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Abstract—The need for a programming language abstraction for timed preemption is argued, and several
possibilities for such an abstraction are presented. One, called engines, is adopted. Engines are an
abstraction of bounded computation, not a process abstraction in the usual sense. However, in conjuction
with first class continuations, engines allow a language to be extended with time-sharing implementations
for a variety of process abstraction facilities. We present a direct implementation of hiaton streams. Engine
nesting refers to the initiation of an engine computation by an already running engine. We consider the
need for engine nesting and show how it may be accomplished in a manner that charges a parent engine

for the computation of its offspring. We conclude by discussing the importance of simple and general
abstractions such as engines.

Engines First class objects Preemption Continuations Hiatons

I. INTRODUCTION

In this paper we introduce an engine facility that abstracts the notion of timed preemption. In
conjuction with the ability to maintain multiple control environments, engines allow a language
to be extended with a variety of process abstraction facilities. Engines are represented as procedural
objects that embody some computation. In this respect they resemble thunks (procedures of no
arguments), which are sometimes called futures, for engines embody a computation that may be
performed at some future time. However, futures are invoked with no limit on the time that may
be required to complete their computation, whereas efigines are run with a specified computation
time limit after which control is returned to the invoker. In this sense engines may be thought of
as bounded futures. ;

By designing a base language with a few general abstraction mechanisms such as engines and
continuations (which abstract the control environment), a powerful basis for building pro-
gramming environments is provided. In this paper we are nor introducing yet another process
abstraction; rather, we are proposing an abstraction that allows implementation of arbitrary
process abstractions through multiprogramming. This assures language extensibility and suitability
to a wide range of applications. Concurrency issues, such as process synchronization primitives,
are not central to our concerns in this paper. Though asynchronous preemption of a process
implemented by multiprogramming with engines may introduce synchronization pathologies
similar to those encountered in multiprocessing, they may be remedied with traditional concurrent
programming techniques.

Coroutines are a mechanism for maintaining multiple control contexts without multiprocessing,
but they are fundamentally different from engines. Control is passed from one coroutine to another
synchronously, i.e. under explicit control of the program, by means of operations such as resume
and detach. An engine computation, on the other hand. may relinquish control either syn-
chronously, by deliberately returning, or asynchronously by a timed preemption that involves no
explicit action by the computation.

Most computing environments provide a mechanism for timed preemption, such as a real-time
clock capable of generating interrupts. In conjunction with a means of saving control state, such
as continuations, these mechanisms may be used to implement engines. However, such mechanisms
are frequently unavailable to the applications programmer, and when available they are usually
imported from the operating system. As such, they tend to be inconvenient to use and always

$This material is based on work supported by the National Science Foundation under grant numbers MCS 83-04567,
MCS 83-03325 and MCS 85-01277.
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implementation dependent. By abstracting timed preemption and making it a standard language
feature, it is possible to give concise and portable expression to a wider range of problems.

Since the introduction of engines several years ago [1], this facility has been adopted by several
Scheme systems [2—4]. Engines are particularly useful in a language, such as Scheme, that provides
first class procedures and control objects.

In the next section we provide an overview of Scheme. We then define the engine mechanism
and include some simple examples of its use. Next we illustrate a more elaborate use of engines
by implementing a simple time-sharing process scheduler. Engines are then used to implement
hiatons and amb operations. This raises the issue of nested engines, for which an implementation
is given. We conclude with some remarks on formalization of engines and a discussion of the
importance of simple and general abstractions, such as engines.

2. AN OVERVIEW OF SCHEME

Scheme is a dialect of Lisp that is applicative order, lexically scoped, and properly tail-recursive
[5, 6]. Most importantly, Scheme treats procedures and continuations as first class objects.

See Fig. 1 for the syntax of a Scheme dialect sufficient for the purposes of this paper. The
superscript * denotes zero or more, and * denotes onec or more occurrences of the preceding
form. Square brackets are interchangeable with parentheses, and are used in the indicated contexts
for readability. Constants, such as numbers, are self-evaluating. quote expressions return the
indicated literal object, and "(object) is equivalent to (quote {object) ). begin expressions evaluate
their subexpressions in order and return the value of the last. Expression lists in lambda and let
are implicit begins. lambda expressions evaluate to first-class procedural objects that lexically bind
their arguments when invoked. let makes lexical bindings, destructuring the values if necessary.
rec evaluates its expression in an environment that binds its identifier to the value of the expression
itself. (rec is similar to the label for of Lisp.) if evaluates its second expression if the first is true,
and the third otherwise. case evaluates the tag expression, and then returns the value of the first
expression with a corresponding symbol that matches the tag. define assigns to a global identifier.
set! modifies an existing lexical identifier. An application evaluates its expressions (in an unspecified
order) and applies the procedural value of the first expression to the values of the remaining
expressions.

We require a few primitive procedures: =, +, — and positive? are the usual arithmetic
operations. cons is the traditional Lisp binary construction operation, with associated selectors car
and cdr, and mutators set-car! (rplaca) and set-cdr! (rplacd). Lists are constructed of cons cells.
list constructs lists, append! concatenates them, copy recursively copies list structures, and
last-pair returns the last cons cell of a list. map is the usual list mapping procedure. eq?, pair?
and null? are, respectively, the equality, cons cell and empty list predicates.

As any expression is evaluated, the current context of evaluation is continyally maintained by
the evaluation mechanism. The context of evaluation of each subexpression controls how
evaluation will continue when the subexpression’s value has been obtained. Hence control contexts

{expression):: =

| {identifier)

| {constant)

| (quote (object))

| (begin (expression)*)

| (lambda (<identifier)) {expression}*)

| (let ([<id-pattern) (value}]*) {expression}*)

| (rec (identifier) {expression))

| (if {expression) {expression) (expression))

| (case (tag) [((symbol)*) (expression}]*)

| {(define (identifier) {expression})

| (setl (identifier) {expression))

| {application)
{value), {tag), {procedure):: = {expression)
(application):: = ({procedure} {expression)®)
{id-pattern):: = (identifier) | ({id-pattern).{id-pattern) )| ({id-pattern)®)

Fig. 1. Syntax of a Scheme subset.
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are called continuations. Continuations may be represented as procedural objects of one argument.
When invoked with a value, the continuation proceeds with the computation as if the given value
was the value of its subexpression.

Continuations are generally inacessible to the programmer. However, in Scheme it is possible
to obtain the continuation of any expression using the procedure call-with-current-continuation,
abbreviated call/cc. call/cc is passed a procedure that it then calls with the current continuation
(the continuation of the call/cc application).t This continuation represents the remainder of the
computation from the call/cc application point. At any future time this continuation may be
invoked with any value, with the effect that this value is taken as the value of the call/cc application
[10, 11]. (The continuation of a continuation application is discarded unless it has been saved with
another call/cc.)

For example, assume the expression (+ 1(+ 2 3)) was being evaluated with continuation K (the
value 7 is ultimately to be passed to K). Then the evaluation of the subexpression (=2 3) has
a continuation, k, that may be represented as (lambda (x) (K (+1 x))), so that (k §) = (K 7).
Using call/cc we can obtain k as an object of computation and invoke it with some other value,
say 2. For example, the expression

(+1
(call/cc
(lambda (k)
(=« (k2) 3))))

evaluates to 3, and the multiplication is never performed.

For this simple example, k need not be a first class object. Since it was not used outside of the
dynamic context that it represents, in this case the continuation invocation could have been
performed by simply popping the control stack until the addition application frame was reached.
Control mechanisms, such as the catch tags provided in many Lisp systems, could have been used
instead. However, in this paper we make extensive use of continuations to record the control
context prior to context switches. Control is’ then returned to a context by invoking its
continuation. Such invocation is performed from within another context, and hence we make full
use of the first-class nature of continuations. Catch tags and related escape procedure mechanisms,
which are not first-class, could not be used for this purpose.

Though control information may still be stack allocated much of the time, the use of call/cc
requires that control information be heap allocated. This reflects the need for multiple control
contexts in any multiprogramming environment.

3. DEFINITION OF ENGINES

Metaphorically, an engine is run by giving it a quantity of fuel. If the cr;gine completes its
computation before running out of fuel, it returns the result of its computation and the quantity
of remaining fuel. If it runs out of fuel, a new engine is returned that, when run, continues the
computation.

More formally, engine fuel is measured in ricks, an unspecified unit of computation. Though in
some implementations a tick may represent (as the name suggests) a fixed amount of time, this
is not required by the engine abstraction. Ticks measure computation, not time.} An engine is a
procedural object of three arguments. The procedure make-engine takes a thunk (a procedure of
no arguments) and returns a new engine that, when applied to a positive integer n, a two-argument
success procedure and a one-argument fail procedure, proceeds to invoke the thunk for n ticks.
If the thunk invokes the procedure engine-return with some value after m ticks, for some m <n,
then the success procedure is applied to this value and the number ¢t = n — m of ticks remaining.

tUsing this primitive we can define catch, a version of Landin’s J operator [7-9]: (catch id exp) = (call/cc (lambda
(id) exp)). _ o

{Thus an engine tick is similar to a compuron, which has been defined as “a mythical subatomic particle that bears
the unit quantity of computation™ [12].
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If the thunk does not invoke engine-return in » ticks, then the fail procedure is applied to a new
engine that, when invoked, continues with the thunk’s computation. Thus the types of engines are

D denotable values
ET = positive integers engine ticks

Succ =D x ET—-D success procedures
Fail = Eng - D failure procedures

Eng = ET x Succ x Fail—-+D  engines

Though we speak of an engine computation refurning a value, it is an error for the thunk invoked
by an engine to return a value directly (to the continuation of its invocation)—it must invoke
engine-return for this purpose. When a success or fail procedure is invoked upon the termination
of an engine, any value returned by the success or fail procedure is returned as the value of the
engine invocation.

The type structure chosen for engines is rather arbitrary. For example, another alternative would
be to avoid the use of success and failure procedures by returning a value that could be either an
engine, indicating failure, or a (value . ticks-remaining) pair, indicating success. We prefer the form
presented here, because it avoids such disjoint union types and the associated need to program a
test for success or failure following almost every engine invocation. (This forms is analogous to
handling disjoint unions with a union-case procedure [13]).

Engines, like all objects in Scheme, are first class: they may be passed to procedural objects, be
returned by procedures, be stored in data structures, and have indefinite extent. Hence engines, and
the environment and control information that they contain references to, may be reclaimed by a
garbage collector when they are no longer accessible.

A tick might correspond to the execution of one Virtual Scheme Machine instruction, as in
Scheme 84 [3] or to a number of milli-seconds of processor time, as in PC Scheme [4]. In general,
the amount of computation associated with a tick is not defined, but must satisfy the following
“real-time” constraints: (1) a larger tick count is associated with a larger expected amount of
computation (in the statistical sense) and (2) unbounded real time is associated with an unbounded
number of ticks (any looping computation must consume ticks). Thus, engine ticks might be
metered by a real-time clock, with an unpredictable amount of time spent handling interrupts. A
compiled language without a real-time clock could still implement engines by decrementing and
testing a tick count at least once with each recursive call or iteration. For Scheme, which has no
goto or other primitive iteration mechanism, it suffices to associate a tick with each user defined
procedure invocation, as in some versions of Chez Scheme [2].t

We say an engine is running if neither its success nor fail procedure has been invoked since the
last invocation of the engine. The invocation of an engine by an already Tunning engine, which
we refer to as nesting of engines, is disallowed by the basic engine mechanism. That is, at most
one engine may be running at a given time. This simplifics the implementation of engines, and
results in no loss of generality. We shall see in Section 7 that there are at least two distinct
approaches of engine nesting, both of which may be implemented using unnested engines. We
prefer not to commit the standard engine mechanisms to either of these nesting alternatives.
Furthermore, our experience has been that when it is believed that nested engines are needed, closer
examination of the problem usually reveals that nesting is not only unnecessary, but leads to
unnecessarily complicated programs. Applications with genuine need for engine nesting will be
discussed in Sections 6 and 7.

In the absence of traditional operations that change state, such as assignment and I/O, engines
do not have state! Invoking the same engine twice runs the engine’s computation from the same
point. This differs from the usual interpretation of processes. To record the progress of an engine,
a new engine is created. It would be possible to define an otherwise engine-like mechanism in which

tReference (2] also includes an implementation of engines using a timer, with attention to the complexities encountered
when engines coexist with other real-time facilities.
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the original engine was modified upon exhaustion of the tick count, rather than returning a new
engine. However, we believe that the side-effect-free approach we have taken is superior; it makes
engines more suitable than traditional processes for applicative styles of programming in which side
effects are disallowed or restricted.

Though engines are “procedural”, they may be non-deterministic: the result of invoking the same

engine twice may be different due to random differences in the rate at which ticks are consumed
by its computation.

4. SIMPLE EXAMPLES

(1) The engine facility could be simplified a little further by defining steppers as procedures of
two arguments, which perform just one tick of computation when invoked. It would then be
superfluous to pass the number of ticks remaining when a stepper completes (for it would always
be zero), so both the success and fail procedures would take one argument. As a simple example
of the engine mechanism proposed here, we define a procedure that takes an engine and returns
a stepper.

(define engine-to-stepper
(lambda (eng)
(lambda (succeed fail)
(eng 1
(lambda (val ticks) (succeed val))
(lambda (new-eng)

(fail (engine-to-stepper new-eng)))))))

It is also possible to implement our engine mechanism using steppers. While steppers may be
more aesthetically pleasing, we have chosen to provide multi-step engines to avoid the obvious
inefficiency.

(2) It is sometimes useful to run engines with an unlimited number of ticks. We abstract this
behavior with a procedure complete, which invokes its succeed procedure with the value of the
engine’s computation and the number of ticks required for it to complete. Of course, unlike engine
invocation, complete is not guaranteed to terminate. To implement complete, we repeatedly

invoke a stepper to coax the engine computation along, until a value for the engine’s expression
is obtained.

(define complete
(labmda (eng succeed)
((rec loop
(lambda (stepper count)
(stepper
(lambda (val) (succeed val count))
(lambda (new-eng) (loop new-eng (+1 count))))))
(engine-to-stepper eng) 1)))

A good exercise is to write complete using regular engines, invoked with some arbitrary number
of ticks, instead of steppers.

A procedure that just returns the number of ticks required io complete a computation may now
be defined by

(define ticks
(lambda (thunk)
(complete
(make-engine thunk)
(lambda (value tick-count) tick-count))))

This might be used to compare the relative speeds of several algorithms, or to monitor the response
time of code segments in a real-time system.
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5. AN ENGINE PROCESS SCHEDULER

As an extended example of engine programming techniques, we use engines to implement a
simple time-sharing operating system kernel. These techniques have broad applicability and may
be used to implement a variety of process abstractions.

The basic technique is simple. The kernel dispatches a user process by running a corresponding
engine with a tick count corresponding to its time slice. When the process’s time is exhausted, the
engine returns control to the kernel, which then dispatches the next process. We represent processes
directly as engines. A ring of these processes is maintained, with the engines stored in ring entries
that correspond to the PCBs (process control blocks) of traditional operating systems. The
pcb-process and pcb-process! procedures extract processes from and store processes in these
queue entries. The rotatel procedure rotates the ring and returns a reference to the next ring entry.
The basic form of the kernel is:

( (rec loop
(lambda (pcb)
(pcb-processl pcb
( (pcb-process pcb)
time-slice-length
(lambda (val ticks-remaining) ???)
(lambda (new-eng) new-eng)))
(loop (rotatel ring))))
(rotate! ring) )

In practical systems it is also necessary to provide a trap mechanism that allows the user process
to return control synchronously (without preemption) to the operating system with a service
request. Thus we provide a procedure trap that may be invoked by a user process with a tag, which
indicates the type of operating system service required and-perhaps additional information specific -
to the service request. Invoking trap causes control to be returned to the kernel, passing the tag
and other information. The kernel must then be able to resume the engine’s computation.

To enable the kernel to return control to the engine at the point of the trap procedure call, the
trap procedure first obtains (with call/cc) the continuation k of its invocation.t It then invokes

engine-return, passing it k and the list containing the trap type and argument with which trap was
invoked. We have:

(define trap
(lambda (trap-type arg)
(call/cc *
(lambda (k)
(engine-return
(list trap-type k arg))))))

The success procedure of the kernel’s engine invocation receives control after a trap, with the
list (trap-type k arg) as the success value. See Fig. 2 for a kernel with a simple trap handler that
provides some standard process primitives. The handler dispatches on the type of the trap,
obtaining some answer that is to be returned to the user. This return is accomplished by the
expression (make-engine (lambda () (k ans))), which creates a new engine that invokes the
user’s continuation with the answer to be returned. In this scheduler the ticks-remaining is ignored,
so a process loses the rest of its time-slice when it traps. As an exercise, the scheduler may be
modified to charge for traps in a more consistent fashion.

1This technique of recording process state with continuations is also useful in the context of multiprocessing and
interrupts [14].
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In case the type of the trap is awaken or block, the standard ring operations are performed.
fork creates a new process that evaluates the argument thunk. (This thunk should never return.)

The atomic trap simply invokes its argument as part of the trap operation; this is used to execute
code uninterruptibly.

(define kernel
(lambda (ring)
{ (rec loop
{lambda (pcb)
{pcb-process! pcb
((pcb-process pcb)
time-slice-length
(lambda (trap-value ticks-remaining)
(let ([(trap-type k arg) trap-value])
(let ([ans (trap-handler trap-type arg ring)])
* (make-engine (lambda () (k ans))))))
(lambda (new-eng) new-eng)))
(loop (rotatel! ring))))
(rotatel ring))))
(define trap-handler
(lambda (trap-type arg ring)
(case trap-type
[ (awaken) (insert! ring arg)]
[ (block) (delete! ring arg) ]
[ (fork) (insert! ring (make-entry (make-engine arg)))]
[ (atomic) (arg)])))

Fig. 2. Operating System kernel.

It is possible through extensive use of procedural abstraction to abstract the trap handling
procedure from the kernel and simultaneously maintain a security constraint that only the kernel
be able to create and invoke engines. Furthermore, a hierarchy of trap handlers may be used, so
that the user can only perform higher level trap procedures, such as semaphore operations and
parbegin [1]. A version of the kernel presented here, extended to include semaphores and parbegin,

has been used by our operating systems and advanced programming languages classes for several
years.

6. HIATONS AND AMB

Another use of engines is to implement an asynchronous merge of two streams. The head of a
stream (which may be represented by the car of a cons cell) is immediately available. An attempt
to access the tail of the stream results in some computation or input operation being performed;
only on completion of this operation is the tail of the stream returned. (Typically the cdr of a cons
cell representing a stream refers to a thunk that is invoked when the stream tail is accessed.)

The elements of two streams may be synchronously merged to form a third stream by simply
alternating from one to the other; but then the speed that the output stream is generated is limited
by the slower of the two input streams. Thus if one of the input streams becomes undefined (at
some point the computation of the next element does not terminate), then the merge output
becomes undefined. An asynchronous merge of streams avoids these problems: it forms the output
stream by selecting elements from the input streams as they become available. In particular, an
asynchronous merge output becomes undefined only if both its inputs become undefined.

It is straightfoward to implement an asynchronous merge directly using engines, but here we
taken an indirect approach—first implementing hiaton-streams, an abstraction of the hiatus, or
delays, implicit in the production of stream values that has been proposed recently [15]. A
hiaton-stream is simply a stream that may contain, in addition to its normal values, distinguished
tokens, or hiatons, indicating the lapse of some time or computation in the generation of the stream.

Engines may be used to implement hiaton-streams, as in the following procedure that takes a
stream and returns a hiaton-stream. '

cli Ilﬂ-—D
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(define stream — hiaton-stream
(lambda (stream)
(let ([ (value.thunk) stream])
(cons value
((rec loop
(lambda (eng)
(lambda ()
(eng number-of-ticks-per-hiaton
(lambda (stream ticks)
(stream — hiaton-stream stream) )
(lambda (new-eng)
(cons ‘H (loop new-eng)))))))
(make-engine thunk)))))) :

The thunk created by evaluating the (lambda ()...) expression is invoked to obtain the next
element of the hiaton-stream. This runs an engine that invokes the cdr of the stream. If the next
stream element is produced in less than a hiaton’s worth of time, the engine invocation’s success
procedure simply passes the stream element to stream — hiaton-stream, which makes the car of
the stream immediatley available and builds a hiaton generator for the cdr of the stream. If the
next stream element is not produced in the given number of ticks, the fail procedure returns a
stream whose car is the symbol H (a hiaton token) and whose cdr is a hiaton generator that, when
invoked, coaxes the newly generated engine for the next stream element, or hiaton.

To implement asynchronous merge, we begin by converting the streams to hiaton-streams. A
synchronous merge may then be used to combine these hiaton-streams into a single hiaton-stream,
and finally the hiatons may be culled from this stream, to yield the merge output stream.

Another approach to effecting nondeterminism is amb [16]. Operationally, amb starts two
computations, represented by -its arguments,;-and returns the result-of the one that finishes first.
The amb arguments could be represented as streams, the second element of which is the value
associated with the argument. (The first element of the stream is immaterial for our purposes; for
it is immediately available and thus cannot be used to express a pending computation.) Amb may
then be implemented by simply applying the asynchronous merge described above to the argument
streams. The first two elements of the resulting stream are the two immaterial values, and the third
element is the amb result.

One feature of this amb implementation must be noted. Amb calls may be nested to simulate
an amb of more than two computations, or because one of the computations passed to amb
happens to use amb at some point. In the implementation suggested above, this results in a
hiaton-stream being used by another hiaton-stream, which in turn results in an engine being
invoked by a computation that is already running as an engine. Thus our implementations of amb

and hiaton-streams require nested engines (though it is possible to implement nested amb in other
ways without nesting engines).

7. IMPLEMENTING NESTED ENGINES

In this section we show how to eliminate the restriction that engines cannot be nested, thereby
allowing engine invocation when an engine is already running. This allows any number of engines
to be running at the same time. For the remainder of this section, we refer to an engine that can
be nested as a nester to distinguish it from an engine that cannot be nested.

If e is the nester invoked most recently at the time another nester, e’, is invoked, we say that
e’ is the child of e. All the nesters running at the time e’ is invoked are said to be the ancesters
of e’. Should each tick of a nester be ‘charged’ only to the nester itself, or to the nester and all
of its ancestors? We term these alternatives simple and fair nesting, respectively.

Simple nesting is straightfoward to implement given unnested engines (using some of the
techniques employed in the more involved fair implementation that follows). This may be adequate
for some applications of nesters, but not all. For example, in the hiaton stream example a hiaton
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should represent a fixed number of ticks of computation expended in evaluating an expression
(which is achieved by using a nester to evaluate the entire expression). It should not matter whether
or not the computation invokes other nesters in the course of its evaluation. However, with simple
nesting it would be possible for a computation to cheat by using other nesters, run as its children,
to perform much of its work. In this case the nester mechanism is failing to abstract the use of
time in the intended way. We expect the nesting mechanism to be ‘fair’ in the sense that every tick
of computation used by an engine is also charged to its parent, and by extension to all of its
ancestors. Also, if nesting is ‘abstract’, a computation should be able to parcel out the ticks it
receives among its children without being aware of whether or not it is running with one or more
ancestor nesters.

To see how fair nesting may be achieved, assume a nester e, is given f, ticks while nesters
e,,...,e,are running with 1,,..., 1, ticks remaining, respectively, where 0 <i <j < n implies ¢;
is an ancestor of e;. The fairness requirement implies that e,’s computation can proceed for at mos{
¢t = min(ty, 1y, - - - » 1) ticks before a preemption. (A preemption may occur in less than 1 ticks, for
example if e, invokes another nester with 1, ticks when it has ¢ ticks left and >t)fr=¢<1,,
then the preemption of e, after  ticks results in the failure procedure f; of e, being invoked with
a new nester e. (The failure procedure of e, should not be invoked at this time, since 1, ticks have
not been expended on &’s computation.) When f, is invoked, the running of e;,...,€_ is
suspended and their state encapsulated in e. When e is invoked it should resume running
€gy-r-r€ey With fo— 1., lio1 — 1 ticks remaining, respectively.

Providing fair nesting of engines is analogous to recursively virtualizing an operating system.
In both cases resources at each node in the spawning tree are divided among offspring in such a
way that the offspring are unaware of the division.

Applications for fair nesting include artificial intelligence problems in which engines are used to
control the search strategy. When a choice point is reached, a process may be created to explore
each of the alternatives. Nesters may be used to implement these processes using time-sharing. If
each of the alternatives is equally likely, each of the processes should receive equal time. If some
of the processes reach additional choice points and spawn additional processes, these children
should share the computation resources of their parent. Thus fair, not simple, nesting is required.

A fair nester implementation must record, for each currently running nester, the success and fail
procedures associated with its invocation, its parent, and the number of ticks it has remaining. This
information is maintained in a record, also referred to as a nester. Thus the system must effectively
maintain a list of currently running nesters, ordered from youngest (most recent child) to oldest.
If each child completes its computation (indicated by an engine-return) or expires (runs out of ticks)
before any of its ancestors expire, then the nester list grows and shrinks in a stack-like manner.
The youngest and oldest currently running nesters are the stack top and stack bottom, respectively.

The interest in this implementation is provided by the possibility that the first currently running
nester to expire may not be the youngest. The first nester to expire among those currently running
is the one with the minimum number of ticks remaining. This nester may be determined by
examining the nester stack at the time each new nester is invoked. Nesting is simulated by running
each new nester as an (unnested) engine for this minimum number of ticks, with appropriately
constructed success and fail procedures.

For example, Fig. 3(a) pictures the nester stack just after nester D has been invoked with 30 ticks
by its parent nester C, with 20 ticks remaining. Nester C’s parent and grandparent are nesters B
and A, with 10 and 40 ticks, respectively, remaining at the time of D’s invocation. Nester A was
invoked with no other nesters running, so it has no parent (it is the bottom of the nester stack).
Nester B has the least number of ticks remaining, so it expires first—10 ticks after D’s invocation.

When nester B expires, control returns to its parent, nester A, by passing the fail procedure of
nester B a newly formed nester. The nester stack is now broken after nester B, as pictured in Fig.
3(b). The bottom segment, containing only nester A, becomes the new system nester stack. The
top segment is recorded in the new nester passed to the fail procedure. The nester record B contains
no useful information, but is filled with information again whenever the new nester is invoked.

Suppose that 5 ticks later nester A invokes a new nester with 40 ticks. The resulting nester stack
is pictured in Fig. 3(c). Further suppose that after another 4 ticks the nester created at the time
nester B expired is invoked with 20 ticks. The nester stack segment pictured on the top of (b) is



118

CuristorPHER T. HaYNEs and DANEL P. FRIEDMAN

Stack top
Nest D Nest D
Ticks =20 Ticks = 10
Stack top
Nest D NestD NestC Nest C
Ticks =30 Ticks = 20 Ticks = 10 Ticks = 00
Stack top
Nest C Nest C Nest B Nest B
Ticks = 20 Ticks = 10 Ticks =20 Ticks =10 |
Stack top
Nest B Nest B Nest E NestE Nest E
Ticks = 10 Ticks = 00 Ticks = 40 Ticks = 36 Ticks = 26
Stack top
Nest A Nest A Nest A Nest A Nest A
Ticks =40 Ticks =30 Ticks = 25 Ticks = 21 Ticks = i1
(@ (b) (© @ (©)

Fig. 3. Nest example.

now appended to the system nester stack to obtain the stack pictured in (d). The minimum number
of ticks in this stack is 10, belonging to nester C. Thus after another 10 ticks the stack is again
broken, this time between nesters B and C, with the result pictured in (e).

The append operation that forms stack (d) is of central importance. It has the effect of resuming
the nesters in the appended stack-segment with the number-of ticks they had left at the time their
ancestor (the first nester B) ran out of ticks. The append operation must copy the appended stack
frames belonging to the resumed nester because this nester, like an erigine, may be resumed more
than once.

We now define a procedure that makes nesters using make-engine:

(define make-nester
(lambda (thunk)
(nestermaker (make-engine thunk) (list any))))

where nestermaker, defined in Fig. 4, embodies the behavior just illustrated, and any is an aribtrary
value. nestermaker takes an engine and a nester stack that records the nesting cantext. nestermaker
returns a nester which, like all engines, is a procedure that takes a number of ticks, a success
procedure, and a fail procedure.

Nester records are represented by a data structure of the form

((ticks success fail) . parent)

where ricks is the number of ticks remaining for the nester, success and fail are the success and
fail procedures of the nester’s invocation, and parent points to the invoking nester’s record. Each
nester record may also be viewed as a nester stack, represented as a list linked by the parent
pointers.

When a nester is invoked, it first obtains the continuation of its invocation, which is bound to
k. The success and fail continuations of the nester are now constructed by composing k with the
success and fail procedures with which the nester was invoked. These are stored, along with the
numbser of ticks, in the last nester of the stack. If a nester is already running, as indicated by a
global flag, then an engine-return is performed. If no nester is running, then the running flag is
set and the run procedure is called to invoke the engine. run calls find-minpoint to locate the nester
record with the minimum number of ticks remaining. (If more than one record has the same
number, any of them could be returned; but there is a small efficiency advantage to returning the
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(define nestermaker
(lambda (eng stk)
{lambda (ticks succeed fail)
(call/cc
(lambda (k)
(set-car! (last-pair stk)
(list ticks
(lambda (value ticks) (k (succeed value ticks)))
(lambda (new-eng) (k (fail new-eng))))})
(if running
(engine-return (list "*return eng stk))
(begin (define running true)
(run eng stk))))))))
(define run

(lambda (eng stk)
(let ( [minpoint {find-minpoint stk}])
(let ([ ((ticks succeed fail) . parent) minpoint])
(eng ticks
(lambda (value ticks-remaining)
(decrement! stk (— ticks ticks-remaining) )
(if (if (pair? value)
(eq? (car value) "return)
false) ‘
(let ([ (rtn-eng rtn-stk) (cdr value)])
(run rtn-eng (append! (copy rtn-stk) stk)))
(let ([ ((ticks succeed fail} . parent) stk])
(return-from-nester
parent
(lambda () (succeed value ticks)))))))
(lambda (new-eng)
(decrement! stk ticks)
(set-cdr! minpoint ())
(return-from-nester
parent '
(lambda () (fail (nestermaker new-eng stk))NIINIY)
(define return-from-nester
(lambda (stk thunk)
(if (null? stk)
(begin (define running false)
(thunk))
(run (make-engine thunk) stk) )))

Fig. 4. Nested engine implementation.

one closest to the bottom of the stack.) The engine passed to run is now invoked with the number
of ticks of the minpoint record.

If an engine-return is performed before the ticks are exhausted, the success procedure of the
engine invocation is invoked, which first calls decrement! to update the tick counts in the nest
stack. If the engine-return resulted from the nestermaker operation discussed above, this was noted
by a *return tag, which is accompanied by a stack segment and engine. run is then invoked with
this engine and a stack formed by appending the returned stack segment to the current stack. On
the other hand, if the engine-return indicated the normal termination of a nester, return-from-
nester is invoked with a thunk that invokes the success procedure of the top nester with the number
of ticks remaining for it and the value passed to the engine-return. return-from-nester checks if
the stack is empty (i.c., the returning nester is the last one), in which case the running flag is cleared,
and the thunk is invoked with no engine running. Otherwise, run is invoked with a new engine
that invokes the thunk. The stack is popped when run is called to discard the nester that just
returned.

If the engine invoked by run expires instead of returning, all the stack tick counts are
decremented. Then the stack is broken at the minpoint by installing the empty stack as the parent
of the minpoint (using set-cdr!). Finally, return-from-nester is invoked with the bottom part of
the broken stack and a thunk. When invoked, this thunk calls the fail continuation with a new
nester created by nestermaker from the new engine and the top part of the broken stack.

At the expense of clarity, the efficiency of this implementation can be improved in several ways.
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For example, the decrement! calls could be avoided (at least until integer overflow becomes a
problem) by keeping a count to be subtracted from the nester record tick values before using them.

8. CONCLUSION

We have considered several abstractions for timed preemption, including steppers, engines and
nesters. We have shown these to be of equivalent expressive power, but have chosen engines for
pragmatic reasons.

To illustrate the use of engines, we have implemented a sample operating system scheduler,
hiaton-streams and amb. The last two examples demonstrated the need for nesting of engines. A
nesting implementation was presented that charged an engine for the computation ticks ueed by
its offspring. .

It is natural to ask what tools might be developed for reasoning about engines. Aside from the
real-time character of engines, there would still seem to be difficulties. Until recently there was no
satisfactory theory for reasoning about continuations, and continuations are necessary in order to
record the context of a preempted engine. However, an algebraic extension of Plotkin’s 4,-calculus
[17], termed the 4 -calculus, has been developed that allows us to reason about continuations.
Starting with a tree rewriting system, a reduction system is derived that in turn yields a calculus
which is Church-Rosser and has a standard reduction function [18, 19]. These tree rewriting
techniques have also been used to develop a related calculus which incorporates assignment
statements [20].

It seems possible to associate engine ticks with reductions in a similar reduction system that
models engines. However, such an engine semantics would not be a calculus. Since the number of
reductions required to reduce an expression to normal form is dependent on the order of reduction,
the Church-Rosser property (among others) would not hold. Nonetheless, a reduction semantics
might yield useful proof rules; we leave this to future work.

Any engine specification that precisely determines the computation quantity associated with a
tick would not be entirely satisfactory. This includes reduction systems such as those discussed
above and interpreters which associate ticks with meta-recursion, as in Ref. [21]. We have been
careful to leave the exact nature of a tick unspecified. We require only a ‘liveness’ property that
prohibits any engine from running forever, and a ‘fairness’ property that associates more ticks with
more computation, on the average. Any reasonable metric of computation may be used, including
real-time, formal reduction, function invocation and virtual instruction execution. Furthermore,
ticks may not always represent the same quantity of computation, even when repeatedly evaluating
the same expression. This generality gives implementors of the engine mechanism freedom to make
efficient choices, which may be heavily constrained by the computation environment. It also
discourages programmers from writing code that is timing dependent. However, this implies that
engines are non-deterministic. It appears that a fully satisfactory formal semantics of engines must
await the resolution of some difficult problems in the semantics of non-determinism.

In spite of the semantic difficulties posed by engines (many of which are shared with other
non-deterministic facilities), we believe there are practical advantages to abstracting mechanisms
for timed preemption in any multiprogramming environment. Many process abstraction facilities
have been proposed, with a wide variety of design goals. A language designer who chooses one
of these facilities, or opts to invent yet another, risks rapid design obsolescence. The resulting
langauge would also be ill-suited to a variety of applications that do not fall within the language’s
design goals. Attempts to avoid the latter problem by introducing intricate facilities result in a
complex design that is optimally suited to few applications. Unfortunately, any multiprocessing
implementation must be designed to support one or more specific process abstractions. However,
when muitiprogramming is used, there is an alternative to committing a language design to a
specific process abstraction facility: an abstraction of timed preemption, such as engines, may be
used instead to provide time-sharing implementations of process abstractions.

In a more general context, independent of the notion of process, we feel that languages should
provide a means for bounding computation. Some form of timed preemption is implicit in any

mechanism for asynchronously imposing computation bounds. Engines abstract this mechanism
for bounding computation.
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