TECHNICAL REPORT NO. 182
TRANSLITERATING PROLOG INTO SCHEME

by
Matthias Felleisen
October, 1985

This material is based on work supported by the National Science Foundation under grant number
DCR 85-01277.



Traneliterating Prolog into Scheme
Transliterating Prolog into Scheme
SUMMARY
Matthias Felleisen

Computer Science Department
Lindley Hall 101
Indiana University
Bloomington, Indiana 47405

1. Why yet another implementation of Prolog

Prolog implementations come in a great variety. There is the “shortest”, the “most elegant”, the
“most efficient”, and the “most-what-have-you” implementation (see for example [2]). Why propose
yet another implementation of Prolog?

All of the published Prolog implementations are either interpreters or compilers. Our imple-
mentation {ransliterates Prolog entities into corresponding Scheme ({14]) constructs on a one-to-one
basis: relations to functions, backtrack computations to first-class continuations, variables to ref-
erences, lists to lists, atoms to atoms, etc.The transliteration is not quite a compilation because it
does not code the unification algorithm in line. It differs from an interpretation in two respects.

First, the symbolic manipulation of data structures representing Prolog procedures is completely ,

eliminated. Instead of searching a (symbolic) data base the function corresponding to a relation
is called. Second, Prolog and Scheme programs can now interact in a natural way since they are
living on the same level. For example, functional Prolog procedures, i.e., relations which return one
result per application, can be directly written as Scheme functions. Scheme’s capability to package
functions into modules facilitates the splitting of Prolog’s global database into several local ones.

Most importantly our presentation illustrates a way of embedding one programming language
in another. Transliteration as presented here is based on semantic algebras as discussed by Mosses
([4]) and Clinger, Friedman, and Wand ([11]). Given a powerful target language a programmer
specifies the semantics of a linguistic facility of some source language by an expression in that target
language. Assuming a syntax preprocessor he can then syntactically abstract the new construct
making it conceptually available in the target language. We will show how to apply the principles
to a complete and practical programming language. '

The paper is organized as follows. Section 2 briefly introduces the Scheme-dialect of Lisp,
especially first-class continuations and Scheme’s syntax transformer. In Section 3 we present the im-
plementation of the transliteration process. In the fourth section examples of mixed Prolog/Scheme
programs are discussed. The last section is devoted to related work.

This material is based on work supported by the National Science Foundation under grant DCR
85-01277.

1



2 Trandliterating Prolog into Scheme

2. Scheme

Scheme is a lexically scoped dialect of Lisp. It distinguishes itself from other languages by its
treatment of functions and continuations as first-class objects.

2.1 Standard Scheme

Figure 1 shows the syntax of standard Scheme. The semantics is roughly the same as for similar
expressions in Common Lisp except for the missing fenctien and fumea11 forms. Scheme also contains
standard list processing functions like ceas, car, cdr, 1ist, append, and sap, as well as predicates like
equal?, eq?, and list?. Reference cells which are roughly equivalent to variables in other languages
are first-class objects. They are created and initialized by the function ref. The function ref? tests
the ref-hood of an object and deret returns its value. The function set-ref! changes a ref-cell’s
value.

(cxpron:l.uu} u=
(constant)
' {Mm:l.f:l.or)
| (lynmtic oxtmieu)
I (quote (ob}«t})
| (it (expression) (expression) (expression))
| (cond [{expression) (expression)*]+)
| (begin (cxprusim)"')
| (Lenbda ({1dentifier)*) (expression)t)
| (Lasbaa (1dentifier) (expression) ™)
| (detine (1dentifier) (expression))
| et (T{1gentitter) (value)1*) (expressien)™)
| (et ([(1demtifier) (value)]*) (expression)*)
| Qetrec ([{1dentifier) (value)I*)(expression)t)
| (1terate (:l.donti.f:lcr}([(ﬂut:lfhr) (vaiue)1*) (expressien)™)
| (applicatien)
(vatue), (tag), (function) ::= (exprossien)
(syntactic extemsien) = ((keyword) (object)*)
(app1ication) ::= ({function) {expressien)®)
Figure 1 : Syntax of Scheme

Continuations are obtained by the function call-with-current-continuatien , abbreviated call/ce.
The function call/cc evaluates its argument and applies it to the current continuation which is
represented as a function of one argument. It stands for the remainder of the computation from the
application of ca11/ce. This continuation may be invoked with any value at any time with the effect
that this value is the value of the cal1/cc-application.

A typical example of a continuation is a return or exit continuation. Suppose a function wants
to return prematurely. When the function is called, it simply catches the current continuation.



Transliterating Prolog into Scheme

The continuation is then bound to the identifier exit, and it may be invoked anywhere within the
function for immediately returning a value. If <¢-bedy> is the function body containing expressions
of the form (exit <return-val>), then the following program schema implements the desired control
strategy:

(lambda (<argl> ... <argn>) (call/ce (lambda (exit) <f-body>)))

Another application of continuations involves backtracking. Imagine a situation where two
expressions are evaluated in sequence with the first one having the option of backtracking by invoking
a function backtrack. Disregarding side-effects we can simply write this as

(begin (call/cc (lambda (backtrack) <exp1>)) <exp2>)
In the case where the second expression should not be evaluated unless expression <exp1> explicitly
backtracks, we can use an exit continuation:

(call/ce (lambda (exit)
(call/cc (lamdda (backtrack) (exit <exp1>)))
<exp2))

Backtracking with side-effects is only slightly more complicated. Instead of passing a value to
backtrack which is discarded anyway, we pass it some undo-information. The backtrack continuation
kas to include a call to the undo-function and must then invoke the second expression. The program
schema becomes:

(call/ce (lambda (exit)
(undo-function (call/ce (lambda (backtrack) (exit <exp1>))))

<exp2>))

Backtracking is now accomplished by the application (backtrack undo-infermation).

2.2 Scheme’s syntaz transformer

Scheme 84 provides a powerful syntax transformer ([7)). It allows the programmer to program
syntax transformations by specifying (syntactic) input patterns and (semantic) output patterns. As
soon as the preprocessor recognizes the keyword in the first position of an application and with it the
syntactic pattern, it expands the program text according to the semantic pattern. The 1et-statement,
for example, could be defined as:

(extend-syntax (let)
[(et ([<id> <val>] ...) <exp> ...)
((lasbda (<i@> ...) <exp> ...) <val> ...)])

The syntactic pattern says that a let-expression is a list with et in its first position, zero or more
pairs “([<i&> <val>] ...)"” in the second followed by expressions “<exp> ...". The second line, or
semantic pattern, specifies that a 1et-expression is equivalent to an application where “<exp> ...” are
the function bodies, “<ia¢> ..." are the formal parameters, and “<val>...” are the actual arguments.
Patterns like “<x> ...” stand for 0 or more objects of the type <.

The list “(1et)” may contain more identifiers in order to specify syntactic and semantic keywords.
Syntactic keywords may be used to make the syntactic pattern more readable. Semantic keywords
introduce new bindings within the scope of the semantic expansion. An example would be a syntactic

3



Transliterating Prolog into Scheme

extension for the above backtracking facility where backtrack becomes a new binding:

(extend-syntax (seq backtrack)
[(cheose <expi> <exp2>)
(call/ec (lambda (exit)
(undo-functiea
(call/ce (lambda (backtruck)
(exit <exp1>))))
<exp2>))])

Note that the new binding for exit remains hidden from the user since it is not a keyword, i.e., if
the identifier exit appears as a free identifier in either <expt> or <exp2>, it is alpha-substituted.

Semantic patterns may contain values and functions from the lexical scope of a syntax decla-
ration. The import is accomplished via a with-statement which is wrapped around the semantic
pattern mimicking a let-statement. The effect is comparable to the coding of calls to routines from
the run-time library by a compiler. The examples in Section 3 will clarify its usage.

3. The transliteration of Prolog

Prolog’s distinguishing features include computation by backtracking and call-by-unification. The
latter is based on the unification procedure and logical variables (see [9]).

Logical variables are transliterated to ref-cells. For readability we introduce the operations
free?, mewl¥, and unset!s. The function derefL¥ makes the logical contents of a variable available to
other Scheme functions. The implementation of the unifier is straightforward. Since logical variables
are changed destructively, they are collected in an undo-list in case the unification fails.

A Prolog procedure is mapped into a relatien. The clause heads become the formal parameter .
patterns; the clause bodies correspond to the function bodies which are invoked if the respective
formal pattern unifies with the argument pattern. Before arguments are passed to a relatiea they
are evaluated just as for any other Scheme function.

The actual unification process is implemented as the syntactic extension wnify. The process can
be seen as an instance of the backtracking process described in Section 2. If the first parameter pat-
tern unifies with the argument pattern, the computation proceeds with the clause bodies. Otherwise
the unification backtracks, undoes the variable bindings, and tries the next parameter pattern.

The backtrack continuation fa11 is also used to implement Prolog’s search behavior. When a
relatien succeeds, the current backtrack continuation fail is returned so that the relatien can be re-
sumed for more results. The returned fai1 continuation becomes the current backtrack continuation
of the caller. The current backtrack continuation fa11 is passed along to relations in the clause body
as an extra argument in case none of the parameter patterns unifies with the argument pattern. The
management of the backtrack continuations is done in clauses.

Figure 2 shows the entire implementation of our transliteration process. Visible to the user are
derefLV and the syntax declarations. Note that cut is implemented as a relation of no arguments
local to each relation. Its effect is to take the current fai1 continuation and return the one that was
passed to the relation, i.e., bt, thus making it the current backtrack continuation. In other words,
if the clause body ever backtracks to this point the search process resumes the caller’s continuation.
The backtrack points of the current relation are discarded.



Traneliterating Prolog into Scheme §

(Lot ([newlV (lasdda () (ref ‘wnbeund))]
[free? (lambda (var) (eq? (deref var) ‘wnbemnd))]
(umsetie (lasbda (1) (mep (lasbda (var) (set-ref! var ‘=nbeund)) 1))1)
(define derefLV (lasbda (v)
(cond [(aten? v) v]
[(ref? v) (if (free? v) v (derefLV (deref )]
[t (cons (derefLV (car v)) (derefLV (eér v)))1)))
(extend-syntax (letl¥)
[(Lletlv (<lvi> ...) <expi> ...)
(with ([newlV mewlV])
(let ([<1lvi> (newi¥)] ...) <expt> ...))1)

(letrec ([unifier! (lambda (pati pat2 fk)
(iterate U ([pati pati][pat2 pat2][unde (1)
(cond [(eq? patl pat2) wndo)
[(ref? pat1) (unify_varisble! pati pat2 wnde U)]
[(ref? pat2) (unify_varisble! pat2 pati wnde U)]
[(and (1ist? pat1) (list? pat2))
(U (cdr pati) (cdr pat2)
(U (car pat1) (car pat2) unde))]
[t (fkx wnde)]1)))]
[onify_variable! (lambda (var pat unde U)
(cend [(free? var) (set-ref! var pat)
(cens var unde)]
[t (U (deref var) pet unds)]))1)

(extend-syntex (unify fail)
[(unify arg-pat ([<param-pati> <expt> ...] ...) <post-actien>)
(with ([unifier! wifier!] [unseti* wnsetie])
(call/ce (lambda (exit)
(unsetie (call/cc (lambda (feil)
(lete ([unde (unifier! arg-pat <param-pati> fk)]
[fail (lasbda () (fk unde))])
(exit (begim <exp1> ...))))))
. ii for all param-pat
<post-action>)))1)))

(extend-syntax (clauses)

[(clauses <rels> ...) (lete ([fail (<reli> fai1)] ...) £ai1)])
(extend-syntax (relatioa cut fail)

[(relatica <lve> [<para-pat-pt1> ... ...] ...)

(lasbda arg-pat

(lambda (bt)
(LetlV <lvs>
(let ([cut (lasbda () (lambda (feil) bt))])
(unify arg-pat
([(1ist <para-pat-pt1> ...) (clauses <expt> ...)] ...) (1:13))))]

Figure 2: A Prolog transliteration into Scheme



Transliterating Prolog into Scheme

4. Examples

The following program is a naive sort program adapted from [5]. Note that the relation sert is the
result returned from the letrec -expression and that pers, sppend, and sorted are hidden by Scheme’s
lexical scope. Relations cannot only be the result of expressions but they can also be arguments to
functions and relations and can then be called without using a meta-predicate like call. In other
words relations-as-functions are first-class objects.

(define sort
(letrec ([sort (relatiem (L1 L2)
[L1 L2 <~ (perm L1 1L2) (serted L2)])]
[pera (relation (LH T v v wvw)
0 0 <]
[L (cons H T) <- (append v (cons K w) L)
(append v v vw) (perm vw 1)])
[eppend (relatien (H T Y 2)
Oyy <]
[(cons B T) Y (cons HZ) <- (append T Y 2)])]
[sorted (relation (H1 H2 E)
[(cons Hi (coms B2 B)) <- (order EHi H2)
(sorted (cens E2 R))]
[(cons H1 ()) <- ]
sort))

The above example can be rewritten using Scheme functions for append and serted at the appropriate
places.

(define sort
(let ([F-append append]
[F-soxrted (rec locp (lambda (L)
(if (mull? (cdr L)) ¢
(and (< (car L) (cadr L)) (leep (edr L)))))1)
(letrec ([perm (relation (LE TV U)
[0 0 <1
[L (cons HT) <- (append U (cons K V) L)
(pera (F-append (derefLV U)
(derefLV ¥)) T)1)
[eppend (relation (H T Y 2)
[0YY <]
[(cons B T) Y (cons K Z) <~ (append T Y 2)1)1)
(lanbda (L1)
(RetlV (L2)
(let ([next (Relipply (perm Li L32))1)
(let ([res (derefLV res)])
(cond [(eq? mext ‘me) mil]
[(F-sorted res) res]
[t (next)1))))))



Transliterating Prolog into Scheme

For readability we have introduced the function Relipply. It is defined by:

(define Relipply
(lasbda (rel)
(call/ce (lambda (backtrack) (rel (lasdda () (backtrack ‘me))))))

5. Related Work

In the preceding sections we have shown how to implement a schema for the transliteration of
Prolog programs into Scheme functions. The extended language is a union of Prolog and Lisp. Our
work can be compared both to other implementations of Prolog and Prolog embeddings into Lisp.

Pure interpreters as in [3], [12], or [6] are almost incomparable to our transliteration. Although
advanced programming techniques like continuation-passing-style are used they follow the standard
strategies for interpreters. Prolog procedures are represented by conventional data structures. One
of the major consequences is that interpreters have to search for a relation in a data base. Interpreters
also often have their own read-eval-print loop on top of the one of their host language.

Compilers like those in [1] or [15] translate Prolog into some tailor-made assembly language and
optimize the resulting code in many ways. One of the major optimizations is the in-line coding of
the unification algorithm. We can achieve the same effect with the addition of one more syntactic
extension. The details are exhibited in the appendix since they would not have contributed to our
presentation of the principle. However, we would like to point out that with this enhancement the
program becomes the shortest published (primitive) compiler.

Both pure interpreters and compilers like those in the two preceding paragraphs cannot provide
a natural and simple interface to Lisp programs. QLOG ([8]) and POPLOG ([10]) explicitly address
the implementation of a union of Lisp and Prolog. Programs written in either dialect can use
facilities of the other.

QLOG is an interpreter-based language for a Prolog/Lisp mix. The implementation strategy -

is related to the ones in standard Prolog interpreters. It consists of major additions to a Lisp
interpreter. Ten pages are needed for the interpreter extension; twenty more for the adaptation of
the user-interface to INTERLISP.

Mellish and Hardy’s compiler-based POPLOG comes closest to our Scheme extension. The
resulting language mixture is similar; the implementation strategy is almost the same. It differs
from ours in the control management which in the extended POP-11 is based on functions because
of the lack of first-class continuations. The actual implementation of POPLOG is quite different
since the Prolog part of POPLOG is compiled into asssembly code. POPLOG has achieved a similar
result but building or changing compilers and interpreters every time a new linguistic facility is to
be added is inconceivable. It is too costly for experimenting with languages and language mixtures.

Transliteration is a valuable alternative for the extension of languages with major features.
QLOG, POPLOG, or LOGLISP ([13]) are certainly good languages but they do not offer the same
potential for further extensions like the extended Scheme. Since it is no problem to add object-
oriented language facilities to Scheme (by ¢ransliteration, of course), one can imagine an object /logic-
oriented style. Similarly Scheme modules, continuations, and first-class functions can enhance pure
Prolog programming. It is obvious that the coexistence of Scheme and Prolog programs deserves
more research.

Acknowledgement. We wish to thank H.Ait-Kaci, S.Danforth, D.Friedman, R.Nasr, and M.
Wand for comments on an earlier draft of the paper.

7



8 Transliterating Prolog into Scheme
6. References

(1] Bowen, D.L, et.al., A portable Prolog compiler, Proc. Logic Programming Workshop, pp. 74-83,
1983,
[2] Campbell, J.A., Implementations of Prolog, Ellis Horwood, 1984.
[3] Carlsson, M., On implementing Prolog in functional programming, New Generation Computing
2,347-359, 1984.
[4] Clinger, W., D. Friedman, M. Wand, A scheme for a higher-level semantic algebra, in Algebraic
Methods in Semantics, J.Reynolds, M.Nivat (eds.), 1985.
[5] Clocksin, W.F., C.S.Mellish, Programming in Prolog, Springer Verlag, 1981.
[6] Kohlbecker, E., eu-Prolog, Tech. Rep. No. 155, Indiana University, Computer Science Dept.
1983.
|7] Kohlbecker, E., Syntactic Preprocessing in a Lezically Scoped Language, Ph.D. dissertation in
progress, Indiana University, Computer Science Dept., 1085,
[8] Komorowski, H.J., QLOG - The programming language for Prolog in Lisp, in Logic Program-
ming, K.L. Clark, S.-A. Tarnlund, 1982.
[9] Lindstrom, G., Functional programming and the logical variable, Conf. Rec. 12th Symp.
Principles of Programming Languages, 1985.
[10] Mellish, C., S.Hardy, Integrating Prolog in the POPLOG environment, in [2).
[11] Mosses, P., Abstract semantic algebras!, Proc. Formal Description of Programming Concepts,
1982.
[12] Nilsson, M., The world’s shortest Prolog interpreter?, in [2].
[13] Robinson, J.A., E.E.Sibert, LOGLISP: An alternative to Prolog, in Machine Intelligence 10,
1982.
[14] Sussman G.J., G. S teele, Scheme: An interpreter for the extended lambda-calculus, Memo 849,
MIT Al-Lab, 1975.
[15] Warren D., An abstract Prolog instruction set, Tech. Note No. 809, SRI, 1983.



