Logic Continuations

by
Christopher T. Haynes

Computer Science Department
Indiana University
Bloomington, Indiana 47405

TECHNICAL REPORT NO. 183

Logic Continuations
by
Christopher T. Haynes
Revised: September, 1986

To appear in The Journal of Logic Programming.

This material is based on work supported by the National Science Foundation under grant numbers
DCR 85-01277.

Logic Continuations

Christopher T. Haynes

Computer Science Department
Indiana University
Bloomington, Indiana 47405 USA

Abstract

We develop a ‘complete’ embedding of logic programming into Scheme—a lexically scoped
Lisp dialect with first-class continuations. Logic variables are bound in the Scheme envi-
ronment and the success and failure continuations are represented as Scheme continuations.
To account for the semantics of logic variables and failure continuations, the state-space
model of control is modified in a novel way that generalizes the trail mechanism. This en-
sures that logic variable bindings are properly restored when continuations are invoked to
perform ‘lateral’ control transfers that are not possible in a traditional logic programming
context. It is thereby possible to obtain greater control flexibility while allowing much of
a program to be expressed with logic programming.

1. Introduction

Much of the attraction of logic programming systems is that the programmer is relieved
of responsibility for specifying control behavior. The system automatically performs res-
olution theorem proving according to a built-in search strategy, such as the depth-first
search of Prolog [6]. However, difficulties arise when the built-in strategy does not suit the
programmer’s needs. Facilities may be provided to modify the default strategy, such as
Prolog’s cut, but there are still cases in which these facilities are awkward or inefficient.

We are concerned with problems, such as those arising in large artificial intelligence
applications, in which control of the search strategy is of central importance for reasons of
efficiency, and perhaps even termination. If a suitable strategy can be identified in advance,
it may still be possible to use a traditional logic programming language by employing
meta-programming. However, there are other applications in which the search strategy is
based upon complicated heuristics and cannot be predicted before runtime. In such cases
logic programming is usually abandoned in favor of procedural languages such as Lisp.
The simpler control behavior of procedural languages provides a more direct approach to
implementing control strategies based on runtime heuristics.

Of particular interest in artificial intelligence applications is the control paradigm of
non-blind backtracking [27]. For example, a process that starts in control context A may
introduce an (initially unbound) logic variable X, pass a choice point B, bind X to g, and
then proceed to some context C (Figure 1[a]). It is then decided that the choice made at
B was probably not a good one, for it has taken much time to get to C and little progress
has been made toward the goal. Therefore control backtracks to B, X is unbound, and
another choice is taken which causes X to be bound to b and leads to a context D (Figure
1[b]). It may be that from D the second choice looks even worse than the first, and it is
desired to perform a ‘lateral’ control transfer back to C (dotted line).

1

.....

\\\\\

current

Figure 1. Non-blind backtracking.

Such transfers of control are not possible in most systems because control informa-
tion is allocated on a stack that must be popped when backtracking from C to B. Such
backtracking is blind, because it is impossible to return to the previous context. If it is
possible to record the control context at C and return to it sometime after backtracking
to B, then the backtracking is non-blind. Applications of non-blind backtracking include
variations on breadth-first search.

Non-blind backtracking allows branches to form in the control information, forming a
tree structure. The control tree’s root is the initial control context and each node represents
a unit of control information, such as a “stack frame”. The ancestors of a given node are
the nodes that can be reached by a series of returns. Branching of the control tree generally
requires heap allocation of control information, though it may still be possible to cache
some control information on a stack.

The control context of a computation is known as its continuation, because it controls
how the computation will continue in the absence of explicit control transfers. In particu-
lar, every application has a continuation that may be viewed as a function of one argument.
This continuation expects to receive the value returned by the applied function, with which
it will continue the computation. Though programming systems must maintain control
context information {generally using a stack), this continuation information is generally
inaccessible to the programmer. Yet it is possible to provide a means for the programmmer
to request that the current continuation be made available as an object of computation.
The most convenient form in which to encapsulate the current continuation is as a func-
tional object of one argument, which is sometimes called an “escape procedure”. Such
encapsulation is necessary to insulate the programmer from the system’s representation of
control information, which is highly implementation specific.!

If continuations are made available as functional objects, they provide an abstraction

! In some logic programming implementations the system’s success and/or failure continuations may
be represented by closures (functional objects with an associated environment). These continuations are
part of the implementation and are not accessible to the logic programmer. They should not be confused
with the encapsulated continuations discussed here.

of control that may be used to implement a variety of non-standard control behaviors.
[11, 12, 14, 31] For maximum generality, continuations must be first-class objects. That
is, it must be possible for them to be passed to and returned from functions, stored in
data structures, and invoked any number of times from any point in a computation. It is
then possible to ‘mark’ the current position in the control tree by saving its continuation.
Control may later be transferred to the marked point by simply invoking this continuation.

An approach to obtaining greater control flexibility in logic programs is to ‘completely
embed’ logic programming facilities in a procedural language that provides first-class con-
tinuations. Roughly speaking, this means compilation of a logic programming language
into a procedural language so that the logic programming and procedural languages share
common environment and control contexts. It is then possible to use a multi-paradigm
approach to solve complex problems. Most of a program may be written in a logic program-
ming language, but with the ability to escape into the surrounding procedural implementa-
tion language to obtain variations on the search strategy. In particular, unrestricted use of
non-blind backtracking and lateral control transfers becomes possible when the procedural
language supports first-class continuations. However, it is necessary to ensure that logic
variable bindings are properly maintained when continuations are invoked. For example,
in Figure 1[b] the value of logic variable X should be changed from b to a when control is
transferred from D to C. This is accomplished automatically using a mechanism developed
in this paper. The resulting ‘logic continuations’ may then be used to obtain non-standard
behavior while allowing much of the program to be expressed using the techniques of logic
programming.?

The embedding developed here is presented in Scheme—a lexically scoped Lisp dialect
with first-class continuations. However, it must be emphasized that the principal technique
developed in this paper is applicable to any language with first-class continuations.

Some familiarity with Lisp is assumed, though an overview of the dialect used in this
paper is provided in the next section. We then present an embedding taxonomy, which is
followed by an embedding of logic programming into Scheme. We are then prepared to
present a variant of the state-space model that allows the full power of continuations to
be used in the context of logic programming. Finally, we address some efficiency issues
and discuss the value of complete embeddings in the general context of non-procedural
languages.

2. An overview of Scheme

Scheme is a dialect of Lisp that is applicative order, lexically scoped, and properly tail-
recursive [7, 23, 29]. Most importantly, Scheme treats functions and continuations as
first-class objects.

See Figure 2 for the syntax of a Scheme subset sufficient for the purposes of this
paper. The superscript * denotes zero or more, and * denotes one or more occurrences of
the preceding form. Square brackets are interchangeable with parentheses, and are used in

2 The term ‘logic continuation’ is a contradiction in terms from a logician’s perspective, for pure logic
is non-procedural and thus divorced from control matters. However, we take the computer scientist’s
perspective of logic programs as a computational model [26] with an implicit control regime.

3

{expression) ::=
| (identifier)
| (quote (object))
| (1ambda (formals) (expression)™)
| (tet ([{identifier) (value)]1*) (expression)*)
| (tetrec ([{identifier) {value)1*) (expression)*)
| (rec (identifier) (expression})
| (do ([{identifier) (init) (next)1*) ({predicate) (expression)) (body)*)
| (cond [{predicate) (expression)*]*)
| (and (expression)*)
| (case (tag) [({symbol)*) (expression)]*)
| (define (identifier) (expression))
| (set1 (identifier) {expression))
| {(application)
(init), (next), (value), (predicate), (body), (tag), {function) ::= (expression)
(application) ::= ({function) {expression)*)
(formals) ::= (identifier) | ({identifier)* . (identifier)) | ((identifier)*)

Figure 2. Syntax of a Scheme subset.

the indicated contexts for readability. quote expressions return the indicated literal object,
and ’(object) is equivalent to (quote {object)). Lambda expressions evaluate to first-class
functional objects that statically bind their formal identifiers when invoked. The last formal
identifier is bound to a list of all remaining arguments if preceded by a dot. If the formals
part consists of a single identifier, the identifier is bound to a list of all the arguments. In
every case where a list of expressions is indicated in Figure 2, as in the body of 1ambda,
the expressions are evaluated in sequence and the value of the last expression is returned.
Let makes lexical bindings, while letrec makes mutually recursive lexical bindings. Rec
evaluates its expression in an environment that binds its identifier to the value of the
expression itself. (Rec is similar to the label form of Lisp.) Do is the traditional Lisp
iteration construct. First the (init) expressions are evaluated and bound to the identifiers.
Then if the predicate is false, the (body) expressions (if there are any) are evaluated
in sequence, the identifiers are rebound to the values of the (next) expressions, and the
process is repeated. When the predicate is true, the value of the expression following it is
returned. Cond evaluates its predicates in sequence until one is true, and then returns the
value of the expression paired with the true predicate. The predicate else is always true.
And is sequential conjunction. Case evaluates the tag expression, and then returns the value
of the first expression with a corresponding symbol that matches the tag. Define assigns
to a global identifier. set! modifies an existing lexical identifier. (A bang (1) is used to
flag operations that involve side-effects.) An application evaluates its expressions (in an
unspecified order) and applies the functional value of the first expression to the values of
the remaining expressions.

We require a few primitive functions. Apply invokes its first argument with the list of

4

arguments passed as its second argument. Cons is the traditional Lisp binary construction
operation, with associated selectors car and cdr, and mutators set-car! (Lisp’s rplaca) and
set-cdr! (rplacd). Lists are constructed of cons cells. List constructs lists and reverse!
reverses the list pointers in place. For-each (mapc) applies its first argument to each
element in the list passed as its second argument. Eq?, equal?, pair?, null? and not
are the usual identity, structural equality, pair (cons cell), empty list (nil) and negation
predicates.

The function call-with-current-continuation, abbreviated call/cc, must be passed a
function of one argument. This argument is in turn passed the current continuation, which
is the control context of the cal1/cc application, represented as a functional object of one
argument.® Informally, this continuation represents the remainder of the computation from
the call/cc application point. At any future time this continuation may be invoked with
any value, with the effect that this value is taken as the value of the call/cc application
[9, 10, 11, 12].

The simplest use of continuations is to ‘throw’ a value out of an expression directly,
without completing its evaluation. For example, the evaluation of

(cons ’a
(call/cc
(lambda (k)
(cons ’b (k ’c)))))

returns (a . c), for the application of ¢ to k causes the call/cc application to return c
immediately, without ever invoking the inner cons.

The control context of a continuation application is discarded unless it has been saved
with another call/cc. The storage space of discarded control information, as well as
continuations and other objects of computation to which there are no longer any references,
can be reclaimed by a garbage collector.

3. A taxonomy for embeddings

A number of logic programming embeddings, of widely differing character, have been
reported in the literature. The following taxonomy of embeddings attempts to clarify the
varying degrees of embedding found in these systems. It may also be of use in classifying
other embeddings.

In general, the term embedding refers to an implementation in which the embedded
language benefits from the programming environment of the embedding, or implemen-
tation, language. These benefits may simply be such facilities as structure editors and
memory management [25]. Functional embeddings also allow functions in the embedded
and embedding language to call one another conveniently, as in QLOG [18] and POPLOG
[22].

Further embedding is achieved when the embedded and embedding languages share a
common environment, so that identifier references in the embedded language refer directly

3 Using this primitive we can define catch, a version of Landin’s J operator [20, 24, 29]: (catch id
ezp) = (callf/ce (lambda (id) exp)).

to identifier bindings in the embedding language. Such an environment embedding may
be obtained only when the embedded language is compiled into the embedding language,
and the embedding language supports first-class functions (or closures).® It may be ad-
vantageous to implement some segments of a large program in the embedded language and
others in the embedding language, so that the facilities of each language may be used where
most appropriate. An environment embedding provides convenient and efficient transfer
of information between these segments. Of course care must be taken to ensure that each
segment respects the semantics of the other; in particular, assignment to logic variables
would risk violation of logic programming semantics.

Finally, a complete embedding is obtained with an environment embedding in which
the control context may be obtained at any stage in the computation, and then invoked
at any future time in order to return to that context. This is possible with an embedding
language, such as Scheme, that supports first-class continuations. However, special care
is required to ensure that when a continuation is invoked the values of logic variables are
properly restored to their values at the time the continuation was created. A complete
embedding provides a semantically consonant union of both the environment and control
contexts of the embedding and embedded languages.

The environment embeddings of logic programming into Scheme by Felleisen [8] and
Srivastava, Oxley and Srivastava [28] fail to be complete embeddings. Though first class
continuations are shared by the embedded and embedding language, they do not restore
logic variable bindings when invoked. Thus there are continuation invocations which, if
performed in these embeddings, will violate the semantics of logic programming.

The problem of restoring logic variable values is related to the problem of restoring
the values of dynamic (or fluid) bindings. The state-space model of control was originally
developed to solve the dynamic binding problem and to implement a generalization of
unwind-protect in the presence of first-class continuations [2, 11, 13]. The central result of
the present paper is a new form of state-space model for the maintenance of logic variable
bindings in the event of any meaningful continuation invocation.®

4, An environment embedding of logic programming

In this section we develop an environment embedding of logic programming in Scheme.
Though the embedded and embedding languages share a common control environment,
this fails to be a complete embedding because no attempt is made to restore logic variable
bindings upon continuation invocation. The primary purpose of this embedding is to pro-
vide a framework within which to present a complete embedding that avoids this problem;
however, it is hoped that the simple structure of this embedding will be of some interest
in its own right.

4 Environments contained in closures must be heap allocated to allow indefinite extent of envircnment
bindings. Komorowski states that Prolog’s variable binding and control mechanisms require stack struc-
tures distinct from those of the embedding language [18]. This is true only when the embedding language

lacks first-class functions and continuations.
5 We shall see that certain continuation invocations are not meaningful, for they are inconsistent with
logic programming semantics.

(pred) ::= ({relation) (term)*) predication form
(clause) ::= (logic-lambda ({id)*) ({term)*) {pred)*) clause form
(term) ::= Scheme expressions with value in T term form
(relation) ::= Scheme ezpressions with value in R relation form
D = Scheme values (ezcept references) denotable values
lvar € V' = ref(unbound) | ref (D) | ref (V) logic variables
term € T=D|V|TxT terms
fk € K; = cont() failure continuations
sk € K, = cont(Kjy) success continuations
rel € R=T"—-P relations
pred € P =|[K;] — K; predications
clause € C =[T,K;] - Ky clauses
alt :C* > R alternation function
seq : P* - P sequencing function

Figure 3. Syntax, types and functionality of a logic embedding.

We use non-structure sharing [15, 16, 22]: a logic variable is represented as a reference
(pointer), which may refer either to a value, to another logic variable with which it has been
unified, or to a unique value denoting ‘unbound’. See Figure 3 for a logic variable domain
equation, as well as syntax and type definitions for other elements of this embedding. (The
symbols on the left indicate the standard identifier names that will be used for objects of
their type in the program segments that follow.) For efficiency, invisible pointers may
be used instead of references [15, 28]. We name the logic variable constructor, selector,
binder, type predicate and bound predicate functions ivar, 1val, bind-1lvar!, lvar? and
bound-1var?, respectively.

We take a substitution to be simply a set of logic variables. Extend-subst is passed
a substitution, an unbound logic variable and a value. It binds the logic variable to the
value, and returns a substitution extended with this variable. uabind! takes a substitution
and unbinds each of its logic variables (by assigning their reference the unbound value).

A (term) may be any Scheme expression; however its value is interpreted as a structure
built of pairs, logic variables and literals. The function unity (Figure 4) unifies two terms.
If unification succeeds, a substitution of all logic variable bindings created by the unification
is returned. If it fails, any bindings created up to the point of failure are undone, and then
the failure continuation fk passed to unify is invoked. (The occurs check has been omitted
for simplicity.)

Failure continuations are represented as functions of no arguments, since no informa-
tion need be passed when failing. They may be obtained with the function call-with-
current-failure-continuation, abbreviated call/cfc:

(define unify
(lambda (termi term2 fk)
(letrec
([bind (lambda (var term subst)
(cond [(bound-lvar? var) (umifyl (lval var) term subst)]
[else (extend-subst subst var term)]))]
[unifyl (lambda (terml term2 subst)
(cond [(eq? termi term2) subst]
[(1var? termil) (bind termi term2 subst)]
[(1var? term2) (bind term2 terml subst)]
[(and (pair? termi) (pair? term2))
(unifyl (car termi) (car term2)
(unifyl (cdr terml) (cdr term2) subst))]
[else (unbind! subst) (£k)1))1)
(unifyl termi term2 null-subst))))

Figure 4. Unification procedure.

(define call/cfc
(lambda (f)
(callfcc
(lambda (k)
(£ (lambda () (k any))))))).

Any indicates an irrelevant value that will be ignored; failure continuations are essentially
command continuations. Initially, we represent success continuations simply as continua-
tions provided by the primitive call/cc function.

The convention for the use of success and failure continuations is critical to the struc-
ture of a logic programming embedding. We opt for ‘upward failure continuations’ [15],
in the manner of Felleisen [8]: in the event of success, a failure continuation is passed
upward by either returning it from a function or invoking a success continuation with it.
Subsequent invocation of this failure continuation causes backtracking to the point of suc-
cess. Other alternatives include passing success continuations to the theorem prover and
returning in the event of failure [5, 22|, passing a continuation which is always invoked
with true or false, indicating success or failure [28], passing separate success and failure
continuations [17, 32], and representing the failure continuation as a stream of frames [1,
5]. Continuations may be represented either as data structures [1, 5], closures [22, 32], or
encapsulations of the system control context [8, 17, 28], as we do here.

Predsications (or atoms) are represented as Scheme applications in which the function
position evaluates to a relation and the arguments evaluate to terms. When the relation is
applied to the terms, a function is returned that takes a failure continuation. If the terms
fail to satisfy the relation, this failure continuation is invoked. Otherwise, the predication
returns a new failure continuation that, when invoked, attempts to satisfy the relation in
a new way (and invokes the original failure continuation if there are no more ways).

8

(define alt
(lanbda clause-values-list
(lambda term
(lambda (fk)
(call/cc
(lambda (sk)
(do ([cvl clause-values-list (cdr cvl)])
[(null? cvl) (fk)]
(call/cfc
(lambda (fk)
(sk ((car cvl) term fk)))))))))))

(define seq
(lanbda preds
(lambda (fk)
(do ([preds preds (cdr preds)]
[pred-fk fk ((car preds) pred-fk)])
[(null? preds) pred-fk]))))

Figure 5. Alternation and sequencing functions.

For example, we express the Prolog predication member (4, [1[B]) as (member A (list 1
B)). Assume the value of identifier A is an unbound logic variable and the value of B is a logic
variable bound to 2. (By convention, Scheme identifiers that are bound to logic variables
begin with capital letters. Also, when no ambiguity results we refer to logic variables by
the name of the associated Scheme identifier; for example, “A is unbound”.) Upon receiving
the A and (1ist 1 B) terms, the member relation returns a predication which is passed a
failure continuation, K7;. A new failure continuation, ky2, is then returned with 4 bound
to 1. When &3 is invoked, the application will return (to its original continuation) a third
failure continuation ks3, leaving & bound to (the logic variable) B. Invoking k3 results in
A being unbound and xy; being invoked.

A relation is formed by passing clause values to the ait function (Figure 5).6 A
new failure continuation is obtained for each clause invocation using call/cfc. The clause
either returns a failure continuation (which is passed to the success continuation, sk, of the
predication that invoked the relation) or it invokes the failure continuation. The failure
continuation of the last clause is the failure continuation of the predication.”

Because clauses may introduce new logic variables whose scope is local to the clause,
the operation for creating clauses must be a special form (it cannot be a function). By
analogy with 1ambda, the standard special form that evaluates to a function, we call the

6 A mechanism for maintaining a data base of relations has been added to this embedding, but in this
paper we are not concerned with such issues.

7 e may be refined somewhat by replacing the do termination clause with [(aull? (ecdr clanses))
((car clauses) term f£k)]. This is similar to evlis tail recursion [30].

9

form for creating clauses logic-lambda. It is implemented as a syntactic extension (macro)
that transforms an expression of the form

(logic-lambda (idy ... ¢di) (termy ... termy,) pred; ... predy)

into an expression of the form
(lanbda (term fk)

(et ([¢d; (lvar unbound)] ... [¢dg (lvar unbound)])
(let ([subst (unify term (list lerm; ... fermy,) fk)1)
(logic-bind (seq pred; ... pred,) subst £k)))).

This expression evaluates to a clause that takes a term and a failure continuation. The
term and pred expressions are evaluated in an extended environment which associates
tdy,...,tdr with new logic variables that are initially unbound. A list of the clause terms
is unified with the argument term, returning a new substitution if successful. The predi-
cations of the clause are then called sequentially under control of the seq function (Figure
5). Each predication receives a failure continuation. If successful, it returns a new failure
continuation. This failure continuation is then passed to the next predication or, in the
case of the last predication, returned as the result of the clause. When a failure contin-
uation returned as the result of the clause is invoked, it is necessary to unbind the logic
variables introduced by the clause. This is managed by the 1ogic-bind function:

(define logic-bind
(lanbda (pred subst fk)
(pred (lambda () (unbind! subst) (£fk))))).

This unbinding could be performed more efficiently using a trail [4, 16]. However, in the
next section we extend logic-bind to manage the rebinding of logic variables in the event
control is transferred back into clauses via success continuation invocation. The trail
mechanism does not suffice in this more general context.

The Prolog relation

append ([1,7Y,Y).
append ([H|1],Y,[H]|Z]) :- append(T,Y,2).

is expressed in this embedding as

(define append
(relation
[(CO YD
[((cons B I) Y (cons H Z)) (append T Y Z)1))

where relation is a simple syntactic extension that, in the above case, expands into

(define append
(alt (logic-lambda (Y)
CO T
(logic~lambda (H T Y Z)
((cons H T) Y (cons H Z)) (append T Y 2))))

10

Each rule is expanded into a logic-lambda expression that contains a list of the logic iden-
tifiers used in the rule, the pattern list, and finally the predications of the rule. Relations
in this embedding are simply Scheme functions returned by alt.

We define the traditional Prolog fasl and ¢s operations as simple examples. Fail is
simply a predication that always fails. This is accomplished by immediately invoking the
failure continuation passed to the predication. Thus we define fail to be the function
(lambda (pred-fk) (pred-fk)).

Is predications are of the form (is var function argument . ..), where var evaluates to
a logic variable, and function is a Scheme function that is to be passed the given arguments.
First, any logic variables in the arguments are replaced by their values. If any of these logic
variables are unbound, then the is predication fails. Otherwise, the function is applied to
the arguments, obtaining some answer ans. If var is an unbound logic variable, then it is
bound to ens and the predication succeeds; otherwise, if var’s value is the same as ans,
the predication succeeds. In all other cases, it fails. This is accomplished by the Scheme
function

(define is
(lambda (var function . args)
(lambda (fk)
(let ([args (lval# args)])
(for-each (lambda (arg) (cond [(lvar? arg) (fk)1)) args)
(let ([ans (apply function args)])
(cond

[(not (bound-lvar? var)) (bind-lvar! var ans) fk]
[(equal? (1lval® var) ans) fk]
[else (£k)1))))))

where 1val# recursively copies a list structure replacing logic variables by their values.

Prolog’s cut may be incorporated into this embedding by extending ait so that it
fluidly (or dynamically) binds fx. Each time alt is called, a new binding—accessible
as (fluid fk)—is established which records the failure continuation at the time of the
alt call. This binding remains in force until the alt call returns, except during other
calls to a1t. Cut may then be defined as (l1ambda (pred-fk) (fluid fk)); that is, the
cut predication receives the current failure continuation pred-fk and immediately succeeds
by returning the failure continuation of the entire alternation. Since no reference to the
current failure continuation is maintained, its storage space may be reclaimed by a garbage
collector. Relations might be defined with different versions of ait, where each version
binds £k to a distinct fluid identifier. This would allow a predication in one relation to
‘cut’ another relation. The state-space model presented in the next section can be extended
in a straightforward way to adjust fluid bindings when continuations are invoked [11, 13].

5. A state-space model for logic continuations

In this section we deal with the special difficulty presented by first-class continuations in
the context of logic programming: when invoking a continuation it may be necessary to
modify the bindings of logic variables. Of course when a failure continuation is invoked it

11

s1 & initial state

|
Fa
;/ A < control tree root

! \

Figure 6. Control tree with state-space.

may be necessary to unbind certain logic variables. But upon invoking a ‘lateral’ success
continuation, as when jumping from one leaf to another of the control tree, it is also
necessary to restore the values of logic variables accessible at the destination point to
the values they had at the time that point was marked. To manage this unbinding and
rebinding of logic variables we modify the state-space model of control.

A state-space is a tree with one node (or state) for each logic-bind (unification). Each
time the state-space is extended, the new state becomes the root of the state-space. Though
the control and state-space trees are distinct, for purposes of understanding it is helpful
to associate each control tree node with the state which was the root at the time the node
was created. See Figure 6, in which boxes represent states and dots represent control tree
nodes. The state associated with each node is the nearest one above it. State-space edges
point toward the state-space root. (The direction of control tree edges is not indicated,
for they always point up.) The ancestors of any state are those states corresponding to
nodes that would be reached by an (undirected) traversal of the control tree from a node
corresponding to the given state to the current node. If control is transferred between
control tree nodes via a return or continuation invocation, and the destination node is
associated with a state that is not the current root, the state-space is modified so that
this state becomes the new root. This is accomplished simply by reversing the direction
of the edges leaving the destination state and its ancestors. We say a state is active if it is
associated with the current control tree node or with an ancestor of the current node. In
Figure 6, states sl and s4 are active and the remaining states are inactive.

Each state has an associated status, substitution and control link. The status is either
in, out or returned: in indicates that the state is active; refurned indicates the state is

12

inactive because control returned via a successful resolution; and out indicates the state
is inactive because control passed out of the descendent subtree by invoking a success or
failure continuation. Since new states are immediately active, their status is initially ¢n.

The substitution is provided by the unification performed just prior to the logic-
bind operation that created the state. When a state becomes inactive via a continuation
invocation, it is necessary to save the values of the substitution’s logic variables so that
these values may be restored whenever the state becomes active again. This is accomplished
by extending the substitution with local storage for each of its logic variables. The swap!
operation exchanges the current value and the locally saved value of each logic variable in
the substitution. The saved value is initially unbound.

The control link points to the state which was the state-space root at the time the
present state was created. This indicates the direction of the control tree root, which is
required for a technical reason discussed below.

See Figure 7 for examples of state-space transitions. The current node is indicated
by the disembodied arrowhead. Dashed boxes indicate logic variables. Each solid box
indicating a state contains the state’s status and a smaller box for its substitution variable
(if it has one). Saved values are indicated in the variable boxes. Arrows point from these
boxes to their associated logic variables. Empty saved value or logic variable boxes indicate
unbound values.

In [a] the computation has introduced logic variables X and Y while proceeding from
context A to B, and has then bound Y to ¢ with a unification while proceeding from B to
C. The logic-bind associated with the unification has extended the state-space with a state
s2 whose substitution records the binding of Y and a saved value which is unbound. In [b]
control has returned to B via a successful resolution, but context C has been retained by
a failure continuation fk. The status of s2 is now refurned and sl is the new state-space
root.

From B the computation next proceeds to D, binding X to a along the way. This
binding is recorded in the substitution of a new state, s3, which becomes the root; see Figure
7[c]. The context D is then recorded by a success continuation sk, and then a continuation
(not indicated) that is associated with choice point B is invoked, resulting in configuration
[d]. X is now unbound and its old value, @, has been saved in s3. Computation then
proceeds to E, binding X to b along the way, to obtain configuration [e].

A lateral control transfer from E to D is then performed by invoking sk. s3 then be-
comes the root, requiring the reversal of edges s1-s3 and s1-s4. The state-space mechanism
then traverses the path from s4 to s3, visiting s4, sl and s3. When state s4 is visited, its
status is changed to out and the value b of X is recorded in s4. Nothing happens when
state sl is visited, since it remains active. When state s3 is visited, its status is changed to
¢in and X is bound to the value saved in s3’s substitution; see Figure 7[f]. Finally, invoking
fk results in configuration [g].

We represent the state-space of a computation by a globally bound object that re-
sponds to messages. The current root is returned in response to the message root. The
other four possible messages, extend!, returni, fail! and reroot!, cause state-space tran-
sitions. (See Figure 8.) Extend! is used when control enters a logic-bind; it adds a new

13

——
——
- —————

.....

n

lllll

g
!
!
1
]
I
1
returned El

|||||

D *~..

fk —>=¢ C

e . g

returned

lllll

C o=—fk

lllll

in

C ¢ -

[c]

[b]

|

[a

returned [:’

tk —=¢ C

[g]

Figure 7. Examples of state-space transformations.

14

(define state-space
(let ([root (1ist (lambda (msg) do-nothing))])
(lambda (msg)
(case msg
[(root) root]
[(return! fail! extend! reroot!)
(lambda (new-state)
(case msg
[(extend!) (set-cdr! root mew-state)]
[(return! fail! reroot!)
(reverse! new-state)
(for-each (lambda (x) (x msg)) root)l)
(set! root new-state))]))))

Figure 8. Initial logic state-space.

state to the space that maintains the substitution being bound, and makes it the root.
Return! is used when control returns successfully from a logic-bind; it restores the root to
the state that was the root when the logic-bind was entered. The new version of logic-bind
is

(define logic-bind
(larbda (pred subst fk)
(let ([state (state-space ’root)])
((state-space ’extend!) (make-state subst))
(let ([ans (pred (lambda () (unbind! subst) (£fk)))1)
((state-space ’return!) state)

ans)))).

The fail! and reroot! state-space messages are used when failure or success contin-
uations, respectively, are invoked; they make the destination continuation the root and
may adjust some logic variable values, as will be described presently. The new versions of
call/cc and call/cfc are

15

(define call/ce
(lambda (f)
(prim-call/cc
(lambda (k)
(let ([state (state-space ’root)])
(£ (lambda (v)
((state-space ’reroot!) state)

(x v))))))))

(define call/fcfc
(lambda (f)
(prim=-call/fcc
(lambda (k)
(let ([state (state-space ’root)])
(f (lambda ()
((state-space ’faill) state)
(k any))))))))

where prim-call/cc is the original cal1/cc function. These are the only operations on the
state-space; the user may not manipulate it directly.®

States are represented internally as cons cells; see Figure 9. The car of a state cell is
an object that responds to the state transition messages, while the cdr is a link that points
to the nearest state in the direction of the root, or nil if the state is the root. Hence each
state cell may be viewed as a list whose tail is a list of its ancestors and whose last element
is the root. With each of the state transition messages a new state must be passed, which
becomes the root. In the returnt, fail) and rercot! cases, the state links are adjusted to
point to the new root by simply reversing the links in the list headed by the new state.
Think of picking up the tree by the new state and giving it a good shake so that all paths
lead to the new root. Each of the objects associated with states on the reversed list (which
now begins with the old root) is then passed the state-space transition message and will
modify its local state as required.

When a state object receives a transition message, its response will depend on both
its current status and the type of message. There are three statuses and three types of
messages, so there are nine possibilities to consider.

Return! is used only by logic-bind to restore the state-space root to the state s; in
which the logic-bind was entered. Thus the return! message is received by only two states:
8; and the state s; created by the logic-bind. The status of both s; and s; will be in, and
the only effect of the return! is to change the status of s; to returned. (At the time the
return! message is sent, s; is already the root. s; detects this by noticing its cdr link is
nil, and thereby avoids changing its status.)

The status of a state is ¢n if and only if it is active. When a state is created it becomes
active and its state is initially ¢n. Control can only leave the control subtree associated with

8 For convenience we define the state-space globally in this paper, but in a production system its scope
should be restricted to the call/ece, call/cfec and logic-biad functions.

16

(define make-state
(lambda (subst)
(let ([status ’in]
[control-link (state-space ’root)])
(rec local-state
(list
(lambda (msg)
(case msg
[(return!)
(cond [(not (mull? (cdr local-state)))
(set! status ’returned)])]
[(£aill)
(case status
[(returned) (set! status *in)]
[(in) (cond [(eq? comtrol-link (cdr local-state))
(set! status ’‘out)
(swap! subst)])]
[(out) (error "can’t fail whem out")])]
[(reroot!)
(case status
[(returned) (error "cam’t reroot when returned")]
[(in) (cond [(eq? comtrol-limk (cdr local-state))
(set! status ’out)
(swap! subst)])]
[(out) (set! status ’in)
(swap! subst)1)1))))))))

Figure 9. Make-state for a logic state-space.

a state in one of two ways: a logic-bind return, which sets the state’s status to returned, or
invocation of a success or failure continuation, in which case the reroot! or fail! message
is sent to the state. Since control is being transferred out of the node (the state-space
link already points toward the new root), the control link of the state will be equal to the
state-space link (cdr of local-state), and the status is set to out.

For control to reenter its control subtree, a state must receive a reroot! message while
its status is outf or a fail! message while its status is refurned. In both cases the status
is set to ¢n. It is not permissible for a state with status out to be reentered by invoking
a failure continuation, or for a state with status refurned to be reentered by invoking a
success continuation.

The only case in which a state can be visited without control leaving its subtree is
when control is passing, via a success or failure continuation invocation, from one of its
subtrees to another. In this case the control and state-space links will be unequal and the
status will not be altered.

17

No values are saved or restored in transitions to and from the refurned status. How-
ever, when the status is changed from ¢n to out the substitution variable values are saved,
and they are restored when the status changes from out back to sn. The state-space
mechanism exists solely to implement this operation and to ensure that its integrity is
maintained. This integrity would be violated if a failure continuation were used to reenter
a state with status ouf, or if a state with status returned were reentered via a success
continuation.

There are several ways in which a complete embedding may be used to mix logic
and imperative programming in the solution of a problem. For example, alternatives to a
depth-first search search strategy may be obtained by modifying the a1t function so that a
queue of success continuations is maintained representing partially explored alternatives.
The new version of a1t could be installed in place of the original version, making the new
search strategy pervasive, or it could be used only in the definition of selected relations.
These relations might then employ breadth-first search for exploration of their alternate
clauses, while depth-first search was used at other times. Alternatively, selected relations
(or clauses of relations) could be coded as imperative procedures, making unrestricted use
of continuations. These custom relations could then be invoked in the usual fashion by
logic programs.

6. Efficiency considerations

It is presumed that a garbage collection mechanism reclaims heap allocated storage when
it is no longer accessible, and that the control tree is heap allocated (at least when it
branches). This is required for first-class continuations. If the state-space states are also
heap allocated, their storage will be reclaimed automatically when they are no longer
accessible. This follows because the only references to states outside of the state-space itself
are in control frames associated with logic-binds and success and failure continuations. As
a result, if an operation such as Prolog’s cut causes the sole reference to a continuation to
be abandoned, the storage associated with both the continuation and any states associated
with the continuation will be reclaimed. Maneuvers, such as tail recursion optimization,
for further reducing storage requirements should also be applicable (though they are not
used in the simple embedding of this paper).

The code presented here was designed for clarity, not speed, and many improvements
are possible. For example, the alt, seq and unify function applications could be compiled
in-line [8], the state-space could be built up of data structures instead of procedures, and
the case dispatchs of the state-space and make-state functions could be avoided by in-line
coding of the state-space operations in logic-bind, call/cc and call/cfc. The initial state
is not essential, since it has no associated substitution. It could be eliminated by adding
a special case to the extend operation.

Our main efficiency concern is the price paid for the state-space mechanism in an
optimized implementation. Though a definitive answer awaits the development of such
an implementation, a few observations are appropriate at this time. The logic state-space
may be viewed as a generalization of the trail mechanism: the state-space is capable of
rebinding as well as unbinding logic variables, and may take on a tree structure, rather
than being strictly linear. This requires additional run time tag checking and heap, rather

18

than stack, allocation. However, these additional costs may be avoided much of the time.
For example, if it can be proved that no call/cc or call/cfc operations will be performed
during a particular phase of execution, then the system is free to revert to the traditional
stack allocated trail. It even seems possible for a system to routinely use a trail, and only
convert the trail information into an extension of the state-space when a continuation is
actually obtained. The state-space overhead is then incurred only when the user requires
its generality. A related ‘pay as you go’ approach is used by some Scheme implementations
that stack allocate control information until call/cc is invoked, at which time the stack is
copied to the heap. [3, 19, 21]

In many cases where the generality of a logic state-space would be used, the alterna-
tives are also expensive and likely to be less efficient and more cumbersome than employing
a well implemented logic state-space. For example, when non-blind backtracking is needed,
the alternatives are repeating part of a computation or explicitly saving and restoring
necessary information. (This is analogous to the explicit stack management required to
simulate recursion in a non-recursive language.) Other approaches to increasing control
flexibility, such as LOGLISP’s breadth-first search parameters [25], also have overhead and
are less general.

7. Conclusion

A principal advantage of non-procedural programming languages, such as Prolog, is that
they avoid the necessity of repeatedly specifying commonly occurring patterns of control.
This is done by providing a complex default control mechanism, such as Prolog’s depth-
first search. Problems arise when variations on the default control mechanism are required.
Some variations may be accommodated by auxiliary control mechanisms, such as Prolog’s
cut, but other variations may be difficult or impossible to achieve with such specialized
mechanisms.

Much of the power of non-procedural program specification may be provided along
with the ability to obtain non-standard control behavior on occasion. This is accomplished
by embedding the non-procedural mechanism in a traditional procedural language whose
control mechanism (principally procedure call) is simple and well understood. Greatest
flexibility is obtained when the embedding language makes continuations available as first-
class objects of computation.

Special precautions must be taken in contexts, such as logic programming, in which
changes may be made to the environment of a control context that must be accounted
for when control is returned to the control context via a continuation invocation. We
have shown how the state-space model of control may be extended to provide first-class
continuations that account for changes in logic variable bindings. Such ‘logic continuations’
may then be used to obtain greater control flexibility while allowing much of a program to
be expressed with logic programming.

Acknowledgements: We thank Matthias Felleisen, Dan Friedman, Peter Williams and
anonymous referees for their detailed comments on this paper. This work was supported
by the National Science Foundation under grant number DCR 85-01277.

19

References

[1] Abelson, H., and Sussman, G.J., with Sussman, J., Structure and Interpretation of
Computer Programs, MIT Press, 1985.

[2] Baker, H.G., Jr., Shallow Binding in Lisp 1.5, C. ACM, 21:565-569 (1978).

[3] Bartley, D.H., and Jensen, J.C., The Implementation of PC Scheme, Proc. of the 1986
ACM Conference on LISP and Functional Programming, pp. 86-93.

[4] Bruynooghe, M., The memory management of PROLOG implementations, in: K.L.
Clark and S.-A. Tarnlund (Eds.), Logie Programming, Academic Press, New York, pp.
83-98 (1982).

[5] Carlsson, M., On implementing Prolog in Functional Programming, New Generation
Computing, 2:347-359 (1984).

[6] Clocksin, W.F. and Mellish, C.S., Programming in Prolog, Second Edition, Springer-
Verlag, New York, 1984.

[7] Dybvig, R.K., The Scheme Programming Language, Prentice-Hall, 1987.

[8] Felleisen, M., Transliterating Prolog into Scheme, Computer Science Department
Technical Report No. 182, Indiana University, Bloomington, Indiana, 1985.

[9] Felleisen, M., and Friedman, D.P., Control operators, the SECD-machine, and the A-
calculus, Formal description of programming concepts I1I, North-Holland, Amsterdam,
1986, to appear.

[10] Felleisen, M., Friedman, D.P., Kohlbecker, E., and Duba, B., Reasoning with continu-
ations, Symp. on Logic tn Computer Science, Cambridge, Mass., pp. 131-141 (1986).

[11] Friedman, D.P., and Haynes, C.T., Constraining control, Conf. Record of the Twelfth
Annual ACM Symposium on Principles of Programming Languages, pp. 245254
(1985), revised in Computer Science Department Technical Report No. 183, Indiana
University, Bloomington, Indiana, 1985.

[12] Friedman, D.P., Haynes, C.T. and Kohlbecker, E., Programming with continua-
tions, in: P. Pepper (ed.), Program Transformation and Programming Environments,
Springer-Verlag, New York, pages 263-274 (1984).

[13] Hanson, C., and Lamping, J., Dynamic Binding in Scheme, unpublished manuscript,
1984. '

[14] Haynes, C.T., and Friedman, D.P., Engines build process abstractions, Conf. Record
of the 1984 ACM Symp. on Lisp and Functional Programming, pp. 18-24 (1984).

[15] Kahn, K.M., and Carlsson, M., How to implement Prolog on a LISP Machine, in:
J.A. Campbell (ed.), Implementations of PROLOG, Halstead Press, New York, pp.
117-134 (1984).

[16] KluZniak, F., and Szpakowicz, S., Prolog for Programmers, Academic Press, 1985.

[17] Kohlbecker, E., eu-Prolog, Computer Science Department Technical Report No. 155,
Indiana University, Bloomington, Indiana, 1984.

20

[18] Komorowski, H.J., QLOG—the programming environment for Prolog, in: K.L. Clark
and S.-A. Tarnlund (Eds.), Logic Programming, Academic Press, New York, pp. 315-
324 (1982).

[19] Kranz, D., et al., ORBIT: An optimizing compiler for Scheme, Proc. SIGPLAN ’86
Symp. on Compiler Construction, in SIGPLAN Notices, 21:234-241 (1986).

[20] Landin, P. A correspondence between ALGOL 60 and Church’s lambda notation, C.
ACM, 8:89-101 and 158-165 (1965).

| [21] McDermot, D., An efficient environment allocation scheme in an interpreter for a
lexically-scoped LISP, Conf. Record of the 1980 LISP Conference, ACM Order No.
552800, pp. 154-162.

[22] Mellish, C., and Hardy, S., Integrating Prolog in the POPLOG environment, in: J.A.
Campbell (ed.), Implementations of PROLOG, Halstead Press, New York, pp. 147-162
(1984).

[23] Rees, J., and Clinger, W. (Eds.), Revised® Report on the Algorithmic Language
Scheme, SIGPLAN Notices, October, 1986).

[24] Reynolds, J.C., Definitional interpreters for higher-order programming languages, Pro-
ceedings of the 25th ACM National Conference, pp. 717-740 (1972).

[25] Robinson, J.A., and Sibert, E.E., LOGLISP: motivation, design and implementation,
in: K.L. Clark and S.-A. Térnlund (Eds.), Logic Programming, Academic Press, New
York, pp. 299-314 (1982).

[26] Shapiro, E., review of Foundations of logic programming by J.W. LLoyd, Computing
Reviews, 27:384-386 (1986).

[27] Sussman, Gerald Jay, and Drew Vincent McDermott, “From PLANNER to CONNIVER—
A genetic approach”, Proceedings of Joint Computer Conference 41, part II, AFIPS
Press, NJ, (1973) pages 1171-1179.

[28] Srivastava, A., Oxley, D., and Srivastava, D., An(other) integration of logic and func-
tional programming, Proceedings of The IEEE Symposium on Logic Programmsng, pp.
254-260 (1985).

[29] Sussman, G.J., and Steele, G.L., Jr., Scheme: an interpreter for extended lambda
calculus”, Artificial Intelligence Memo No. 349, MIT, Cambridge, Massachusetts, 1975.

[30] Wand, M., Continuation-based program transformation strategies, J. ACM, 27:164-
180 (1980).

[31] Wand, M., Continuation-based multiprocessing, Conf. Record of the 1980 LISP Con-
ference, ACM Order No. 552800, pp. 154-162.

[32] Wand, M., A semantic algebra for logic programming, Computer Science Department
Technical Report No. 134, Indiana University, Bloomington, Indiana, 1983.

21

