbitrary term X. Then we can establish the claims
by straightforward calculations:

a7

28 Reasoning With Continusllsas
(i)
M, z.42], = [CI(CP)Q), Az.Az],
= [(EP)Q, [C[CX],'\-C.AQ?LIC
for an arbitrary term X
= [CP,A[.[C[CX], Az.Az] (fQ)].
= Af[C[CX], Az.42].(fQ)
= AL[CICAx.P(Af.(fQ))], Az.A2].(fQ)
since X is arbitrary
= ALIN, Az.42],(fQ).
(ii) Similarly.
Our auxiliary claim is verified by induction on the structure of C|[|]:
(C1) C[|=[] Then [C[P],x]. = [P,x]. = [P, [CX,«].]..
(C2) C[]| =C"[]|Q for some sk-context C'[]. Now we have:

[C'IPIQ, &]. = [C'[P), Af.(fQ)].
=[P, [C"[CX], Af-x(fQ)]c].
by inductive hypothesis

=[P, IO'[CX]Qr &].l.
= [P, [C[CX], l'cl.-:]a:'

(C3) Similar to (C2).0

Theorem 4 and Corollary 5 characterize how programs label continua-
tions and how these continuation functions are constructed. Every continua-
tion is built inductively and always contains an 4-application at the bottom.
Hence, if a continuation is invoked and if it ever reaches its bottom in the
course of its evaluation, the context of the invocation is—according to The-
orem 3—irrelevant. Alternatively, one of the continuation fragments could
go into an infinite loop, grab a continuation, or abort the computation. In
the first and the third case the continuation invocation is again independent
of its context. The second case needs some investigation.

Reasoning With Continnations

As we know from Theorem 4, the process of computing the current con-
tinuation depends on the context of the C-application. We cannot expect ¢
priori that the invocation can forget its context in this particular case. On
the other hand, from Theorem 4 we also know that with or without context
the evaluation results in an application of the €-argument to a new contin-
uation. The C-arguments are the same in either case; the newly generated
continuation functions are different. The question is whether the difference
is significant.

An example will shed some light on the situation. Suppose the contin-
uation K = Av.K*((Ay.Cy)v) is about to be applied to a value @ in the
sk-context C[]. The evaluation proceeds as follows:

CIKQ] = CIK*((2y.Cy)Q)]
e C[K*(CQ)]
% QO\.[C[CX], Az.Az] (K *v)).

Without context the intermediate result would look different:

KQ =g K*((2y.Cy)Q)
ok K.(CQ)
= Q(Av.(Az.42)(K*v)).

However, one can see that the two new continuations would behave similarly
if they were invoked by Q. Both would immediately call the continuation K*
and, if this continuation reaches its bottom, the two expressions yield final
results which are equivalent up to the continuations which occur in them.
Thus—by an induction from this specific case—if the final result does not
contain continuations, the two results are the same and the context of a
continuation invocation does not make any difference at all:

Theorem 7. Let M = Cy|K L) for some value L, continuation K, and sk-
context Cn[], and let N be a value which does not contain a continuation

as a subterm:
KLw} N if and only if M —}, N.

80 Reasoning With Continuations

Since the proof is rather long and tedious, we first outline the proof
strategy. We would like to prove the theorem by an induction on the unique
number of steps in the respective evaluations or, equivalently, by an induction
on the structure of the continuation K. But the statement is too weak to
serve as an inductive assumption.

For a motivation of our strategy it is instructional to see why the in-
duction fails. We resume the investigation of the above example since it
resembles the crucial instance of the induction step. Given the interme-

diate results QK; and QK; where K; £ M. [C[CQ], Az.Az] .(K*v) and
K, A Av.(Az.4z)(K®v), one sees immediately that the final results of the

two expressions will be the same if @ does not invoke its argument and the
final result does not contain a continuation.

The interesting case is when @ does invoke its argument at some point.
Then the two respective evaluations must look like:

QK; H;'}, Ci[K;Qs] fori=1,2

where the C;[]’s are sk-contexts and the Q;’s are values. The arguments Q;
and @z may differ in their occurrences of K; and K3, respectively. We recall
from the above discussion that the two continuations behave similarly. Both
immediately invoke the continuation K*:

Ci[K1Q1] =ai C1[[CQ, Az.A2] (K*Q1)]

and
Ca| K3Q3] ek C2[(Az.4Az)(K*Q2)).

Now suppose we were proving the direction from right to left. Then the
two expressions would almost satisfy the inductive hypothesis: K°Q; in
some context reduces to N and K*® is clearly smaller than K. However,
the statement of Theorem 7 as inductive hypothesis would only allow us to
conclude that K*Q; in the empty context [] reduces to N. It says nothing
about the case where the continuation is invoked on a slightly different value

Reasoning With Continuations 81

in a non-empty context. This would not hurt too much if we could first prove
the direction from left to right, but, as the reader may check for himself, the
induction for this direction also fails in this case.

We need to strengthen the inductive hypothesis so that it takes this
situation into account. To this end we formalize the concept of behavioral
equivalence in order to compare the continuations K; and K; and the terms
Q1 and Q2 which differ by occurrences of K; and K3. Given this notion, we
can rephrase our theorem so that it is strong enough for an inductive proof:

If a continuation is invoked on a value in some sk-context and the
entire term evaluates to some continuation-free value, then the invo-
cation yields the same result independent of this particular context
for all behaviorally equivalent invocation arguments.

It is obvious that this hypothesis takes care of the above example and that
it implies both directions of Theorem 7.

Definition 6a: Behavioral Equivalence of Continuations

Two continuations K and K® are behaviorally equsvalent iff there ex-
ists a continuation K' and two sk-contexts C[]| and C*[| such that
for all values L,

KL= c[K'L) and K*L -1 ' [K'L).

Notation: K s, K* or K s, K* (mod K') if we want to indicate the
common continuation.

Two continuations are said to be behaviorally equivalent if they are the
same or if they invoke the same continuation after one reduction step. The
definition is formalized in Definition 6a. An alternative characterization is
captured by:

33

Reasoning With Continuations

Corollary 8. Let K, K*, and K' be continuations. K ss K* (mod K') if and
only if for some Ky and K}

— K=K*=K, or

— K = MK (K"') and K* = K, or

— K = K' and K* = MAv.K}(K'v), or

— K = Av.K;(K") and K* = Av.K{(K'v).

The extension of the equivalence relation to terms is shown in Defini-
tion 6b. Informally, two terms are behaviorally equivalent if they are the
same up to occurrences of continuations which must be behaviorally equiva-
lent w.r.t. sy.. It is obvious that continuations which are equivalent under s,
are also behaviorally equivalent as terms but the converse is false. Continu-
ations which are f-equivalent must be the same modulo some continuation
fragments which may never get invoked or only after many evaluation steps.
In any case, the ms;-equivalent continuations also behave equivalently. We
can therefore confuse the two notions whenever a distinction is unnecessary.

Before we can tackle our main lemma, we need to verify that behavioral
equivalence is preserved by sk-evaluations until one of the common contin-
uations is invoked and that common continuations are therefore invoked on
behaviorally equivalent values:

Lemma 9. Suppose M) ss My (mod Ky, ..., K,) and that My vy M, such

that none of the K;’s gets invoked. Then we have either

— Nj . Ny and No 88 M3, or

— for some Kj;, sk-contexts Cy|], Cn[|, and values Ly, Ly such that
Ly » Ly, M; invokes some K;, i.e. M; = Cp[K;Ly), and either
Ny = Cy|K;Ly] or Ny =g N3 = Cy|K;Ly).

Proof. By Lemma 1, the reduction has to be a primitive step within an
sk-context. Hence, the claim needs to be checked for all seven base cases of
=>.r. All but the E‘-step are trivial, since they only re-arrange equivalent
subterms. If none of the continuations which are different in M; and Nj is

Reasoning With Continuations 83

Definition 6b: Behavioral equivalence of terms

Two terms M and M* are behaviorally equivalent
— if M = K and M* = K* for two continuations K and K*® such
that K s, K* (mod K'), or,
— if M = z = M*® for some variable z, or,
— if there are terms M;, M} such that M; is behaviorally equivalent
to M fori=1, 2 and
- M = MM, M* = M{M;, or
- M =z My, M* = \z. M7, or
- M=(CM;, M* =(CM;, or
- M = AM;, M* = AM;.
Notation: M s M?* or M w8 M* (mod K}, ..., K) where the K;’s
are the common sub-continuations of the continuations in M and M*

which are behaviorally equivalent w.r.t. 3.

invoked, the case is characterized by the following matrix:

My =Cu|(Az.P)R] B CylPlz:= R]) = M,
] =]

N =Cyl(02.Q)S] B cwlQlz:=5S]= M,

with P & Q and R & S. The claim that substitution preserves behavioral
equivalence is easily proved by an induction on the structure of a term.
Otherwise, assume that M; = Oy [(Av.Kum(K;v))Ly] and M, =
Ch| Kn(K;Lag)] for some sk-context Chy[|. Since N must contain a behav-
iorally equivalent continuation in an equivalent sk-context, by Corollary 8 it
must be the case that either Ny = Cy[(Av. Kn(K;v)) Ly] or Ny = CY|K;Ly]
for some sk-context Cy[] and value Ly. Since continuation functions can

34

Reasoning With Continuations

only occur within Ly or outside of it, Ly is equivalent to Lps. In both cases,
the conclusion is immediate.O

The lemma generalizes to longer evaluation sequences:

Corollary 10. Suppose M; & N; (mod Ky, ..., Ky,).

(i) If M, "*ik M; for any j 2 1, none of the K; is ever invoked and M;j’s
redex does not contain a K; in function position, then Ny I, N; and
M8 Ni forallk, 1< k<j.

(ii) If My ""{k M; = Cuy|K; Ly for a first such § > 1, an sk-context Cp|]
and a value Ly, then Ny =3} N, = Cy|K;Ly] and Ly s Ly.

We are now ready to prove the main lemma for Theorem 7:

Lemma 11. Let K be a continuation and let N be a value which does not
contain a continuation. If there exists an sk-context C'[| and a value L'
such that C'[KL") »}% N, then C[KL] —} N for all sk-contexts C[| and
for all values L #s L'.

Proof. Assume the hypothesis. We proceed by an induction on the unique
number n such that C'[KL'] =5 N or, equivalently, on the structure of K:

(K1) K = Az.Az. This case is trivial:
C'|KL'] e C'[AL') =4 L'
and forany C[), L L'
C|KL] 4 C[AL| % L.

Since both L and L' are values, L & L' = N, and N does not contain
continuations, we have: L = L'.

(K2) K = Av.K*(Pv) for some continuation K* and function P. The first
step of the reduction is then:

C'|[KL') =g C'|K*(PL");

Reasoning With Continuations

on the other hand, for C[] and L the development is:

C[K L) = C|K*(PL)].

The sk-redexes for the two terms are PL' and PL, respectively, and
they are behaviorally equivalent: PL & PL' (mod K}, ..., K,). Thus,
according to Corollary 10, there are two sc-evaluations possible: the
evaluation of PL' either invokes a continuation or it does not:

a)

b)

Suppose PL' =3, Cp,[K;Q'] for some continuation K;, some value
Q' and some sk-context CJ,[|. K; may be P or it may be some
of the continuations in L'. In either case, PL —?2, CL[K;Q] for
some sk-context Cz[| and value @ such that Q s Q'. But we
know that C,[K;Q'] =} N and that this reduction sequence is
at least one step shorter than the one for C'[KL']. Thus we can
invoke the inductive hypothesis and this finishes the subcase.

Now, assume that no continuation gets invoked in the course of
the sc-evaluation. Then we know by the assumption, that the sc-
evaluation for PL' must be finite. Suppose PL' ~}. Q' for some
@' which cannot be sc-reduced any further. By Corollary 10 we
know that PL —}, Q for some @ such that Q s Q". Since the sc-
reductions do not involve top-level computation rules, there are
three cases possible:

bl) @ and Q are values. The two reduction sequences are:
C'K*(PL)] = CIK*Q =4 N
and
C[K*(PL)] =75, CIK*Q),
and by inductive hypothesis the conclusion follows.

b2) @ = AR' and Q = AR for R' &8 R. From Theorem 3 it
follows that

C'[K*(PL")] Y, C'K*(AR')] =2, R

356

86 Reasoning With Continuations

and
C[K*(PL)] =} CIK*(AR)| =% R.

R' may now reduce to N without invoking a continuation. In
this case, by Corollary 10, R must reduce to N, since N does
not contain continuations. Otherwise, also by Corollary 10,
R' reduces to a first continuation invocation and R must in-
voke the same continuation on an equivalent value:

R % CRLlK:S"| »h N

and
R ;. Cp[K;S] and S s S".

But then by inductive hypothesis we have Cg[K;S] —7 N.

b3) @' = CR' and Q = CR for R s R'. By Theorem 4 the two
reduction sequences must look like:

C'IK*(PL)] = O'[K*(CRY)] —% RIC'IK*(CRY)|, Az Aal,
and
C[K*(PL)] ij C[K*(CR)] H':k R[C[|K*(CR)|,Az.4z],.

By Lemma 6 the two continuations are behaviorally equiva-
lent modulo K*:

[C'IK*(CR')), Az.4z], = M.[C'[CX], Az.Az] (K°v) £ &'
and
[CIK*(CR)), Az.Az), = Av.[C[CX], Az.Az) (K*v) £ 5.

Thus, RS s R'S' and the rest of this subcase is just like the
rest of the previous one.

(K3)

Reasoning With Continunations 87

Notice that S and S’ have K* as a common continuation
which is not necessarily in the modulo set of L and L’.

K = A f.K*(fP) for some continuation K* and an arbitrary term P.
This case can quickly be reduced to (K2). Again we have:

and

C'[KL') —a C'[K*(L'P)]

C[KL) w4 C[K*(LP)).

The rest is a case analysis of the possible results of the sc-evaluation
of the arbitrary term P:

a)

b)

P w7 Q for some value Q. Then the above evaluations continue
as follows:

C'lK*(L'P)] =3 C'IK*(L'Q)]

and
C[K*(LP)] a—r;‘i_ C[K*(LQ)].

Clearly L'Q s LQ and thus we have reduced the subcase to (K2).
P 7 AQ for some Q. Trivially,

C'[K*(L'P)] =g, C'[K*(L'(AQ))] =5, @

and
C|K*(LP)| =} CIK*(L(AQ))] =% Q.

P w7} €Q for some Q. This case is a bit tricky:
C'[K*(L'P)] =% C'IK*(L'(€Q))] —ex C'[K*(CAk.Q(Av.5(L'v))]
and

C[K*(LP)] =3, CIK*(L(CQ))] —a C[K*(CAx.Q(Av.£(Lv)))].

88 Reasoning With Continuations

But now we have Ak.Q(Av.x(L'v)) 8% Ak.Q(Av.x(L'v)) since by
assumption L' & L and, thus, we have the same situation as in
subcase b3) of (K2). O
The preceding lemma immediately implies:
Proof of Theorem 7. Both directions of Theorem 7 are special cases of
Lemma 11. For the direction from left to right, take C*[| = [|, for the
opposite direction C'| | =Cn| |. O
As an aside we note that Lemma 9 and Lemma 11 also show:

Corollary 12. Let M; and M be terms, Ly and L values.
If My 88 Ma, M; =}, L; for i = 1,2, then Ly 3 M.

Remark. The proofs of Lemma 9 and Lemma 11 rely on the fact that there
are only two operations on continuations: € captures continuations and an
application with a continuation in its function position invokes it. In other
words, there is only one way to find out something about a continuation,
namely, one can invoke it and test the result and the beahvior. This as-
sumption would be invalidated by the presence of Church’s §-rule, which
allows a program to compare closed normal forms. End of remark.

Let us now summarize what we have found out so far about the labeling
and invoking of continuation functions. Theorem 4 tells us that a continu-
ation abstracts the context of the C-application. According to Theorem 7,
the invocation of a continuation generally forgets about the current context
and runs an abstraction of a former program context. The next theorem
shows that we can get around the intermediate representation in terms of
functional abstractions and work directly with contexts:

Theorem 13. Let K = [C[|CX], A\z.4z], for some sk-context C| | and some
term X, let L be a value, and let N be a value which does not contain a

continuation as a subterm:
C|L] H:k N if and only if KL H;‘; N.

Proof. The equivalence is shown by an induction on the structure of the
continuation K:

(K1)

(K2)

(K3)

Reasoning With Continuations

K = Az.Az. This implies that C[| = [| and vice versa and the
statement is obviously true.
K = Mv.K*(Pv) for a continuation K* and some function P. From
Lemma 6 we know that C| | = C*[P[]] for some context C*[| and
K* = [C*|CX], Az.Az], for any term X. Then the two evaluations
must begin with KL +4 K*(PL) and C[L] = C*|PL), respectively,
such that PL is the §,-sk-redex in both terms. There are three pos-
sible cases for the +g.-evaluation of PL:
a) PL w7 L* for some value L*. But then we can apply the induc-

tive hypothesis:

KLw! KL -3 N
and
ClL] =, C*[LY] =} N,

b) PLw—} (AL®) for some L°*. By Theorem 3, the two evaluations

continue with the same term:

KL~} K*(AL®) voq L
and
CIL| »} C*[(AL%)] —5 L°.

¢) PL w} (CL®) for some L°. By Theorem 4 and the inductive
hypothesis we get:

KL ka K*(CL*) H;"k L*(Av.(Az.4Az)(K"v))
and
C|L) =} C°ICL) »} L°K®.
Since the two intermediate results are behaviorally equivalent
terms, we obtain the conclusion using Corollary 12.
K = MAf.K*(fQ) for a continuation K* and some term Q. This case
is the same as (K2).0O

389

40 Reasoning With Continuations

Putting Theorem 7 and Theorem 13 together yields a simple, but effective
rule for the invocation of a continuation: throw away the entire term and
replace it by the context which the continuation stands for, filling the hole
with the argument. This rule works as long as the computation is in an
infinite loop or the final value does not contain a continuation. If it does,
we can generalize the above proofs to show that the result according to the
rule is behaviorally equivalent to the real result obtained from a (pure) sk-
evaluation. However, it is not quite clear what this really means. In fact, it
is not even clear what it means to get a continuation as (part of) a result.
The answer to these questions lies in the nature of the interaction between
the evaluating machine and the programmer.

For a batch computation one will indeed want to interpret the final re-
sult as a number, truth value, efc. One is definitely not interested in get-
ting back a continuation as (part of) the result, since continuations abstract
machine behavior. Depending on the actual evaluation mechanism, s.e. ma-
chine, it is even unlikely that the answer would say any more than “THIS IS
A CONTINUATION.” In this case the above theorem and lemmas suffice. If
however, the computation proceeds snteractively, it makes sense to save an
intermediate result which abstracts control for later use. But the stress is on
future use: these intermediate results are only useful for a potential appli-
cation in the future and then the fact that they are behaviorally equivalent
assures us that there will be no way to find out the difference. Hence, we can
use the above theorems and the rule without hesitation when symbolically
evaluating programs.

5. Programming with continuations

The A¢-calculus per se gave us the possibility to symbolically evaluate pro-
grams which use continuation-based control facilities. The theorems of the
preceding section reduce the complexity of the rewrite rule system to the
level of the §,-rule:

Reasoning With Continuations

The Continuations-as-Contexts Rule

When grabbing a continuation, remove and remember the current sk-
context; when invoking a continuation, replace the current program
by the respective sk-context, filling the hole with the argument.

With this rule in mind, programming and reasoning with continuations
becomes an acceptable alternative to working within the purely functional
A-calculus. The examples in the sequel of this section illustrate simple appli-
cations of this context rule. They may appear rather trivial at a first glance,
but without the above rule—which we use as if it were part of the defini-
tion of the sk-function—they would be less tractable. We urge the skeptical
reader to translate the programs via cps into the A-calculus and carry out
the corresponding validations there.

The first example is the program w(Cw) where w = Az.zz. It is interest-
ing in its own right since continuations are passed out of their original scope
as the evaluation shows:

w(Cw) w}kk where k ~ w[|
kawk
st kk
H;';wk. -

The notation k¥ ~ w| | stands for “k represents the context w|].” The
program obviously loops forever. That means, the program is also in an
infinite loop when evaluated with the pure sk-function, but it may be looping
in a different context.

As our programming language is rather primitive we introduce some
common combinators and syntactic forms®. The functions Ty = Azy.zI
and Fy, = Azy.yl stand for the truth values frue and false, respectively.
Given truth values, we can implement a call-by-value version of the form
(if N1 N3 N3) with the obvious behavior. Assuming that N reduces to a

5 Compare the corresponding call-by-name forms in [1], p.129.

41

432 Reasoning With Continuations

boolean value, the form stands for Nj(Ad.N2)(Ad.N3) where d is a dummy
variable.

The function [-,_] = Amn.Az.(if zmn) stands for the pairing func-
tion, (-)o = Ap.pTy and (-)1 = Ap.pFy for the left and right selectors:
([Mo, Mi]); ++ec M;. The abbreviation (let ([z, y]N)M) is to be read as

((Ap.((Azy.M)(p)o(p)1)) N).

For our next example we want to extend the above loop so that it iterates
a function f over a value z. We assume that successive applications of f to
a value X always sc-reduce to some value:

fX o Xy
fXy 3 Xygg
Xy H;'; Xyry ete.

Then the function L*™ defines a loop for f which iteratively generates the
values of fz, f(fz), ete.

® = Afz.(let ([, z](CAx.klk, 2])) (x[x, f2])).

This claim can easily be checked by a symbolic evaluation:

L% fz 3 (let ([x, 2](CAr.k[k, 2])) (x[x, f2]))
4 kK, Xg| where & ~ (let ([k,z][])(x]x, fz]))
g (let ([x, z][k, X;])(x[x, fz]))
g (let ([x, z][x, Xyf])(x[K, f2]))...

We have generated this loop without a full-blown recursion combinator.
With continuations it is also possible to construct recursive functions without
using a classical recursion combinator.

Now, suppose that f is as above and that p is a predicate returning a
truth value for every Xy, Xy, ... Then we claim that

L® = Apfz.C(Ax. L= (Ay.(if (py) (ry) (f9)))(f2))

Reasoning With Continuations

implements an iteration combinator which generates the values Xy, Xjy, ...
and returns the first one for which p evaluates to true. Again, the proposition
can be validated by a symbolic reduction.

For our next example we adopt Barendregt’s numeral system for the
Ae-calculus: 10 = I, 'n+1' = [Fy,'nl], gero? = Az.zTy, and St =
Az.[Fy,z]. We also use + for the addition function. Using the pairing
operator one can now talk about (finite) sequences of natural numbers.
We let nil = [Ty, Fy] stand for an end-of-sequence marker. The function
null? = Az.(if (zero? z) F, (2)o) is then an adequate test on the nil se-
quence. The expression (1,2, 3] is shorthand for [1, [2, [3, nil]]].

The function ¥ which takes a list of numbers and returns their sum is
obviously a trivial exercise in recursive function writing:

T = Y, s (AL (null? 1) '0' (+(Do(s(1)1)))).

Yy = Af.(Az.f(Az.222))(Az.f(Az.222)) represents the call-by-value recur-
sion combinator [8]. It is less trivial to change this function—without using
C—so that it returns '0' if any of the elements is '0' although this is only
a minor modification to the original specification. With the €-operator the
new function ¥y is a straightforward extension of the X-function:

Al
Chk.x
(YoXs.(AL(E (null? 1) '0 (if (zero? (1)o) (<'0") (+(D)o(s())1)))))) D).

Yo

i

We illustrate the working of £y by a symbolic evaluation of the program

43

44 Reasoning With Continuations

S+(20[r11’ 21,101, f31]):

SH(So['1, 121,101, 131)) =shk(sy,['1, 121,100, 131])
where sy, is defined by
Yo(As Al ...) =g 85
and k ~ S*[]
=5 SH(+1 (a2, 101, 131))
ST (+11(+2 (s, [0, 31)))
=58 (H1(+12(+10)))
t SHO et 11,

With our last example we get even closer to real-world programming
problems. We extend the ¥ and ¥y functions to work on trees of numbers.
In other words, we design a function X* that sums up the numbers in all the
nodes of a tree and another function X which only sums up the elements of
the tree if there is no 0! in the tree, but returns '0! otherwise.

For this exercise we assume that trees are either empty trees or non-
empty trees consisting of a left-son tree, a number, and a right-son tree.
We represent empty trees by () and non-empty ones by (M, 'n!, N) where
M and N are the left- and right-son and n is the node information. The
functions mt?, Ison, rson, and num are the respective predicates and se-
lector functions. It is obvious that this tree representation is A-definable by
a straightforward extension of the above list representation, but we omit the
details.

The function £°® resembles X:

E* = Yors. (AL.(if (mt?¢) 0 (+(num¢)(+(s(lson t))(s(rson t))))));

Reasoning With Continuations 45

L5 in turn is related to Xo:

Lo SAt.Crk.x
(Yo(As.At.
(if (mt?¢) 'O
(if (zero? (num t)) (x'0")
(+(num ¢)(+(s(Ison {)) (s(rson ¢)))))))
t).

For a comparisson we give an intensionally equivalent definition® of this func-
tion in the pure A-calculus:

Ly SAL(Yy(rs.Atk.
(if (mt? ¢) (x'0")
(if (zero? (num ¢)) '0!
(s(lson t)(Al.(s(rson t) (Ar.(x(+(num) (+17))))))))))
tI).
It is an interesting exercise to trace and compare the evaluation of an ap-

plication of £j to some tree like ({(}), 0", (}), 1", {{), 2", ()}) for both versions.
We recommend it to the still unconvinced readers.

6. Conclusions

In the preceding sections we have shown how the A-calculus can be extended
to a control calculus. The resulting system is sound and consistent. A
standardization theorem determines the operational semantics for A, and
allows us to talk about evaluations, in particular, about the behavior of
continuations during evaluations.

6 By this we mean that the function is a single-pass function which only performs additions if
necessary and escapes as soon as a [0! is discovered. There are alternatives to the C-free version but
they can all be derived from the cps definition of 3.

48 Reasoning With Continuations

The essence of Section 4 is a rule which expresses all continuation opera-
tions in terms of contexts. It makes it possible to reason about non-functional
control in the same manner that we reason about functional programming.
Since first-class continuations can imitate any sequential control strategy, one
can modify the calculus, theorems, and rules to deal with other constructs.

The control calculus also raises the question of what kind of objects

continuations really are. In denotational semantics they are represented by
functions. But this only works because the definitions are expressed—should
we say programmed?—in a particular style, namely cps. Their true nature
remains concealed. We expect that a further investigation of the A.-calcu-
lus will deepen our understanding of continuation objects and the nature of
control operations in programminng languages.
Acknowledgement. We wish to thank Mitchell Wand for his helpful dis-
cussions and comments on earlier drafts of this paper. Michael Dunn helped
to clarify the Soundness and Incompleteness Theorem. We are also grateful
to John Gateley, Chris Haynes, and Carolyn Talcott for their comments.

This material is partly based on work supported by the National Sci-
ence Foundation under grants DCR 85-01277 and DCR 85-03279. Eugene
Kohlbecker is an IBM Graduate Fellow.

7. References

[1] Barendregt, H.P., The Lambda Calculus: Its Syntax aend Semantics,
North-Holland, 1981.

[2] Clinger, W.D., et. al., The revised revised report on Scheme, Josnt Tech-
nical Report Indiana University 174 and MIT Laboratory for Computer
Science 848, 1985.

[3] Friedman, D.P., C.T. Haynes, E. Kohlbecker, Programming with contin-
uations, in P. Pepper (ed.), Program Transformations and Programming
Environments, Springer Verlag, 1985.

[4] Haynes, C. T., Logic continuations, Technical Report No. 183, Indiana
University Computer Science Department, to appear in the proceedings

Reasoning With Continuations 47

of the Third International Conference on Logic Programming, London
(July, 1986), Springer-Verlag, 1986.

[5] Landin, P.J., The mechanical evaluation of expressions, Computer Jour-
nal 6 (4), 1964.

[6] Mellish, C., S. Hardy, Integrating Prolog in the POPLOG environment,
in J.A. Campbell (ed.), Implementations of Prolog, Ellis Horwood, 1984.

[7] Plotkin, G., Call-by-name, call-by-value, and the A-calculus, Theoretical
Computer Science 1, pp. 125-159, 1975.

[8] Reynolds, J.C., GEDANKEN—A simple typeless language based on the
principle of completeness and the reference concept, Comm. ACM 18
(5), pp- 308-319, 1970.

[9] Reynolds, J.C., Definitional interpreters for higher-order programming
languages, Proc. ACM National Convention, 7T17-740, 1972.

[10] Steele, G., COMMON LISP - The Language, Digital Press, 1984.

[11] Sussman G.J., G. Steele, Scheme: An interpreter for extended lambda
calculus, MIT Al-Lab Memo 849, 1975.

[12] Talcott, C., The Essence of Rum—A Theory of the Intensional and Ez-
tensional Aspects of Lisp-type Computation, Ph.D. dissertation, Stanford
University, 1985.

