UNWINDING STYLIZED RECURSIONS

INTO ITERATIONS

Daniel P. Friedman
David S. Wise

Computer Science Department
Indiana University
Bloomington, Indiana 47401

TecunicAL ReporT No. 19

UNWINDING STYLIZED RECURSIONS
INTO ITERATIONS

DAnNIEL P. FRIEDMAN
Davip S. WisE

REvisep: DecemBer, 1975

UNWINDING STYLIZED RECURSIONS

INTO ITERATIONS

Daniel P. Friedman
David S. Wise

Computer Science Department
Indiana University
Bloomington, Indiana 47401

Abstract

Although there are those who argue that recursion is an
unnatural programming construct, 1t has been demdnstrated to be
rather an intuitive and entirely convenient way to program if
learned first. Moreover, this control for repetitive processes
better approximates the standards of readability, provability,
and changeability required in schemes of structured programming.
We bridge the gap between recursive software, like "pure LISP"
programs, and lterative hardware by proposing a compilation technique.
The compiler has a significant subset of recursive function definitions
built with cons as 1ts domain. It is described and i1llustrated
by the mappings it generates for four prototype programs,

representative of a powerful class of functions.

Key words and phrases: compilation, LISP, structured programming,

constructor, control structure.

CR categories: 4.12, 4.22, 5.24, 5.27.

Although thére are those who argue that récursion is an
unnatural programming construct, it has been demonstrated by
Papert [Pap72] to be rather an intuitive and entirely convenient
way to program if learned first. Moreover, this control for
repetitive processes better approximates the standards of
readibility, provability, and changeability required in schemes
of structured programming. We bridge the gap between recursive
software and iterative hardware by proposing a compilation
technique. The compiler has a significant subset of recursive
function definitions built with cons as its domain. It is
described and illustrated by the mappings it generates for four
prototypes representative of a powerful class of functions.

A significant challenge of Knuth [Knu74] is the effective
replacement of recursion within loops. Meyer and Ritchie [M&R67]
have shown that all primitive recursive functions can be expressed
in a loop language, but primitive recursion is a weak model
because it does not directly allow for the natural use of recursion
in programming, providing only for a single basis and a single
recursion. Chandra [Cha72] has shown that linear recursions can
be compiled into efficient programs without recursion, and Walker
and Strong [W&ST73] investigated problems of indirect recursion
in numeric computations. Risch [Ris73] has implemented a LISP-based
system for compiling a small class of recursions (i.e. some which
fit the pattern of primitive recursion). Darlington and Burstall
[D&B73] also treated this problem in a system based on a theorem

prover and a pattern matcher. The latter two efforts are similar

-5

to ours; our approach differs in that we specify a source language,
stylized recursion, for which the compilation scheme is éffective.
This class admits functional definitions of many alternatives whose
compilation is straightforward and automatic.

The remainder of this paper is composed of six parts. The
first 1s a section on definitions, including the definition of
stylized recursion. The second section introduces four examples
of stylized recursive code which will be used to illustrate
the effect of the compiler. The third section presents a rough
description of the run-time environment of the compiled code
and the unoptimized transformation of stylized source program into
iterative code for that environment. The fourth section presents
optimized and non-optimized compiled code for the four functions
introduced in the second section. The final section contains our
conclusions on the power of the transformations described here.

Definitions

A set of function definitions is defined to be well nested

if, whenever function P calls function Q, no function called by
Q calls P [Weg75] . The well nested property imposes a partial
ordering on the set of function definitions within a particular
program.

A recursive definition is presented in the form of a sequence
of cases (as in recursive function theory or like the cond structure
of LISP). Case analysils 1s necessary to separate a basis condition
(termination condition) from instances of recursion. Consider the

following example from McCarthy [McC62] :

.

(subst x y 2) = (cond
1
if (equal y z) then x
" elseif (atom z) then z

else (cons (subst x y (car z)) (subst x y (edr z)))) .

Subst substitutes x for every occurence of y in z. We find,
and this example illustrates, that direct recursive calls occur
most often as parameters to another function. We call these

other functions constructors and restrict recursive definitions

in this paper so that cons is the only constructor. Evaluation
of a constructor (cons) ylelds the value of the function.
Other candidates for constructors are the class of creation
functions for records of arbitrary size [Hoa75] and binary
operations for commutative monoids [M&B67]. The function definition
presented as a sequence of cond lines (or cases)

(cond

if p, them e,

elseif p_ then e
See—— g e 2

elselif p then e
- n=-1 —— n-1

else e)
n

is considered stylized if the following criteria are met:

(i) Every pi 3 ei is defined in terms of its own formal
parameters, itself, and other well nested functions.
(11) There 1s some basis expression e such that neither
eb nor any of pl g pb are expressed in terms of

the function being defined. Nonrecursive functions

are stylized simply by letting n = 1 = b.

'Underlined symbols within function definitions are comments.

(iii) There may be other ground expressions, €g > such

that eg is expressed without recursive calls.

(iv) Any recursive invocation of the function within its
definition must have as one of its arguments a
reduction of the asscociated formal parameter. The
reduction must bring that argument "closer" to a
value which will satisfy some Py or pg for a basis or
a ground condition. Furthermore, other arguments in
that recursive call associated with other basis
conditions must either be reductions or identical to
their corresponding formal parameter.

(v) An e, or p; may be an explicit recursive call.

1
(vi) An e, may be composed of a constructor which has some

i
recursive invocations of the function being defined as
arguments.

(vii) A p, may be composed of an independently defined
predicate which has some recursive invocations of the
function being defined as arguments.

This definition provides for defining a recursive function with
arbitrarily many cases. The well nested property excludes simul-
taneous recursion (where functions P and Q are each directly recursive
and also call each other) and the seventh criteria denies the use
of nested recursions (where a recursion occurs as an argument to a
recursive call to the same function) like the definition of
Ackermann's function [Men64]

The normal emulation of recursion (stacking of environments)

passes through an environment-level twice: once invoking the recur-

sive call and once upon its return when the constructor is applied.

e

A good iterative emulation would treat any environment only once,
obviating the neéd for a stack. Undér the above réstrictions the
only operation performed later is the application of the constructor.
Given the constructor and its properties we seek/a pseudo-function
which yields the same final effect as the constructor but whose
applications occur in the order of the invocations of the original

recursion. This pseudo-function is a delayed-builder. It is

convenient to separately maintain the locality where a delayed-
builder takes effect; we call this locality a site. Rather than
preserving an entire environment until the next level of recursion
returns and then applying the constructor, only the delayed-builder
(with its site) is preserved and is applied at the immediate lower
level before deeper recursions are emulated. When the recursions
"bottom out" this emulation need only apply the immediately previous
delayed-builder to the value of the terminal case. Commutative and
associative constructors such as integer multiplication have
themselves as delayed-builders; compare the recursive and iterative
programs for factorial.

The constructor cons, which is the exclusive constructor for
the examples in this paper, may now be described completely in terms
of the nomenclature introduced above. Cons performs two functions.
o alloqates a new node from available space and it fills the two
fields (A-field and D-field) of that node with the value of its
actual parameters. The field selector functions are car and cdr
respectively. The value returned is the address of the newly
allocated node. It is significant that this value may be determined

without fulfilling the field filling phase [F&W75] . Fields of an

allocated node may remain empty for a while before the first

application of the field extracting function (car or cdr) so long

first. Therefore, the constructor cons may be effected by an
immediate node allocation and by a future application of the
delayed-buillders, rplaca or rplacd at the site of the allocated
node.

Prototype function definitions

As an illustration of various uses of cons with arguments
which are direct recursions we present four closely related functions.
The four follow the classification of recursive patterns in The

Little LISPer [Fri7l4] . These functions all have the basic effect

of removingincidences of the structure a from the list structure z.
(Other natural effects are substitution of x for a, insertion of
X before a, or insertion of x after a.) They differ only in the
pattern of their application. Rember removes the first a at the
top level of z; allrember removes all occurences of a at the top
level of z; allrember* removes every occurence of a from z; and
rember¥* removes the first (leftmost) occurence of a at any level
of z. Recursive definitions of the four follow:
(rember a z) = (cond

if (null z) then ()

elseif (equal a (car z)) then (cdr z)

else (cons (car z) (rember a (ecdr 2z))));
(allrember a z) = (cond

if (null z) then ()

elseif (equal a (car z)) then (allrember a (cdr z))

else (cons (car z) (allrember a (cdr z))))3

=8

(allrember* a z) = (cond
if (null z) then ()
elseif (equal a (car z)) then (allrembér* a (cdr z))
elseif (atom (car z)) then (cons (car z)(allrember¥* a (cdr z)))

else (cons (allrember¥* a (car z)) (allrember¥* a (cdr z))));

(rember* a z) = (cond
if (null z) then ()
elseif (equal a (car z)) then (cdr z)
elseif (atom (car z)) then (cons (car z) (rember¥* a (cdr z)))
elseif (equal (car z)(rember* a (car z)) then
(cons (car z) (rember* a (cdr z)))

else (cons (rember¥ a (car z)) (cdr z))).

These examples illustrate the expressiveness of stylized
recursion. We appreciate that the class of functions definable in
a stylized manner is the class of primitive recursive functions,
but the facility of definition under the stylized rules is more
practical than the systactic restrictions of primitive recursion
itself [Men64] . We claim that these four classifications represent
useful recursive schemes. TFunctions like quicksort or the bilnary

tree traversals can be described using similar schemes.

The compiller

Thé'compiler for stylized recursive functions operates on any
function definition which meets the restrictions of the definition
and keys on the format of a légal definition to carry out the
translation. Each cond-line, (pi, ei) in the notation above, is
treated separately and in order, and is mapped into a corresponding
alternative for a conditional expression imbedded within the until
part of a simple repeat loop in the target code. If (pi, ei) is a
basis or ground condition, then the value of the image cond-line
will be true, indicated by the keyword stop; if not then the value

will be false,or cycle.

The resulting repeat loop has an iteration pattern which is
the image of the recursion pattern of the recursive code when
applied to fixed arguments. The actual effect of the iterative code
is manifested through side-effects (assignment statements) on loecal
variables however. The prototype code generated by the compiler
provides for all alternatives of stylized-recursion, and therefore
declares many more local variables (temporaries) than may actually
be required for a specific translation. We assume that a meliorizer
phase follows the compilation phase which purges unnecessary locals.

Specifically, many stacks are provided in a simple translation.
This provision appears unreasonable since we strive for translation
into stackless iterative code, but it may be observed that these
stacks are only used in certain cases. Linear recursive functions
[ChaT72] may be compiled without them. Two features of stylized

code require some stacking.

T

The first occurs when the right-hand-side of a cond-line
is a constructor (cons), both of whose arguments are recursive
invocations of the function being defined. In this case, the
evaluation of the second argument is delayed by stacking the
relevant site (available from an immediate allocation), delayed-
builder, and arguments for the recursive call in several stacks,
one for each of these variables. Then the local variables are
reset to effect the recursive call for the first argument to cons.
When the simulation of the first recursion is completed, the
environment for the second recursion is recovered from all these
stacks and that recursion is effected.

The second use of a stack occurs when a recursive invocation
occurs within a predicate on the left-hand-side of a cond-line.

It is clear that the result of such a recursion will not become part
of the answer currently abuilding; it is only needed as direction of
what is to be done next. Therefore, local variables, including
their corresponding stacks are pushed onto a system stack, sysstk.
Included in this massive suspension is the code for the remainder

of the function, including the wrapping predicate which will be
evaluated on completion of the required recursive call, whose value
depends on the recursion Just belng simulated.

Every basis condition tests to see if both of these stacks has
been exhausted. If nothing is stacked then the basis conditilon
stops; if either stacking protocol has pending operations, then the
former environment is recovered and the result of the basis (or ground)
line is a cycle into the suspended environment. In many cases, partic-

ularly the instances of linear recursion, the stacks will be empty.

o

The reason that the stacking scheme is sq.COmplicated lles
in the fact that the_génératéd codé is prototype and présumes
that a meliorizing pass will follow thé compiler to eliminate
much stacking code: For instance; the stacks which are provided
for right—hand%side recursion are not consolidated into a single
stack before meliorization so that redundant stacking can be
avoided. If a stack is never pushed (even though attempted pops
are part of the compiler image of every basis) then it and all
uses of it can be purged from the compiled code. If a stack is
homogeneous, a situation which occurs when every push onto a
particular stack involves the same constant value, then the stack
may be replaced by a counter indicating its length and the constant
indicating its contents.

After analysis of the stack associated with a particular
program variable, that variable may be omitted because it is a
constant or a trivial function of another variable. Then the
meliorizer may consolidate the stacks from all functions into a
single one which carries the minimal information necessary to
sustain the computation. If the original recursive definition
provides a linear recursion, then the result of this pass will
be stackless code. If it is not linear then the stack will be
used minimally to preserve environment only while another recursive
call of this same function is simulated -- not merely for the
duration of the evaluation of another independently defined function.

The target code of the compiler may be easily described
with this understanding of the prototype stack mechanism for the
iterative code. The iterative code is a LISP prog with local

variables for the site, delaybuilder, answer, and a stack

o

associated with each of these and the formal parameters. In
addition the gxéﬁeméigcg and a Eéégprary variable are provided.

All stacks are initialized to'ﬁl and éﬁé is established as a

dummy node whose D-field will receivé the eventual result. (The
reason that the D-field is chosen is that the corresponding delayed-
builder is thé same as that required when a recursion occurs as

the second argument to cons. Such a recursion is frequent in LISP,
a fact which increases the liklihood that delayb will be a constant
valued variable and therefore purgable later.) The initial
site and delayb are determined so that the first part of the result
will land in the D-field of ans, After initialization the main
repeat loop is executed and then the D-field of ans is returned.

The predicate portion of the loop is a long conditional
statement with as many alternatives as the source code conditional
up to the first occurence of a recursion on the left-hand-side of
a cond-line. Each line in the compiled conditional expression
corresponds to a line of the source code and, in many cases, the
correspondence 1s quite straightforward.

When Py is a simple predicate, defined without a recursive call,
the identical predicate appears in the compiled code as a left-
hand-side. When it involves a recursion then the compiled conditional
is terminated with necessary pushes onto sysstk including a
reference to the compiled remainder of the source code conditional
which is to be resumed after the recursion is simulated.

When e; is defined without recursion, then the current delayed-
builder is applied to the current site with the value returned from
the evaluation of e, . The computation then may stop if all stacks

1
are empty; 1f not then the preserved computations are resumed. If

] B

e; i1s a direct recursive call (without a constructor), then neither
site nor the del&yéd—builder changé,'but the parameters aré assigned
their new (réducéd) valués and the loop is repeated; When ey 1s
cons applied to récﬁrsive calls then the new node is allocated
immediately and is inserted in the current site by the current
delayed-builder. Then it becomes the new site. If only one of

the arguments to cons is a recursive call then the other field

may be filled in immediately and nothing need be stacked. The
delayed-builder is reassigned according to which argument requires
the recursion, the parameters are assigned their reduced values

and the loop is repeated. If, however, both arguments are

recursive invocations then the arguments to the second call, its
delayed-builder, and the site are stacked (on their corresponding
stacks) while assignments are made to initiate the simulation of

the first recursion directly as above. The loop 1s cycled;
eventually a basis or ground condition is encountered which recovers

the stacked values to simulate the recursion for the second argument.

Compiled examples

In order to demonstrate the behavior of our compiler/translator
we present prototypes for the code actually compiled for each of
the four examples presented earlier. In the unwound forms of the
recursions below (cons ¥¥¥ ¥¥%) plays the roll of an allocation
of an unfilled node which is kept as a site to be later filled
in by the delayed-builders rplaca? and rplacd? which are identical
to rplaca and rplacd (they side-effect A-fields and D-fields) but

each returns its second parameter as its value.

=Tl

The following system primitlves are defined in Appendix A:

repeat, rplaca2, rplacd2 g o) E and nofempty.

Let us consider the compiled version of rember,

(rember a z) = (prog (temp ans site)
(setq ans (cons ¥%#% ®ER))
(setq site ans)
(repeat until (cond
if (null z) then <(rplacd2 site ())
stop>
elseif (equal a (car z)) then <(rplacd2 site (cdr z))
stop>
else <(setq temp (rplacd2 site (cons (car z) ¥¥¥)))
(setq site temp)
(setq z (ecdr z))
cyecle>))
(return (ecdr ans)))!,
The left-hand-side of each cond-line (predicate) is identical to
that of the original code. The first two cond-lines correspond to
bases and the only action is to effect the outstanding delayed-
builder. (cdr ans) is always the evolving answer. For each
recursion of the original code, the compiled version will perform
one iteration, advancing site. After each iteration, site is the
newest node on the structure with an unfilled cdr. When a basis
i1s encountered the function halts immediately without any hidden
backout.
The unwound version of allrember (below) is only a little
more intricate. All the comments about rember apply to the code

of allrember which introduces two new features.

g, 8, ... BT 8H2 <& .. s.> evaluates s, through s The
former returnxng a 115% o% the eValuated expresSsions, the 1atter
returning just the evaluation of S,- Cf. LISP's functions list

and progn.

-15-

(allrember a z) = (prog (temp ans delayb site)
(setq ans (cons *¥% ¥&¥))
(setq site ans)
(setq delayb RPLACD2)
(repeat until (cond
if (null z) then <(apply delayb [site ()])
stop>
elseif (equal a (car z)) then <(setqg a a)
(setg 2z (edr z))
cycle>
else <(setqg temp (apply delayb [site (cons (car z) ¥%¥¥)7]))
(setq site temp)
(setq delayb RPLACD2)
(setq a a)
(setqg z (edr z))
cycle>))
(return (ecdr ans)))2.

As the site moves down the growing structure, delayb is rebound at
each step. 1In this instance, delayb is always bound to rplacd2 so

it is redundant, but this code illustrates the use of apply which
effects the delayed-builder at the current site on every iteration.
The second redundancy is the rebinding of a on every iteration; this
operation corresponds to the evaluation of the first argument on

each recursion. Compare this to the rebinding of z on each iteration
which arose even in rember from the rebinding of the second parameter
on each recursion. These redundancies are prime candidates for

the meliorizer which would yield code very similar to the version

of rember which appears above.

Next we consider the unwound version of allrember¥.

2Symbol strings composed entirely of upper case symbols are
constants; that is, they evaluate to themselves (see Appendix A).

] G

(allrember* a z) = (prog (temp ans zstk delayb delystk site sitestk)’
(setq ans (cons *¥#% ¥%%))
(setq site ans)
(setq delayb RPLACD2)
(repeat until (cond
if (null z) then <Eapply delayb [site ()])
cond
if (notempty sitestk) then <(pop sitestk site)
(pop delystk delayb)
(pop zstk z)
cycle>
else stop)>
elseif (equal a (car z)) then <(setq z (cdr z))
cycle>
elseif (atom (car z)) then <(setq temp (apply delayb
o [site (cons (car z) ¥*%)7))
(setq site temp)
(setq delayb RPLACD2)
(setq 2z (cdr 2z))
cycle>
else <(setq temp (apply delayb [site (cons #*¥¥ ¥#%)7))
(push RPLACD2 delystk)
(push temp sitestk)
(setqg site temp)
(setg delayb RPLACA2)
(push (edr z) zstk)
(setq 2z (car z))
cyele>))
(return (cdr ans))).

3
All locals (i.e. prog variables) are initialized to () by LISP.
For stacks, those with suffix "stk", this initialization is
sufficient; other locals must be initialized explicitly.

. Gy

The last liné of the source code présents a new problem for our

compiler; both arguménts for géég are recursive calls to allrember¥*.
The proper handling of thé'two recursions involves multiprocessing,
but we mimic the design of LISP which provides that the arguments
of a function are to be evaluated left-to-right (i.e. evlis). The
target code of this compiler therefore shares the regretable
property that the well-defined order of evaluation may be abused

by authors of side-effecting code. We use a stacking scheme to
implement such multiple recursions. The stacks that we must

introduce in the compiled code of allrember¥* are required by the

evlis [MeC62] convention; without this convention the stack could
be replaced by a set; without the requirement for emulating the
multiprocessor, insertions into such a set could be replaced by
task generation. The departure from allrember is the introduction

of stacks for site, delayb, and the formal parameter z. The four

lines of cond in the unwound version correspond to the four lines

of cond in the source code and the predicates are identical. The
first cond-line identifies a basis condition. In the response to
this predicate we check for an empty stack. If the stacks are not
empty, then they are popped, the program cycles, and the iteration
1s continued; otherwise the iteration stops. If there were other
basis lines, they would be compiled similarly. The last cond-line
has more than one recursive call as arguments. The first is
processed iteratively just as in the previous examples, after the
parameter for the remaining calls have been stacked in reverse order.

(In this case there is only one set of arguments to be stacked.)

The interesting characteristic of rember* (below) is in the
fourth'cond—liné of thé'sourcé’codé. In that 1line theré is a
recursivé call in thé left-hand-side which does not immediately
contribﬁté to thé strﬁctﬁré béing grown as thé fiﬁal answer. In
order to emulate thé evaluation of that récursivé call, 16 48
necessary to sﬁspend thé growth of the currént resultant value.
All local parameters are pushed onto the sysstk until that

recursion has a value.
There is still a strong association between the cond-lines of tne

source code and those of the compiled code for rember*, but not all
the corresponding lines occur within the cond following until.

The remainder, found in the push onto sysstk are paired with the
cond-lines following the occurrence of the left-side recdursion in
the source code. The compilation of a left-side recursion closes

the cond following the until with a sequence of stacking operations

to preserve the current state of growth.

The compiler also handles function definitions with recursions
from within more than one left-hand-side, with multiple recursions
as arguments on both left and right side of a single cond-line.
These facilities are so powerful, however, that a general example

would perform an obscure operation.

gy

(rember* a z) = (prog (sysstk temp ans delayb site)
(setq ans (cons ### ##%))
(setq site ans)
(setq delayb RPLACD2)
(repeat until (cond
if (null z) then <(apply delayb [site ()])
(cond
if (notempty sysstk) then <(pop sysstk site)
(pop sysstk delayb)
(pop sysstk z)
(pop sysstk temp)
(setq temp (eval temp))
(pop sysstk ans)
temp> :
else stop)>
elseif (equal a (c?r z)) then <(apply delayb [site (cdr z)])
cond
if (notempty sysstk) then <(pop sysstk site)
e (pop sysstk delayb)
(pop sysstk z)
(pop sysstk temp)
(setq temp (eval temp))
(pop sysstk ans)
temp>

else stop)>
elseif (atom (car z)) then <(setq temp (apply delayb
[site (cons (car z) ¥¥#¥)7]))
(setq site temp)
(setq delayb RPLACD2)
(setq z (cdr z))
cyeles

else <(push ans sysstk)
(push (quote (cond
if (apply (gquote equal) ans) then
<(setq temp (apply delayb
[site (cons (car z) ¥¥%)7))
(setq site temp)
(setq delayb RPLACD2)
(setqg z (edr z))
cycle>
else <(setq temp (apply delayb
[site (cons ¥#¥¥ (cdr z))]))
(setqg site temp)
(setqg delayb RPLACA?2)
(setq z (cdr z))
cycle>)) sysstk)
(push z sysstk)
(push delayb sysstk)
(push site sysstk)
(setg ans [(car z) ¥¥¥7)
(setq site (edr ans))
(setq delayb RPLACA2)
(setq z (car z))
cycle>))
(return (cdr ans))).

i

Conclusions

The compiling schémé”déSCribéd abOVé'has been implemented
in LISP 1.6 compiling from stylized recursive code into LISP prog
format. Appéndix B contains ﬁnmeliorizéd (prototype) code for
the four eiamples présentéd: The possible méliorization may be
understood by comparing thé codé in that appendix to the iterative
code presented earliér; Thé ﬁltimate compilation into machine
language as target code is a trivial modification of this procedure.

We appreciate that the present definition of stylized
recursion admits just primitive recursive functions, However, the
class of function definitions included within the syntax of
stylized recursion 1s much larger than the class of function
definitions which must meet the formal restrictions of primitive
recursion [Men64]. Moreover, related results on the behavior of
cons as a constructor allow practical use of recursive functions
defined without a basis condition [F&W75,Bur75]. Instances of
such functions can only be used as arguments to operations which
extract specific elements from structures of arbitrary size. This
restriction is shown to be quite tolerable in several practical
applications [FWW76]. Under this kind of restriction we might
allow functions to be defined without basis conditions, 1lifting
the requirement that arguments to recursive calls must contain
at least one reduction to a formal parameter and providing for the
definition of any partial recursive function.

The attraction of this compilation scheme is the promise of
effective translation of wéll—writtén recursive code into efficient

jterative code. That most efficient machine architecture is

8=

iterative would no longer be a justification for writing iterative
programs. Training a programmer first to program with structured
recursive code would then be as good in terms of efficiency at

run time, just as it is now better in terms of programmer efficiency.

-2

Appendix A Utility Functions

The definitions of the system primitives used in the body
of the compiled code is presented below.

Functions whose arguments are evaluated -- exprs

(car (rplaca x y));

1

(rplaca2 x y)

(edr (rplacd x y));

(rplacd2 x y)

(notempty s) = (not (null s)).

Functions whose arguments are unevaluated -- fexprs

Fexprs always have two arguments. The first, here called
args, has a binding of a 1list of unevaluated arguments; the
second, called env, has a binding of the current environment for
later evaluation of the unevaluated arguments.
(repeat args env) = (prog ()
test (cond
if (eval (car args) env) then (return NIL)
else (go test)));
(push args env) = (set (cadr args)
(cons (eval (car args) env)(eval (cadr args) env)));
(pop args env) = <(set (cadr args)(car (eval(car args) env)))
(set (car args)(cdr (eval (car args) env)))>

A note about constants

RPLACA2, RPLACD2, and **¥ gre assumed to be quoted. The variable

cycle always evaluates to false and stop always evaluates to true.

e

Appendix B Actual Compiler Output (unmeliorized)

.

XK(FRETTY (GET BREMBER BEXFR))

(LAMEDA (A Z) (COND ‘
LONULLS Z 3NIL D it
({EQUAL A (CAR Z)){CDR Z)

(T (CONS (CAR Z Y(REMBER A& (CDR Z))))))

ML

¥ (TRANSLATE @REMBER)

(COMFILE/Z TIME: 12586 MILLISECONDS)
X(PRETTY (GET BREMRER @EXFR))

(LAMBIA (A Z)Y (FROG
(BYSSTK TEMF ANSW ASTK Z8TK DELAYR DELYSTK SITE SITESTK)
(SETR SYSETR NIL)
(FROGN
(SETR ASTK NIL)
(SETR Z85TK NIL 23
(FROGN
(SETR ANSW (LIST #kk 3
(SETR SITESTK (LIST))
(BETQ SITE ANSW
CEETI TELYRER TLIST 12
(SETR DELAYR RFLACDZ)
(QUOTE (WE ASSUME CONS CONSTRUCTOR CLASS))»)
(REFEAT UNTIL <COND
CENULL Z) (FROGN
(AFFLY: DELAYR SITE NIL O
(COND
(CNOTEMFTY SITESTK) (FROGN
(POF SITESTK SITE J
(FOF DELYSTK DELAYR)
(FROGN
CROE 28R 29
(FOF A8TK A)
EXGLE 33
CONOTEMPTY S8YSSTK) (PROGN
(FROGN
tFOP 5YSHETRK SITESTR)
(POF S¥gGTK SITE ?
LFOR SYSSEk T HE ST
(FOF SYSETK DELAYER)
tPEFE 5Y55TK Z5TK)
(FUPTBYSSTE ASTE 3
(FOFP 5YS56TK &
(POF SYSSTR &)2
(EOF SYSLHTK TEHR
(SETQ TEMF (EVAL TEMF))
(FOF SYSETK ANSW 3
TEME 37
0 BIERE133)

2l

(CEQUAL A (CaR Z) (FROGN b
{AFPFLY?: DELAYR SITE (CDR Z))
(COND ¢

CONOTEMPTY SITESTK) (PROGN
(FOF SITESTK SITE)
(FOF DELYSTK DELAYE)
(FROGN
(FOF Z8TK Z)
(FOF ASTK A))
CYCLE)) ¥
C(NOTEMPTY SYSSTK) (FROGN
(FROGN
(FOF SYSSTK SITESTK)
(FOF SYSSTK SITE)
(FOF 8YSSTK DELYSTK)
(FOF SYSSTK DELAYE)
(FOF SYSSTK Z8TK)
(FOF S8YSSTK ASTK)
(FOF SYSSTK Z)
(FOF BYSSTK A)
(FOF 8YSSTK TEMF)
(SETQ TEMF (EVAL TEMF))
(FOF SYSSTK ANSW)
TEMF))
(T STOF)
(T (FROGN
(SETQ TEMF (AFFLY! DELAYR SITE (CONS (CAR Z YkXX 1))
(FROGN
(QUOTE (WE STILL ASSUME CONS CLASS = ELSE ACCESS MAY BE E
MBELLISHED))
(FROGN)
(FROGN)
(SETQ SITE TEMF)
(SETQ DELAYE RFLACDZ)
(FROGN
(SETQ A A)
(SETR Z (CDR Z)))
CYCLE))))
(RETURN (CDR ANSW))))
NIL
*

(FRETTY (GET GALLREMBER BEXFR)Y)

(LAMRBOA (A Z) (COND
CONULL Z XNIL)
(CEQUAL A (CAR Z) {(alLLREMBER A& (COR Z)2
(T (CONS (CaAR 2 J<(ALLREMEBER A (CIR Z 1333)30)
NEL
¥OTRANSLATE @EalLLREMBER?

(COMPILEZ TIME:D 1051 MILLISECONRS)
XK(PRETTY (GET RALLREMEER BEXFR))

CLAMEDG (A Z Y (PROG
{SYSEETK TEMP ANSW ABTK ZS8TK DELAYER DELYSTE SITE SITESTK)
(SETAQ SYS5TK NIL)
{(FROGN
(BETA ASBTK NIL)
(SETQ ZSTK NIL)
(FROGN
(SETR ANSW (LIST Xkik)3
(SETQA SITESTK (LIST 2
(SETR SITE ANSW)
(SETR DELYSTK (LIST)3
(SETH DELAYER RFLACDS 3
(QUOTE C(WE ASSUME CONS CONBTRUCTOR CLASS)))
(REFEAT UNTIL <(COND
(INULL Z X{FROGH
(AFFLYS DELAYR SITE NIL 2
(COND
CENOTEMPTY SITESTRK 3 (FROGN
CFUPYRREES TR SITE.)
(FOF DELYSTK DELAYE)
(FROGN
(FOF Z8TK Z 3
(FOF ASBTK A& 33
GYCLE)
(CNOTEMFTY SYSSTK) {(FROGN
(FROGN
(PO SYS55TK SITESTR @
(PUP SYSSTRK SLETE 2
(FOF SYSSTK DELYSTR)
(FOF SYSS5TK DELAYER)
CPOF SY8ETK Z8TK'J
(POP SYS8TK abTK J
(FOP SYSSTK 2)
(FOF SYG8TK A&)1
(FOF BYSS5TE TEME 2
CRETR TEMPE <EUAL TEME 3)
(FOF SYSHETK ANSW 2
TERE Y2
(T 8P ¥¥))

—-P6~

(CEQUAL A (CAR Z) (FROGN
CFROGN ‘
(SETR A A)
(SETQ Z (CDR Z)))
CYCLE)
(T (FROGN
(BETQ TEMF (AFFLY? DELAYE SITE (CONS (CAR Z)%kX)))
(FROGN
(QUOTE (WE STILL ASSBUME CONS CLASS = ELSE ACCESS MAY BE E
MEELLISHED))
(FROGN)
(FROGN)
(SETQ SITE TEMF)
(SETQ DELAYR RFLACD2))
(FROGN
(BETQ A A)
(SETO Z (COR Z)
CYCLE 3)))
(RETUKN (CIR ANSW))))
NIL
*

w0y

KCFRETTY (GET BALLREMBERX @EXFRY)

(LAaMBIIA (A Z) (COND

CONULL 2 ONIL)

(CEQUAL A (CAR Z) (ALLREMEBERX A (COR Z)3

CCATOM (CAR 2 22(CONS (CAR Z Y (ALLREMBER¥ & (CDR Z 3)))

(T (CONS (ALLREMBERX A (CAR Z))(ALLREMBERX A (CDR Z 222
NIL
¥ CTRANSLATE EALLREMBERX)

(COMPILE/ TIME: 1415 MILLISECONDS)
XCFRETTY (GET @ALLREMBER¥ REXFR))

(LAMBDA (A Z) (FROG
(SYSSTK TEMF ANSW ASTK Z8TK DELAYR DELYSTK SITE SITESTK)
(BETQ SYSSTK NIL) -

(FROGN
(SETQ ASTK NIL)
(SETQ ZSTK NIL)
(FROGN
(SETR ANSW (LIST %kX))
(SETQ SITESTK (LIST)
(SETQ SITE ANSW)
(SETR DELYSTK (LIST)
(SETQ DELAYE RFLACDZ2)
(QUOTE (WE ASSUME CONS CONSTRUCTOR CLASS)))
(REFEAT UNTIL <COND
CCNULL Z) CFROGN
(APFLYS DELAYR SITE NIL)
CCOMT
CONOTEMPTY SITESTK) (FROGN
(FOF SITESTK SITE)
(FOF DELYSTK DELAYR)
(FROGN
(FOF Z8TK Z)
(POF ASTK A))
CYCLE)
¢ CNOTEMFTY SYSSTK) (FROGN
(FROGN
(FOF SYSSTK SITESTK)
(FOF SYSSTK SITE)
(FOF SYSSTK DELYSTK) -
(FOF SYSSTK DELAYE)
(FOP SYSSTK Z8TK)
(POF SYSSTK ASTK)
(FOF SYSSTK Z)
(FOF SYSSTK &))
(FOP SYSSTK TEMP)
(SETQ TEMP (EVAL TEMF))
(FOF SYSSTK ANSW)
TEMF))
(T STOF)

B

" —

=28

(CEQUAL A (CAR Z D) (PR
(FROGN
(SETR A A)
(SET@ Z (CDR Z)
CYCLE))

((ATOM (CAR Z)) (FROGN
(SETQ TEMP (AFFLY?
(PROGN

(QUOTE (WE STILL

MBELL ISHED))

(FROGN)

(FROGN)

(BETQ SITE TEMP

(SETR DELAYE RFL
{FROGN

(SETQ A A)

(SETQ Z (COR Z)
GCYCLE)

(T (FROGN
(SETQ TEMF (APFLY:
(FROGN

(QUOTE (WE STILL
MBELLISHED)
(FROGN
(FUSH RFLACDR
(FROGN

G
))

DELAYE SITE (CONG (CAR Z JXkXx 33D

ASBLIME CONS CLASS = ELSE ACCESE MAY EBE E

. - 4
b
ALT2 3 '

]

DELAYER SITE (CONS Xkk Xkk&k 1))
ASSUME CONS CLASS = ELSE ACCESS MAY EBE E

DELYSTK)) :

{FUSH TENF SITESTR 3D

(SETQ SITE TEMF

)

(BETR DELAYE RFLACAZ)

(FROGN
(FPROGN
(FUSH & ASTE

)

(PUSH CCHR Z 3Z5TK D)

(SETR A A) | %
(BETQ Z (CAR Z)))
CYCLE))))
(RETURN (CDR ANSW)))) ;
NIL
X
F
izf

T
KFRETTY (GET BREMBERX REXFR))
CLAMEBOA A Z) (COND
COMULL. 2 NI 3 ’
({ERQUAL A (CAR Z 1XCCOR Z)) "

({ATOM (CAR Z J)I(CONS (CAR Z)(REMBERX A (COR Z))))
((EQUAL (CAR Z Y (REMBERX A (CAR Z)))(CONS (CAR Z Y(REMBERX A (COR
£ 233D
(T (CONS (REMBERX A (CAR Z))(CDR Z)))))
NI
¥ITRANSLATE BREMBERX)

(COMFILEZ TIME! 3045 MILLISECONDS)
X(FRETTY (GET @REMBERX @EXFR))

(LAMBDA (A Z2) (PROG

(BYSSTR TEMF ANBW ABTK Z5TK DELAYR DELYSTK SITE SITESTK)
(SETR SYS8TK NIE)
(FROGN

(SETR ASTK NIL)
(GETR ZSTK Wil 33
(FPROGN
(SETA ANGW (LIST Xxkx)
(SETQ BITESTK (LIST M)
(SETE SITE ANSW)
(SETQ DELYSTK (LIST »)
(SETA DELAYE RFLACDZ)
- (QUOTE (WE ASSUME CONS CONSTRUCTOR CLASS)
(REFEAT UNTIL (COND
CEMULL 2 3 {FROGN
(AFFLY: UELAYE SITE NIL 2
N
CANDTEMETY SITESTK Y (FROGN
(PR ESITESTR SITE)
(FOF BELYSTK DELAYE 2
CFROGN
(ROP Z5TK Z)
(FOF ABTR A)
CYCLE:)
CCNOTEMFTY SYSSTK)Y (FPROGN
(FROGHN
LE0E SYSEIN L ITESTK)
(FOF SYSSTK SITE)
(FOF SYSSTK DELYSTK
(FOF SYSSTRK DELAYE)
(FOFP SYBSETK Z&5TK 2
(FOF SYSSTK ASTK)
(ROF SYSBETK Z 5
CFOF SYSHETE A 32

flog.c R -

(FOF SYSSTK TEMP) ¥
(SETR TEMP (EVAL TEMF) ’
(FOF SYSSTK ANSW) -

TEMF)) .

CE STOF 239

B

CCEQUAL A (CAR Z 23 (PROGN
CaPEL YT BELAYERE SITE <Ol Z 0%
{COND

CCNOTEMFTY SITESTRK) (FROGN
tEUE SITESTIK S3ITE) "
(FOF DELYSTK DELAYR)
(FROGN

(PP Z8TR £ 2
(FOF ASTK A 23}
EYCLE 3D

(CMNOTEMPTY SYSSTR I (PROGN

(FROGN
CPOF SYSSTR STITESTK
(FOF BYSHTK BLTE 2
(FOF S5YS583TK DELYSTE)
(FOF SYSETK DELAYR D
(RO SYSETK Z5Th 2
(FOF SYSHETK A5TK)
(FOF S5YSBTK Z)
(POF SYSETK A)

(FOF STYSETK TEMF)

(SETO TEMFP (EVAL TEMF)

(FOF SYS5TK ANSW)

TEMP J)

¢l STOF 3300

((ATOM (CAR 2) (FROGN
(SETQ TEMF (AFFLY$! DELAYER SITE (CONS (CAR Z JYXkX)))
(FROGN

(QUOTE (WE STILL ASSUME CONS CLASE = ELSE ACCESS MAY EBE E

MEELLISHED)

(FROGN)

(FROGN)

(S5ETQ SITE TEMP)

(SETQ DELAYER RFLACDZ))

(FROGN _
(BETQ A A) _
(SETQ Z (COR Z 1)) : &

CYCLE 22

e

T CPROGN
(FUSH ANSW SYSSTK 3
(FUSH (QUOTE (COND
COCLAMEDA (K D) C(APFLY (QUOTE EQUAL YK))ANSW) (FROGN
(SETO TEMF (AFFLY: DELAYE SITE (CONS (CAR Z XXX)))
(FROGN
(QUOTE (WE STILL ASSUME CONS CLASS = ELSE ACCESS MA
Y BE EMEELLISHED)
(FROGN)
(FROGN)
(SETR SITE TEMF)
(SETQ DELAYR RPLACDZ)
(FROGN
(SETR A A)
(SETR Z (CDR 2)
CYCLE))
(T (FPROGN
(SETR TEMF (AFFLY! DELAYR SITE (CONS ok (COR Z))))
(FROGN
(QUOTE (WE STILL ASSUME CONS CLASS = ELBE ACCESS MaA
Y BE EMEBELLISHED 1)
(FROGNY
(FROGND
(SETQ SITE TEMF)
(BETA DELAYR RFLACAZ)
(FROGN 1
(BETOR A A) b
(SETQ Z (CAR Z 1))
CYCLE)))ISYSSTK)
{(FPROGN
(FUSH A SYS8TK
(FUSH Z SYSSTK
(FUSH ASTK SYSSTK)
(FUSH ZSTK SYSSTK)
(FUSH DELAYE SYSSTK)
(PUSH DELYSTK SYSSTK)
(FUSH SITE SYSSTK)
(FUSH SITESTK SYSS8TE))
(FROGN
(SETR ASTKE NIL)
(SETO Z8TK NIL)
(FROGN
(SETO ANSW (LIST (CAR Z kX%))
(SETQ SITESTK (LIST »)
(SETR SITE (COR ANSW)
(SETQ DELYSTK (LIST)

(BETR DELAYER RFPLACAZ) -
(QUOTE (WE ASSUME CONS CONSTRUCTOR CLASBS 2))
(FROGN

(SETQ A A)
(BETR Z (AR Z 3 3)
CYELE 1313)
(RETURN (COR ANSW 33))
NILE
4

D

References

[Bur75]

[ChaT72]

" [D&BT73]

EFriTh]

[FWWT76]

[F&W75]

[HoaT75]
[Knu74]
[M&B67]

[Men64]

[M&R6T]

[Pap72]

[Ris73]

[W&373]

[(Weg75]

W. H. Burge. Recursive Programming Technigues,
Addison-Wesley, Reading, MA (1975).

A. Chandra. Efficient compilation of linear recursive
programs. Stanford Artificial Intelligence Project,
STAN-CS-72-282 (1972).

J. Darlington and R. M. Burstall. A system which

automatically improves programs. Proc. 3rd International
Conference on Artificial Intelligence, Stanford University
(1973), B79-%89.

D. P. Friedman. The Little LISPer, Science Research
Associates, Palo Alto (1974).

D. P. Friedman, D. S. Wise, and M. Wand. Recursive
programming through table look-up. Technical Report
45, Computer Science Dept., Indiana University (1976).

D. P. Friedman and D. S. Wise. Cons should not
evaluate 1ts arguments. Technical Report 44, Computer
Scilence Dept., Indiana University (1975).

C. A. R. Hoare. Recursive data structures. Internat.
J. Comput. Information Sci. 2 (June, 1975), 105-132.

D. E. Knuth. Structured programming with go to
statements. Comput. Surveys 6, 4 (December, 1974), 261-302.

S. MacLane and G. Birkhoff. Algebra, Macmillan, New York
(1967).

E. Mendelson. Introduction to Mathematical Logic,
Van Nostrand, Princeton, NJ (196%1).

A. R. Meyer and D. M. Ritchie. The complexity of loop
programs. Proc. ACM National Conference, ACM Publication
P-67, Thompson Book Co., Washington (1967), 465-469.

S. A. Papert. Teaching children to be mathematicians versus
teaching about mathematics. Int. J. Math. Educ. Sci. Tech. 3

(1972), 249-262.

T. Risch. REMREC--a program for automatic recursion
removal in LISP. Report DLU 73/24, Datalogilaboratoriet,
Uppsala University, Sweden (1973).

S. A. Walker and H. R. Strong. Characterizations of flowchart-
able recursions. J. Comp. Systems Sci. 7 (1973), 40o4-L447.

B. Wegbreit. Mechanical program analysis. Comm. ACM 18, 9
(September, 1975), 528-539.

