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ABSTRACT

A maximum independent set of a graph is a set of vertices with maximum cardinal-
ity such that no pair of vertices is connected by an edge. Choukhmane and Franco
have presented a polynomial time approximation algorithm for the maximum inde-
pendent set problem in cubic planar graphs. If M is taken as the ratio of the size
of the independent set produced by their algorithm to the size of a maximum inde-
pendent set of the input graph, then they show that their algorithm gives M > 6/7
for any cubic planar graph and M > 7/8 for a triangle-free cubic planar graph. We
ghow that their algorithm gives M > 7/8 for all cubic planar graphs.

1. INTRODUCTION

The maximum independent set problem, defined formally in the next section,
is a problem of wide interest. Unfortunately, it is known to be an NP-complete
problem, so there is little hope for an algorithm which can compute an exact solution
in polynomial time. (For a comprehensive treatment of NP-complete problems,
see Garey and Johnson[7].) It is therefore useful to consider solutions which are
approximate, but can be computed efficiently.

For any algorithm W which produces an independent set I for some input graph
G, let Mw (G) be the ratio of the size of I to the size of a maximum independent
set of G. For any class of graphs G, let My/(G) be the minimum value of Mw (G)
over all G € §. We define §p = {planar graphs}, Gsp = {cubic planar graphs},
and Jsrrp = {cubic triangle-free planar graphs}. Lipton and Tarjan[10] give an
O(nlogn) time algorithm, L, which is shown to give an approximation such that
Mi(Gp) > (1 — O(1/VToglogn)), where n is the number of vertices in the input
graph. Unfortunately, as shown by Chiba et al[2], n must be rather large before
Mp(Gp) > 1/2. Chiba et al then describe an algorithm, C, which executes in
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time O(nlogn) and show Mc(Gp) > 1/2. Baker[l] improve this result by giving
a family of algorithms, By, for the maximum independent set problem such that
Mp,(6p) > d/(d + 1), and which execute in time O(8%dn). Note that Baker’s
algorithms are linear for any fixed d.

Choukhmane and Franco[3] describe a polynomial algorithm, A, for the max-
imum independent set and show that Mys(Gsp) > 6/7 and M4(Gsrrp) > 7/8.
Approximation algorithms are relevant for cubic planar graphs because the max-
imum independent set problem has been shown to be NP-complete even on this
subset of graphs([6]. Algorithm A relies on an algorithm of Hadlock[8] which finds a
maximum bipartite subgraph of a planar graph. Hadlock’s algorithm in turn relies
on an algorithm of Edmonds([4] for maximum weighted matching. Since Edmond’s
algorithm is O(n?) for planar graphs, Choukhmane and Franco’s algorithm is no
better than O(n?). However, their algorithm can be immediately improved to linear
if a linear time algorithm can be found for finding a maximum bipartite subgraph in
a planar graph, although this appears to be difficult. To achieve an approximation
of 7/8, Baker’s algorithm requires that d = 7, which implies a rather large constant
in the linear running time. It is therefore reasonable to consider using Choukhmane
and Franco’s algorithm.

We do not improve Choukhmane and Franco’s algorithm, but instead improve
the analysis. While their analysis relies on the graph theoretical results of Hopkins
and Staton[9] and Staton[12], we provide a more direct proof. More importantly, we
show that the bound of 7/8 holds for all cubic planar graphs, not just triangle-free
cubic planar graphs. That is, Ma(Gap) > 7/8.

Section 2 formally defines the problem and presents a version of Choukhmane
and Franco’s algorithm. The algorithm is analyzed in Section 3.

2. THE MAXIMUM INDEPENDENT SET PROBLEM

Let G be a graph without loops or multiple edges and with vertices G(V') and
edges E(G) C V(G) x V(G). G is r-regular if every vertex of G has degree r. A
cubic graph is 3-regular. An independent set of G is a subset V' of V(G) such that
there is no edge (v,v') in E(G) with both v and ¢' in V(G). The cardinality of
a maximum independent subset of any subset V' of V' is denoted by u(V’). The
maximum independent set problem requires finding an independent set of G with
maximum cardinality.

Let S and S = (V(G) — S) be subsets of V(G). The edge cut of S, denoted
K(S), is the set of all edges of G with one end in S and the otherin S. A set Sisa
maximum cut if | K(S)| is maximum over all subsets of V(G). Finding a maximum
cut is equivalent to finding a maximum bipartite subgraph. We let B(S) be the
(bipartite) graph with vertex set V' and edge set K(S). The algorithm designed by
Choukhmane and Franco[3] (given below for completeness) takes advantage of the
relationship between the maximum cut problem and the maximum independent
set problem and of the known polynomial time algorithm of Hadlock[8] for the
maximum bipartite subgraph problem for planar graphs.
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Algorithm A [Choukhmane and Franco]. Given a cubic planar graph G, re-
turn an independent set I C V(G) of G.

1. Find a maximum cut S of G using the polynominal time algorithm of Hadlock
[8]. Let X — Sand ¥V « S.

2. For each edge e = {z,7'} in (E(G) — K(S)) in turn, if both z,z’ € X then
X X-{z}.

3. For each edge ¢ = {y,¥’} in (E(G) — K(S)) in turn, if both y,3/ € Y then
Y Y -{y}.

4. f|X|>|V| then J — X else I Y.

3. THE ANALYSIS

For any graph G and set S C V(G), a vertex v € V is unstable relative to
S if the number of edges incident with v and in K(S) is less than the number of
edges incident with v and in E(G) — K(S). A set S is unstable if any vertex is
unstable relative to S, otherwise S is stable. The following lemma relates the size
of an independent subset of a stable set to the size of its edge cut set. This is the
critical lemma for our result.

Lemma 1. Let G be a cubic graph, S C V(G) be a stable set, n = |E(G)| and
= |E(G) — K(S)|, the number of edges not in the edge cut of S. Then

(n— k)/2 < max(u(S), 1(5)) < max((3n - 2k)/6, (5n — 6k)/8).

Proof: For the extent of this proof, let the degree of a vertex v be understood as
the degree of v in B(S). Let a, b, ¢, and d be the number of degree two and three
vertices in S and degree two and three vertices in S, respectively. Since S is stable,

n=a+b+c+d. (1)
Since every edge in B(S) connects S to S,
2a + 3b = 2¢ + 3d. (2)
Every degree two vertex has exactly one incident edge in E(G) — K(S), so
2k =c+a. (3)

A maximum independent subset of S or S will contain every degree three vertex
and half of the degree two vertices in S or S, respectively, so

w(S)=af2+b, =20d p(S)=c/2+d. (4)

We assume, without loss of generality, that @ < ¢. Let a > 0 be such that
¢ = a + 3a. Then (3) implies that

a=k—3af2, and c=k+3af2. (5)
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By (3) we can substitute k for a+ ¢ in (1) giving n = 2k + b+ d. Since ¢ = a+3/a,
(2) implies that b = d + 2a. Then,

b=n/2—k+a, and d=n/2-k-c. (6)

Therefore, by (4),
#(S) = (n—k)/2 + a/4, (7)
and p(S) = (n — k)/2 — /4. Since a > 0,

#(8) < (n— k)/2 < p(S) = max(p(S), u(3)).

Since a > 0, (5) implies that @ < 2k/3. Similarly, d > 0 and (6) imply that
a < nf2 — k. Then from (7) we have the final requirement of the lemma:

max((S), u(5)) = w(S) < max((3n — 2k)/6, (5n — 6k)/8)
O

The following lemma (in a somewhat different form) is proved by Malle[11] and
follows from a result of Erdds(5].

Lemma 2 [Malle]. If G is a graph with 2 maximum cut S C V(G), then S is
stable.

We need two additional lemmas pertaining to sets which contain independent
sets.

Lemma 8. Let G be a cubic graph and § C V(G). If S is unstable and contains
a maximum independent set of G, then S contains a maximum independent set of
G and an unstable vertex which is not in this set.

Proof: Let P C S be a maximum independent set of G, and let v € V(G) be
an unstable vertex relative to S. If v € P, the lemma is satisfied by P and v, so
assume v € P. Let ¢’ be a neighbor of v in S. If v/ is unstable and v’ & P, the
lemma is satisfied by P and ¢'. Suppose instead that o’ is stable. Then v can
have at most one neighbor in S; in fact, it has exactly one neighbor, v. But then
P' = P—{v}uy' C S is a maximum independent set of G and the lemma is satisfied
by P’ and v. O

Lemma 4. For every cubic graph G, there is a stable set S C V(G) which contains
a maximum independent set of G.

Proof: Let S C V(G) be a set containing a maximum independent set of G and
such that |K(S)| is maximized. Suppose that S is unstable. Then, by Lemma
3, there is a maximum independent set P of G contained in S and an umnstable
vertex, v, not in P. Then S’ = (S — {v}) U ({v} — S) contains P, a maximum
independent set. But, since v is unstable relative to S, K(S’) has more edges than
K(S), contrary to the choice of S. Thus, S cannot have an unstable vertex. 0O

We note that the last two lemmas actually hold for any graph with maximum
vertex degree three. The main result follows easily from the lemmas.
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Theorem. Let G be a cubic graph, S C V(G) be a maximum cut of G, n = |V (G)|,
and k = |E(G) — K(S)|. Then
max(p(S), u(S5)) 3n—3k 4n-— 4k)
wv@) 2™\ 3n—2ksa—er) 2 7/&

Proof: Without loss of generality, assume that p(S) = max(u(S),u(S)). By
Lemma 2, S is stable. By Lemma 4, there is a set §’ C V(G) which is stable and
such that p(S’) = p(V(G)). Let k' = |E(G) — K(S')|. Since S is a maximum cut,
K > k. By Lemma 1,

max(p(S), u(S)) _ -
UDAED  yis)/us")

> ((n — k)/2) / max((3n — 2K') /6, (5n — 6K") /8)
(3n—3k) (4n-— 4k))
> .
e ((Sn Z2k)’ (5n— 6k)
Since S is stable, every edge in E(G)— K(S) is adjacent to a pair of distinct vertices
in V(G), which implies that k < n/2. Over the range 0 < k < n/2, the first term
of the maximum is strictly decreasing with increasing k, while the second term

is strictly increasing, so the maximum is minimized when (3n — 3k)/(3n — 2k) =
(4n — 4k)/(5n — 6k), which implies k = 3n/10. By substitution,

max(u(S), #(5)) (3n — 3k) (4n — 4k)
rV(G)) i ((Sn —2k)’ (5n — 6k)) 217/8,

as required. O

Let G be the planar projection of a dodecahedron. Choukhmane and
Franco[3] have shown that there is a set § C V(G2) such that B(S) is a max-
imum cut of G2 and p(S) = p(S) = 7, while u(V(G20)) = 8. Thus, the bound of
the Theorem cannot be improved, in general.

Note that the Theorem applies to all cubic graphs, not just planar ones. The
following corollary applies the Theorem to Choukhmane and Franco’s algorithm.

Corollary. Let G be any cubic planar graph, n = |V(G)|, and k = |E(G) — E(B)|,
where B is any maximum bipartite subgraph of G. Then,
3n—3k 4n-— 4k) > 17/s.

MalG) 2 max (3n— 2%k’ 5n — 6k

Note that while the algorithm is guaranteed to achieve a performance of at
least 7/8ths of optimal, in many cases (when k differs from 3n/10) the algorithm
will give an answer which is known to be closer to optimal than 7/8. For example,
if k= n/10 then Algorithm A will give an answer which is no worse than 27/28 of
optimal. Since k is easily calculated during execution of the algorithm, it is possible
to report not only the approximation to the maximum independent set, but also the
maximum that it underestimates the true size of the actual maximum independent
sef.
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