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A technique is presented for deriving synchronous-system descriptions from recur-
sive function definitions, using correctness-preserving transformations. The use
of functional abstraction to address control and communication is illustrated in a
small example. The relationship of this technique to conventional digital design
methodology is discussed.

Introduction

This paper develops the thesis that functional notation is natural for the description of digital circuits
and that functional calculus is an appropriate basis for digital engineering. Standard function transformation
techniques are adapted to the problem of digital circuit synthesis. Functional programmers will find familiar
transformation methods applied in an unfamiliar setting; digital engineers will recognize a structured design
technique cast in a functional notation. This material is intended for the union of these two groups, not the
intersection. The presentation is informal but involves disparate formalisms.

The term “synthesis” is used above according to Manna’s definition [4]: ...the theory for constructing
: ..[implemcntations] that are guaranteed to be correct [with respect to their specifications| and therefore
do not require debugging or verification. The emphasis here is on “theory”, not “comstructing”. Before
automation is attempted, it should be shown that an engineering methodology is palatable and pervasive. It
must reflect intuitions about the implementation realm because synthesis requires intelligent guidance. The
synthesis process should yield correct implementations, not just correct descriptions of implementations—a
distinction that has more bearing in hardware than in software. The technique presented here borrows from
an established methodology for software engineering and is also related to practical digital design techniques.
However, the scope of its applicability in practice has not been demonstrated.

Manna uses “verification” in reference to logical correctness. In hardware, this term encompasses
analytic questions concerning the satisfaction of physical design constraints, testability, presence of spurious
electrical properties, and so forth. These kinds of problems are not considered in this paper.

The synthesis theory used here is based on transformation, what Darlington and Burstall describe as
“an inference system in which the sentences are recursion equations” [2]. A problem is stated in the form of a
recursive function definition, or specification. The goal is to systematically derive a circuit description using
correctness-preserving transformations. Whether the specification itself is right or wrong is immaterial; the
object is to obtain a correct circuit relative to the problem statement.

The transformation target is a recursion scheme (or pattern) that characterizes synchronous digital
systems. Syntactically, this target is a schematic in linear form; it states the components and the connectivity
of the corresponding circuit. The characteristic scheme is restrictive, but it can be mechanically derived from
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the larger class of iterative specifications. In essence, iterative functions are the language of structured digital
design.

Transformation of arbitrary specifications to iterative form (also known as “recursion removal”) cannot
be automated in the most general sense [12]. This problem is central to the use of functional calculus
to describe computation and has been studied extensively. The explicit treatment of control through the
use of continuations is a paradigm for the methodology. An aspect of the implementation is introduced
as a functional abstraction. The abstraction is then replaced by an appropriate representation, whose
interpretation is added to the specification. This process continues until specification is sufficiently concrete.

One advantage of using functional notation in design is its executability. The engineer can experiment
directly in the design language, making the precarious translation to simulation packages and other modeling
vehicles, in principle, unnecessary. In software the analogy is to use a modeling vehicle, such as Lisp, to
quickly develop, explore, and refine a prototype—or “executable specification”—from which an efficient
program derives. This work uses a “lazy” Lisp-like language called Daisy, which permits both functions
and data to be defined recursively. The normal-order semantics of a lazy language is preferred because
of its adherence to the mathematical meaning of functional notation. Data recursion is especially useful
for modeling circuits; non-terminating digital behavior is readily represented by non-finite lists, sometimes
called streams. Each of the functional expressions shown in this paper is a stylized Daisy program, but none
is peculiar to it. Laziness and streams are easily added to any language that properly provides for functional
values [1, 3].

After a review of notation, a simple model of digital behavior is presented. The main sections illustrate
the synthesis technique with an example. The conclusion discusses the relationship to conventional design
methods and illustrates the use of functional languages in experimentation.

Functional Specifications

Specifications are built from constants, identifiers, operations, applicative terms (e.g. f(ey,... v€n))s
conditional expressions (e.g. p — eo,e;), and function definitions (e.g. F(z1,...,2Zp) < e€). A term
is simple if it contains no defined function symbols. The notation is embellished with syntax for making
specifications easier to read. One might specify the factorial function as

Fac(n) <« zero?(n) — 1, multiply(n, Fac(decrement(z)))

A functionally equivalent version of Fac is given by

F(n,1)
where
F(z,y) < zero?(z) — y, F(decrement(z), multiply(z, y)).

This version is iterative: each instance—the single instance in this case—of a defined-function symbol is
tail-recursive (outermost) [6]. Specifications can have an operational interpretation beyond the functions
they define. The iterative version of Fac is a better program because it executes without a recursion stack.
It is essentially a flowchart [7].

Lambda-notation is used to specify and manipulate functional abstractions. The expression Azy.e
denotes the function defined by expression e with formal parameters z and y. The form A(z,y).e is used
when the formal parameter is a pair. The free identifiers in ¢ are bound lexically, allowing one to build
abstractions from the surrounding context.



A Model of Behavior

A digital circuit is a system of non-terminating behaviors, or signals, formally modeled as infinite
sequences. Considered as a domain,

SIGNALy =V x SIGNALy.

V is a domain of ground values. “{vo, {v;,{v2,...)))” is abbreviated to “(vo,v1,v2,...)". Signals model the
history of values on a conducting path. They are infinite because circuits do not terminate in the sense
that programs do. A correct circuit passes through a predictable state but continues to operate thereafter.
Signals are expressed by constants, simple terms, and initialized signals:

] = (v,]])
A(s1...8a) = (s(5¢ ... 82), (st ... s1)
v!S = (v,S)

where f: V" — V is a strict operation on the ground domain; and if S = {vo,v1,v2,...), then §® = v, and
Sf = (11'1, V240 .}.

The boxes distinguish the behavioral interpretation of the underlying symbols from their discrete in-
terpretation in specifications. Although the discrimination is sometimes helpful, it is unnecessary when
reasoning about terms. The elementary algebra for terms, based on composition, combination, construction,
and substitution, commutes with the signal-interpretation. For example,

[Fod(s)=[A(F)(s), and R0 I o(mu)](x,v) =[x, {7, x)).

This transparency is the basis of the argument for using a functional calculus in digital engineering.

A circuit description is a set of mutual signal-defining equations, for example,

X =n 1 [decrement](x)
Y =11 [mulipli](x, )
P= [erd(x)

This recursive system abbreviates the recurrence relation

Xo=ﬂ Yo=
Pg = (Xk =0)
Xkt1=Xp =1 V=X xYi

The model says nothing about time, but if it is assumed that values with the same index are coincidental,
then the example describes a clocked sequential circuit, or synchronous system [4]. Initialized signals denote
clocked storage elements; other terms are combinational. All feed-back loops pass through a storage element.
There is an obvious schematic correspondence; signal identifiers name paths whose connectivity is prescribed
by the equations:



a flowchart. Control hardware is systematically derived from the control description 14, 15]. Since itera-
tive schema characterize “flowchartability”, writing an iterative specification is equivalent to conceiving a
sequential-control algorithm.

Non-iterative specifications represent a higher level of specification that is not available in the conven-
tional methodologies. Their direct translation to circuits is not always possible; non-linear recursions must
be removed or implemented. For both tasks, systematic formal techniques exist from research in program
transformation, program synthesis, denotational semantics, and comparative schemata.

An Example

This section develops a small example of circuit-description synthesis and demonstrates various uses
of functional abstraction in the derivation of a realization. An iterative version of an initial specification is
obtained by implementing recursion with a stack. Since the initial specification is linear, a stack is not strictly
necessary. However, its incorporation provides a context for a discussion of the treatment of complex data
types. The initial steps of the derivation follow a standard pattern and are presented with little justification;
more complex exercises can be found in [8] and [9], which cite related research. The interested reader might
begin with [13] and [2] and find mathematical foundations in [7] and [11].

o Let us take as a specification the general linear recursion scheme

F(z) < p(z) = f(z), g(z,F(h(2))).

The variables p, f, g, and h stand for arbitrary combinations of strict operations on a fixed but unspecified
ground domain. The example is quite general: any linear recursion equation can be expressed in this form.
(The factorial specification shown earlier is an instance of this scheme.)

e Introduce a continuation—an abstraction for control—to specify an order for the computation.

F(z,[Av.v]) where
F(z,7) <« p(z) = 1/(z), F(h(z), [Av.79(z,v)]).

Landin was the first to use functional abstraction to describe control in this way [5]. In denotational
semantics, this is a standard step in the development of an operational semantics for a programming language
[11].

e Choose a stack to represent the continuation and define a function to interpret that representation.

F(z, empty) where
F(z,c) <« p(z) = G(f(z),c), F(k(z), push(z,c)).
Glv,c) <= empty?(c) — v, G(g(top(c),v), pop(c)).
(For the factorial instance of this specification, an accumulator is a better representation choice, giving rise

to the iterative version of Fac shown earlier [13].)

® This version of F is iterative. Add a token encoding which of the functions F and @ is “in control”.
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F(F,z, empty)
where F(s,z,c) <

(=1 -
[P(I) - F(Gs J(z),¢), F(F! h(:),push[:, c)]]
(s=6)

[empty?(c) — v, F(€,g(top(c),z), pop(c))].

e An instance of the desired scheme is obtained by distributing the conditional across the calls to F. The
general distributive law is

p—=J(z), oy) = (p— f9)(p— 2y)

First, define a combinator (“macro”) for the selection operation:
def
sel = A(g,r,v0,v1,v2). ¢ = [r — vo,v1], 05

With some rearrangement and identification of terms, distributing sel yields

F(s,z,¢) <«
let ¢ = equal?(s,F)
r = p(z)
t = top(c)
e = empty?(c)
in
and(not(q),e) — z,F( sel(g,r,G,F,G),
sel(g,r, I(I)s k(z), g(t, )),
sel(g,r, ¢, push(z, c), pop(c)) ).

e This version of F is in the characteristic form and is realized by

F(a°,2°,c°) <« (X, RDY) where
s = ot o] (@, &[], []. g
X =21 [sel](Q, B[] (x),[1] (x),[d] (7. X))
Q= [eavald(s,[E])
R=  [J(x)
RDY =  [and]([not](Q), E)
T= [tr](c)
E=  [emptyi(c)
C = &1 [sel](Q, B, C,[push] (X, C), [po7) (C))



Abstract Components

Signal C' in the derived circuit description ranges over stacks and, therefore, could hardly be regarded
as a true data path. The factorization below yields a circuit over more concrete signals by introducing an
information-hiding component analogous to an abstract data type. We continue the example, now concen-
trating on the complex signals

T=  [tor](c)
E=  [mtyd(c)
C=c"1 (Q,R,C,(Xao)s(c})

The goal is to replace the signal C with an abstract component which manages the stack. At the same time,
the surrounding circuit should retain the selector that determines what is done to the stack. The key step
is to introduce a “signal” that ranges over operations and is applied to the appropriate operands.

c=c1t [l](x,0)

& (Q, R, |A(v,c).cI,LA(v, c).push(v, c)l,[A(v, ¢).pop(c)|)

This gets the selection out of C’s definition, but signals don’t range over operations. |I| is really a signal of
instructions. Define an interpretation for instruction-representations,

interpret 4 A(i,z,¢) . (f =STET) — ¢,
(¢ = PUSH) — push(z,¢),
(¢ = POP) — pop(c).

1= [sel] (@, [5TE1], [PusE], oe])

Now define the abstract component STACK to be

STACK (°,1,X) <« ([empty?](C),[tor](C))

where

0= 1 [z, %,0)

With the incorporation of STACK, the circuit description is now in terms of concrete signals, schemat-
ically depicted below.

Instruction-signal I becomes

F(s°2°¢%) <« (X, RDY) where
§ =21 [oel](Q, . [g] [E].[e]
X =21 [sel](Q, R, [f](x).[6] (X), [f] (T, X))
Q= [equatd](s,[]
R=  PJx)
RDY = [and]([n0t](Q), E)
I=  [sel](@, R [sTET], [pUsH] [poP])

(E,T)=  STACK(®,I,X)
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Define a component to be a signal-of-operations and extend the definition of application. Informally,

= ([
C(X1...Xa) = {C°(X?...X2), CY(X]...Xx1))

This model supports the steps leading to the definition of STACK in the example, but also raises problems
in the treatment of multiple-valued or partial components and in the assurance of 2 uniform signature. In
practice, these problems are avoided by constraining the way in which components are introduced, just as
combinational feed-back is avoided by the transformation process. The component |I| was composed of strict
functions on a normalized parameter.

A derived circuit description is still subject to refinement. Transformations on signals, such as those
developed by Sheeran [10], seem appropriate at this level, as does reasoning based on interval logic. The
theorem giving a characteristic specification for synchronous systems establishes the temporal assertion,
“ANS is F(vy,...,vs) 68 soon s RDY is true.” An algebra for local refinement should maintain this
correctness property. It is reasonable to assume that some abstract-component implementations come with
their own clocks. STACK was incorporated as a synchronous sub-circuit. To be useful in practice, the
technique must be extended to cope with the implied communication protocols.

Circuit descriptions are directly interpretable as programs, with signals being represented as recursively
defined lists. The resulting logical simulation is a data structure that can be manipulated with an editor.
Figure 1, which shows an editor for the factorial-circuit written in Daisy, illustrates how little need be
involved in simulating logical behavior. This kind of experimentation can reveal unforeseen properties of
behavior. In the example, n! appears one cycle before RDY is asserted, suggesting the addition of a-
test to the output of. Signal Y eventually becomes stable, a fact which may be useful in designing
an interface to the circuit.
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FACckt:m <= <X Y RDY>
where
I =< n | DECREMERT:<X> >
Y=<1 | MULTIPLY: <K T>>
RDY = ZER0O? : <X>

Query:[ [ Q@ ! Qs]
[(Xx YR] ! Sg) ] <=

let Hext = Query:<gs Ss>
How = Query:<Qs <<X Y R> ! Ss> >
in
if:< same?:<Q "+"> Hext
game?:<Q "$"> <"exit"™>
same?:<Q "7"> <("I=" X
ny=" Y
"R=" R | How>
game?:<Q "I"> <X ! Now>
same?:<Q "Y"> <Y | How>
same?:<Q "R"> <R | How>
How

(a)

Figure 1

& Query:< console:"FACE "

Xps:FACckt: 10

FACE ?
[XI= 10 Y= 1 BR= []
FACE ¢++

FACE RYX
[1 720 7
FACE +Y+Y+Y

5040 30240 151200
FACE ?

X= 4 Y= 151200 R= []
FACE +++?

XI= 1 Y= 3628300 R= []
FACE +?

XI= 0 Y= 36283800 R= T
FACE +++

FACE R
(1
FACk 7
I= -3 Y= 0 R= []
FACE +747+47
I= -4 Y= 0 R= []
X= -5 Y= 0 R= []
I= -6 Y= 0 R= []
FACE §
exit]
&

>

(b)

Daisy Experiment with the Factorial Circuit Description

11

The colon denotes application; € *...x ! % > builds lists; ‘&’ is Daisy’s prompt. The primitive console,
whose argument is a prompt, produces a character-stream from the keyboard; same? compares values; if is
like Lisp’s COND.

DECREMENT, MULTIPLY, and ZERO? are arithmetic operations extended to “streams” (lists), and Xps
transposes a list-of-streams to a stream-of-lists. Each is trivial to define owing to Daisy’s interpretation of
list-application [9].

FACckt models the factorial-circuit. Query is a stream-oriented interpreter for questions about FACckt’s
behavior. The source (a) has been modified; Daisy’s syntax is slightly more crude. The transcript (b) is
verbatim.
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c;[enba_m . 1 | — 2
= A @ [28 —T]
—19]
e g
FHE
WC r—— [as HSnd
5] iy
7 ¢
i | Jos
zero? —%-

decrement

multiply




