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Part I. Introduction to Lattice Theory

I. Introduction

The operation "A" in a lattice is the "AND gate" of logical
computer design which picks the lowest of the input voltages as
its output; the operation "v'" in a lattice is the "OR gate" of
logical computer design which picks the highest of the input volt-
ages as its output. These operations correspond to .AND. and .OR.
in most high-level programming languages. The following introduc-
tion to lattice theory will be of value to computer scientists
interested in foundations of the logical design of computer struc-

tures, both in hardware and software, and related computer sclence.

II. Partially Ordered Sets

We begin by considering an arbitrary set or collection of ob-
jects P in which there 1s defined an equivalence relation (=)
and a binary relation (<) whose ultimate nature depends on the
set P and the purposes or semantics at hand, and which have the
following properties:

(1) For all o ¢ P , a < a 1i.e., the relation 1s reflexive.

IA

(2) If a < b and b a , then a=b , i.e., the relation

is antisymmetric.

A

(3) If a<b and b ¢ , then as<c , i.e., the relation



is transitive. Such a set is called a partially ordered set w.r.t.

the relation symbolized by < . We use the expression partially
ordered since it is not required that at least one of a < b ,

b < a must be true for every pair of elements a and b of P
If neither a < b nor b < a , the elements a and b are said

to be not comparable.

Since the name "partially ordered set" is somewhat long to
read and write we shall abbreviate it henceforth to poset.

As an example, consider any set of positive integers and let
a <b mean "a is a divisor of b" . Then (1), (2), and (3) are
all satisfied. That is, every set of positive integers is a poset
w.r.t. the relation "is a divisor of." Note that there may well
be integers a and b such that neither divides the other in
such a set.

It is also easy to give an example of a set which is not a
poset. Consider the set of all complex numbers Z = X + Yi where
Z and Y are real. Then [Z| =A X2 + Y2 . Let the relation
W s Z2 mean |[W]|<|Z] , where < has its usual meaning. Then
W <W and also W<2Z , Z<V=>W=<V . However, from W =< Z
and Z < W we cannot conclude Z = W in the usual sense of "="
Bapew |2~ %] = 11 % 2L] buk 2 =427 1 % 21

In a poset P we may have a < b but a #b . In this case
we write a <b . If. a < b and there exists no x in P such
that a < X < b we say b covers a .

When in addition to the three properties given, we have the

further property that for every pair a and b e P g'ch .

a=Db , or b<a for every pair of elements a and b of P ,



then P 1is a completely ordered set or totally ordered set. The

real numbers and the usual relation < provide the most familiar

example.

5.2 Hasse Diagrams of Posets

When a finite poset P contains a reasonably small number of
elements, it can be represented conveniently by a figure. The
elements of P are represented as points or small circules. If
b covers a , we draw b on a higher level than a and connect
b to a by a line. (Such a figure is called a Hasse diagram
after the German algebraist Helmut Hasse.) For example, consider
the poset consisting of the integers 1, 2, 3, 5, 6, 10, 15, 30,
which are all the positive integral divisors of 30, and let <

mean "is a divisor of." Then the Hasse diagram is as follows:

The Hasse diagrams serve to aid us in visualizing what we are
working with, and also, as linear graphs, suggest tools, defini-

tions, and theorems which may be of use.

III. Properties of Posets

We shall use the words under and over for the relations

< and = of a partial ordering, with the latter terms being an

obvious dual version of the former.



We define a maximal element of a poset P as one which is

under no other element of P and a minimal element as one which
is over no other. The poset in the diagram to the
left has 2 minimal elements and 3 maximal ones. We

have Theorem 1l: A non-empty., finite poset P contains

at least one maximal element and at least one minimal element.

For let a be any element e P . Then if a 1is not maximal,

b € P 3 a e b . If b 1s not maximal Hc > a < b < ¢ . Since

P 1is finite, this chain must eventually terminate. The last ele-

ment of the chain is then maximal since it is under no other.

If a poset P contains an element Z which is under every

other element of P , then Z 1is called a zero-element' pf P

Similarly, if P contains an element U which is over every other
element of P , U is called a unit element of P . We have

Theorem 2: A poset has at most one zero element and at most

one unit element.

For 1f Zl and 22 are both zero elements, then Zl < 22
and also 22 = Z1 . Hence Z1 = Z2 . Similarly for unit elements.
The zero element is customarily denoted by 0 and the unit
element by 1 , provided they exist. A poset may have a 0 ,

or a 1 , or both, as these examples show:



In a poset with a zero element, each element which covers 0
is called an atom. Similarly, in a poset with a unit element,
each element covered by 1 1is called an antiatom.

Consider now a subset Q of a poset P . There may exist an
element a € P > for all b e@Q , b <a . Such an element is

called an upper bound of Q@ .

P5 P6 E.g., in the figure to the left, let
Q = {Pl,Pz,P3} . Then PM’PS’P6 are all upper
P2 P3 bounds of @ . The upper bound Pu obviously

has a minimal sort of property in this respect.
This suggests the following definition: if a 1s an upper bound
of a subset Q of a poset P , and if a 1is under every upper
bound of Q , then a 1is called a least upper bound of Q .
Here P, 1is the least upper bound of {Pl,P2,P3}

In analogous fashion, a lower bound of a subset Q of a pdset
P 1s defined as an element b e P b < a for all a ¢ Q . If
Q2= {PS’Pé} in the préceding figure, then Pl’PE’P3’PH are all
lower bounds for the subset Q . Here Pu has an obvious maximal
rroperty wnich is reflected in this definition: if b 1is a lower
bound of a subset Q of a poset P , and if b 1s over every

lower bound of Q , then b 1is the greatest lower bound of Q .

Referring again to the figure, we see that the subset

{Pl’Pz’P ,Pu} has the greatest lower bound (g.l.b.) P, and the

3
least upper bound (l.u.b.) Py, . The set {PN’PS’P6} has g.l.b.
P}4 but no upper bound at all. Note that a g.l.b. or l.u.b. of a
subset of a poset may or may not belong to the subset, as the case

may be. We have



Theorem 3: The l.u.b. (g.l.b.) of a subset Q of a poset P

is unigue if it exists.

For if al and a2

and a2 < al . Hence al = a2

We make a final definition. 1In a poset P , partially ordered

are both least upper bounds, then a; < a,

Ditte for the g.l.b.

by < we define the dual partial ordering = thus:

a>b iff b < a . It is easy to verify that (L) ,(2),(3) hold

for > . The Hasse diagram for P w.r.t. > is like that

of: P weP B < except that it is turned upside down.
Since any theorem which is true for every partial ordering is

thus true for = , we have the following principle of duality for

posets:

Theorem 4: In every theorem about posets, expressed in terms

of the symbol < , this symbol may be replaced by = throughout

and another true theorem results.

E.g., a poset P contains at most one zero element, i.e., at
most one element z > z < a for all a e« P . Dually then, P

contains at most one element u » w 2 a for all a e P .

IV. Lattices
A lattice is defined to be a poset in which every pair of ele-
ments has a l.u.b. and a g.l.b.

Theorem 5: In a lattice L _J.every finite, non-empty subset

has an l.u.b. and a g.1.b.

The theorem is true for n =1 , the element being its own

g:1.b. and: lsu.b. It is alsec true when n = 2 » by the definition

of a lattice.



Suppose now the theorem holds for all subsets containing 1,2,
...,k elements, so that a subset al,az,...,ak of L has a g.l.b.
and an l.u.b. Then if L contains more than k elements, con-
sider the subset {al’a2""’ak+1} g L
Let w = l.u.b.(al,ae,...,ak) . Then let v = l.u.b.(w,ak+l) i

If now u 1is any upper bound of all of a"aZ""’ak+l’ e I8

v

in particular = each of 8158550058 and therefore y = w

Also and ~u 1s an upper bound of w and 841 -

4 = By
Hence u 2 v . That is, since v = each a‘j » V 1s the 1l.u.b.
of al’a2”“’ak+1 . The theorem follows for the l.u.b. by the
principal of finite induction. A similar argument takes care of
the g.1l.b.

If L is finite and contains n elements, the induction pro-
cess stops when k + 1 =n .

We say that a lattice is complete iff every non-empty finite
or infinite subset of L has an l.u.b. and & g.l.b. Then we have

at once

Theorem 6: Every finite lattice is complete

We now define in a lattice L two operations Vv : "sup" and
agtdnt™y avhbh = L.a.b.Jasb]l ¢ 8 A b= @elabe[asb] s

More generally we define

k
l.u.b.[al,ag,...,ak] =a; va,v...va = izlai
k
g.l.b.[al,az,...,ak] =a; Aay, A ... A8 = _% ay
1=1
If 1L 1is finite and = [al,az,...,an] » then the following

2 elements exist:



g.l.b.[al,a2,...,an] , which we call "O" (Section 5.3)

l.u.b.[al,a ,an] , which we call "1"

LERE
This amounts to giving the special names "0" and "1" ¢to
two of the elements of L . We have thus
Theorem 7: Every finite lattice contains a "0" and a "1" |,
n

ay and 1 = V a; - We prove next
1 i=1

=35

where 0 =
54

Theorem 8: In every lattice, the following properties hold:

(L,) avb=bva; aAab=Dbaa . (commutative)

(L2) (avb) v ¢ = a v (bve); a a (bac) = (aab) A ¢ . (associative)
(L3) ava=a; ava=2a . (idempotent)

(LM) (aab) v a = a; (avb) A a=a . (absorbtive)

(L follows from the symmetrical nature of the definitions

1)
of v and A

(L,) may be proved thus: Let w = l.u.b.[(avb),c] and let

2
v =1.u.b.[a,b,e] . Then w=2avb and w=2c¢ , i.e., w=2a ,
b , and ¢ . Hence w =2 v since v 1s the l.u.b. On the other

hand, v 2 a and b and also v 2z ¢ . Hence v =z a v b and c

Hence v 2 w since w l.u.b.[a v b,e] . Hence v =w . Simi-

larly, l.u.b.[a,(bve)] v , and (L2) follows.

(L3) is immediate from the definition.

(LM) is proved thus: a A b < a , by definition. Then 1l.u.b.
[a A b,a] = a since a A b 1is below a ; i.e., (aab) v a = a
Similarly a v b =2 a , and hence g.l.b.[a v b,al = a since a
is below a v b 3 i.e., (avb) A a =a .

The converse of the preceding theorem is also true:



Theorem 9: Any set

L upon whose elements are defined

= and binary compositions v and A in L , the latter sat-
isfying (Ll) 3 (L2) 5 {L3) , and (LL;) is a lattice.

What we have to show is that H a relation < which has
properties (1) , (2) , and (3) », and that w.r.t. this
relation, a A b = g.l.b.[a,b] and a v b = Toliabe 801 s

To prove the theorem, we define a < b to mean a v b=>b .
Then we have:

(Pl): a < a because av a=a .

(P2): a<b and b<a=>» avb=Db and b va-=a But
avb=bva . Hence a=D>b ; i.e., (P2) holds.

(P3): a<b and bs<c® avb=b and bvec=c¢c> aves:s
av (bve) = (avb) ve=bve=c» acs<c , so that (P3) holds.

Now to prove a v b = l.u.b.[a,b] w.r.t. < as defined above,
we note first that a v (avb) = (ava) vb =a Vv b Hence
a<avhb Similarly b < a v b Hence a v b 1is an upper
bound for a and b .

Now suppose ¢ 1is any upper bound for a and b . Then
a<c and b<ec 3 i.e., ave=c¢c and b v c =c . Hence
(avb) ve=av (bve) =ave=c , sothat avbs<sc ; 1i.e.,
avb 1is the l.u.b. of a and b .

V. Lattices as Boolean Algebras

Recall that an infinite lattice need not have a 0 or a 1

Theorem 10: In a lattice L with 0 and 1 , for each a e L
OAna=0 , 1va=l
gva=a8 4, 1K g=8

b
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In fact, 0 A a = g.l.b.[0,a] = 0 since 0 1is the least ele-

ment of L . Similarly, O v a = l.u.b.[0,a]l] = a since 0 < a .

Next 1 v a = l.u.b.[1l,a] 1 since 1 1is the greatest element

of L and finally 1 A a g.l.b.[1l,a] = a since a <1 . Thus
0 and 1 have the expected properties w.r.t. the operations v
and A .

By analcgy with our previous experiences, we define a distribu-
tive lattice as one in which a A (bve) = (aab) v (éac) . We

have the apparently surprising

Theorem 11: In any lattice L

[2 A (bve) = (aab) v (aac)] 4iff [a v (bac) = (avb) a (ave)] .
Suppose first that a A (bve) = (aab) v (aac) for all a,b,c € L

Then a v (bac) = [a v (aac)] v (bac) by Lu

a v [(aac) v (bac)] by L2
= a v [c A (avb)] by the distributive law

assumed in the hypothesis

[(avb) A a] v [(avb) & g] by L, and Ll

(avb) A (ave) again by the distributive law

zssumed in Che nypothesis. The other hzlf of the theorem is obtained
by a duzl proof.
Next we define a lattice L with 0 and 1 elements to be

a complemented lattice iff foreach a e LEZ 3 ¢ L 3ava-=1

and a A a=0 . The element a 1is called a complement of a .

A simple example of a complemented lattice is the lattice of all

the subsets of a set.
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Theorem 12: In a distributive lattice with 0 and 1 , the

complement is unique.

Suppose in fact ava=1 , aaa=0
and avb=1 , aaAanb-=20 .
Then a =a A 1 =a A (avb) = (ana) v (8b) = 0 v (aab) =a A b .
By a similar computation, b =b a a ; but baa=aab , so

b = a and the complement is unique. We note in passing, however,

that it is not an easy matter to decide whether a complemented
lattice having unigue complements must be distributive or not. At
any rate, we are now ready to define a Boolean algebra using these

concepts.

Definition: A lattice L with 0O and 1 that is distributive

and complemented is a Boolean algebra.

VI. Summary

The above brings the computer scientist to a view of Boolean
algebra in terms of lattice theory. For further details or informa-
tion, see for example, G. Gratzer's "Lattice Theory, First Concepts

and Distributive Lattices," Freeman, San Francisco, 1971.
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Part II. Introduction to Ring Theory

I. Introduction

The properties of addition and multiplication are of basic
importance to the computer scientist. The following introduction
to ring theory provides not only a basic understanding of these

properties, but also a view of Boolean algebra from the. standpoint

of this theory.

IT. Rings

A ring, R , is a collection or set of elements with two
binary operations called addition @& and multiplication 8 .
The properties of addition are:
(A.1) Containment
For every u ¢ R :, veR , u®veR
(A.2) Associativity
For every ueR , VveR , WwWer.
(uBv)dw=u®e (vew)
Because of associativity, the parentheses in the above can be

removed. Properties (A.1l) and (A.2) define an additive semi-

group .
(A.3) u®v=veu forall ueR , VveR

(A.4) For every u € R , there is an element denoted by the

symbol O such that u @& 0 o .

(A.5) For every u ¢ R , there is an element denoted by (-u)

such that u & (-u) = 0
Properties (A.1l) , (A.2) , (A.3) , (A.4) , (A.5)

define an additive Abelian group.
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The properties of multiplication are:
(M.1l) Containment

For every ueR , veR , u®veDR .
(M.2) Associativity

For every ueR , veR , weR

(u® v) xw=u® (v x w)

Properties (M.l1l) and (M.2) define a multiplicative semi-

roup. The parentheses in (M.2) can be dropped.
The connecting properties between these operations are:
(C.1) Distributivity on the left:
u® (vew)=(ud®v) ® (ud w) forall ueR ,
veR , weR
(C.2) Distributivity on the right:
(v w)®@u=(veu) @ (w®u) for all ueR ,

veR , weBR .

A ring with unit is a ring with an element 1 such that

(V1) u® 1 u , For all 4 e R

(V.2) 1 8®u u , forall ueR .

A 2-ring with unit is a ring with unit such that

(T.1) u® u=u , for all u e R

Definition: A 2-ring with unit is called a Boolean algebra.

IIT. Examples

Ex. 1. The ring of positive and negative integers under usual
addition and multiplication is a ring with unit in which multipli-

cation is commutative.
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Ex. 2. The ring of positive and negative, even integers under
usual addition and multiplication i1s a ring in which multiplication
is a ring in which multiplication is commutative, but there is no
multiplicative unit.

Ex. 3. The ring of 2 by 2 matrices with positive and negative
integers as entries, under usual matrix addition and multiplication,
is a ring with unit in which multiplication is not commutative.
Further, the product of two elements can be 0 even though neither
element is 0 .

Ex. 4. The ring consisting solely of 0 and 1 under binary
addition and multiplication is a 2-ring with unit called the "two
element Boolean algebra."

Ex. 5. The ring of all subsets of a set, with Sl 8 82 the
subset of points common to S1 and 82 and Sl ] S2 the subset
of points dn S1 or S2 but not in both Sl and 82 s 1s a 2-

ring with unit called the "Boolean algebra of subsets of a set."

iV. Eiemerisry COnsecyernicss

(L.1) The element 0 1s unigue.

Proof: It must be shown that if there is an element 2z € R such
that u® z =u for all ueR , thenm z =0
Consider =z & 0 .

By (A.4) , z &0

]
™

However, by (A.3) , z @ 0 0 & z

0 by the assumption

Hence, z =0
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(L.2) The element (-u) 1is unique.
Proof: It must be shown that if there is an element ¥y € R
such that u @ (y) = 0 for any ue R , then y = (-u)

Consider y @& (u @& (-u))

By (A.5) ,y® (u+ (-u)) =y ®0

y by (A.4)
Consider (y ® u) + (-u)
(u®y)® (-u)

By (A.3) , (y & u) & (-u)

0 ® (-u) by the assumption

(-u) ® 0 by (A.3)

(-u) by (A.4)

Hence y = (-u) by (A.2)

(L.3) In a ring with unit, the element 1 is unique.
Proof: As in (L.1)

(L.4) In a ring with unit (-1) @ (-1) =1

Initial comments: It must be shown that (-1) ® (-1) i1s the

inverse of (-1) . Then, because (-1) & 1 =1 8 (-1) by A.3)
=0 by (A.5) ,
it will follow that (-1) ® (-1) =1 by (L.2) . However, to

show (-1) @& [(-1) @ (-1)] = 0 , since
(-1) & [(-1) & (-1)] [(-1) @ 1] & [(-1) ® (-1)] by (V.1)
(-1) @ [1 & (-1)]1 by (C.1)

i

(-1) ® 0 by (A.5) ,

it will be enough to prove u ® 0 = 0 for all u ¢ R , since

then the above steps can be reversed to obtain a proof.



Proof: u® 0 =0 for all u ¢ R for

u=ue®l by (V.1)
=u® (1L 8&0) by (A.4)
= (u®1l) ® (u® 0) by (C.1)
=u®(ue 0 by (V.1)
and 0 = u ® 0
Let u=1 . The 0= (=1) @ 0

(-1) ® [1 & (-1)] by (A.5)
[(-1) @ 1] & [(-1) ® (-1)] by (C.1)

]

(-1) & [(-1) & (=1)]1 By (¥.l)
and (-1) ® (-1) = 1 by the above comments. Thus, this basic
property follows from the properties of a ring with unit, without
using (M.2) , (C.2) , and (V.2)

(L.5) In a 2-ring with unit (i.e., a Boolean algebra),
ve v=0 forall v e R

Proof: u=u®u forall ueR by (T.l)

Hence (v $'v) (v ®v) ® (v & v)

[(vev)ev]e[(vev)ev] by (c.1l)

[((vev)e (vev)] e [(vevVv) @8 vev] by

I

(C.2) twice; (vo®v] ® Jve v] by (T.1) four times; and

and v & v 0 by (L.1)

This is a basic property of binary addition.

(L.6) In a 2-ring with unit (i.e., a Boolean algebra),

u® v=veu forall ue R , Vv eR

Proof: u @& v (ud v) ® (ud v) by (T.1l)

]

[(u® v) ® ul ® [(ud® v) 8 v] by (C.1) twice
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[l

[((u®u) ® (ve uloe[(uev)e® (ve v)] by

(Fa2) tukesl [u® (veuwleoe [(ue v) 8 v] by (T.1) twice

u® [(veu & (u® v) ® v] by (A.2)

ud [(veu & (ue v) ® vl] by (A.2)

ud[ve ((veu) & (ue v))l] by (A.3)
= (udv) ®[(veu) & (ue v)] by (A.2)

So 0= (veu)® (ue v) by (L.1)

Hence u® v = =(v ® u) by (L.2)

v @ u
since -(w) =w by (L.6) and (L.2)

We say that multiplication is commutative in a 2-ring with unit.

This is a familiar property of binary multiplication. Note that

pecause of (A.3) 1in every ring, addition is commutative.

V. The above brings the computer scientist to a view of Boolean
algebra in terms of ring theory. The emphasis here is on an under-
standing of the basic properties of addition and multiplication.
Tor further details or information, a good beginning is N. McCoy's

"Rings and Ideals."
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Part III. Boolean Algebra

In Part I a definition of Boolean algebra was given as a par-
ticular kind of lattice, that is, as a distributive lattice with
0 and 1 which is complemented. In Part II another definition
of Boolean algebra was given as a particular kind of ring, 1oy
as a 2-ring with unit. The references given in Part I or Part 17T
form a basis for further investigation along the lines of elther
of these definitions. Still other beginning approaches are found
in many beginning books on computer science such as "Logic and
Algorithms" by R.R. Korfhage, Chapter 2. Here we give two exer-
cises which; taken together, establish that the two definitions
of Part I and Part II are indeed equivalent.

1) Prove that any distributive lattice with 0,1 which 1is
complemented is also a 2-ring with unit. In other words, prove
that the operation @ is definable so that x & y may be given
in terms or x,y and the operations v,a,- ; the operation @
is definable so that x ® y may be given in terms of X,y , and
the operations Vv,A,- ; there is an element =z of the lattice
which behaves as the 0 of the ring; there is an element U of
the >zt+tice which behaves as the 1 of the ring.

2) Prove that any 2-ring with unit is also a distributive lat-
<iece with 9,1 which is complemented, i.e., prove that (a) the
operation A 1is definable so that X A y may be given in terms
of x,y and the operations ®,8 ; (b) the operations A is de-
finable so that x A y may be given in terms of x,y and the

operations ®,8 ; (c) there is an element e of the ring which
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behaves as the 1 of the lattice; (d) there is an element r of
the ring which behaves as the 0 of the lattice; (e) the opera-
tion - 1s definable so that x may be given in terms of x,0,1,

and the operations &,® .

Further Problems

(i) Express X @& y in terms of the operations v,A , but
using the operation - only once. Can this also be done for the
important sum-with-carry expression x @8y & c ?

(i1i) In a ring with unit where V @ veo v=v forall v ,
give a counter-example which shows that v & v ® v = 0 need not
hold for all v . Show that the integers 0,1,2(modulo 3) form
a ring with unit satisfying both of these properties.

(iii) Prove that the NAND or STROKE function defined in
a 2-ring with unit by u/v = (u @ v) ® 1 may be used as the sole

operation in the proof of (2) above.

Typed by Christopher Charles



