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Summary

This paper describes an Applicative Programming Storage Architecture (APSA)
along with an approach for simulating it on the Goodyear Massively Parallel Proces-
sor (MPP). The objectives of this work are (1) to study the performance of APSA,
and develop it further, and (2) to develop techniques and tools for simulating VLSI
architectures (especially systolic architectures) on the MPP.

The APSA architecture provides the fastest known solutions for several prob-
lems that arise in the active research area of Applicative Programming Architec-
tures — in particular, accessing variable bindings, reducing the overhead of storage
management, combining list and vector data structures, unifying stack and heap
implementations of continuation data structures, and solving the “aggregate update
problem”. Further progress on this architecture requires a fast simulator, but the
simulation of VLSI designs on conventional architectures is difficult because of the
enormous computational requirements.

This paper shows how the VLSI layout of the APSA architecture corresponds to
the architecture of the MPP. The simulation will map each computational element
(CE) of a geometric layout of the APSA onto a processor in the Array Unit of the
MPP. Each Array Unit processor will contain a code specifying what type of CE
it represents, as well as the local storage of that CE. The Array Control Unit will
broadcast instructions to the Array Unit causing all the processors corresponding to
a particular type of CE to execute simultaneously. The simulator will issue bit-level
instructions to the Array Unit, exploiting the bit-serial architecture of the MPP.



1. Introduction

This paper describes a novel VLSI computer architecture (APSA) [16, 18, 19],
and a method for simulating it on the Goodyear Massively Parallel Processor [20].
This work has two interesting aspects:

(1) the APSA architecture itself, which addresses many difficult problems in the
active area of applicative programming architecture, and

(2) techniques for exploiting the architecture of the MPP in order to simulate VLSI
architectures.

The simulation will lead to advances in both areas, and it will also provide a useful

test of the MPP’s capabilities for VLSI architecture simulation.

The purpose of APSA is to support fast implementation of applicative pro-
gramming language interpreters. It does this by improving the time complexity of
several algorithms that are critically important in such implementations. Specifi-
cally, the APSA system improves the time complexity of several key data structure
operations by a factor of n, where n is the size of the data structure, and it also
improves the space complexity of some algorithms. For example, [19] shows how
APSA improves both the time complexity and the space complexity of the “aggre-
gate update problem”, which has received considerable attention in the research
literature (e.g., [7]). Section 4 briefly describes how the APSA hardware works,
and Section 5 discusses its performance and compares it with the performance of
conventional systems.

The remainder of this paper briefly describes the area of applicative program-
ming architecture, the nature of the APSA architecture research and the simulation
research, how they will be carried out, and the significance of the expected results.

2. Architectures for applicative programming

There is widespread agreement [3] among computer scientists that parallel ex-
ecution of programs will be necessary in order to gain the performance desired for
many applications — improvements in raw circuit speed will not be enough. A wide
variety of ideas about how to build parallel architectures has lead to such machines
as the MPP, vector processors, and MIMD networks like Cm*.

Another approach to parallelism — which leads to the APSA system — is to
design architectures that exploit the parallelism inherent in applicative programs
(also called functional programs). Wise has published a tutorial introduction to
applicative programming [22], and there is a survey of architectures for applicative
programming by Vegdahl [21]. The main premise motivating applicative architec-
ture research [1, 6, 8, 12, 13, 17, 23] is that it is difficult to write programs that
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control parallelism explicitly, so we should build systems that integrate a parallel
architecture with a highly effective way to program it. Many fast parallel algo-
rithms for specific applications already exist, but applicative architecture research
isn’t concerned with finding the best algorithm for one particular problem; instead,
it tries to bring the performance benefits of parallelism to all programs written in
an applicative language.

The basic idea of the approach is to start with applicative or functional pro-
gramming languages that encourage users to write programs that are implicitly
parallel, and then to develop architectures that can automatically exploit that par-
allelism. Usually this does not produce the fastest imaginable implementation of
an algorithm, but it can substantially improve the performance of simple, clear and
correct programs.

Most applicative architectures are MIMD (multiple instruction streams, mul-
tiple data streams), and they try to identify independent expressions that can be
evaluated in parallel on separate processors. If is easy to get a small amount of
parallelism this way, but techniques for automatically finding massive parallelism
are unknown.

The APSA system has a different philosophy. At the top level (s.e., at the
processor/memory [switch level [2]) it is an SISD system (single instruction stream,
single data stream). Thus APSA exhibits no parallelism at all at the top level. All
of APSA’s parallelism occurs inside the storage system, which can execute a number
of very powerful data structure operations in one clock cycle. As a result, many
operations that require iteration on a conventional system require only a few cycles
on the APSA system. Most applicative architectures try to use parallel processors
in order to execute many instructions simultaneously, but the APSA system uses
parallelism in order to reduce radically the number of instructions required by a
computation. The next section explains why this is a promising approach, and
briefly describes the APSA architecture.

3. Scientific rationale of the APSA

Given a program that must execute a set of instructions, there are three ways
to make it run faster:

##1: use faster circuitry, cutting the time to execute each instruction,
#2: execute many instructions simultaneously on separate processors, and

#3: find a way to reduce the number of instructions that must be executed.
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Faster circuitry (#1) is useful but not sufficient to meet future computation needs.
Most research in high performance computer architecture (including most applica-
tive architecture research) uses #2, parallel execution of instructions. That is also
useful, but sometimes a disappointingly small amount of parallelism can be found
among the instructions, and the cost of finding that parallelism may be high. The
APSA system uses #3: APSA has paralle] hardware within the storage unit in order
to implement powerful operations which greatly reduce the number of instructions
that a program needs to execute. An ideal high performance system would use all
three methods, and would exhibit parallelism at many levels of abstraction. The
APSA research is especially significant because #3 has largely been neglected.

The APSA system does not simply reduce the number of instructions executed
by a constant factor. That would not be worthwhile, since there is a large constant
expense factor in its construction. Instead, it performs in constant time several
operations that require iteration on conventional systems. For example, some al-
gorithms that normally require n logn time only require logn time on APSA. This
accelerates a number of useful application algorithms, but the most important re-
sult is that APSA speeds up the key algorithms in applicative language interpreters.
The speed of those algorithms is crucial, since all application programs ultimately
rely on them.

The benefits of the APSA arise from the needs of data structure manipulation
for applicative languages. Conventional storage units provide two “instructions”
— fetch and store — and programs must implement all their data structure op-
erations with them. Many data structures have been found that are efficiently
supported by fetch and store[9], but such data structures are inadequate for the
special needs of applicative programming languages. For example, accessing the
values of variables in languages such as LISP [14], Scheme [5] and Daisy [10] can
be very expensive because of the constraints on the representation of environments
(an environment is a set of variable bindings). There are several ways to get around
this problem, but none of them produce constant-time access to variables’ values
without undesirable tradeoffs. The real problem is that the natural representation
for environments is a data structure that cannot be manipulated efficiently with
just the fetch and store instructions. With its much more powerful storage in-
structions, the APSA can do all the necessary operations on the environment data
structure in constant time.

In addition to fast access to variables, the APSA helps to solve several other
problems that arise in applicative languages.

1. The APSA makes reference counting algorithms less time consuming and more
effective. Reference counting enables the system to reclaim garbage and make
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it available to the user again very quickly.

2. Reference counting cannot reclaim arbitrary circular structures, so “garbage
collection” is occasionally necessary The APSA makes garbage collection much
faster, since it is able to mark large numbers of cells simultaneously.

3. The APSA implements list structures and vector structures, and all the usual
operations on lists and vectors (insertion, deletion, indexing, etc.) can be
performed on the same object. Thus the APSA supports the standard data
structures, but it also makes possible a variety of new data structures that
have not yet been investigated since conventional computers cannot manipulate
them efficiently.

4. The APSA solves the “aggregate update problem” for applicative languages.
Applicative languages do not allow side effects, so programs frequently recopy
data structures that may be arbitrarily large. This is extremely expensive,
both in space and time. The APSA implements aggregate updates, without
restrictions, using constant space and time.

4. How the APSA Hardware Works

The APSA is a storage unit that represents data structures as linear vectors,
and that provides many powerful instructions for manipulating these data structures
— in contrast to conventional storage units, which only provide fetch and store.
The instructions that APSA implements require several basic types of computation,
and the storage architecture contains data paths, combinational logic and registers
to support them. Some of the requirements and corresponding architectural features
are described below.

1. storing information: cells containing register elements
The APSA is a storage system. The information it holds is partitioned into
words, and it contains a set of “cells” that contain register hardware to store
those words.

2. linear data structures: linear organization of cells with Attached flag
The APSA represents linear data structures in a compact form that is similar
to sequential vectors in conventional systems, and “CDR-coded lists” in LISP
machines. To support this representation, the hardware has a linear organiza-
tion of cells, and a special flag called Aftached in each cell represents the “CDR
codes”. The Attached flag is a local cell control flag; see the next point.

3. conditional operations: control flags in each cell
Many of the APSA instructions require masking to determine which cells should
perform an operation (this is very similar to masking Processing Elements in
the MPP). Each storage cell contains several control flags for this purpose. In
addition, some instructions cause each cell to do one of two or three operations;
the control flags in a cell determine which operation that cell will perform.
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4. insertion/deletion: conditional shifting hardware

A program using APSA can insert or delete a word of information in a data
structure in a (small) constant number of cycles. To do this, it executes an
instruction that causes a long sequence of words in the storage to shift by one
position to the left or right. Such shifts either destroy a word of information
(deletion) or they create space for a new word (insertion). The APSA can
perform all shifts in one cycle because the storage cells are organized into a
hardware shift register. This requires data paths connecting neighboring cells
as well as combinational logic in the cells to control the shifting. Not all the
cells in the storage take part in these shifts; the local cell control flag values
determing what each cell will do during a shift.

5. pointers: definitions and associative searching

The APSA system supports language interpretation by “graph reduction” algo-
rithms, which are generally more powerful and efficient than “string reduction”
algorithms because they support shared structures and data recursion. How-
ever, graph reduction algorithms require pointer manipulation. A pointer is
usually represented by the address of the object that it points to, but that
representation would not work in APSA because the shifting operations causes
objects to move around in the storage. Consequently each object that is the
target of a pointer has a unique “defining identification”, and APSA follows a
pointer by associatively searching for the corresponding defining identification.
The associative searching requires a tree of combinational logic connecting all
the storage cells.

6. searching for values: associative searching
The APSA system also makes associative searching available to the user pro-
gram; this is useful for many applications.

7. marking sequences of cells: tree logic

In order to control the conditional shifting operations, the APSA system needs
to set the cells’ local control flags correctly. A naive implementation of these
flag setting operations would have time complexity proportional to the number
of cells in the storage; that is unacceptable. (The local flag setting instructions
are actually the most complex operations that APSA performs.) However,
a tree of combinational logic whose leaves correspond to the cells is able to
perform these operations. This tree also performs other services described
above. The system must simultaneously compute the local flag values for each
cell in the storage. The basic idea behind the logic tree is that many of the local
flag computations require some local and some global analysis of the contents
of the cells. In general, the lowest node in the tree that has access to all the
relevant information for a particular cell computes the local flags for that cell,
and many such computations may be made concurrently in distinct nodes of
the tree. The nodes that compute local flag values may be at any height in the
tree.



These requirements show that the system needs data paths connecting neigh-
boring cells and a binary tree of combinational logic. Figure 1 illustrates the re-
sulting architecture with eight cells. The storage cells are shown as tall boxes
containing the corresponding cell numbers, and the combinational logic nodes are
squares. Each square contains the interval of accessible cells. For example, the
combinational logic node labeled “0 — 3” can compute local flag values for cells 0,
1, 2 or 3.
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Figure 1. Structure of the APSA system

The APSA will be the main storage for an applicative language implementation,
so a realistic system would require at least 103 cells. The APSA has more hardware
per cell than conventional storage units, but is represents data structures very
compactly, so it has greater capacity than a conventional storage with the same
number of cells.

It is infeasible to build APSA from conventional small scale integrated chips,
because 2- n — 1 chips would be needed for n cells of storage. However, Section 8
shows how to lay out the APSA architecture on a VLSI chip, using the available
area efficiently. I will use that same technique to “lay out” the APSA tree onto the
MPP array unit.



5. Discussion of APSA’s Performance

In analyzing APSA’s performance while executing an algorithm, we must con-
sider both the number of operations that it must perform and how long each op-
eration takes. The execution time for the algorithm is the product of these two
quantities.

APSA provides good performance because it reduces the first of those factors:
it executes fewer operations than conventional systems do. In traversing a typical
data structure of length n, a conventional applicative language system must follow
n pointers by executing O(n) instructions, while APSA only needs to execute a con-
stant number of instructions, which is O(1). Typically the APSA system improves
the time complexity of interpreter data structure algorithms by a factor of n.

Analysis of the second factor affecting performance — the time that each oper-
ation requires — is more subtle. There are several ways to measure the instruction
execution time. It is important that we use the same measurement criteria for
APSA and conventional systems when we are comparing their performance.

One possibility is to measure the complexity of the instruction execution time
with respect to the size n of the data structures, assuming that the total storage size
is constant. This obviously leads to the conclusion that instruction execution time is
constant — O(1) — for both APSA and conventional systems. Since APSA executes
a factor of n fewer instructions than the conventional system, its performance is
better by that factor of n.

Another possibility is to measure the complexity of the instruction execution
time with respect to the total size V of the storage. Using this measure, each APSA
instruction requires O(loga N) time, if we consider the gate delays through the com-
binational logic tree. Similarly, conventional storage units (e.g., RAM chips) require
O(loga N) time because of the gate delays through their address decoders. (Most
RAM chips split their loga N bit wide address input into two fields of (loga N)/2 bits
each, and the corresponding address decoders still require O(loga N) gate delays.)
Therefore, using these criteria, the instruction execution time complexity is again
the same for APSA and conventional systems. Thus APSA is again faster by a
factor of n (where n is the size of the data structure being processed).

When we consider physical hardware limitations (such as the length of data
paths and the limitation of signal speed to the speed of light), both APSA and con-
ventional systems are slower than the analyses given above indicate. Once again,
however, the instruction execution time complexity is the same for APSA and con-
ventional systems.



To summarize, the APSA system is faster than conventional systems, often by
a factor which is the size of the data structures being processed. APSA gains its
speedup by using the overhead time required for address decoding on conventional
systems in order to perform the complex logic needed to implement a powerful
instruction set.

6. Why simulation of the APSA system is necessary

There are two reasons for simulating the APSA system: (1) to assess the impact
of its instruction set on the performance of language interpreters under realistic
conditions, and (2) to verify the correctness and performance of the hardware design
in order to prepare the way for a possible future VLSI layout.

In order to assess the APSA’s instruction set it will be necessary to simulate
a language interpreter running on it; it is not enough just to consider how opera-
tions on individual data structures would perform in isolation. For example, one
advantage of the APSA should be its fast access to variable bindings (in a constant
number of cycles). In most language interpreters, actual variable access time is very
fast for some variables and slow for others, so a realistic assessment of APSA’s vari-
able accessing mechanism requires simulation of the execution of a real program. In
addition, storage management (reference counting and garbage collection) should
be much faster on APSA than on conventional systems, but a quantitative compari-
son requires simulation. I plan to simulate several versions of the APSA instruction
set, which will help to measure the tradeoffs between the complexity of instructions
and their effectiveness. These simulations will be necessary to demonstrate that a
VLSI hardware implementation of APSA would be justified.

It is possible to simulate the instruction set at a high level by maintaining an
array of records corresponding to the cells. For each simulated cycle, the simulator
then iterates through the array, performing all the cell updates and returning the
response to the instruction. This method has already proved useful for small exper-
iments [16], but larger experiments require (surprisingly) a lower level simulation.
There are two reasons for this:

1. It might appear that the high-level simulation would be faster and therefore
preferable. However, the execution time of both the low-level and the high-
level simulation will be proportional to the number of storage cells in APSA,
and either level of simulation is extremely time-consuming on a conventional
computer. The MPP architecture is actually better suited to the low level
simulation (see Section 10). Thus the additional time required to do the low-
level simulation is not a major drawback.

2. The low-level simulation will give more useful information about the behavior
of APSA, and it is essential to have this information before contemplating a
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hardware realization. In particular, the simulation will expose any problems in
the logic equations, and it may lead to improvements in them.

I have already simulated a small APSA (with 16 cells) at the gate level on a Vax
computer, but much larger simulations are infeasible without a massively parallel
computer.

7. Objectives of the MPP simulation research

The objectives of the MPP simulation research are to:
1. Provide a testbed for experimentation with variations of the APSA.
Measure performance of the APSA in a realistic environment.

Develop tools for VLSI layout simulation on the MPP architecture.

S

Assess the capabilities and limitations of the MPP architecture for VLSI sim-
ulation.

8. VLSI Layout of the APSA System

This section describes how the tree structure of the APSA system can be
mapped onto the square or rectangular area of a VLSI chip. The technique is
used on the standard “H Tree” layout. The new feature in the APSA layout is
the way the data paths connecting neighboring cells follow the tree structure of the
combinational logic node data paths.

The APSA tree architecture is a regular hierarchical layout of subtrees. The
layout comprises three kinds of “Computational Element” (CE), which may oc-
cur with any orientation. Each CE has a port along one side through which it
communicates with the rest of the system. Figure 2 shows each type of CE.

To illustrate the layout method, we shall look at a sequence of APSA trees
with increasing sizes. The APSA with tree depth 0 (Figure 3) consists of a single
storage cell which contains the “cell storage” field (cst) and the “cell combinational
logic” field (eel).

A tree of depth &, k > 0, consists of two subtrees of depth k — 1 connected by
a combinational logic node (ncl). The physical layout consists of three pieces: the
two subtrees are separated by a “corridor” that contains the nel and a data path
to the perimeter of the circuit, providing the I/O port. Figure 4 shows the tree of
depth 1, where the corridor is simply an nel box.
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Larger trees contain longer corridors which must include straight data path
nodes (which may, if necessary, contain super buffers). For example, Figure 5 shows
the central corridor for APS A3 and the two subtrees.

The individual CEs will correspond to processors in the MPP Array Unit.
Figure 6 shows a 3 by 3 array of processors (of course, in the actual simulation the
entire array unit will be used), and it shows how the CEs of an APSA with 4 cells
are allocated to the MPP processors.

Figures 7, 8 and 9 show increasingly large APSA system layouts. These figures
illustrate several interesting properties of the layout method. In particular, note
that four orientations of nodes are necessary, but a particular APSA layout needs
only two orientations of the cells. Also note that the data paths become longer
near the “top” of the tree. The simulation will allocate MPP processors for each
of the straight line data paths, so it will be accurate enough to model the delays
associated with long distance communications.
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Figure 8. Tree Architecture Layout (2% storage nodes)
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Figure 9. Tree Architecture Layout (2* storage nodes)
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9. Organization of the VLSI Simulator

This section describes a general scheme for simulating VLSI architectures (in-
cluding systolic architectures) on the MPP. These techniques should be useful for
many different kinds of VLSI architecture, although I shall concentrate on simulat-
ing just the APSA. Section 8 shows how to generate a VLSI architecture for the
APSA tree.

The basic idea of the simulation is that each processor in the MPP Array
Unit will correspond to an individual Computational Element (CE) of the APSA
layout. The local RAM storage of the Array Unit processors will contain buffers
for communication, local storage required by the corresponding CE (this applies
only to the APSA storage cell CEs), and a code indicating which type of CE is
represented by that MPP processor.

The simulation will consists of a sequence of “simulated APSA clock cycles”,
which correspond to the APSA instructions. Each simulated APSA clock cycle is
a sequence of “VLSI box transmission periods”, which represent the time required
for a CE to read its inputs and produce its outputs. Each VLSI box transmission
period, in turn, will require a sequence of MPP Array Unit instructions that perform
the operations required by the CE, bit by bit.

Each simulated VLSI box transmission period will begin with MPP instructions
that cause each processor to read the outputs of its four neighbors and store them
in the local RAM storage. Next, the simulator will issue instructions that cause the
processors to compute the new local storage values (if any) of the associated CE,
and the output values. By repeating these operations, the MPP Array Unit will
simulate the flow of information through the APSA system.

I plan to microprogram the simulator, because Parallel Pascal (the only high
level language currently available for the MPP) does not provide all the operations
needed for an efficient simulation. The APSA architecture will be specified by
a set of tables, and the simulator will be driven by those tables. Consequently
the simulation tools will be applicable to other VLSI simulations. This project
will probably result in MPP software that is applicable to many VLSI simulation
problems.

10. How the APSA simulator will exploit the MPP’s capabilities

I plan to simulate APSA at the gate level (Section 6 discusses the reasons
for performing such a low level simulation). The architecture of the MPP has
exactly the right combination of processors, storages and interconnections for the
simulation.
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The simulation techniques will also be applicable to other VLSI designs, and
will be extremely useful for studying systolic architectures [11] in general. VLSI
architecture simulation is notorious for its computation requirements. Therefore
the results of this work will be widely applicable in the very active area of VLSI
architecture.

Hardware designs are sometimes specified simply as an interconnection of com-
ponents. What distinguishes a VLSI architecture is its geometrical layout: the
positions of all components and interconnections must be specified, and the entire
circuit should use a rectangular chip area efficiently.

Since the APSA has a tree structure, the traditional “H Tree” layout [15] effi-
ciently maps it onto a square or rectangle. It is interesting (and crucially important)
that the data paths that connect neighboring cells also fit into the H Tree layout,
although they do not correspond to tree edges themselves. Section 8 describes how
the APSA H Tree layout works, and it shows both the tree edge data paths and the
neighboring cell data paths.

The layout consists of a grid consisting of “CEs”, or computational elements:
combinational logic nodes (called ncl), leaf cells containing both storage and com-
binational logic (called est, for cell storage), straight-line data paths, and empty
spaces. In addition, the CEs (except for empty spaces) all come in several orienta-
tions. The orientation of a CE is significant in VLSI designs because it can affect
the connections of the transistors with the power supply and ground.

The simulation will map a square array of CEs onto the square array of pro-
cessors in the MPP. Each MPP processor will simulate an individual CE. In order
to coordinate the activities of all the CEs, each MPP processor local memory will
contain several bits that describe which kind of CE it represents — that informa-
tion suffices to specify what its inputs are, how it will process them, and what
outputs it will produce. The MPP will broadcast instructions that cause all the
MPP processors corresponding to a specified type of CE to perform their CE func-
tions simultaneously. Several such broadcasts for all the types of CE will cause
the entire array to simulate a small time interval. A sequence of these time interval
simulations will allow values to propagate through the long straight line data paths,
the nodes, and the cells; such a sequence will simulate an APSA clock cycle.

It is interesting to note how well the MPP architecture fits onto this simulation
scheme (which will also work for other types of VLSI simulation). First, each
APSA CE has connections only to its four neighbors (north, south, east and west).
Those connections correspond to the nearest neighbor connections in the MPP.
(Many VLSI designs use only these interconnections; other VLSI architectures,
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such as hex-connected systems, would require additional communication overhead.)
Second, this simulation exploits the fact that the MPP is a bit serial machine. The
simulation would not make use of floating point functional units, if the MPP had
them, but it does need to have local storage for each CE, a boolean function logic
box, a bit adder, a shift register, and connections to the four nearest neighbors.
The MPP processors provide exactly these requirements. As a result, the VLSI
simulation will run much faster on MPP than it would on most supercomputers,
including vector processors.

11. Why the MPP is necessary for this research

In order to meet the objectives outlined in Section 7, I will need to perform
a number of simulations of the APSA system running small applicative program
examples. This will be necessary both to analyze the behavior of the data structures
under various conditions, and to experiment with variants of the APSA instruction
set.

An order-of-magnitude analysis of the computation requirements of a simula-
tion shows that conventional computers are totally inadequate. A realistic simula-
tion will require 10® storage cells (a smaller number could not handle non-trivial
applicative programs). An APSA with 10® cells contains 104 computational boxes,
each of which must be simulated individually. (In particular, for an APSA with
4096 cells there will be a VLSI array comprising 127 by 127 computational boxes,
which almost fills the MPP processor array.) Each computational box will need 102
or 10® individual bit operations per simulated cycle (depending on the particular
version of the APSA chosen). Finally, simulation of a program running on APSA
will require up to 10° cycles. Thus each simulation may require 104+3+% = 10!2
bit operations. The MPP executes 107 cycles per second, and performs 10% bit
operations per cycle, so it can do 10*! bit operations per second. This leads to
an expected simulation time on the order of 10 seconds. In contrast, the expected
simulation time on a Vax computer is 10® seconds, or about 280 hours.

Experimental analysis and development of the APSA architecture is impossible
on a conventional machine. Since the MPP has exactly the right interconnection
among processors for VLSI simulation, and since its bit-serial operations correspond
to the individual operations within an APSA computation box, the simulation will
fully exploit its massive parallelism. Only the MPP or a similarly massive par-
allel processor will be able to support experimental simulation research on VLSI
architectures like APSA.
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12.

Significance of the expected results

The simulation research outlined above is expected to produce the following

results:

1.

It will demonstrate that the MPP architecture can simulate VLSI architectures
extremely efficiently.

It will result in programming techniques and software that will be be useful for
other VLSI simulations.

It will lead to improvements in the APSA architecture.

It will provide independent confirmation of the correctness of the APSA logic
equations (or help to debug them).

The experimentation that it supports may lead to further advances in archi-
tectures for applicative programming.

It is significant that the research described in this paper is extremely well-suited to
the MPP architecture, yet it is quite different from the numerical image processing
applications usually associated with the MPP. This work may enlarge the domains
of research deemed suitable for MPP, which is especially important for a special-
purpose supercomputer.
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