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Abstract:

The user’s view of the computing environment at the MIT Artificial Intelligence Labora-
tory and the MIT Laboratory for Computer Science is presented with emphasis on the local area
network’s performance, history, and configuration. The author’s year-long engagement as an Al
Lab staff member and network user is used as a basis for reporting on the over-all performance
and usefulness of the MIT local area networks. Some technical information, that contained in
the MIT-published network specifications and that which has mever been written down, is
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mentation is provided, to the effect that the networked terminal traffic and the file-transfer
traffic should not be routed simultaneously over the same network links.
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1. Environment

The computing environment described in this paper is an important
subset of MIT's total computing environment, and it consists of The
Artificlal Intelligence Laboratory (henceforth, AI Lab), The
Laboratory for Computer Science (LCS), the largest mainframes in the
Department of Electrical Engineering and Computer Science (EECS),
and Symbolics, the nearby upstart company launched by the one-time
MIT "moby wizards" to develop and manufacture Lisp Machines. Lisp
Machines were invented at MIT by, among others, the people who are
now at Symbolics, and one could say that Symbolics and MIT enjoy
a close symbiotic relationship, to the point of sharing the same
local area network. This uncommon--in the academia--intermingling
of the university with the corporate is characteristic of MIT. The
LCS and the Al Lab, for example, share their building with Polaroid,

and a third party still owns and operates the premises.

The organizational checkerboard is closely mirrored by the wealth
of different equipment to be found in the vast joint machine room of
the LCS and the AI Lab. One will find there the largest DEC-20s in
the world, the KL-10Bs with numbing numbers of disk drives hanging
from them, side by side with ancient, truly core-memoried KI-10s
with huge banks of custom-build memory (256K). next to the newest
personal computer equivalents of Ferraris, the Symbolics 3600 Lisp
Machines ($100K). There are also ancient home-built lisp machines
(so—called CADRs), numerous VAX 11/780s and a something called "the
VAX farm": 50 or so 11/750s, side-by-side, most deprived of their
VT125 consoles, which goes to show that at MIT it's easier to get
hold of a ;Ax than a terminal.
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All these pleces of equipment have to be connected to each other,

as well as to a myriad of special devices such as the Alto—driven
Dover, a huge Xerox laser printer that is the main hard copy device
for both labs. Then, there is a collection of odd peripherals such as
robot arms, cameras, digitizing equipment of all sorts, the Arpanet

gateway's BBN computers (IMPs), as well as scores of lesser toys.

Each one of the above, including the mainframes at the EECS some
third of a mile away, 1s a node on the local area network known as
Chaosnet, or on a similar local area network consisting of Ethernet
hardware running TCP/IP protocols. The LCS owns and maintains all
of the TCP/IP cable, but more than 50% of its local area networks are
Chaosnet 1links. All of the AI Lab is connected to the Chaosnet.
Aside from computers, the same applies to the hundred-plus terminals,
mostly Ann Arbor Ambassadors, that are sprinkled all over the AI Lab,
and to their LSI-11 concentrators. The Symbolics part of Chaosnet
is connected to 545 Technology Square (the MIT computer science labs)

via a roof-mounted microwave link.

bl



2. Inventing equipment ahead of the marketplace

A good deal of the above environment's hodge-podge character owes
itself to the MIT AI Lab's penchant for designing and constructing
equipment that only later becomes commercially avalilable. The net
result of this activity 1s, of course, a great contribution to
computer technology in general, but also a chaotic, home—-made look
of the equipment in the AI Lab's machine room. In fact, quite often
there may be around only one or two people qualified to maintain a
particularly obscure device, and certainly no outside repairman would
be willing to mess with this hardware. The home-made core memories,
the home-made lisp machines, and the home-made peripheral devices, as

well as the brldges connecting Chaos links, all fit in this category.

il



3. Problems peculiar to the MIT computer labs

The labs have a long tradition of using the DEC PDP-10 computers.
Each lab has a huge DecSystem-20 and a couple smaller KI-10 systems,
some almost on the way out. The hackers at the labs have been
historically fond of these machines, and a lot of them refuse to hack

on anything else but those (and, of course, the lisp machines).

The sentiment for using these machines 1s strong because of popular
acclaim fo; the Incompatible Timesharing System (ITS), an operating
system developed at MIT and preceding TOPS-10/20, Unix, and VMS. The
ITS lovers claim that a lot of now-standard operating system concepts
were ploneered under ITS, and that the commercial products mentioned
above contain inferior spin-offs (or downright faulty implementations)
of the ITS mechanisms. ITS owes 1ts name to the fact that it heavily
depends on the PDP-10 architecture, mainly for efficiency reasons.

It is not used anywhere else in the world-—a fact that does not faze

the ITS hacker one bit.

While the older PDP-10s in the labs run ITS, the newer ones run
the modified DEC TOPS-20 operating system. The MIT sites found it
so lacking that a great deal of it was modified to accommodate local
area networking and improve the user interface. Even now, after
years of trying, the Al Lab's main machine, the Oz, remains off the
Arpanet because the TOPS-20 operating system cannot adequately handle
all the network traffic involved in being on a local net and on the
Arpanet, and having the bulk of its terminals be network-wired as well.

The operating system seems to simply run out of buffer space.

When fallures of commercial products occur in the highly partisan



5 -
research environments like MIT AI Lab, the general tendency is to

hang onto old home-grown standbys and do without. It now seems that
about the only reasons the Oz is continuing to run TWENEX (modified
TOPS-20) are the superior protection scheme (under ITS it was considered
downright unfriendly to protect one's files in any way: snooping was
part of the etiquette), the convenience of the newer users who missed
becoming initiated into ITS, and the ability to have file names longer

than 6 characters (ITS efficiency at work!) .

The LCS, on the other hand, has no compunction about conforming to
industrial standards. While the AI Lab went off to develop its own
local area network ideas (Chaosnet), the LCS happily installed TCP/IP
on prototypical hardware from Xerox (Ethernet). While the AI Lab
continues to boil over what operating systems ought to be supported
in addition to the ITS, the LCS cheerfully prepares to eliminate
everything but the Lisp Machine (Symbolics and the TI-made LMI model),
and Berkeley 4.2bsd. The LCS is in the process of putting a separate
Ethernet in its part of the bullding in order to accommodate a bit-
mapped display (of Apple Lisa class) in every one of its offices. The
LCS mangagement is also considering a Symbolics 3600-class machine for

every office, likely the Texas Instruments' The Explorer.

Despite these differences, the two labs are condemned to share the
same facilities for output, the same machine room, and--of course-—the
same aggregate of local area networks. The joint computer labs at MIT
may well be the most exasperating territory for a systems designer and

a systems programmer to work at.



4, Chaosnet, MIT's own local area network architecture
a) INTRODUCTION

Before the Ethernet was commerclally avallable, the people at the
MIT computer science laboratories decided to develop and install their
own local area network. The need was motivated by the parallel effort
at developing the lisp machine. Lisp machine, conceptually a multi-
processor, was to comprise z set of dedicated CPUs, memories, and
swapping disks, but with a central file system. The dedicated CPU,
disk, and memory were provided in order to assure a constant level of
high quality performance. The shared file system was designed to
facilitate centralized back-up and maintenance, as well as to provide
mail interaction, the abllity to send messages interactively, and the
sharing of preograms. The Chaosnet was to be the file-transfer medium

and the communicatiocns bus of this system.

The speclification to the effect that Chaosnet was to the
file system of the lisp machines implied a design with fast response
and throughput, great reliability, and one that would make it possible
to connect maybe a hundred of hosts. Unlike the Arpanet (which was
already in existence then), there was no need for operating over long
distances. Chaosnet would also be used to access other shared
resources like tape drives, printers, and various specialized peri-
pherals. The above guaranteed an environment consisting of many
different machines; thus the Chaosnet implementation would need to
be simple in order to accommodate this variety and in order to provide
for effective maintenance. The abllity to isolate a network fallure
is a direct consequence of the simplicity of the network and its

interface to hosts.
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The high performance aspects of the design included using a very
high speed transmission medium, and operating it in a simple, low-
overhead fashion, as opposed to the employment of particularly clever
algorithms. (Of course, too simple an algorithm could have very well
badly impaired the performance of the net; nevertheless the basic
tenet of simplicity as antecedent of high performance squares nicely

with simplicity as antecedent of tractable maintainability.)

Aside from ignoring the long distance question, Chaosnet design
did not address having low-speed links, high error-rate links, multiple
(redundant) paths, or multiple levels of service, or even secure

communication, other than end-to-end encryption done by the hosts.

While predating the commercial availability of the Ethernet, the
Chaosnet project heavily borrowed on the research already done at
Xerox PARC, as well on the concepts developed in TCP and the Arpanet.
Nowadays, a lot of the hardware on which the Chaosnet runs is the

very same thing supplied by the Ethernet vendor.

b) HARDWARE

The physical medium of the Chaosnet is the 75-ohm TV cable.
This cable is connected to a set of nodes. A node consists of a host
running a program called the Network Control Program (NCP), an
interface connected to the host's I/0 bus, and a 10-meter flat cable
connecting the interface to a cable transceliver, which is just a tap
on the main cable. The NCP manages and controls the network. Note

that this means an absence of centralized control.

Essentially, a node may selze control of the cable and transmit
a packet. This packet arrives at all other nodes on the cable. This

also implies (in the absence of customizations in hardware) a ban on
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cable branches, stubs, or circular topology. Also, each node decides

whether it accepts the packet or not.

DC attentuation and dispersion dictate that the length of the
cable not exceed 1 kilometer (0.62 mile). This distance could be
exceeded through the use of amplifiers, but in practice this is not
done. Instead, bridges are used. A bridge is a PDP-11 (usually, an
LSI-11) computer relaying packets from one network interface to one
or more others. These bridges also act as terminal concentrators,
and they run a special program for that purpose called MINITS. It
allows the users to choose from a menu of cable hosts, and then
attach to any one of them. This is the mechanism in which most of

the AI Lab's terminals are network—connected, as mentioned before.

Other networks are attached to the bridges, as well. This is
how the Chaosnet talks to both the LCS's TCP/IP and the BBN IMPs
running Arpanet. Also, the PDP-10s are connected via DEC's high-
speed computer—-to-computer interface to the bridges rather than

through the node set-up described above.

The packet is a sequence of up to 4032 bits plus 48 bits of header.
Packets are grouped into 16-bit words. The packet set-up facillitates
error control and cable allocation. The entire point of Chaosnet's
hardware is to deliver these packets from one place to another.

The software protocols resident in NCP make sure to manage this
service, compensate for hardware fallures, and generally provide more
useful services than simple transfer of packets from one computer to

ancther.

The packet's header is 3 16-bit words: destination, source, and
circular redundancy check. The source may not be the original sender

of the message, but merely the node which posted the packet on this
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cable, since the message might have originated on a different cable.

Similar considerations apply to the destination word.

The cable transceiver, or the tap, is a small box connected to the
cable via a UHF connector and a T-joint. It contains the analog
portion of the interface logic, provides the ground isolation between
the cable and the host, and contains some protective circultry that
would (hopefully) prevent a buggy NCP program or interface from jamming
the cakle continuously. This aspect of the transceiver could be much
improved, judging from past fallures. The transceiver receives a
digital signal from its host and puts it on the cable as a level of
8 volts for binary 1 and O volts (open circuit) for binary 0. It
uses a very fast VMOS power FET. When the cable is idle, it is held
at 0 volts by the terminators, which is just the opposite from the
ISO standard for synchronized transmission. The transceiver compares
the cable against a reference voltage, and returns the differential
signal to the interface. In addition, 1t detects interference (or
packet collision) and informs the interface about it. The transceiver
has LEDs for power OK, transmitted data, recelved data, and packet
collision. It alsc has a test button to emit a continuous stream of
binary 1s as if supplied by the interface. These features have been

proven quite useful in quickly tracking down network problems.

The interface 1s a wire-wrap board containing some 120 TTIL chips.
It implements the network's hardware protocols, buffers the packets
going both ways, handles the error-checking, and interrupts the host
when a packet comes in or out of the buffers. The interface provides
packet synchronization so that the host may generate packets
asynchronously. There are interfaces for lisp machines, LSI-1l's, and
the DEC Unibus. The Unibus covers all of the other interfacing needs

if something doesn't have a Unibus, it is connected to a bridge.
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c) HARDWARE PROTOCOLS

These protocols deliver packets from node to node on the same cable.
They provide a decent probability of successful delivery and packet

integrity (i.e., if a packet is compromised, say so or discard it).

Bit representation is Upright Biphase NRZI. It relies on the self-
clocking provided by a crystal clock included in each interface. Each
bit duration (cell) begins with a stage transition from low to high or
vice versa. Thus, the beginning of the cell 1is marked, and self-
clocking is provided. 3/4 through the duration, the state of the cable
is sampled: binary 1 is high. If the current bit is the same as the
previous bit, there will occur another transition. If it isn't, then
there will be no transition since the clock will have set the state

correctly at the beginning of the cell.

The AC frequency of the signal on the cable varies between 1/2
the bit rate and the full bit rate. The information bit rate is 4 M
bits per second. The self-clocking feature accommodates slight
variations in transmission and cable propagation speed. The NRZI
scheme guarantees the existence of at least one state transition per
duration of bit, i.e., every 250 nanoseconds. Thus, it is possible to
make inferences about the cable based on the presence or absence of

state transitions.

For example, if the cable remains low for more than 2 bit durations,
it 1s considered not busy. This condition corresponds to the end of
packet and thus allows someone else to grab the net. Remember that if

no transcelvers are active, the cable is held at 0 volts (low).

—

Conversely, if the cable remains high for 2 bit cells, it signifies

an "abort signal®. The abort signal is used in two ways. First, if
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a transcelver detects a packet collision, the two sending interfaces
are made to send an abort signal (1000 nanoseconds), as well as to
cease transmission. The abort signal tells the receivers to ignore the
packet and insures that the other sender also aborts. Second, the
abort signal is used in flow control: When a receiving interface
declides that it wants the incoming packet, but its receiving buffer

is full, it sends the transmitter an abort signal ordering it to stop.

The packet transmission occurs in reverse bit order, to simplify
hardware. Thus, the header words which are transmitted at the end of
the packet arrive first, in the order check, source, and destination.
The data words, in the reverse order, follow. Words are transmitted
least-significant bit first. The software 1is never aware of the fact
that the transmission is reverse order: packets arrive at the their
destinations in the order sent. At the end of the packet, an extra
binary 0 is added to bring the cable into low state, so that an extra
spurious clock transition is not generated when the cable goes idle. This

bit, not unlike in the HDLC bit padding, is transparent to the software.

The technique used here 1s carrier sense: An interface will not
start transmitting unless the cable is idle. Thus, collisions may
occur only at the beginning of packets. Once a transmission has
successfully gotten under way, the cable has been "seized” by the
sender, and the transmission will continue successfully to the end
of the packet, however long it takes. Also, the amount of time wasted
by a packet collisicn is therefore limited to the round-trip cable

propagation delay.

A time-division technique is used to prevent any two interfaces
from initlating transmission at the same time. It only costs a

small delay in the initiation of transmission, while preventing almost
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all collisions. 1Its trade—offs pay off better as the load on the cable
increases. Essentlally, each interface is assigned a time-slot called
a turn, in accordance with its network address, and may initialize
transmission only when its turn has come. The turns are set far enough
apart that one interface's cable "seizure" will make the other
interfaces see that the cable is busy when their turn arrives. Each
interface is provided with a counter to keep track of turns while the
net is idle. Each packet synchronizes these counters by setting them
from the source address of its sender; at the transmission time, it
must have been the sender's turn to transmit. This strategy is
analogous to token-passing in ring networks, with the counting being

the virtual token.

The virtual token metaphor is useful in analyzing the consequences
of the above scheme. The token travels through the net at a much
lower speed than that of a packet:; at best, when the nodes are very
far apart, it travels at just half the speed of a real signal. Also,
the Chaosnet has the topology of a line segment, not a circle. Thus,
the token is additionally slowed down by having to retrace its way.
The slower-virtual token speed is the price of Chaosnet's superior
robustness to that of ring networks. In reality, the token is slowed
down even more to provide a margin of safety. A typical value for
the token's round trip time is 64 microseconds. While the Chaosnet
designers feel this is perfectly adequate for the network's primary
task-—-that of file transfer--it becomes a real factor in system
performance from the viewpoint of a user logged in on a networked

terminal, such as the ocnes at the AI Lab.

Also, 1f the cable has been idle for a long time, the various clocks
will have lost synchrenization. If a source address is corrupted, any

interface that sees this address will mis-set its clock accordingly.
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Additionally, a packet might occasionally collide with a random noise
burst rather than another packet. [inally, the sender cannot tell

a recelver-busy abort signal from real collisions. There are no
randomizing mechanisms in the hardware protocols, since the higher-
level software realizes that a packet was lost and retransmits it.
The basic assumption in the architecture design of the net is that
there is enough randomness in the software that the two colliding

nodes will not collide again on the retransmission in a periodic lock.
d) OVERVIEW OF SOEFTWARE PROTOCOLS

These protocols arrange for high-speed interchanges between hosts,
regardless of location (hosts may reside on different cable links),
and without undetected transmission errors. The original design
goals called for the speed of file transfers to be comparable to
that of ingxpensive tape drives, 3 K characters per second,
which is about 10 times the speed of file transfers on the Arpanet.
The actual transfer speed approaches twice this specification in

favorable circumstances.

This success was brought on by designing out the bottlenecks
that can be found in the Arpanet, such as the control link needed
for the acknowledgement of every message before the next one may
be sent. The goal of design simplicity has also played a role:

a full Chaosnet NCP is about the half the size of its Arpanet
cyuivalent on the same machine. The Chaosnet's low-performance
implementations may omit some features still. There's even a

minimal implementation for a single-chip microcomputer.

From the point of any two users, the chief result of running Chaosnet
is a connection. A connection is a reliable packet-transmission

channel ocperating in a full-duplex mode. The network promises to
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never lose, duplicate, garble, or resecuence the packets. Any
unrecoverable errors promptly result in breaking a connection
and informing the two users. It is up to the user software to
elther deal with the communication in terms of packets or ignore

their boundaries and treat the connection as two half-duplex

streams of 8-bit or 16-bit bytes.

File access, interactive terminal connections (remote logins),
and handling of data in other byte sizes such as 36 bits are all
built on top of the connection facility by the user programs, which
from the software protccols’ point of view include the higher

protocels to be mentioned later.

To start a connection, the two processes must contact each other.
In the usual user/server scenarlo, the server process does not exist
initially and must be created and made to execute the appropriate
code. The contacting is implemented as follows: One process is
deemed the user, the other the server. The server possesses some
contact name for which it listens. The user asks its local host's
operating system to be connected to the server, specifying the
network code and contact name. The local operating system sends a
message (a Request for Communication) to the remote operating
system (of the server-to-be), which then creates the server process,
or explicitly rejects the request. Chaosnet does not deal with the
problem ¢f automatic discovering of which host to connect in order

to obtain a particular service.

In the case of two existing processes already knowing about each
other and wishing to communicate, one is arbitrarily designed as
server and one as user. (This is much the same policy as in the IBM

SDLC protocol.)
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Each node on the network has a unique address, which is a 16-bit

number. The most significant 8 bits signify a subnet, and the other
8 bits specify a host within the subnet. A subnet can be either a
physical Chaosnet cable or a high-speed host-to-host connection

between a bridge and a PDP-10.

Since the Chaosnet was designed with the lisp machine in mind, the
data transmitted through it generally follows the Lisp Machine
standards. (The Lisp Machine, as a set of standards, was developed
exclusively at the MIT AI Lab in the early 1970s, and any company, such
as Symbolics or LMI or TI, wishing to produce MIT-based lisp machines

must conform to them. They are avallable to the public.)

Unlike some other networks, the Chaosnet does not do any software
checksumming. This is so because the great variety of hosts with
different architectures Chaosnet connects makes it prohibitive to
attempt implementing an algorithm which can be executed compatibly
and fast on all hosts. Instead, all error-checking is done in
hardware of interfaces. The assumption is that other types of
packet damage not detectable by the interface algorithms will produce

results so obvious as to be detected and fixed immediately.

Routing of packets is made on packet-by-packet basis and has
nothing in common with the concept of connections. This makes it
possible to make the bridge software simple and easy to implement.
(Bridges connect different cables of the same network——Chaosnet—-—
and thus, among other things, forward packets.) To prevent loops,
each packet contains a forwarding count. Each bridge increments
this count as it handles the packet. Should the count ever reach
a maximum, the packet is discarded. From there on, it is the
error control protocol's decision whether to recover the packet or

conclude that the communication link cannot be salvaged at the
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current time.

Briefly, the routing works as follows: a packet's destination
address is checked by the host. If it is this host, receive the
packet. (Intra-host processes may very well communicate via the
network.) Otherwise, Iincrement the forwarding count and discard
the packet if the count has exceeded its maximum. If the packet's
destination lies on the same subnet as the host, transmit the
packet on that subnet, else look up the subnet in own routing table

to find the best bridge to that subnet, and transmit to that bridge.

The concept of best bridge is implemented using a cost factor that
resides in the routing table. The cost for subnets is increased by
1 every 4 seconds, typically doubling after a minute. Each cost
has a celling which it does not exceed, thus preventing arithmetic
overflow. The reason for increasing cost is to discount the value
of old information. Directly connected subnets are not subject to

this cost increase.

The updating of the routing table happens via each bridge
periodically advertising its presence (every 15 seconds) by broad-
casting a routing (RUT) packet on all its directly connected
subnets. The RUT packet tells its recipients which subnets that
particular bridge serves best. As a consequence, the routing table

is updated to say that this bridge should be used for that subnet.

When there are equivalent bridges, the traffic is divided among
them only through the happy circumstance that their RUTs were sent
out at different times. This simple scheme could be supplemented
by more sophisticated bridge scheduling on the host level, but this
is not done (because who would wish to hack such "hairy" boredom),

and as a consequence some subnets can get disproportionately
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overloaded at times of "rush hour®™ traffic, thus severely impeding
performance. This is the reason why Chaosnet routing has such

importance to the user view of the net.

Flow control and error control are implemented in the NCP through
retransmission. Retransmission continues until the receiver sends
to the sender a signal called a receipt. A recelpt indicates that
all packets with a number less than or equal (modulo 65536) to

the packet number in the receipt have been successfully received.

There 1s another receipt-like signal called an acknowledgment.
It is used to implement flow control via a windowing mechanism
now popularized through HDLC protocols. An acknowledgment obviates
the need for sending receipts. Each higher-level protoceol has a
pre—adjusted window size, and although there is a facility for
communicating dynamic adjustment of windows, this is never done in

practice, to aveoild introducing complexity into the protocols.
e) HIGHER-LEVEL PROTOCOLS

Higher-level protocols appear to the user as utility programs
that can be invoked via a single command, or in the case of the
lisp machines, by creating a session window of an appropriate
type. These protocols include STATUS, MAIL, SEND, DOVER (for
generating hard copy on the main laser printer), FINGER, TELNET
(as in the Arpanet remote login protocol), Arpanet GATEWAY, and
SUPDUP (which is the preferred remote login facility of the Chaosnet),
and TIME. STATUS is used to generate a message which must be answered
by every entity on the network and is used for maintenance purposes,
MAIL is self-explanatory, SEND is used for interactive messages
between users, FINGER provides information on a given user, Arpanet

GATEWAY allows a Chaosnet user to access any Arpanet service through
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one of the PDP-10s which act as Arpanet gateways, TIME provides the
number of seconds elapsed since January 1, 1900 Greenwich Mean Time
as a 32-bit number. Lisp machines, which do not have hardware
calendar clocks, use TIME to find out the date and time when they
first come up for service. The SUPDUP protocol is discussed later

in this paper: it is a ment of TELNET.

f) FOREIGN PROTOCOLS IN Chaosnet

Any forelgn protocol based on the idea of a full-duplex stream (or
2 half-duplex streams) of 8-bit bytes can be simply incorporated into
Chaosnet using the Chaosnet connection mechanism instead of whatever
stream protocol the foreign protocol was originally using. This was

the case with Arpanet's TELNET.

There 1s a facility known as the Chaosnet foreign-protocel protocol
which allows alien packets to be transmitted through Chaosnet or
allows two Chaosnet hosts to speak in non-Chaos manner to each other.
Occaslonally non-stream I/O devices ,such as graphics tablets, need

to be connected to the network and this facility makes it possible.
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5. SUPDUP -- Chaosnet's remote login facility

The SUPDUP's main claim to fame is that it allows for remote logins
in a manner of terminal-independent output. This way, only the local
system needs to know how to handle the user's terminal. SUPDUP also
has a bullt-in graphics interface as well as local assistance for
the remote text editors (l.e., text editors used on the remote
machine by the local user). SUPDUP means to be a superior ment

of the Arpanet's TELNET.

Both TELNET and SUPDUP define a virtual terminal, but TELNET's
is a simple teletype, whereas the SUPDUP defines a display terminal
opticnally capable of involved operations on text, pictures, and the

user—transparent sharing of the work of a remote text editor.

The trade—-off assoclated with SUPDUP is that the remote operating
system must be able to talk to SUPDUP's virtual terminal. Alas, most
operating systems understand just printing terminals, leaving all
other tasks to user programs. Since the SUPDUP's virtual terminal is
not a superset of the ordinary teletype, such operating systems cannot
communicate with it. Instead, user programs must create a SUPDUP
server. To put this in perspective, the SUPDUP protocol is meant as
a ment for having to know exactly everything about all types of
terminals connected to a system; the annoying symptom of this is the
PRIMOS Emacs' prompt for supplying the terminal type the user is on,

or the Termcap feature of Unix.

From the user's point of view, SUPDUP is wonderful. It "magically”
provides the right translations so that a remote login user need not

manually set switches every time a remote login to a different host
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is made.

SUPDUP also defines a META key (present on Ann Arbor terminals as

' PAUSE and also avallable on lisp machines), which behaves exactly like
the CONTROL key. Thus, Emacs users can perform in one keystroke
(META-something, META-CONTROL-something) commands which in other
circumstances would be prohibitively long, i.e., require a prefix or

two.

SUPDUP also provides flow control for non-networked terminals in
a manner superior to that of the XON/XOFF mechanism which robs the
user of all editing commands using CONTROL-S and control-Q. It is
akin to the flow control mechanism of TCP. It works by means of
allocation, which is stored in the host, and which is the number of
characterglthat can be accommodated by the terminal short of overloading

it, thus it acts much like network data layer windowing.

The graphics protocol of SUPDUP has the nice property that the
terminals using it are not aware of whether they are used remotely
or locally. The graphics connection does not need any additional
network connections, nor 1is there any need for preparation-—graphics
may be initiated any time during text transmission. The graphics
protocol can work with either display list or bit-matrix terminals,
allowing, for example, drawing pictures on part of the screen and

keeping the rest of it for text display without mixing the two.

The local editing protocol of SUPDUP is meant to improve the
response time in running a display-oriented text editor on a
remote system via SUPDUP. It allows the local computer (or terminal)
to perform most of the user's editing commands, with the source
of the edliting power moving between the local and remote system in

a manner invisible to the user. In practice, this has great effect
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on the user response time, especially when comparing the performance

one is accustomed to when editing thorough a remote login TELNET

interface.

Basically, the remote system's editor must explicitly request
synchronization with the local editor via the SUPDUP protocol, and
then grant permission to the local editor to do editing. When the
local ed1§9r is done, it relays its results to the remote system
for storagé and updating the state of the editing session as seen
by the remote editor. In practice these results are relayed every
few seconds, which is meant to reduce overhead in timesharing
systems by reducing process-switching (i.e., the remote editor runs
for fewer longer sessions rather than for more shorter ones). There
are provisions for discarding local editing if the remote editor has
reason to intervene (e.g., emergency back-up) while the local

editor 1is working.

There is also a line saving protoceol in SUPDUP whose mission is
to tell the local terminal to hang on to a copy of some displayed
information and later refer to that copy for redisplaying. This
mechanlism saves on retransmission. This is especially noticable
when using scrolling commands within a remote editor in a SUPDUP

session.

Lastly, SUPDUP is smart enough to remember prior remote logins
by the user who 1is still logged in at its local host, and it will
not prompt for password again. While this may not be a good feature
in a security-minded environment, it certainly makes life easier and
faster when one has to repeatedly remote login through layers of
remote hosts (a practice normally discouraged for efficiency reasons),

or when repeatedly opening sessions to the same remote host.
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6. User's 1mpressions of the Chaosnet/SUPDUP MIT environment

soimmaiieiiunss il i I s iR v o B R
There was a time when MIT AI Lab's computing environment was
regarded as the best in the world. That assessment is no longer
uttered by quite as many people these days, and I think the main
problem is the fact that the computing environment is outgrowing

its local area network.

Having file-transfer and remote login packets carried on the
same cable may not be particularly burdensome to the remote login
user if the number of file transfers is small. This is not the
case at the joint MIT computer labs anymore. Quite often just
a few minutes before 5 p.m., when many users routinely perform
file transfers to save their lisp machine buffers on their file
servers, the networked terminal user and the remote login user
can go many agonizing seconds without having their keystrokes
echo on their screens. This is a direct result of the simple
policy that once a node has grabbed a net, it can have it for
the duration of its packet, and packets can be quite large.

A high density of such occurrences, given the very short time
slot that defines an idle net, can virtually shut out the

interactive user on some occaslions.

As the number of machines attached to the Chaosnet and other local
nets at the joint MIT computer science labs grows, these symptoms will
only become more acute. Also, the sheer complexity of having to deal
with many hosts requires a non-trivial famillarity with the
(in) conventions of many operating systems. The absence of having
a virtual file system is becoming more painful each year, especially

to new users.
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The robustness of Chaosnet, which is the flip-coin side of the
simplicity of its design, is unquestionable. In my one year at
the AI Lab I do not recall a2 single instance of the net being
down. (Though, I do remember various bridges giving out from time

to time, but no more or less often than "normal” PDP-11's.)

One also misses the ingenicus behavior of SUPDUP once one grows
accustomed to the conveniences it provides. Using things called
"Emacs" under Unix (or VMS) and Sytek has a positively neolithic

feel to it in comparison to Emacsing on Chaosnet under SUPDUP.

The remote login facility works very nicely, as does the file
transfer protocol, provided the two do not go head-to-head in
a rush hour setting. It 1s very convenient having the ability
to send mail and messages, as well as files, in an unrestricted

way while remotely logged in.

The Chaosnet's main tenet, that of providing the lisp machine user
with an umbilical cord to its mother file server, is proving itself
every day. It is only when the network is stretched past its original
design goal to accommodate terminal traffic that the user has any

reason to complain.

I am convinced that the bulk of what local networking does at
MIT is done if not optimally then at least satisfactorily. Considering
the huge number of interfaces to so many different operating systems
and peripherals, it is a winning system. However, considerable changes
will need to be made in the way interactive computing is handled
across the network to keep the present day situation from

deteriorating. Who knows, it might be even possible to improve it.
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8. Other network projects at MIT

Currently, MIT at large is developing a personal workstation net
consisting of IBM PCs, DEC VAXes, DEC Professional microcomputers,
and the Ethernet network, which will provide service to the thousands
of faculty and students of the Institute. This project is called

Project Athena, and it will be gatewayed to the Chaosnet.

Already there are some objections over the choice of processors
for the network. People with experience in local networking at Yale
and Brown claim that their Apollo stations are the main limitations
of their computing power. (The Apollo workstation is a conventional
(non-LSI) implementation of the Motorola MC68020 specificiations, sold
for $40k.) Their claim is that Project Athena is selling itself short

on CPU cycles before even starting up.

My main worry with Athena, while I share the Yale-Brown opinion,
is that it uses the same file transfer/interactive computing sharing
of the net as Chaosnet does. No doubt the file transfers on Athena
will be mitigated in size by the memory/disk size of its personal
workstations (vs. Chaosnet's lisp machines), but the sheer number
of them (thousands) will make up for the slack. I feel that any
user unlucky enough to be logged in to a networked terminal under

Athena (say., talking to one of its VAXes), would get lousy service.

Independently of the Project Athena, both of the MIT computer labs
are putting in new, separate Ethernets meant to install in every LCS
office a bit-mapped display to be used with a time-sharing CPU such as
the MIT-XX, a DecSystem—20, or a Vax 750 under 4.2bsd Unix in single user

mode, and likely a TI Explorer Lisp Machine, and at the AI Lab, a 3640.



I think this is the right way to go. This would enable putting the
networked terminals only on a subnet, possibly improving response time

for all, distributing the known bottlenecks over more cable. The trend

to have people work all day on dedicated lisp machines of a Symbolics 3640
class brings us one more step out of the dark ages of interactive computing,
the age of the hardwired time-shared terminal. And, with projects such as
the Gerald S. Sussman's current attempted construction of a lisp machine
suffused with RAM (eliminating all need for virtual memory management) ,
and with the already manifested trend to have users save files on their
local lisp machine's secondary storage (disk or whatnot), we are compelled
to change our view of what the mission of networks is from that of helping

make do with resource limitations to that of being mere passageways.
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