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Tree Matching and Simplification

Abstract

A fast algorithm for performing simplification and matching is described. The algorithm
gives an improvement of up to an order of magnitude on suitable problems. It makes use of
a dag data structure and tag fields to avoid redundant matches. Performance studies were
done to determine the relative importance of various features in improving the running
time. The actual code is given in an appendix.

1. Introduction

In this paper we describe a fast algorithm that can improve the performance of a program
that does simplification and matching by a factor of two or more. While this algorithm
was developed as part of a program for carrying out a specialized task (the Knuth-Bendix
completion procedure [10]), the basic ideas are quite general.

The problem solved by the algorithm is as follows. A set of simplification rules is
given. The left and right side of each rule is a term involving a specified set of operators,
variables, and constants, where a variable stands for an arbitrary subterm. For example,
the following set of rules states the basic group theory axioms (where variables begin with
upper-case letters):

X (x(4, B),C) — x(4, x(B,C))
x (¢(A4),4) — e
x (e, A) — A.

The left sides of the rules form the set of patterns; the patterns are matched against
the subexpressions of a subject expression, which is a term of the same type. Variables
in the patterns can match subterms in the subject, provided that variables that occur
more than once match the same expression each time. For example, in the expression
x(e, X(X,Y)), the entire expression is matched by the left side of the third group theory
rule, with the variable A matching the subexpression x(X,Y).

Any matched subexpression is replaced by the corresponding right side of the matching
rule, with the values from the left side match substituted for the variables. In our example,
the expression X (e, X(X, Y)) is replaced by x(X,Y). Such a replacement is regarded as a
simplification of the original subject. Matching and substitution continue until no further
simplifications can be done. In this application, the terms in both the patterns and the
subject may be thought of as trees, using the usual mapping of expressions to trees. We
are thus interested in many-to-one pattern matching and simplification in trees.

This problem arises in many contexts. Simplifying an expression according to a set
of rules is done as part of many theorem-proving methods, in symbolic algebra systems,
and in some kinds of pattern-based code generation methods. The algorithm described in
this paper was developed as part of a Knuth-Bendix completion program. The goal of the
program is to produce a set of rules that have certain desirable properties. First, the set

1



must be Noetherian: every sequence of simplifications done with the rules must terminate.
Second, the set must be confluent: the fully simplified term obtained from a given term
must be unique. Rules in a confluent set can be applied in any order; the ultimate result
will be the same. If a set of rules is both confluent and Noetherian, then each term has a
unique normal form, and any complete simplification reduces the term to its normal form.
The program starts with an initial set of rules and attempts to discover new rules and
add them to the set, until a confluent and Noetherian set (a complete set) is obtained.
The program cannot complete every rule set (if it could, it could solve problems that are
known to be undecidable, such as Hilbert’s tenth problem [2]), but it works in a large
enough number of cases to be interesting.

The matching and simplification routines we present do not provide for any control
over the order in which rules are applied. This is a sensible way to proceed with a complete
set of rules. The routines allow for new rules to be added to the rule set after computation
has begun, and they provide for keeping all rules in simplest form with respect to each
other. The same routines work with any set of tree rewrite rules, but an infinite loop may
occur if the rules are not Noetherian.

Our routines make use of a dag data structure to represent the terms in the system. All
the terms, including the subject and the left and right sides of the patterns, are contained
in a single dag. (This and related data structures for fast matching are discussed by
O’Donnell [13]. Also see the references in [13].) The simplification algorithm uses two
major improvements over a naive approach: it keeps track of terms that are known to
be in simplest form (so that no attempt is made to resimplify them) and it remembers
simplifications it has done on terms that are not in simplest form. The common dag is the
key to these improvements; if a new term is equal to one that is already in the dag and
that has previously been simplified, then no further work needs to be done on it.

Our simplification algorithm has many similarities with the congruence closure tech-
nique [1, 12, 4]. In particular, it uses a dag to avoid rederiving results. Unlike the
congruence closure techniques, it can handle simplification rules that contain variables.

The matching algorithm is relatively simple. It also has two major features. The data
structure records when an expression contains no variables; two expressions with no vari-
ables can match only if they are identical. Second, the matching algorithm takes advantage
of the dag data structure to speed up matching of subjects with repeated subexpressions.

With these four features, the methods we present were able to speed up the simplifi-
cation portion of our Knuth-Bendix program by factors ranging from 2.5 to 12.8, with the
improvement factor increasing with problem size. This resulted in an overall improvement
in the running time of the entire program by a factor of 1.4 to 4.1. A similarly significant
improvement could be expected for any program that makes heavy use of simplification
and matching.

The next sections of this paper provide a more detailed description of the data struc-
tures and algorithms used in our program. This is followed by an analysis of the relative
contributions of each of the four features mentioned above to the overall reduction in run-
ning time. Appendix 1 gives the actual code for the matching and simplification routines.

2. Simplification
Finding a way to simplify a term requires two steps: finding a match between the left side
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l: e

2: A

3: x(e, A)

5: x(i(A), A)

6: x(e, x(:(A), A))

Fig. 1. The dag for the terms x(e, x(¢(4), A)), x(¢(4), 4), e, x(e, A), and A.

of a rule and a subexpression of the term, and substituting the right side of the rule for the
matched subexpression. The first part of this task is by far the more costly, and offers the
greatest scope for improving the speed of simplification. This can be done in two ways: by
speeding up the matching algorithm, and by reducing the number of times it needs to be
used. The matching algorithm is the subject of the next section; in this section, we focus
on making the simplifier clever enough to avoid unnecessary matches.

Our algorithms are based on a dag data structure. All terms are represented by nodes
in a single dag with no repeated nodes. If two terms have the same main operators and the
same ordered set of children, then they are represented by the same node. For example, if
we have the subject x(e, x(¢{(A), A)) and the rules x(i(A), A) — e and x(e, A) — A, then
the terms will be stored in the dag shown in Fig. 1.

To speed up simplification, two pieces of information are kept at each node of the dag.
The canonscal field is true if the node is in its simplest form; that is, if none of the rules in
the present rule set can simplify the node. If there is a way to simplify the node, then the
canonical field is set to false. If a simplification is known for a node, then the simplifies_to
field points to the simplified version of it (also in the dag). Otherwise, the simplifies_to
field is nil. These fields, together with the unified dag data structure, eliminate a lot
of redundant matching. If a new term has any subterms in common with others in the
system, they will not have to be reexamined by the simplification routine.

Initially, all nodes except variables have their canonscal fields set to false and their
simplifies_to fields set to mil. (A variable can never be simplified, and so may be marked
canonical @ priori.) There are several routines that can change the values in these fields.
Obviously, the simplification routine will set the fields according to whether or not it finds
a simplification. The routine that adds a new rule to the system also resets all canonical
fields to false (except those for variables), although it leaves the simplifies_to field alone.
The Knuth-Bendix program has a routine that copies a term and renames all the variables,
giving them a standard set of names. If this routine discovers a non-nil simplifies_to field,
or a true canonical field, in either the term being copied or in the new term (which may
already be in the dag), then it sets the corresponding field in the other term to the same
value. If provision must be made for a rule’s becoming invalid (and not just simplifying
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away, as happens in Knuth-Bendix) then the routine that removes a rule will also have to
reset the fields to their initial values.

The simplification routine (called Reduce_term in the program) starts at the root node
of a term. It first checks the canonical field; if it is ¢rue, then no further work needs to be
done. If it is false, then the routine checks the simplifies_to field to see if it already knows
how to simplify the term. If it knows a simplification, then the chain of simplifies_to
pointers is collapsed until the field for each term in the chain points to a node whose
simplifies_to field is nil. (A beneficial side effect of the collapsing feature is that looping
simplifications, which generate a repeating sequence of terms, are detected. This feature
does not, however, detect all cases of nontermination [3].)

If the canonical field is false and the simplifies_to field is mil, then the node must be
processed by the simplifier. First, the simplifier calls itself recursively on the children of
the node, and checks the resulting term to see if it is different from the original term. If
the resulting term is different, it is checked to see if it is already known to be in simplest
form or has a known simplification, the simplifies_to field of the original term is set to
point to the simplified term, which becomes the current node. Finally, if the current node
is not canonical and does not have a known simplification, the simplification routine tries
applying each rule in the system to the root of the current node. If the term cannot be
simplified, its canonical field is set to true. If it can be simplified, then the simplifies_to
field is set to point to the resulting simplified term, which must itself be checked for further
simplifications. This process continues until a term which cannot be simplified any more
is obtained. The actual code for the simplification routine is in Appendix 1.

We also have a specialized version of the simplifier (called Reduce_term_with_one_rule)
that tries to simplify an expression using a single rule rather than a set of rules. Such
a routine is useful when a new rule is added to the system: if an expression (which has
already been simplified using the old rules) cannot be further simplified using the new
rule, then it cannot be simplified using the new rule in conjunction with the old ones.
The attempt to simplify using a single rule is much cheaper than trying the whole set of
rules. If a simplification is found, then the expression must be further processed using the
complete set of rules.

An important property of a simplification method is the order in which a term and
its subterms are simplified. The algorithm in this paper uses an order which is similar to
leftmost-innermost order. (An snnermost order is one that works bottom-up, simplifying
subterms before the main term; a leftmost order processes subterms from left to right.)
The present algorithm differs from leftmost-innermost by applying known simplifications
to a term before doing any other work. Such reductions are still innermost as long as the
algorithm is used with a fixed set of rules; but when a rule is added after some simplifica-
tions have already been done, the innermost order may be violated on later simplifications.
Our measurements show that, for our test problems, resetting the simplifies_to fields to
nil when a rule is added does not slow down matching by more than 4 percent. (These
measurements are not shown in the tables in Section 4.) Resetting simplifies_to will ensure
a strictly innermost simplification order.

To ensure complete simplification it is necessary, when a term simplifies, to recheck
the resulting term and its subterms for further simplifications. Gallier and Book [5] point
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out that, for innermost reduction orders, it is not necessary to recheck those subterms
that result from the substitution of values for variables in the initial simplification; those
values are guaranteed to be in simplest form. If normalized rules (rules that have been
simplified with respect to each other) are used, then it is also not necessary to resimplify
those subterms that are obtained by copying variable-free subterms of the right side of a
rule. The only nodes that need to be resimplified are those that are copies of right side
nodes which have variable nodes as descendants.

Our algorithm does not make direct use of either of these principles, but these cases
are among those it avoids resimplifying by using the information in the canonical field.
The values of the variables are simplified during the earlier stages of the process, and the
variable-free parts of right sides of rules are simplified when the rules are derived. When a
simplification is done, only those nodes which are copies of right side nodes with variables
as descendants have their canonical fields set to indicate the need for further processing.

An even more powerful method of avoiding resimplification (which we did not try)
begans by attempting to unify each nonvariable right side node with the root of each left
side. During a simplification the only nodes that need to be considered for resimplification
are those nodes that are copies of right side nodes which unify with the left side of a
rule. (For normalized rules, these will be a subset of the right side node with variable
nodes as descendants.) This approach is surely not worthwhile for the Knuth-Bendix
procedure on small problems, because the set of rules changes too rapidly to make up for
the unification time, but it would probably be worthwhile for applications that used a fixed
set of simplification rules.

3. Matching

Even with the improvements given above, the simplification algorithm still spends most
of its time doing matching. The studies for this paper were done using a simple matching
algorithm that tries to match a term with one rule at a time. (We are also investigating
methods that match all the rules at once; such methods rely heavily on the use of a dag to
represent the set of rules. A preliminary report of that work is given in [14].) The simple
approach that we describe here works well, and we use it as a standard of comparison
when studying more sophisticated algorithms.

The matching algorithm of this paper does have two clever features, which require a
contains_variables field and a match field for each pattern node. The contains_variables
field is set to true if the node corresponds to a term that contains at least one variable.
If the current attempt at matching has already matched the pattern node with a subject
node, then the match field of the pattern node points to the subject node. Otherwise, the
malch field is nil.

The matching algorithm tries to match a single subject with a single pattern. It begins
at the root nodes for the pattern and the subject. The root of the pattern may contain
a variable, a constant, or an operator. (The initial call to the match routine will never
have a variable as the pattern, but the recursive calls that the match routine makes may
have a variable as the pattern.) If the root of the pattern contains a variable that has
not yet been assigned a value (i.e. its mateh field is nil), then the pattern matches. If the
root of the pattern contains a variable that has already been assigned a value, the pattern
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matches if and only if the subject is identical to the value of the variable (contained in the
match field of the pattern node). Because of the dag data structure, the subject and the
value of the variable must in fact be the same node. This means that the test for equality
of the subject and the value of the variable can be done with a single pointer comparison.

If the root of the pattern contains a constant, it can match only itself. Because of the
dag, in this case the pattern matches the subject only if they are the same node.

The remaining case is that the root of the pattern is an operator with one or more
children. In this case we first check that the subject has the same main operator. If the
match field of the pattern node is not nil, the subject must be the same node as the value
of the match field. If the contains_variables field is false, the pattern and the subject match
if and only if they are the same node. Finally, if the pattern and the subject have the same
main operator, the pattern has a nil match field, and the contains_variables field is true,
the pattern matches the subject if and only if their corresponding children match. The
remaining cases do not lead to a match.

In all cases, if a match is found, the match field of the pattern node is set to point to
the subject node.

4. Performance

The speed of the simplification algorithm was measured by running the Knuth-Bendix
procedure on three algebras:

1. Group theory:
x (x(4, B),C) — x(4, x(B,C))

X (¢(A), A) — e
X (e, A) — A,

2. Knuth’s second version of central groupoids [10]:

x (x(4, A), A) — a(A)
x (A, x(A, A)) — b(A)
x (x(A, B),x(B,C)) — B
x (b(A), B) — x(A4, B),

3. The dihedral group of order 8:

x (x(A4, B),C) — x(4, x(B,0C))

x (1(A),A) — e

x (e,A) — A

X (@, x(a, x(a, X(a, x(a, X(a, X(a,a))))))) — ¢
X (b,b) — e

X (a, x(b, x(a,b))) — e.

The first algebra is a typical small problem for the Knuth-Bendix procedure, and has been
used to test the running time of many programs [7, 8, 10, 14]. The completed rule set
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for this algebra has ten rules, and the intermediate sets (which contain some rules that
eventually simplify away) are not much bigger. The second algebra is much more difficult.
The final set has only 13 rules, but the intermediate sets have up to forty rules. This
algebra has no constants. The time for this algebra has been previously measured in [10,
14]. The third algebra is also difficult; its final rule set has 30 rules. The first algebra
requires a few seconds. The second and third ones take tens of seconds.

Using naive implementations of matching and simplification, the Knuth-Bendix pro-
cedure spends more time in those routines than in all other parts of its computation
combined, according to our measurements on these and other typical algebras. Using the
algorithms in this paper reduces the running time for matching and simplification by a
factor of 2.5 to 12.8, depending on the particular algebra being completed. The total time
for the Knuth-Bendix procedure is reduced by a factor of up to 4.1. The savings factor is
largest for the largest algebra. With the improved algorithm, simplification still uses more
time than any other single part of the procedure, but it no longer uses more time than all
the other parts put together.

The Knuth-Bendix program was written using the Web programming system [9]. The
Web system produces a Pascal program as one of its outputs. (The other output is a nicely
formatted listing, as in Appendix 1.) The time for the simplification routine (including
the time used by the subroutines it calls) and for the entire Knuth-Bendix procedure was
measured using the clock function of the Berkeley Pascal compiler. The program ran on a
VAX11/780 computer. The elock function reports running time in units of one millisecond.

Running times measured in this way are subject to two sources of error. First, there
are random effects that show up when a program is run repeatedly. These random effects
can be reduced by averaging the times from several runs of the program, and the size of
these effects can be estimated by studying the variation in the running time from repeated
runs. Second, there are nonrandom effects. Since the execution time of the routines is
comparable to the clock period, the time for a routine can appear too high if a clock pulse
always comes near the start of the routine, or too low if one comes just after the end of
the routine. (If the phase of the clock is random, then the error is also random, but if the
phase of the clock is correlated with the routine then the effect is not entirely random.)
Also, the measured time depends somewhat on how busy the computer is; it appears to
go up about 10 percent when the load factor is large.

In order to gauge the relative importance of the features added to the simplification
and matching algorithms, we measured the running times of algorithms that included
various combinations of features. Changes in the running times for the simplification
algorithms show the importance of each feature. The variation in the running time for the
rest of the program is also interesting, since it gives an indication of the magnitude of the
nonrandom errors in the measurements.

To obtain a reliable value for the running time, and a reliable estimate of the error,
the Knuth-Bendix program containing each combination of features was run five times on
each algebra. The resulting errors were usually less than 10 percent. Since special features
of the algorithms reduced the running time by more than a factor of 2, the exact size of
the errors has no bearing on many of the conclusions.

Table 1 shows the amount of time used by various modifications of Reduce_term, the
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Feature Problem

C 8 V m group groupoid 2  dihedral 8

96 (+ 6) 1518 (£44) 4440 (£165)

+ 30 (+ 4) 404 (+28) 912 (+ 26)

+ 75 (£ 5) 948 (+14) 1858 (+ 34)

+ 99 (£ 6) 1600 (+42) 3982 (+154)

+ | 102 (£15) 1564 (+£58) 3918 (+ 48)

+ 4+ +| 72 (£ 9) 1067 (£75) 1716 (+ 53)

+ + +| 46 (£ 4) 397 (£13) 812 (+ 24)
+ + +] 20(27 22 (£25) 303 (& 28) |

+ + + 30 (£ 6) 228 (+8) 262 (+ 21)

+ + + +| 29 (£ 6) 220 (£15) 261 (+ 12)

Table 1. The running time required for simplification using a set of rules. The running
time is shown as a function of the features in the algorithm and of the problem. In the
feature column, a plus indicates that a feature is used while a blank indicates that it is
not. The time is given in hundredths of a second.

major simplification routine. Table 2 shows the same information for Reduce_term_with_
one_rule, and Table 3 shows the same information for the rest of the program. The feature
associated with each field is indicated in the tables by ‘c’ for the canonical field, ‘s’ for
the simplifies_to field, ‘v’ for the contasns_variables field, and ‘m’ for the match field. The
time for each part includes the time spent in subroutines called by that part. It is given
in hundredths of a second (rounded to the nearest integer). Following each time is the
expected error for the time, based the variation in the time used by five consecutive runs.
For each of the three algebras, the variation of the times in Table 3 is about as expected
(based on the variation within each group of five runs). Preliminary runs gave similar
results, except that occasionally the variation between runs was several times the expected
amount. Caution should be observed when comparing times that are closer than four times
the stated standard errors: differences in such times may not be statistically significant.
To give an idea of the overall speed of the simplification algorithm, it processes about 500
nodes per second.

Some will consider our naive algorithm to be slightly too simple. The variable nodes
never simplify. Skipping variable nodes would speed up the naive version of the algorithm
applied to the groupoid 2 problem by 30 percent. For the group problem the speed-up
would be 25 percent and for the dihedral 8 problem the speed-up would be 3 percent.
Similar results apply to all versions of the algorithm that do not use the canonical field.
Those versions of the algorithm that use the canonical field would run slightly slower,
because variable nodes are already marked as canonical.

The measurements clearly indicate that the improved algorithm is much faster than
the naive algorithm for all three problems. They also clearly indicate that the canonscal
field is responsible a large proportion of the improvement, while the simplifies_to and
contains_variables fields are responsible for smaller but still significant improvements.

Counting how often each step of the algorithm is done gives a second way to determine
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cC 8

Feature
v

m

group

Problem
groupoid 2

dihedral 8

+++ 4+

-
-
-

+ +

++ +
+ +4+++

14 (£
15 (+
21 (+
17 (+
18 (+
19 (+
14 (+
12 (+
13 (+

15 (+

194 (£15)
106 (+12)
193 (+ 7)
199 (+39)
199 (+26)
217 (+ 7)
104 (+ 6)
110 (+10)
115 (+ 6)
112 (+10)

169 (£ 5)
109 (+10)
175 (+ 6)
167 (£25)
162 (+ 6)
167 (+13)
115 (£ 8)
110 (+12)
105 (+15)
98 (+ 9)

Table 2. The running time required for simplification using one rule.

Feature Problem
cC 8 VvV m group  groupoid 2 dihedral 8
154 (£10) 875 (£16) 1050 (+28)
+ 147 (+ 6) 882 (+41) 1054 (425)
+ 139 (+ 5) 839 (+26) 1028 (+47)
+ 152 (+ 6) 865 (+£12) 1082 (& 9)
+ | 145 (£15) 829 (+48) 1026 (+28)
+ + + | 140 (£15) 805 (£32) 981 (+31)
+ + 4+ 136 (£ 7) 784 (£17) 922 (£13)
+ + + | 138 (+ 7) 833 (+69) 938 (+22)
+ + + 146 (+ 6) 857 (£25) 1027 (+22)
+ 4+ + +|141 (£ 3) 792 (£36) 900 (+21)
Average 144 (£ 1) 836 (+ 3) 1001 (+ 6)

Table 3. The running time required for the Knuth-Bendix procedure exclusive of
matching and simplification.

how important each feature is. To save space, we omit the detailed counts, but we include
the following conclusions based on the counts. (For more details consult [15].)

Most of the terms that need to be simplified are already known to be in simplest form.
When a term is not marked as canonical, it is unlikely that any simplification is known
for it. (Of course, a lot of time is saved when a simplification is known for a large term).
Just as it is unusual for a term to have a simplification, it is unusual for the children of
a term to have a simplification. Simplification takes a long time because each term that
might need more simplification must be matched against each rule.

There are methods for doing matching that don’t require a direct comparison be-
tween each rule and each term [6, 14]. These methods, however, require a good bit of
preprocessing. The authors are investigating these other methods, but so far we obtain
approximately the same performance with the simple methods as with the sophisticated
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methods. Our present advice is to first program the simple method and then try one of
the more sophisticated methods if the simple method is too slow.

Most matches terminated quite early. The total number of calls to the match routine
is about twice the total number of calls from Reduce_term and Reduce_term_with_one_rule.
Therefore, the match routine usually had to look at about two nodes before it could
determine that a rule did not apply. One simple idea that should often be effective in
speeding up matching is to divide the rules into lists based on the main operator of the
left side [11]. In this way many hopeless attempted matches can be avoided altogether.

Since it was rare for a term to have a known simplification, the running time would not
increase much if the collapsing feature in applying known simplifications were eliminated.
Elimination of the collapsing feature would permit a simple modification of the algorithm
to cause it to report each rule as the rule was applied. If previously known simplifications
were considered only after the children of a node were simplified, or if the simplifies_to field
were reset after each rule was added to the system, the algorithm would always produce
leftmost-innermost simplifications. Again this would not have a large effect on the running
time.

When the simplification algorithm of this paper applies a rule, it first finishes applying
the rule and then simplifies the result. If the result is not in simplest form, a little extra
work has been done. It might be slightly faster to check the result as it was being produced
and resimplify each piece of it at that time. This would, however, require a new data
structure to contain the values for variables. At present the values are stored in the match
fields of the variables, so it is not possible to start a second simplification until the first
one is finished. Since rules are not applied very often, nested simplification cannot save
much time. If it uses data structures that slow down matching, it can cost time.

Using the match field to avoid rematching nodes saved no time on two of the three
algebras; it just contributed a small amount of overhead. There are, of course, other
matching problems where the match field would be quite useful in reducing the time. We
can also see from Table 4 that for two of the three algebras the contains_veriables field
did not speed up the matching of terms with operators as the main operation. The main
effect of the contasns_variables field was to speed up the matching of lists that had a
single constant term. With some recoding, the contains_variables field of terms could be
eliminated while retaining the contains_variables field for list cells. This would leave the
running time the same, save some space in the data structure, and make the program more
complex.

The Knuth-Bendix procedure that was used to test the algorithms did no garbage
collection. The amount of memory used was not too large, however, because new nodes
were built only when a suitable node did not exist. Table 5 shows, for example, that for
the dihedral algebra the system considered building 11,890 term nodes [(Rebuild_term) —
(Build_term in Rebuild_term) + (Build_term)], but that it only built 823 term nodes.
If garbage collection were to be done, the logical time to do it would be just after a
new rule was introduced. For the dihedral algebra this would result in 11619 nodes been
considered for garbage collection (so not much time would be spent). The effect of this on
simplification time would be no more than that of resetting the simplifies_to field to nil
after each new rule, which increases the time by less than 4 percent.
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5. Conclusions

In summary, our experiments show that the combination of the dag data structure and
remembering which terms have previously been found to be in canonical form improves the
speed of the simplification algorithm substantially. Other features, such as remembering for
each noncanonical term a way to simplify the term, remembering whether a term contains
variables, and avoiding rematching nodes in the dag that are visited twice, were also useful
on the problems studied. The algorithm is only slightly more difficult to program than the
naive program, and it leads to substantial savings in time.
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Appendix 1

This section gives the actual code for the simplification and matching algorithms. The paragraphs are
numbered for easy reference to sections of code. The program is in Web [7], a language developed by Knuth
for writing the TEX system for typesetting. The language is essentially Pascal with named modules.

1. Data structures.

The most important data type is term. A cell of type term is used for each node in the system. A node
contains a symbol, specified by the term_type and name fields. The symbol can be an operator, a constant,
or a variable. (A constant can be thought of as an operator of arity zero, but we use a special category for
efficiency.) A node’s child_list points to a list of its children. It is nil for variables and constants and non-nil
for operators. Each node has a unique number field. The contains_variables field is true if the current node
or any of its descendants is a variable. The match field is used by the match routine to record which node
the current node matches. The canonical field is used to record whether or not the node is known to be in
simplest form. The simplifies_to field points to a node that the current node is known to simplify to, or is
nil. The simplifies_to field must be nil whenever the canonical field is ¢(rue.

A term is represented by a minimum dag (directed acyclic graph). A node never occurs on its own list of
children or as a descendant of any of its children. If two nodes have the same term_type, the same name,
and the same child_list, then they must be the same node. This permits checking the equality of trees by
comparing pointers.

[The fields have been designed for clarity. Two pointer fields can be often be saved in suitable languages,
if space is a problem. The address of the node can be used in place of the number field. Many applications of
simplification keep the rules in normal form, where neither the left or right side of any rule can be simplified
by any other rule. When this is the case, the match and simplifies.to fields will never both contain non-nil
values. In such cases one can save space by combining them together. Alternately, one can save one bit per
node by combining the canonical and simplifies_to fields into a single field that has a value for true unequal
to any pointer. In a similar way, two bits can be saved by combining the name_fype and child_list fields. If
you use normalized rules and save all the space, then you only need room for the name field and two pointers
(where the pointer fields must be able to hold a couple of extra values).|
(Types. 1) =

term_pointer = {term; Lerm_list_pointer = flerm_list;

name_type = (is_variable,is_constant, is_operator); name_indez = integer;

term = record ferm_type: name_lype;

name: name.indez;
child_list: term_list_pointer;
number: integer;
containe.variables: Boolean;
mateh: term_pointer;
canonical: Boolean;
simplifies_to: term_pointer;
end;

See also sections 2 and 8.
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2. The second major data type used by the simplification and matching routines is the ferm_list, which is
a list of terms. The nez¢ field points to the next list cell and the first field points to the term associated
with the current list position. Each list cell has a unique number field. The contsins_variables field is true
if any term on the list contains a variable.
Two lists that have the same first field and nezt field must use the same node. This permits checking the
equality of lists by comparing pointers.
{Types. 1} +=
term.lisl = record nezt: term_lisi_pointer;
first: term_pointer;
number: integer;
containe_variables: Boolean;
end;

3. A list of rules is made up of cells that have a first field that points to a rule and a nezt field that points
to the next list cell. A rule is a list of two equivalent terms. It is represented by an eguallist. An eguel_list
cell has a first field that points to a term and a nezt field that points to the next list cell. The left side
of a rule is the first term on the list and the right side is the second term. For eguallist cells, there is no
requirement that two cells with the same first field and the same nezt field use the same node. (This is
convenient in parts of the Knuth-Bendix algorithm that are not given here. The egual_list cells do not take
part in the matching algorithm.)
{Types. 1) +=
rule_list_pointer = {rulelist; equel list_pointer = {eguallist;
rule_list = record nezt: rulelist_pointer;
first: equallist_pointer;
end;
equal_list = record nezt: equallist_pointer;
first: term_pointer;
end;

4. Simplification and Matching Routines. The following routines are declared on the top level.

{ Global procedures. 4) =
{ Function Reduce term. 5)
{ Function Reduce term with one rule. 11)
{ Function Match term. 16)
{ Function Copy reduction term. 19)
{ Procedure Reset match term. 21)

13



5. Function Reduce term. The function Reduce_term is used to simplify a term. The function is called
with the parameter {erm pointing to the term that needs to be simplified and the parameter rules pointing
to the list of rules to be used for simplification. It reduces term and all of its subterms as much as possible
by repeated application of the rules on the list rules.

The function must process a term until it is reduced to a term whose canonical field is true. If the term
is canonical to begin with, the function has nothing to do except set the value to the original term and
return. If the term is not canonical, then it will be processed using a combination of three basic actions.
These actions are, first, checking the simplifies_to field to see if the function already knows how to simplify
the term (and if it does know, using the indicated term in place of the current one); second, simplifying the
children of the term; and third, using the rules to try to simplify the term at the top level.

Checking the simplifiesto field is done first. If it is not nil, then the canonical field of the resulting term
is checked. If that field is {rue, we are done. Otherwise, processing continues with the new term.

The next step is to simplify the children. If simplifications are found, then the current node is replaced
with the node containing the simplified children, and the canonical and simplifies_to fields of the resulting
node are checked as before. This step is repeated until no more simplifications of the children are found.

If the node is still not marked as canonical, then the next step is to try to apply one of the rules in the
rule list to the top level expression of the node. If no rule applies, the node is marked as canonical and the
simplification is over. If a rule does apply, the current term is replaced with the simplified term and the
whole process is repeated starting with step one. Given a Noetherian set of rules, the process will eventually
terminate.

The function Reduce_ferm uses the function Reduce.list to simplify the subterms of term. It uses Match
to determine whether a particular rule matches term, Copy_reduction_term to apply rules, and Build_term
to build a new node when the children of a node simplify. The function is written in an explicit branching
style to avoid redundant tests.

The following numerical values are used in Pascal for the labels.

define Resimplify =1

define Use_simplified_value = 2

define Chaosge_ezit = 3

define Simplify_children = 4

define Ezit =5

{ Function Reduce term. 5) =
function Reduce_term(rules : rule_list_pointer; term : term_pointer): term_pointer;
label Chase_ezit, Ezit, Resimplify, Simplify_children, Use_simplified_value;
var p,q: term_pointer; r: rulelist_pointer; I: term.list_pointer; (Function Reduce list. 10)
begin Resimplify: if —~termt.canonical then
begin if termt.simplifies_to = nil then goto Simplify_children;
Use_simplified_value: {Use the simplified value. 6)
Simplify_children: (Simplify children. 7)
{ Try to apply the rules. s)
termt.canonical «— lrue;
end;
Ezit: Reduce_term +— term;
end;
This code is used in section 4.
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6. Use the simplified value. The current term has a mon-nil simplifiesfo Beld. Follow the chain of
simplifies_to pointers to obtain the simplified version of term. To save work in the future, collapse the chain
by resetting each simplifies_to pointer to point to the last node on the chain. The resulting term is not
the original term. It will have a nil simplifiesto field, but the canonical field may be either true or false,
i.e., we don’t know how to simplify the resulting term further, but we may or may not know whether it is
completely simplified.

The routine Error, which issues error messages and stops, is called if the simplifiesfo chain has a loop.
The pointer g goes down the chain at one half the speed of p. The two pointers will eventually point to the
same term if and only if the chain has a loop. This catches some, but not all, infinite derivations.

(Use the simplified value. 6) =
begin p « term{.simplifies_to; g « p;
while pt.simplifies_to # nil do
begin p «+ ptf.eimplifies_to;
if pt.eimplifies_to = nil then goto Chase_ezit;
p + pl.simplifiesto; g « gf.simplifies_to;
if ¢ = p then Error(simplification_loop);
end;
Chase_ezit: while term # p do
begin g « term{.simplifies_to; termt.simplifies.to «— p; term «— gq;
end;
if pf.canonicel then goto Ezit;
end;
This code is used in section 5.

7. Simplify children. The quick tests have now been done. The current term has no known simplification,
so the routine tries to simplify the subterms. If any subterms simplify, then the routine builds a new term
that is like the old one except that it has the list of simplified subterms instead of the original list. If the
resulting term is known to be canonical, then the routine jumps to Ezit. Otherwise, if the routine knows
how to simplify the resulting term, then it jumps back to the first basic step, where it applies the known
simplification.
{ Simplify children. 7) =
| « Reduce_list(rules, term?.child_list);
if I # termt.child list then
begin p « Build_term(term{.term_type, termt.name,l); termt.simplifics_to «— p; term « p;
if term{.canonical then goto Ezit;
if term{.simplifies_to # nil then goto Use_simplified_value;
end;
This code is used in section 5.

8. Try to apply the rules. The term now has all its children simplified, no simplifications are known for
the term, but it is not known whether the term is completely simplified. Therefore, an attempt is made to
simplify the term with each rule. This step takes time proportional to the number of rules, so it can be
rather time-consuming. (It is a good candidate for the application of clever ideas.)
{ Try to apply the rules. 8) =
r + rules;
while r # nil do
begin (Try to match the term with the rule. o)
r +— rf.nezt;
end;
This code is used in section 5.
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9. Try to match term term with rule r. Call Match_term to see if the left side of rule r matches term.
If a match occurs, then (1) call Copy_reduction to replace term with the right side of r (after replacing
the variables in the right side of r with the values of the variables that result in the match), (2) call
Reset_match_term to erase the match fields of r (which are left set by Match_term if and only if a match is
found), and (3) go back to Resimplify to see if any further simplification can be done.
( Try to match the term with the rule. 9) =
if Match_term(rl.first1.first, term) then
begin p «— Copy_reduction_term(rt.first{.nezt1.firet); termt.simplificsto «— p; term « p;
Reset_match_term(ri.first1.first); goto Resimplify;
end;
This code is used in section 8.

10. Function Reduce list. This function returns the list obtained by reducing all terms on the list ! using
the rules on rules.
(Function Reduce list. 10) =
function Reduce.list(rules : rulelist_pointer; | : term_list_pointer): term_ist_pointer;
begin if | = nil then Reduce_list «— nil
else Reduce_list — Rebuild list(l, Reduce_term(rules,11.first), Reducelist (rules,it.nezt));
end;
This code is used in section 5.
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11. Function Reduce term with one rule. The function Reduce_term_with_one_rule is used to do one step
of simplifying a term. The function is called with the parameter term pointing to the term that needs to be
simplified and the parameter rule pointing to a single rule to be used for simplification. It examines {erm
(and its subterms) until it finds a term that can be reduced by rule. If term simplifies (either directly or as a
result of simplifying one of its subterms), the simplifies_to field of term is set to point to the resulting term.
If term does not simplify, then its canonical field is set to true. The value of Reduce_term_with_one_rule is
the term that results from reducing the original term.

The function Reduce.term_with.one_rule is used on terms that have already been simplified by an old set
of rules. All terms in the system begin with their canonical fields set to false and their simplifics_to fields set
to whatever value they had as a result of the simplifications using the old rule set. As terms are simplified
using the new rule (together with the old ones) these values change.

This function is intended for normalizing previous rules when a new rule is added to the system. Such
rules are expected to be completely simplified with respect to each other. If the term being simplified
does not simplify with the new rule, then it is in simplest form for the complete set of rules. If it does
simplify, then the result of the first simplification should not be further simplified, because simplifications
by the old rules will be missed (leading to incorrectly set canonical fields). Instead the term with its first
simplification should be saved for later simplification by the complete set of rules. [It is much quicker to use
Reduce_term_with_one.rule to find those terms that need further simplification by Reduce_ferm than it is to
simplify all the nodes with Reduce_term in the first place. The function Reduce_term_with_one_rule is usually
much quicker than Reduce.term because it uses just one rule instead of a (possibly) long list of rules.]

(Function Reduce term with one rule. 1) =
function Reduce.term_with_one_rule(rule : equallist_pointer; term : term_pointer): term_pointer;
label Ezit;
var p: term_pointer; l: term_list_pointer; (Function Reduce list with one rule. 15)
begin if ~ierm{.canonical then
begin if term{.simplifies_to # nil then (Use the simplified value with one rule. 12)
{ Simplify children with one rule. 13)

{ Try to apply the rule. 14)
termt.canonical «— true;

end;
Ezit: Reduce_term_with_one.rule «— term;
end;
This code is used in section 4.

12. Use the simplified value with one rule. The term has a non-nil simplifiesto field. Apply the
simplification and jump to Ezi.
(Use the simplified value with one rule. 12) =
begin term «— termt.simplifies_to; goto Ezit;
end;
This code is used in section 11.
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13. Simplify children with one rule. The current term has no known simplification, so the routine tries to
simplify the subterms. If any subterms simplify, then the routine builds a new term that is like the old one
except that it has the simplified list of subterms instead of the original list. If a new term is built, then the
routine jumps to Ezif.
( Simplify children with one rule. 13) =
I «— Reduce_list_with_one_rule(rule, termt.child_list);
if { # termt.child_list then
begin p — Build_term(term{.term_type, termt.name,l); termt.simplifies_to «— p; term — p;
goto Ezit;
end;
This code is used in section 11.

14. Try to apply the rule. See if the rule rule can simplify the node. If it does, apply the rule, reset the
match fields, and go to exit.

{ Try to apply the rule. 14) =
if Match_term(rulet.first,term) then
begin p « Copy.reduction_term(rulet.neztt.first); termt.simplifies_to — p; term « p;
Reset_match_term(rulel.first); goto Ezit;
end;
This code is used in section 11.

15. Function Reduce list with one rule. This function returns the list obtained by reducing the first
reducible term on the list ! using the rule rule.

{ Function Reduce list with one rule. 15} =
function Reduce list_with_one_rule(rule : equallist_pointer; | : term_list_pointer): term_list_pointer;
var p: term_pointer;
begin if | = nil then Reduce_list_with_one_rule « nil
else begin p — Reduce_term_with_one.rule(rule,ll.first);
if p=11.first then
Reduce_list_with_one_rule «— Rebuild_list(l, p, Reduce_list_with_one_rule(rule,!t.nezt))
else Reduce list_with_one_rule « Busld_list(p,!t.nezt);
end;
end;
This code is used in section 11.
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16. Function Match term. This function returns true if the variables in the pattern can be set in such
a way as to make the patlern the same as the subject. Variables in the subject cannot be set and are
regarded as distinct from the variables in the pattern (even if they happen to have the same name), so each
variable in the subject acts like a distinct constant. (This is the difference between matching and unification;
when unifying two terms, the variables in both terms can be set during the attempt to make the two terms
identical, and variables with the same name are treated as the same variable, wherever they occur.)

For the initial call to Match_term (in Reduce_term or in Reduce_term_with_one_rule), the match fields for
all the nodes in the pattern must be nil. If Match.term finds a match, then it will set the match field of
each node of patiern to point to the corresponding node of subject (umless the pattern mode is for a term
with no variables). In this case, it is the responsibility of the calling routine to reset the match fields back
to nil (by calling Reset_match). If there is no match, then Match_term resets the match fields back to mil.

When there is a match, the match fields of variables are used by Copy_reduction_term to determine what
values the variables should have when the rule (for which pattern is the left side) is applied. Each nonroot
node that has a non-nil match field must have at least one ancestor with a non-nil mateh field, or it will
not be found and reset by Resef_match. This is why match fields are set on operator nodes. In addition,
the match field is used to speed up the matching. If a node in the pattern dag is visited more than once, the
match field can be used on the later visits to determine whether the node matches the subject node or not.
If the pattern node has no variables, it matches the subject if and only if it is the same node as the subject
node. In this case it is quicker to test for matching directly than it is to make use of the match field.

The function Match uses the function Match_list to determine if the children of a pattern node match the
corresponding children of the subject node.

A pattern variable matches the subject if its value has not been set (its match field is nil) or if its value
has been set to the subject (match = subject).

A pattern constant matches the subject if and only if it is the same node as the subject.

A pattern operator matches the subject if and only if the subject node has the same operator and the
corresponding children of the two nodes match. If the pattern has no variables, this is equivalent to the
pattern and subject being the same node. When an operator node matches, its match field is set to point
to the subject (if the pattern has variables). If the pattern node is visited again during the same match,
whether it matches the subject node of the second visit can be quickly determined by using the match field
to see if the second subject node is the same as the first one.

( Function Match term. 18) =
function Match_term(pattern : term_posnter; subject : term_pointer): Boolesn; { Function Match list. 18)
begin case patiernt.term_type of
is_variable: if patternf.match = nil then (Match is true. 17)
else Match_term « patternt.match = subject;
ts_constant: Match_term + pattern = subject;
is.operator: if pattern{.name = subject {.name then
if subjecti.lerm_type = is_operator then
if patternt.contains_variables then
if patiern{.match = nil then
if Match_list (patternt.child_list, subject 1.childtist) then (Match is true. 17)
else Match_term «— false
else Match_term « patternt.match = subject
else Match_term « pattern = subject
else Match_term «— false
else Match_term «— false;
endcases;
end;
This code is used in section 4.
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17. Match is true. Record the match and set the function value.

{Match is true. 17) =
begin patterni.match « subject; Match_term «— true;
end

This code is used in sections 16 and 186.

18. Function Match list. Match each pattern on list ! with the corresponding subject on list m. If the
two lists don’t match, then call Reset_match_term to reset the maich fields that were set by match_term for
those patterns that did match. This function stops trying to match as soon as the first term which does not
match is found.

( Function Match list. 18) =
function Matchlist (I : term_list_pointer; m : term_list_pointer): Boolean;
begin if | = nil then Match_list «~— m = nil
else if m = nil then Match list — false
else if [1.contains_variables then
if Matchterm(l1.firet, mt.first) then
if Matchlist(I1.nezt, mt.nezt) then Match_list — true
else begin Reset.match_term(I1.first); Match_list — false;
end '
else Match_list — false
else Match_list ~ | = m;
end;
This code is used in section 18.

19. Function Copy reduction term. This function returns a new term obtained from p by replacing the
variables in p with their values. The match field of each variable node points to the variable's value. The
function Copy_reduction_list is used to build the new list of children for p. For terms that contain no variables,
the old and new term are the same.

( Function Copy reduction term. 19) =
function Copy_reduction_term(p : term_pointer): term_pointer; { Function Copy reduction List. 20)
begin case pi.term_type of
is.variable: if pt.match = nil then Error(unbound_variable)
else p — pt.match;
ie_constant: ;
is_operator: if pt.contains_varigbles then p — Rebuild_term(p, Copy_reduction tist(p1. child_list));
endcases;
Copy_reduction_term «— p;
end;
This code is used in section 4.

20. Function Copy reduction list. This function returns a new list obtained from ! by replacing the variables
in p with their values. The match field of each variable node points to the variable’s value. For lists that
contain no variables, the old and new lists are the same.

{ Function Copy reduction list. 20) =
function Copy_reductiontist(l : termJist.pointer): term_list_pointer;

begin if [ = nil then Copy.reduction_iist — mnil

else if I{.contains_varigbles then

Copy-reduction_list «— Rebuild list (I, Copy_reduction_term(l1.first), Copy.reduction list (It.nezt))
else Copy_reduction_list + I;

end;

This code is used in section 19.



21. Procedure Reset match term. This procedure resets the match fields of p and its children back to mil.
It is necessary that every node which needs resetting can be reached from p by a path of nodes with non-nil
match fields. This restriction makes it possible to avoid repeated resetting of nodes in the dag.

{Procedure Reset match term. 21) =
procedure Resct_match term(p : term_pointer); ( Procedure Reset match list. 22}
begin if pi.match # nil then
begin pf.match « mil; Resei_match_list(pt.child list);
end;
end;
This code is used in section 4.

22. Procedure Reset match list.

{ Procedure Reset match list. 22) =
procedure Reset_match.iist(l : term_list_pointer);
begin if [ # nil then
begin Reset_match_term(i1.first); Reset.match_list(lt.nezt);
end;
end;
This code is used in section 21.

23. Supporting data structures and routines. A brief discussion of the four routines used to produce
term and list cells follows. The data structure is a minimum dag. Two terms that have the same operator
and the same list of children must be represented by the same node. Likewise, two lists that have the same
first term and the same tail must be represented by the same node. Hash tables are used to quickly look up
nodes based on these characteristic fields.

The routines Build_term and Build list are used to find the term or list node to use (and to build the
node if necessary). The routines Rebuild_term and Rebuild_list are used to find replacements for old nodes
in cases where the old node may be the same as the new node. These routines return the old node if the
two nodes are the same and call Build_term or Build_list if they are different.

24. Types for the term hash table. The hash table has term_hash_size buckets. Each bucket consists of 2
list of the items in the bucket. The list cells have type term_hash_cell. Each list cell has a pointer to its term
(the term field) and to the next cell on the list (the nezt field). The head of the list has type term_hash_head.
Each head has a pointer to the list (the hach.list field) and a pointer to the next nonempty bucket (the link
field).

The size of the term hash table is term_hesh_size, and term_hash_sizem is term_hash_size — 1,

define term_hash_size = 863
define ferm_hash_sizem = term_hash.size — 1
(Global types. 24) =
term_hash_indez = 0 .. term_hash_size; term_hash_pointer = {term_hash_cell;
term_hash_cell = record nezt: term_hash_pointer;
term: term_pointer;
end;
term_hash_head = record hash.list: term_hash_pointer;
link: term_hash_indez;
end;
See also section 27.
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25. Term hash table. The term hash table is an array of cells of type term_hash_head. The array has
term_hash_size + 1 entries, but the last one is not used. The variable term_hash_svai! is the index of some
nonempty bucket (the value term_hash_size is used to indicate that there is no such bucket). The nonempty
buckets are linked together through their link fields. This list is used for resetting the canonical fields of all
nodes when a new rule is added to the system. The variable term_hash is used for initializing the hash table.
{ Global variables. 25) =

node_number: integer;

term_hash: term_hash_indez;

term_hash_avail: term_hash_indez;

term_hash_table: array [term_hash_indez] of term_hash_head;

See also section 28.

26. Initially, the number of nodes is zero, and the hash table is empty.
( Global initialization. 26) =

node.number «~ 0; term_hash.aveil — term_hash_size;

for term_hash « O to term_hash_sizem do term_hash_table[term_hash|.hash_list «— mil;
See also section 29.

27. Types for the list hash table. The hash table has list_hash_size buckets. Each bucket consists of a lis¢
of the items in the bucket. The list cells have type list_hash_cell. Each list cell has a pointer to its entry
(the cell field) and to the rest of the list (the nezt field).

The size of the list hash table is list_hash_size, and list_hash_sizem is list_hash_size — 1.

define list_hash_size = 863
define list_hash_sizem = lisi_hash_size — 1
(Global types. 24) +=
list_hash_indez = 0 .. list_hash_sizem; list_hash_pointer = }list_hash_cell;
list_hash_cell = record nezt: list_hash_pointer;
cell: term.list_pointer;
end;

28. List hash table. The list hash table is an array of cells of type list_hash_head. The array has
list_hash_size entries.

{ Global variables. 258) +=
list_node_number: integer;
list_hash: list_hash_indez;
list_hash_table: array [list_hash_indez] of list_hash_pointer;

29. Initially, the number of list cells is zero, and the hash table is empty.

( Global initialization. 26) +=
list_node_number — 0
for list_hash «— O to list_hash_sizem do list_hash_table|list_hash] «— mil;



30. Function Build term. This function returns a pointer to the cell with the correct term_type, name,
and child_list fields. It builds the cell if the system does not already hold it. The new cell has all of its fields
correctly initialized.

The following numerical values are used for labels.

define Term_found =1
define Build term_exit = 2

( Function Build term. s0) =
function Busld_term(term_type : name_type; name : neme_indez; child : term.dist_pointer): term_pointer;
label Build_term_ezit, Term_found;
var p: term_pointer; I: term_hash_pointer;
begin ( Hash term mode. 1)
{ Look up term in the hash table. s2)
{ Make a cell for the term if it was not found. s4)
{ Add the cell to the hash table. s5)
goto Build_term_exzit;
Term_found: Build_term « l}.term;
Build_ierm_ezit: end;

31. Hash term node. Compute a hash index for the node based on its term.type, name, and child kst
fields.

(Hash term node. $1) =
case term_type of
is_variable: term_hash « (name) mod term_hash_size;
ts_constant: term_hash «— (5+ name) mod term_hash_size;
is_operator: term_hash «— (45 s name + child{.number) mod term_hash_size;
endcases;
This cede is used in section $0.

32. Look up term in the hash table. If a hash table entry is found with the same name, term_type, and
child_list fields then goto Term_found. Otherwise, fall through.

{Look up term in the hash table. 32) =
I « term_hash_table[term_hash).hash_list;
while ! # nil do
begin if name = lf.termt{.name then
if term_type = I}.termt.termtype then (Compare the child lists. ss)
{ — Il.next;
end;
This code is used in section 80.

33. Compare the child lists. The hash table entry has the correct name and term_type fields. If it also has
the correct child_list field then go to Term_found.

{ Compare the child lists. ss) =
if child = nil then
begin if I{.term1.child_list = nil then goto Term.found;
end
else if If.term1.child_list # nil then
if child =1f.term{.child_list then goto Term.found;
This code is used in section $2.



34. Make a cell for the term if it was not found. The correct term is not in the hash table, so make the
node. The node is initialized to show that it is not known to be simplified unless it is the node for a variable,
it is not known to simplify to any other node, and it does not currently match any other node. The node
corresponds to a term that contains variables if it is a variable or if its list of children contains some variables.

(Make a cell for the term if it was not found. 84) =
new(p); pl.term_type « term_type; pl.name «— name; pt.child list — child;
node_number + node.number + 1; pl.number «— node_number; pf.match «— mil; pf.simplifies_to « nil;
if child = nil then
begin pt.contains_variables «— term_type = is_variable; pl.canonical «— term_type = is.variable;
end
else begin pf.contains_variables « child{.contains_variables; pl.canonical « false;
end;
Build_term « p;
This code is used in section $0.

35. Add the cell to the hash table. Add the new cell at the front of its bucket. If the bucket was previously
empty, add the bucket to the list of nonempty buckets.

(Add the cell to the hash table. 85) =
new(l); If.nezt «— term_hash_table[term_hash).hash_list; It.term «— p;
if term_hash_table[term_hash).hash tist = nil then
begin term_hash_table|term_hash).link « term_hash_avail; term_hash_avail «— term_hash;
end;
term_hash_table|term_hash).hash_list — I;
This code is used in section $0.

36. Function Build list. This function returns a pointer to the cell with the correct firsf and nezt fields.
It builds the cell if the system does not already hold it. The new cell has all of its fields correetly initialized.
The following numerical values are used for labels.

define List_cell found =1
define Build_list_ezit =2

( Function Build list. s6) =
function Build_list(first : term_pointer; nezt : term_list_poinier): term.list_pointer;
label List_cell found, Build_list_ezit;
var l: term_list_pointer; h: list_hash_poinier;
begin { Hash list node. 37)
{ Look up list cell in the hash table. s8)
( Make a cell for the list cell if it was not found. s9)
goto Build list_ezil;
List_cell_found: Build_list « ht.cell;
Build_list_ezit: end;

37. Hash list node. Compute a hash index for the node based on its first and nezt fields. (The first field
will be non-nil, but the nezt field may be nil.)

(Hash list node. 37) =
list_hash «— first {.number mod list_hash_size;
if nezt # nil then list_hash «— (list_hash + 25 ¢ nezt|.number) mod list_hash_size;

This code is used in section 36.
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38. Look up a list cell in the hash table. If a hash table entry is found with the same first and nest fields
then go to List_found. Otherwise, fall through.
{Look up list cell in the hash table. 38) =
k « list_hash_table|list_hash];
while & $# nil do
begin if first = hi.celll.first then
if next = nil then
begin if At.cell{.nezt = nil then goto Lisi_cell found;
end
else if ht.celltf.nezt 3 nil then
if next = hi.celll.nezt then goto Lisi_cell found;
h — hi.nezt;
end;

This code is used in section $8.

39. Make a cell for the list cell if it was not found. The correct cell is not in the bash table, so make the
node and add it to the front of its bucket. The list contains variables if either the first part or the nezt part
does,

{Make a cell for the list cell if it was not found. 89) =
new(l); list_node_number « lisi_node_number + 1; i}.number «— list_node_number; I{.first — first;
It.nezt « nezt; Build list — I; new(h); hl.nezt « list_hash_table|list_hash]; ht.cell — I;
if next = nil then I{.contains_variables «— firstt.contains_variables
else If.containe_variables « firsit.contains.variables V neztt.contains_veriadles;
list_hash_table[list_hash] «— h;

This code is used in section $8.

40. Function Rebuild term. This routine returns a pointer to a cell like the one for term p, except that it
has child as its child_list field. When the child list is different, the routine calls Build_ferm to do the work.
Otherwise, it just returns p.
{Function Rebuild term. 40) =
function Rebuild_term(p : term_pointer; child : term_list_pointer): term_pointer;

begin if pt.child_list = child then Rebuildterm «— p

else Rebuild_term + Build_term(pt.term_type, pt.name, child);

end;

41. Function Rebuild list. This routine returns a pointer to a cell like the one for list old, except that it
has first and nest as its first and nest fields. When these fields are not the same for the new node as for
the old node, the routine calls Busld_list to do the work.
( Fenction Rebuild list. 41) =
function Rebuild_list (old : term list_pointer; first : term_pointer; nezt : term_list_pointer): term_list_pointer;
begin if (old].first = first) A (oldt.nezt = nezt) then Rebuild_list «— old
else Rebuild_list «— Build_liset (first, nezt);
end;

25



Appendix 2

Place group groupoid dihedral
[ Reduce_term 441 2060 2412
Resimplify 493 2305 2638
not canonical 200 1061 1329
chain length 1 63 503 553
chain length 2 8 42 127
chain length 3 5 10 37
canonical result 76 536 661
children 144 571 778
Build_term 42 102 345
canonical result 8 15 109
goto Use 20 46 110
Try 116 510 559
Match_term 844 9631 10629
Copy-term 52 245 226
Reduce list 403 1553 2266
list nil 144 571 778
Reduce_one_term 584 5642 5179
not canonical 222 2001 1997
Reduce_one_list 221 1996 1996
Match_term 213 1985 1981
Copy_-term 6 42 22
Reduce_one_list 573 5365 5414
list nil 213 1985 1981
Match_term 2213 23005 23435
variable 482 4057 2480
match=nil 415 3414 2172
constant 91 0 3562
operator 1640 18948 17393
=name 048 8996 12588
=type 875 8119 11754
has variables 848 8119 8087
Matchlist 848 8110 8087
matches 173 1198 817

Match_list 1404 12587 12116
list mil 169 1198 809
no variables 79 0 479

Table 4. The number of times various sections of the algorithm were executed.
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Place group groupoid dihedral
Build_term 1048 7238 5144
new term 197 546 823
Build list 986 6372 7120
new cell 250 566 1124
Rebuild _term 1110 8796 10319
Build_term 579 4203 3593
Rebuild _list 2358 17341 23552
Build list 965 6340 7070
Canonical reset 1112 11461 11619
Reset_match_term 1406 10688 10589
match not nil 912 6763 4841
Reset_match_list 1452 10530 8087
not nil 540 3767 3246
Copy-term 157 775 961
variable 04 446 422
constant 6 0 103
operator 57 329 436
has variables 57 329 389
Copylist 156 817 1102
list nil 57 329 389

Table 5. The number of times various support activities were done.
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