A Closer Look at
Export and Import Statements
By

Matthias Felleisen
and
Daniel P. Friedman

Computer Science Department

Indiana University
Bloomington, IN 47405

TECHNICAL REPORT NO. 184

A CLOSER LOOK AT
EXPORT AND IMPORT STATEMENTS

by
Matthias Felleisen & Daniel P. Friedman
November, 1985 i

This report to appear in the journal, Computer Languages.



N .
. s Ba."=, m= lew, e SR ot |..._..4H..l.:



A Closer Look at Ezport and Import Statementa 1

A Closer Look at Export and Import Statements
Matthias Felleisen, Daniel P. Friedman

Computer Science Department
Lindley Hall 101
Indiana University
Bloomington, Indiana 47405

Abstract

Export and import statements can be implemented as syntactic extensions.
We first define their intuitive semantics in terms of Scheme programs. Then
we show how export and import can be improved to allow for an arbitrary
load-sequence of modules and to handle dynamic extensions of modules.

Import Ezport Modular Programming

1. Introduction

Modular programming has become an indispensable tool for the design of large
software systems. Language designers have realized this fact and have incorporated
facilities for modular programming. Simula 67 ([4]) started this trend with its class
concept. Other languages, including Modula ([13]), Ada ([15]), Modula-2 ([14]), Y
([6]), and ML ([7]), have followed. Most of these languages support at least features
for the declaration of modules, export, and import.

Scheme ([3],[12]), 2 modern programming language combining imperative and
functional aspects, does not provide modules per se. As Scheme is an interactive lan-
guage, one could think, on the other hand, that it is only suitable for programming-
in-the-small, where modules are not required. However, we believe that modular
programming techniques should be used for small programs for just the same rea-
sons they are used for larger ones.

The conventional way to provide modular programming features in a language
is to change the compiler so that it recognizes the appropriate statements. In
Scheme we have an alternative available. Scheme has a small, but powerful set
of semantic constructs which can be used to program new language facilities. In
Scheme 84 ([5]) there is also a syntax preprocessor ([8]) which allows for syntactically
abstracting new constructs. Put differently, if we wish to extend Scheme 84 with a

This material is based on work supported by the National Science Foundation under grants DCR
85-01277 and MCS 83-03325.



2 A Closer Look at Ezport and Import Statements

new construct, we first define an operational semantics, and then we syntactically
abstract from the implementation details. As observed elsewhere ([2]), definitions
of this kind also provide a starting point for a denotational semantics for these
statements.

We will demonstrate in this paper how to incorporate modules into Scheme 84
with this technique. In the course of the presentation, three different versions of
import will be defined. We call them import-by-value, import-by-need, and import-
by-name. The latter turns out to be the most useful one, though it seems that no
other language offers a similar construct. Export can also be defined in two different
ways. The enhanced version allows for dynamic changes to a module and can thus
be helpful for program debugging in conjunction with import-by-name. Again, most
languages do not exploit this more flexible form of export.

The next section gives a brief description of Scheme 84 and its syntax prepro-
cessor. In Section 3 we present the syntactic extensions for export, import, and for
defining modules. In the last section we discuss more general aspects of the new
facilities and an unresolved problem.

2. Scheme

Scheme is a descendant of Lisp and the A-calculus. It is lexically scoped, and
applicative order with functions as first-class values. This will be important for the
design of our export mechanisms.

Figure 1 defines a subset of Scheme 84’s syntax that is sufficient for the pur-
poses of this paper. The superscripts * and + denote 0 or more, and 1 or more
occurrences of the preceding form, respectively. Square brackets are interchangeable
with parentheses, and are used for readability. quote expressions return the indicated
literal object; ‘(object) is equivalent to (quote (object)). lambda expressions evaluate
to first-class functional objects that statically bind their identifiers when invoked;
the variation (lambda (identifier) (expressien)t) binds (identifier) to the list of all
actual parameters. 1ot makes lexical bindings, and 1etrec makes several (mutually)
recursive lexical bindings. block is like let except that the identifiers do not get
initialized to a value, s.e., it is equivalent to a block in Algol 60. rec establishes
one recursive lexical binding. 1¢ evaluates its second expression if the first is true,
and the third otherwise; when only evaluates the second expression if the first one
is true. select evaluates the tag expression, and then returns the value of the first
expression whose corresponding symbol matches the tag. If the last symbol is e1ss,
it always matches. lambda, let, letrec, block, and select evaluate the expression
lists from left to right and return the value of the last one. set! changes a binding
of a lexical identifier; define establishes a global definition. An application evaluates
its expressions (in some unspecified order) and applies the functional value of the
first expression to the values of the remaining expressions.

Scheme 84 provides a syntax preprocessor ([8]) that examines the first object
in each application. If the object is not a keyword, then it is assumed that the
expression is an application; if the object is a syntactic extension keyword, then the



A Closer Look at Ezport and Import Statemente

(expression) ::=
(constant)

| (identifier)

| (syntactic extension)

| (quote (object))

| (Qambda ({1dentifier)*) (expression)*)

| (lambda (identifier) (expression)t)

| (et ([{identifier) (value)]*) (expressiom)*)

| (Letrec ([(1dentifier) (value)]*) (expression)*)

| (block ({1dentifier)*) (expressicn)*)

| (zec (1dentifier) (expressien))

| (42 (expression) {expression) (expressicn))

| (vhen (expressicn) (expressicn))

| (select (tag) [(symbel) (expression)*1t)

| (set! (identifier) (expressiom))

| (define {identifier) (expression))

| (applicaticn)
(value), (tag), (function) ::= (expressien)
(syntactic extenmsicn) ::= ((keyword) (object)¥)
{application) ::= ((function) {expressien)®)

Figure 1 : Syntax of a Scheme 84 Subset

expression is replaced by an appropriately transformed expression. For an example,
consider Scheme’s 1et statement. With the syntax preprocessor it can be defined
by the following equivalence:

(syntax
(let ([14 vall ...) exp ...)
((lambda (14 ...) exp ...) val ...))

The syntactic pattern says that a let-expression is a list with 1et in its first position,
a list of pairs “([id val] ...)” in the second followed by expressions “exp ...”. The
second line, or semantic pattern, specifies that a let-expression is equivalent to
an application where “exp ...” are the function bodies, “44 ...” are the formal
parameters, and “val ...” are the actual arguments. The ellipsis “...” is a keyword
for the syntax preprocessor. It specifies 0 or more occurrences of the preceding
prototype.

The extent to which the syntax preprocessor enables a programmer to create
new syntactic forms gives us the right to call this activity syntactic programming.
It is interesting to note, that by virtue of the preprocessor Scheme’s core could
theoretically be reduced to seven types of expressions : (comstant), (identifier),
quote, if, lambda, and set! expressions, and (application).

3



4 A Closer Look at Ezport and Import Statements

We also require seven primitive functions. cems, car, and cdr are the conven-
tional Lisp list constructor and selectors, respectively. 1ist is also a list constructor:
it takes a list of expressions and returns a list of their values. set-cari takes a (non-
empty) list and an arbitrary object and replaces the cdr of the list with the object
by a side-effect. eq? returns true if its arguments are the same literal objects. au11?
returns true if its argument is the null list (nil). apply takes a function and a list
of arguments and returns the value of the application of the function to the list of
arguments.

A typical example of a Scheme function is the following definition of the function
assq-sf, which will be useful later in the paper:

(define assq-sf
(lambda (a 1 succ fail)
((rec loop
(lambda (1)
(if (null? 1) (fail)
(12 (eq? a (car (car 1))) (succ (car 1))
(oop (cdr 1))))))
n»

Intuitively, assq-s£ searches an association list for a pair whose first component is eq?
to its first argument and then applies the function suce to that pair; if unsuccessful,
it invokes the function fail on no arguments.

8. Modular Programming Features for Scheme

In general a module is just a collection of function-, constant-, and variable-
declarations. Some of these declarations are exported so that other modules may
import and use them; the rest of the declarations remains hidden. In other words
a module is like a block, part of whose definitions are visible to the outside world.
The collection of exported items is usually referred to via the module identifier.

8.1 Export

The equivalent of a block in Scheme is a let or letrec expression. Each es-
tablishes a collection of new identifier-value bindings, f.e., environments, and then
each evaluates the statements in its body. The value of the last is the value of the
entire expression. If a block is to represent a module, and a module in turn stands
for the collection of exported items, it is quite natural to have an export expression
as the last statement of a module-block. If we then bind the result of the export
expression to the module’s identifier, other modules and blocks may later refer to
the exported items via the module identifier—just as desired. Figure 2 shows a
typical module. Five functions are declared and four are exported.

The result of an export expression must represent the visible part of the mod-
ule’s declarations. Since declarations can be regarded as mappings from identifiers



A Closer Look at Ezport and Import Siatements

(define stack-adt
(letrec ([init (lambda () °(newstack))]
[chk (lambda (stk)
(vhen (eq? °mewstack (car stk))
(exzror _ _ _ )))]
[push (lambda (ele stk) (coms ele stk))]
[pop (lambda (stk) (chk stk) (cdr stk))]
[top (lambda (stk) (chk stk) (car stk))])
(export init push pop top)))

Figure 2: A Simple Module Declaration

to values, we have chosen to represent a module by a function object of the form?:

(lambda (msg)
(select msg
[namei valuei]
[pame2 valuel)

[else (error "bad export ® msg)l))

where valuei, value2, etc. refer to the values of the exported items namei, name3, etc.
As this expression is evaluated in the module’s environment, we can reference valuet
as mamei, etc. Hence, the expression can be textually abstracted by the following
syntax declaration:

(syntax
(export mame ...)
(lazbda (msg)
(select msg
[name name]

[else (error “bad export * msg)l)))

Figure 3 shows the expanded form of the module in figure 2. The reader should
convince himself that the identifier stack-adt is really bound to the approriate func-
tion.

1 An alternative is to represent these finite functions with tables or association lists.



© A Closer Look at Ezport and Import Statements

(define stack-adt
(letrec ([imit (lamdda () °(newstack))]
[chk (lambda (stk)
(vhen (eq? ‘mewstack (car stk))
(errer _ _ _ N1
(push (lambda (ele stk) (cons ele stk))]
[pop (lambda (stk) (chk stk) (cdr stk))]
[top (lasbda (stk) (chk stk) (car stk))])
(lazbda (meg)
(select msg
[init init]

(push push]
(pep popl
(top top]
[else (errer “bad expert ® msg)l))))

Figure 3: An Expanded Module Definition

This first version of the export function is well-known ([1]). It suffices in most
cases and is equivalent to the corresponding statements in traditional languages.
Sometimes, however, more flexibility is needed. For example, it is often the case
that during the debugging phase of a program a function in some module has to be
added or changed. If the function to be changed is exported, a more dynamic export
function can be used to alter the definition without re-loading and re-compiling the
complete module.

The new version of export collects all the exported items in an association list,
table. It then defines a function *ada#, which can change or extend the bindings
in table. The function is immediately used to insert itself into the table. The new
syntactic abstraction is:

(syntax
(export mame ...)
(let ([table (list (cons °name mame) ...)])
(let ([*addf (lambda (newf mewval)
(assq-sf newf table
(lambda (p) (set-cdr! p newval))
(lambda ()
(set! table
(cons (cons newf mewval) table))))))1)
(*addf °+addf *addf)
(lambda (msg)
(assq-sf msg table cdr
(lamdda () (error “bad export ® msg)))))))

As in the first definition of export, the result of an export expression is a closure
which takes an identifier, looks up its binding—this time in a table—and returns the



A CQloser Look at Ezport end Import Statements

associated value. With *addf we can now dynamically extend and redefine bindings
in modules. To do this, the user must pass the function name and the function
body to the *adat function of the module which he wants to change. The following
syntactic form hides the details:

(syntax
(add-function-to-medule med-pame func-name func-body)
((zod-pame °*addf) ‘func-pame func-body))

Unfortunately, the technique does not work if the new function definition needs
access to a lexical variable in the definition of the module. For example, we cannot
dynamically add a function to a module which needs to side-effect a state-variable
of that module. Neither can we add a function that calls locally defined functions.

3.2 Import

Import is a converse of export. It extends an environment to include new
bindings. The values for these extensions come from exporting modules.

In Scheme the standard way to extend a lexical scope is the let statement. It
lexically binds values to names during the evaluation of its body. In the case of
an import from modules, values are obtained by sending their export names to the
modules. A first approach towards an import statement could thus be:

(syntax

(import from-module (pame ...) exp ...)
(let ([name (frem-medule °mame)] ...) exp ...))

This technique works for many programs but it is inflexible about the naming of
imported items. Often the same name is used in different modules for different
things, e.g., init for a function that initializes stacks, queues, etc. An import
statement should therefore at least allow for renaming of imported functions. This
can easily be done by mimicking the let statement:

(syntax
(import-by-value from-moduls ([im-pame ex-name] ...) exp ...)
(let ([im-mame (from-medule ‘ex-nmame)] ...) exp ...))

The new version of import binds the objects called ex-name, etc. from the exporting
module to the names in-pame, etc., respectively. An example of its use is shown in
figure 4.

Import, as defined above, determines the bindings for its blocks once and for
all. It does this at the beginning of its evaluation, and is therefore called import-
by-value. It immediately follows that a programmer would not be able to use the
dynamic extension facility as defined in the preceding section. Another problem
associated with this first version of import is more serious. In an interactive pro-
gramming environment like Scheme one should not be forced to load and compile
modules in a certain order. Also, one would like to have the freedom of redefining
modules without having to re-link the complete program. Unfortunately, import-
by-value is incapable of allowing for either of these possibilities.

7



8 A Closer Look at Ezport and Import Statements

(define queue-of-stacks
(import stack ([FWewS imit]
[sfremt topl)
(impert queue ([NewQ init]
[Qfrent front]
[add enql)
(let ([seareh _ _ _ ]
[ins-item _ _ _ 1)
(export search ins-item)))))

Figure 4: Re-naming Import from Several Modules

The problem with the current version of import is that it immediately evalu-
ates the value which is imported. This determines the binding for the rest of the
execution. However, if imported values were restricted to functions, then we could
delay the real import until the function was needed. This can be accomplished by
binding another, knowledgeable function to the import names. Let us assume for
the moment that we are only dealing with importing and exporting functions. Fur-
thermore, let us only consider modules that do not use imported functions at the
time they are defined. We will show in the next section how to remove this latter
restriction. The impact of the former one will be discussed in the last section.

An improved version of import delays the import, i.e., the evaluation of (fros-
module "ex-name) until the function named im-name is needed. Evaluation of an ex-
pression can be delayed by packaging it up in a function. As it is unknown how
many arguments the imported function takes, the delay function must take an in-
definite number of arguments. For this purpose Scheme provides a form of lambda
which binds the list of all its arguments to a single parameter name. Having ob-
tained the list of arguments for the imported function, the delay function evaluates
(from-module ‘ex-name) and applies the result to its list of arguments with the help

of apply:

(syntax
(izport-by-name from-medule ([im-pame ex-pame] ...) exp ...)
(let ([im-name (lambda args (apply (from-medule ‘ex-mame) args))] ...)
exp ...))

Import-by-name imports a function whenever this function is used just as call-by-
name evaluates the form associated with a parameter whenever the corresponding
identifier is referenced. And just like call-by-name, import-by-name is an expensive
operation. Whenever the function is invoked, it must obtain the imported function
by evaluating (from-module *ex-name). This is probably reasonable for the debugging
phase because a programmer can make use of this extra flexibility. However, the
price is in general prohibitive. Frequently, we can assume that if a program works
correctly, it does not change its user-defined functions—at least not the exported
ones. Based on this assumption, import-by-name can be improved. After the
first import the delay function can redefine itself to the result of the import for
all future references. More precisely, the delay function redefines the binding for



A Closer Look at Ezport and Import Statements

the imported function to the result of the import. It is interesting that because
of this need for redefinition of the delay function, the binding has to be recursive,
although the function does not call itself recursively. We must finally guarantee that
it returns the proper result on its first invocation. The definition of import-by-need
summarizes this optimization:

(syntax
(import-by-need from-module ([im-name ex-mame] ...) exp ...)
(letrec ([im-name (lambda ist-time-args
(set! im-name (from-module ’ex-name))
(apply im-name ist-time-args))]
. |
exp ...))

Import-by-need resembles call-by-need in that it evaluates its import expression
only the first time it is used determining the result for the remainder of the program
execution.

Both, import-by-name and import-by-need, allow the programmer to load and
compile modules in an arbitrary order as long as these modules satisfy the above
mentioned restrictions. Furthermore, import-by-name offers two advantages. First,
a programmer can redefine a module after a test and re-run the program without
having to re-link all the other modules. And second, import-by-name can make use
of the enhanced export technique which allows for dynamically extending modules
with functions.

But again, both techniques do not generalize to modules which use imported
functions at definition time. Consider the example in figure 5. Here the state
variable msgq is immediately initialized with the imported function init. If queue
is not defined at the time msg-handler is defined the evaluation results in an error.
No import technique can solve this problem in a reasonable way. The problem is
caused by our usage of define for module declarations. We obviously need a special
defining form for modules.

(define mag-handler
(izport queue ([imit init] [addm enq] [first fromt][get deql)
(let ([msgq (imit)])
(let ([send! (lambda (msg)
(set! msgQ (addm msg msgq))
*ok)]
[get! (lambda ()

(let ([fst-element (first msgQ)])
(set! megQ (get msgQ))
fat-element))])

(export send! get! first)))))

Figure 5: Module with State Variables

9



10 A Closer Look at Ezport and Import Statements

8.3 Defining Modules

For the definition of modules we have so far relied on Scheme’s generally avail-
able definition techniques, .e., define and letrsc. As we have seen in the preceding
section, define is too weak to allow a most general import/export technique. The
same is true for letrec. Consider the example in figure 6 which displays the declara-
tion of two local modules. The way 1etrec evaluates its expressions, procq would try
to import functions from process in an environment where process is not yet bound
to a module.

(letzrec ([process (let ([time-pt _ _ _]
[megQ-pt _ _ _1]
[state-pt _ _ _ ]
[pame-pt _ _ _1]
[init 1)
(export time-pt msgQ-pt state-pt name-pt imit))]
[precQ (impert queus ([imitQ init][addQ add] [remQ remove])
(import process ([Pname name-pt][initP init])
(et ([init _ _ _ 1]
[adar _ __1___)
(export init addP _ _ _ ))))]

Figure 6: Local Modules

The major problem with define and letrec is immediate evaluation. In both
cases the result of the delayed expression is an export function. For definitions with
detine we delay the evaluation of the module body, or in other words, the delay
function is wrapped around the body. The delay function assures that the first call
to the export function works correctly, i.e., it takes the message sent to the module
and passes it on. The definition of dez-module parallels import-by-need.

(syntax
(def-medule name medule-exp)
(define name
(lazbda (meg)
(set! name medule-exp)
(name msg))))

The problem of letrec can be solved by a simple redefinition. letrec is equivalent
to:

(syntax
(letrec ([id vall ...) exp ...)
(block (id ...) (set! id val) ... exp ...)).



A Closer Look at Ezport and Import Statements

So we just have to replace the set! by def-module in order to make letrec work for
module definitions:

(syntax
(n-letrec ([id val] ...) exp)
(block (id ...) (def-module 4d val) ... exp ...)).

But letrec’s problem is also present when mutually recursive closures—not necessar-
ily representing modules—are defined. Consider for example the expression (letrec
([£ gl[g cons)) g). Depending on the sequencing of (£ g] and [g cons) this program
will result in an error. Therefore, we define a general 1etrec for closures. The dif-
ference between the new c-letrec and m-letrec is small. As we do not know how
many arguments a function declared in c-letrec takes, c-letrec uses a lambda-form
which binds all the arguments to one single parameter:

(syntax
(c-latrec ([name body] ...) exp ...)
(block (pame ...)
(set! name (lambda x (set! mame body) (apply mame x)))

op ...))

The expansion of e-letree first establishes a block with the new variables. Then
each variable is set to its corresponding delay function. As this is done in the scope
of the newly created environment, the bindings can be mutually recursive. When
the functions are finally invoked, they reset themselves to the intended function.
The names get set and reset only once.

4. Discussion

In the preceding sections we have shown how modular programming facilities
can be implemented as syntactic extensions to Scheme. This observation is not new.
Reynolds ([11]) had already pointed out that Simula 67’s classes are syntactic sugar,
and even Landin had foreseen this with his explanation of own variables in Algol
60 ([9]). Furthermore, we have shown several alternatives for the implementation
and semantics of export and import statements for modules.

Whereas export has two rather straightforward implementations, import can
be realized in at least three different ways. Import-by-value is the easiest one to
implement but it restricts the programmer in many ways. He cannot load modules
in an arbitrary order, and it is also impossible to interactively debug modules.
As our proposal is aimed towards an interactive language, this is indeed a severe
restriction. Interactive languages require late binding for program development.
We do this by delaying the import until the function is used. Then we know the
function is needed, and it must then be defined. The resulting import-by-name has
the desired attributes. It allows for an arbitrary load order and makes debugging
in many cases easier. Import-by-name is, however, expensive. Fortunately it can
be replaced by import-by-need under rather weak assumptions. We finally want to

11



12 A Closer Look at Ezport and Import Slatements

point out that our import and export statements are programs, s.e., that they are
executed at run-time. This differentiates them from their syntactic counterparts
which are used at compile- and link-time.

Scheme’s define and letrec turned out to be insufficient for the definition of
modules: they evaluate their expressions too early. The new forms, def-module and
c-letrec, delay the evaluation until the newly defined variables are dereferenced.
Metaphorically, they are assignment-by-need and letrec-by-need. Together with
import and export they form the core of our proposal for Scheme’s module structure.

Identifiers bound to non-functional values, s.e., variables in the conventional
sense, present a problem with these techniques. Import-by-value only evaluates the
declaration once, i.¢., is incapable of reflecting changes in a variable’s value; the
other techniques assume that functions alone are exported. This is a restriction,
but we argue on the following grounds that it is not a stringent one. To begin
with, variables should not be exported at all: they are an explicit part of the im-
plementation of modules and should for modularity and security reasons be hidden
from the user of a module. Observer functions can and should equally well take
their place ([10]). Second, Scheme is a call-by-value, not a call-by-reference, system.
That means that identifiers are directly bound to objects, not to references. A nat-
ural consequence of this is that modules should export and import values, because
identifiers themselves cannot be accessed beyond their lexical scope.

Another problem that we have not addressed at all is the issue of type checking.
In conventional approaches to module structures import and export also exchange
type information in order to prove the type correctness of programs. Scheme pro-
grams usually do not contain type information. However, type information can be
added and used for compile-time type checking. Whether our proposals for module
structures with late binding is compatible with type checking, must be explored.

Acknowledgement. We wish to thank Gary Brooks, Bruce Duba, Chris
Haynes, John Nienart, Eugene Kohlbecker, and Mitch Wand for many useful com-
ments on earlier drafts of this paper. We are especially indebted to Chris who
stimulated the original discussion and provided several important observations.



A Closer Look at Ezport and Import Statements

Bibliography

[1] Abelson, H., G.J. Sussman, Structure and Interpretation of Computer Programs,
MIT Press, (1985).

[2] Clinger, W.D., D.P. Friedman, M. Wand, A scheme for a higher-level semantic
algebra, in Algebrasc Methods in Semantics, J. Reynolds, M.Nivat (Eds)., 237~
250, (1985).

[3] Clinger, W.D., The Revised Revised Report on Scheme, Joint Technical Report
Indiana Unsversity and MIT Laboratory for Computer Science, (1985).

[4] Dahl, O.J. B.Myrhaug, U.Nygaard, Simula67 Common Base Language, Norwe-
gian Computing Center (S-22), (1970).

[5] Friedman, D.P., C.T. Haynes, E. Kohlbecker, M. Wand, Scheme84 Interim Ref-
erence Manual, Tech. Rep. No. 153, Indiana Univeristy, Computer Science De-
partment, (1985).

[6] Hanson, D.R., The Y programming language, SIGPLAN Notices 16, 59-68,
(1981).

[7] MacQueen D., Modules for Standard ML, Conf. Rec. 1984 ACM Symposium
on Lisp and Functional Programming, 198 — 207, (1984).

[8] Kohlbecker, E., Syntactic Eztensions in a Lezically Scoped Language, Ph.D.
dissertation in progress, Indiana University, (1985).

[9] Landin, P.J., A formal description of ALGOL 60, in Formal Description Lan-
guages for Computer Programming, T.B. Steel (Ed.), (1965).

[10] Parnas D.L., On the criteria to be used in decomposing systems into modules,
Comm. ACM 185, 1053-1058, (1972).

[11] Reynolds, J., Syntactic control of interference, Conf. Rec. 5th ACM Symposium
on Principles of Programmsg Languages, 33 — 46, (1978).

[12] Sussman G.J., G. Steele, Scheme: An interpreter for the extended lambda cal-
culus, Memo 849, MIT Artificial Intelligence Laboratory, (1975).

[18] Wirth N., Modula : A language for modular multi-programming, Softw. pract.
ezp. 7, 3-35 (1970).

[14] Wirth N., Programming sn Modula-2, Springer Verlag, (1983).

[15] US Department of Defense, The Programming Language Ada - Reference Man-
ual, LNCS 106, Springer Verlag, (1981).

About the Author—Matthias Felleisen is currently working on his Ph.D.
He received his M.S. in computer science from the University of Arizona,
Tucson in 1981 and his Dipl. Wing. from Universitat Karlsruhe, W. Ger-
many in 1983. His interests include programming languages and their im-
pact on software engineering.

About the Author—Daniel P. Friedman received his Ph.D. from The
University of Texas at Austin in 1973. Since then he has been professor in

13



14 A Closer Look at Ezport and Import Statements

the Computer Science Department at Indiana University. He is primarily

interested in programming languages and has published many papers in the
field.



