CONSTRAINING CONTROL

by
Daniel P. Friedman
and

Christopher T. Haynes
Computer Science Department
Indiana University
Bloomington, IN 47405

TECHNICAL REPORT NO. 170

CONSTRAINING CONTROL

by
Daniel P. Friedman

and Christopher T. Haynes
May, 1985

Constraining Control*

Daniel P. Friedman
Christopher T. Haynes

Computer Science Department

Indiana University
Lindley Hall 101
Bloomington, IN 47405 USA

Abstract

Continuations, when available as first-class objects, provide a general control abstraction
in programming languages. They liberate the programmer from specific control structures,
increasing programming language extensibility. Such continuations may be extended by
embedding them in functional objects. This technique is first used to restore a fluid
environment when a continuation object is invoked. We then consider techmiques for
constraining the power of continuations in the interest of security and efficiency. Domain
mechanisms, which create dynamic barriers for enclosing control, are implemented using
fiuids. Domains are then used to implement an unwind-protect facility in the presence
of first-class continuations. Finally, we demonstrate two mechanisms, wind-unwind and
dynamic-wind, that generalize unwind-protect.

Categories and Subject Descriptors: D.3.2 [Programming Languages] Language

Classifications—eztensible languages; Scheme; Lisp D.4.3 [Programming Languages]
Language Constructs—control structures;

Generzal Terms: Languages, Security
Additional Key Words and Phrases: continuations, first-class objects, escapes, labels

* A preliminary version of this paper was presented at the 1985 ACM Symposium on
Principles of Programming Languages. This material is based on work supported by the
National Science Foundation under grant numbers MCS 83-04567 and MCS 83-03325.

1

1. Introduction

Control objects, such as Algol 60 labels, are not new to programming languages. Such
objects, however, are not first-class: though they may be passed to procedures, they may
not be returned or entered in data structures. This is a consequence of the stack allocation
of both environment information (parameters and local storage) and control information

(return address).

Several Lisp dialects, including Common Lisp [15] and T [10], provide mechanisms
similar to labels in an expression- rather than statement-oriented context, using catch
and throw. A catch expression binds the current continuation, or control state, to an
identifier and then evaluates the body of the catch expression. Within the dynamic scope
of the body it is possible at any point to “throw” an arbitrary value to the continuation
associated with the identifier. This value is then returned immediately as the value of
the entire catch expression, from which point evaluation proceeds in the environment
saved with the continuation. However, as with the labels discussed above, once the catch
expression has been exited, it is no longer possible to reinvoke its continuation. This is
again a consequence of the stack allocation of continuations (though environments are now
being heap allocated). The principal uses of this mechanism are error exits and *blind”
backtracking. Non-blind backtracking [16], in which a computation may always be resumed

at any point where a continuation has been obtained, is not possible in these languages.

The programming language Scheme [17] is unusual in that it provides continuations
as first-class objects. In general, such continuations form a tree structure, and must be
heap allocated. By invoking continuations, it is possible to jump between any two nodes

of this tree.

Given access to continuations, it is possible to extend a language to include any desired
sequential control abstraction. For example, coroutines may be implemented using contin-

uations (7], but not vice-verse. In the context of operating systems, continuations provide

2

a natural way to record process state prior to a preemption [18] or a trap [6]. In artificial
intelligence, continuations provide a ready means to implement non-blind backtracking [3].

Continuations are a powerful tool for language extensibility. We believe it is important
to have such power in system development languages. However, in specific applications it
is often desirable to place constraints on the use of continuations. Such constraints may
allow more efficient implementation, aid in reasoning about programs, and help enforce

security requirements.

The next section provides a brief overview of Scheme. We then illustrate how con-
tinuations may be enhanced by embedding them in continuation objects. Such objects
are then used in several simple Scheme programs that enforce various types of constraints
on continuations. Finally, we present an implementation of the unwind-protect facility
of some Lisp systems, and two generalizations of unwind-protect. The interest in these

mechanisms is their semantics in the presence of first-class continuations.

2. An Overview of Scheme 84

Scheme was designed and first implemented at MIT in 1975 by Gerald Jay Sussman and
Guy Lewis Steele, Jr. [17] as part of an effort to understand the actor model of computation
[8]. Scheme may be described as a dialect of Lisp that is applicative order, lexically scoped,
and properly tail-recursive. Most importantly, Scheme—unlike most other Lisp dialects—

treats functions and continuations as first-class objects.

See Figure 1 for the syntax of a Scheme 84 [4] subset sufficient for the purposes of this

paper.t The superscript * denotes zero or more, and * denotes one or more occurrences of

1 Some readers may be put off by the number of parentheses in Scheme programs. How-
ever, we feel these parentheses are justified for several reasons. In the first place, there
are more advantages of such minimal syntax than is generally realized. A simple, unam-
biguous syntax aids comprehension and provides the basis for a truly extensible language.
(Users may easily define their own syntactic extensions, or macros, thereby extending the
syntax of the language to meet their needs.) Secondly, the difficulties associated with

3

(expression) ::=
(constant)

| (identifier)

| (syntactic extension)

| (quote (object))

| (begin {expression)*)

| (beginO {expression)*)

| (1ambda ((identifier)*) (expression)*)

| (let ([{identifier) {value)]*) (expression)*)

| (Letrec ([(identifier) (value)]*) (expression)*)

| (if (expression) (expression) (expression))

| (case (tag) [{symbol) {expression)*]+)

| Cevcase (tag) [{value) {expression)*]1+)

| (define! (identifier) (expression))

| (set! (identifier) {expression))

| (2pplication)
(value), (tag), {function) ::= (expression)
(syntactic extension) ::= ({keyword) (object)*)
(application) ::= ({function) (expression)*)

Figure 1. Syntax of a Scheme 84 subset.

the preceding form. Square brackets are interchangable with parentheses, and are used in
the indicated contexts for readability. quote expressions return the indicated literal object,
and °(object) is equivalent to (quote (object)). begin (beginO) expressions evaluate their
expressions in order and return the value of the last (first). Expression lists in lambda,
let, letrec, case, and evcase are implicit begins. lambda expressions evaluate to first-
class functional objects that statically bind their identifiers when invoked. let makes
lexical bindings and letrec makes recursive lexical bindings. if evaluates its second
expression if the first is true, and the third otherwise. case evaluates the tag expression,
and then returns the value of the first expression whose corresponding symbol matches
the tag. If the last symbol is else, it always matches. evcase is similar to case, but the

heavily parenthesized expressions are greatly reduced with some practice and intelligent
tools, such as editors and pretty-printers [13]. Finally, in this paper we are concerned with
semantics and do not wish to be burdened by elaborate syntax. The obdurate reader may
imagine these semantics expressed in his or her favorite syntax.

4

(value) expressions are evaluated. define! assigns to a global identifier. set! modifies
an existing lexical identifier. An application evaluates its expressions (in an unspecified
order) and applies the functional value of the first expression to the values of the remaining

expressions.

Scheme 84 provides a syntactic preprocessor that examines the first object in each
expression. If the object is not a keyword, then it is assumed that the expression is an
application. If the object is a syntactic extension (macro) keyword, then the expression
is replaced by an appropriately transformed expression. In this paper the symbol *="
indicates syntactic extensions.

We require only nine primitive functions. eq? returns true if its arguments are the
same reference. not is negation. unique returns a unique new reference that is eq? to
itself, but to no other object. cons is the conventional Lisp list structure constructor.
delq! deletes an indicated element from a list. reverse! (also referred to as nreverse [1))
does an “in-place” reversal of a list by modifying the list links. thaw receives a thunk (a

nullary ‘function) and invokes it. mapc applies a given function to each element of a list.

The function call-with-current-continuation, abbreviated call/ce, evaluates its
argument and applies it fo the current continuation, represented as a functional object of
one argument. Informally, this continuation represents the remainder of the computation
from the call/cc application point. At any time this continuation may be invoked with
any value, with the effect that this value is taken as the value of the call/cc application.
(The continuation of a continuation application is discarded, unless it has been saved with
another call/cc.) Related facilities include Landin’s J operator [2,9] and Reynolds’ labels
and escapes [11,12].

3. Enhancing Continuations
To enforce constraints, or otherwise extend the semantics of continuations, we define mod-

ified verisons of call/cc which pass a closure rather than a true continuation to its ar-

5

gument. In order to distinguish such a closure that contains a continuation from a plain
continuation, we refer to it as a continuation object, or cob. When invoked, a cob performs
any additional operations that we require, and then (conditions permitting) invokes the
embedded continuation (or cob). Embedded continuations must be obtained using the
original call/cc at the time the cob is created, and be retained in the environment of the

cob.
(define! call/cc-whatever
(lambda (f)
(call/cc
(lambda (k)
(let ([cob (lambda (v)
whatever-is-needed
(k v))])
(£ cob))))))

If the cob must be invoked upon implicit as well as explicit invocation of the continuation,

then (£ cob) should be replaced by (cob (£ cob)).

To illustrate this technique, consider the implementation of a fluid environment (14]
using the standard functional representation of environments. The fluid environment,
represented by the global fluid-env, is extended upon entering a let-f1luid body, and

restored when leaving the body, thereby providing dynamic extent for fluid bindings:
) (fluid ¢d) = (fluid-env °'id)

(let-fluid id ezp body) =

(let ([own-env fluid-env]
[v ezpl)
(define! fluid-env
(lambda (x)
(if (eq? x °id) v (own-env x))))
(begind
body
(define! fluid-env own-env)))

This extension will not work in the presence of unrestricted continuations. When a

continuation is invoked, the computation continues in the same environment in which the

6

continuation was obtained. Thus, the current fluid environment must be recorded when a
continuation is obtained, and this environment must be restored when the continuation is
invoked. This may be achieved by redefining call/cc as follows:

(define! call/cc-fluid
(lambda (f)
(call/cc
(lambda (k)
(f (let ([own-env fluid-env])
(lambda (v)
(define! fluid-env own-eanv)
(k v)))N)

In this case we avoid the (cob (£ cob)) construction because implicit invocation of
continuations always occurs with the right fluid environment. Only explicit invocation of

the continuation requires that the cob’s actions be performed.

4. Constraining Continuations
We now provide a sequence of examples that illustrate approaches to constraining contin-

uations.

One-shot continuations

First we demonstrate a version of call/cc, referred to as call/cc-one-shot, which de-
livers explicit continuations that may only be invoked once. One can imagine certain
implementation techniques for which it would be necessary to enforce this ®one shot® con-
straint. For example, it would be necessary if the heap space used to record continuation

frames were automatically reclaimed upon their invocation.

This constraint may be enforced by associating a variable with each cob that records

whether the continuation has been invoked yet (whether it is still alive).

7

(define! call/cc-ocne-shot

(lambda (f)
(call/cc
(lambda (k)
(f (let ([alive true])
(lambda (v)
(if alive
(begin
(set! alive false)
(k v))

(error ...)))))))))

Stack-based continuations

Though call/cc-one-shot assures that a given continuation may only be invoked once,
it is still possible for continuations that are its descendents to be invoked. (If control
returns in the usual way, the previously invoked continuation will eventually be reinvoked,
and the error detected. However, this detection may be too late, or may not occur at all
if control jumps to ancther branch of the continuation tree before the previously invoked
continuation is reinvoked.) We now wish to enforce the constraint that when a continuation
is invoked, neither it, nor any of its descendents may be invoked a second time. This suffices

to ensure that control information may be stack rather than heap allocated.

To enforce this constraint we keep an alive flag in each cob, as before. However, this
time when a cob is invoked, not only must its own flag be set to false, but also that of
each cob below it in the cob stack. For this, each cob maintains a reference to its child
cob. Also, each cob is an object that can respond to messages, and only performs as a
continuation if its argument is not a recognized message. When a cob is invoked, it simply
clears its alive flag and then sends a kill! message to its child (if there is one) to do the
same. In this way the flags of all the descendent cobs are cleared, as required.

To complete this scheme, we must provide a method for setting the child references.
When a cob is created, it installs a reference to itself in its parent cob. For this purpose

(let ([kill! (unique)] [set-child! (unique)])
(define! call/cc-stack-based
(lambda (f)
(call/cc-fluid
(lambda (k)
(letrec
([cob (let ([child (lambda (x) °*)]
[alive true])
(lambda (v)
(evcase v
[kill! (set! alive false) (child kill!)]
[set-child! (lambda (n) (set! child n))]
[else (if alive
(begin (cob kill!) (k v))
(error ...201DN)1)
(((fluid fcob) set-child!) cob)
(let-fluid fcob cob (cob (£ cob)))))))))

Figure 2. call/cc-stack-based

a reference to the parent cob is maintained as the fluid binding of £cob, and all cobs

are made to respond to a set-child! message in order that the child reference may be

recorded.

The symbols kill! and set-child! are not used as cob messages. They might be
mistaken for values passed to the embedded continuation. Instead, we use values returned
by unique, which can not be confused with any others. See Figure 2. Note that child
must be initialized with a cob that can absorb messages sent to it, but do nothing. (We use
** to indicate an irrelevant value.) The initial fluid environment must include a binding

such as (lambda (x) (lambda (y) °*)) for fcob.

The child references in call/cc-stack-based present a potential problem with re-
gpect to garbage collection, for a cob is not collectible after the previous continuation is
invoked. However, in this case there is no such difficulty. Because a sequence of continu-
ation returns is invariably followed by extensions of the continuation stack, at which time

the child field of the current cob will be reset, references to its old descendents will be

9

cut off (unless the programmer has retained other references to these dead continuations,

in which case they can not be collected anyway).

Clearly call/cc-stack-based is weaker than call/cc, since it does not allow branch-
ing of the continuation tree. It is not so obvious whether call/cc-one-shot is equivalent
in power to call/cc. It might seem that “one shot® continuations would be weaker, but
see the Appendix for a demonstration that they are not. There we present an extraordi-
narily difficult program, call/cc*, which uses only call/cc-one-shot, and argue that it

is equivalent to call/cc.

Dynamic domains

In some contexts it may be necessary to restrict the range of control jumps to some dynamic
context, which we refer to as a domain. We accomplish this by defining the function domain
that takes a thunk and thaws it with a new unique reference fluidly bound to domain-ref.
call/cc-domain provides cobs that signal an error unless the fluid binding of domain-ref
at the time of their invocation is the fluid binding of domain-ref at the time of their

creation. domain-ref must be bound in the initial fluid environment.
(define! domain
(lambda (thunk)
(let-fluid domain-ref (unique) (thunk))))

(define! call/cc-domain
(lambda (f)
(call/cc-fluid
(lambda (k)
(f (et ([own-d (fluid domain-ref)])
(lambda (v)
(if (eq? (fluid domain-ref) own-d)
(k v)
(error ...)))))))))

Other forms of domain restriction are possible. For example, we may allow control to
exit from a domain by invocation of a continuation, but still prevent control from reentering

the domain. To implement such an exit-only-domain, we extend the above code with a

10

domain-env that returns true only if invoked with the domain-ref of a currently active
domain. Now the initial fluid environment must also bind domain-env to (lambda (x)

false).
(define! exit-only-domain
(lambda (thunk)
(let-fluid domain-ref (unique)
(let-fluid domain-env
(let ([own-d (fluid domain-ref)]
[own-env (fluid domain-env)])
(lambda (d)
(if (eq? 4 own-d)
true
(own-env d))))
(thunk)))))

(define! call/cc-exit-only-domain
(lambda (f)
(call/cc-fluid
(lambda (k)
(f (let ([own-d (fluid domain-ref)])
(lambda (v)
(if ((fluid domain-env) own-d)
(k v)
(error ...))))N)))

5. Unwind-Protect and Wind-Unwind

Many Lisp systems provide an unwind-protect facility, that might have the syntax:
(unwind-protect body postlude) .

Normally body is evaluated first, and then postlude is evaluated. However, if control passes
out of body prematurely through invocation of an outer control context, then postlude
would be evaluated immediately before the invocation takes place. A typical use of
unwind-protect is to assure that any files opened by body are closed whenever control
leaves body. Unwind-protect is particularly valuable in designing fault-tolerant systems,
where the postlude may assure that the system is left in a stable state in the event that

an error or other exceptional condition requires that the control context shift abruptly.

11

It is straightforward to implement unwind-protect in Lisp systems whose control obeys
the stack discipline, but it is more complicated to define and implement an unwind-protect
mechanism in the presence of full continuations. For example, when control passes from
one branch of a control tree to another, (1) should unwind-protects only be triggered
on the path between the current node and the closest common ancestor of the current
node and destination node, or (2) should unwind-protects be triggered only if they are
ancestors of the current node and descendents of the destination node? Also, if the same
unwind-protect is triggered more than once, (1) should the postlude code be executed each
time, or (2) should the postlude code be executed just the first time? We believe that
there are probably no general answers to questions such as these. Rather, programmers
who deal directly with such powerful tools must be aware of these issues and answer
these questions in light of each application’s requirements. Scheme is flexible enough to
implement variations such as those above, and it is important to leave programmers with
the ultimate choice. However, if one unwind-protect facility is to be provided as part of
the standard language (as it probably should), a design decision must be made opting for
one solution that is reasonably simple and generally applicable. More research is needed,

but for the time being we choose the second option for each of the above questions.

To implement unwind-protect, we could use child references, such as were used in the
call/cc-stack-based solution. A list of references for each continuation would have to be
maintained, rather than a single reference, because in the current context the continuation
tree may branch. However, this would be undesirable. Without knowing what cobs the
user has maintained references to, child references can not be deliberately erased. The
result is that cobs could never be reclaimed by the garbage collector.

Instead of child references, each cob maintains a list of thunks that when thawed
performs the unwind-protect functions necessary when the cob is invoked. Our unwind-
protect installs its thunk, which we call unwind, in each ancestor cob. When thawed, each
unwind causes the postlude associated with its unwind-protect to be evaluated and then

12

removes itself from all the cob lists in which it was installed. The addition and deletion
of unwinds from the cob lists is achieved by sending unique messages to the cobs, as
before. The most recent cob is always accessible as the fluid binding of £cob. We assume
that unwind-protect receives body and postlude arguments that are thunks containing
the body and postlude, respectively. Unwind-protect is then implemented as in Figure 3,
ignoring the code within boxes. The initial fluid environment binds £cob as in call/cc-

stack-based.

If it were possible for arbitrary continuations to be invoked from within a postiude, or
for continuations obtained from within a postlude to be invoked elsewhere, then unwind-
protect could be subverted. By associating a domain with the invocation of postlude, we
obtain precisely the degree of protection required.

In a traditional Lisp system where control is linear (stack-based), it is not possible for
control to reenter an unwind-protect body after control has left the body and the unwind
has been performed. However, with first-class continuations, this is possible and raises
a new problem. The postlude expression frequently performs operations, such as closing
files, that should themselves be undone if control reenters the body. We can extend the
unwind-protect mechanism so that some “winding® expression, say prelude, is executed
upon any entry of the body, as well as providing an “unwinding® postlude that is executed
upon exit. We call such a mechanism wind-unwind, and use the syntax

(wind-unwind prelude body postlude) .
Wind-unwind requires only a few extensions to our previous unwind-protect code. Each
wind-unwind creates a thunk. When this thunk is thawed it will, if necessary, invoke the
prelude of wind-unwind, and then thaw the thunk of the previous wind-unwind. A fluidly-
bound wind reference is maintained in much the same manner as the fluid £cob reference to
record the chain of preceding wind-unwind thunks. The initial fluid environment includes
a binding for wind, such as (1ambda () °#). Every cob records the value of the fluid wind

variable at the time of its creation as own-wind. Before invoking its continuation, own-

13

(let ([update (unique)] [delete (unique)])
(define! [wind-unwind ; or| unwind-protect : without bozed code
(lambda (|prelude | body postlude)
(let ([own-cob (fluid fcob)]
[own-wind (fluid wind)] |
[in truel|)
(letrec ([unwind (lambda ()
" (domain postlude)
[(set! in false) |
((own-cob delete) unwind))])
((own-cob update) unwind)
(let-fluid wind (lambda ()
(1f (not in)
(begin
(domain prelude)
(set! in true)))
(own-wind))
(begin (domain prelude)
(begin0 (body) (unwind))| 31N
(define!| call/cc-wind-unwind ; or |call/cc-unwind-protect ; without bozed code
(lambda (f)
(call/cc-domain
(lambda (k)
(let ([cob (let ([unwinds nil]
[own-cob (fluid fcob)]
|[own-wind (fluid wind)]|)
(lambda (v)
(evcase v
[update (lambda (x)
(set! unwinds (cons x unwinds))
((own-cob update) x))]
[delete (lambda (z)
(set! unwinds (delq! x unwinds))
((own-cob delete) x))]

[else (mapc thaw unwinds) (k v)])))1)
(let-f1luid fcob cob (codb (£ cob)))))))))

Figure 3. wind-unwind and unwind-protect

14

wind is thawed, thus initiating a chain of operations that performs any required prelude
operations. In order that preludes be performed only following a corresponding postlude
operation, a flag is set when a postlude is performed and cleared when the corresponding
prelude:is performed.

Wind-unwind generally has the right semantics for such operations as opening and
closing files. A postlude is only performed when a direct ancestor of its continuation is
invoked. It is thus possible to transfer control to other continuations without the overhead
of invoking postludes and preludes. For example, a coroutine resume operation involves a
transfer from one node of the continuation tree to another, and it likely to be inappropriate

for each resume to close and open files associated with a coroutine.

6. Dynamic-Wind
A similar facility, called dynamsc-wind, has the same syntax as wind-unwind, but subtly
different semantics. Dynamic-wind may be used to implement a fluid environment with

shallow binding.
(bind-£fluid sd ezp body) =

(let ([oldid ezpl)
(let ([swap! (lambda ()
(let ([temp oldid])
(set! oldid td)
(set! td temp)))])
(dynamic-wind swap! (lambda () body) swap!)))

Here existing lexical identifiers record the current fluid environment values, whereas the
let-fluid mechanism maintains the fluid environment without side-effects to the lexical

environment.

If a continuation were invoked that was not an ancestor of the current continuation
and utilized the same lexical identifier with a different fluid binding, then wind-unwind

would not yield the desired semantics. The postludes and preludes that maintain the fluid

15

environment would not be performed. The more “dynamic® dynamic-wind avoids this

problem, but requires an associated state-space [1,5).

A state-space is a tree where the root is the current state. It is possible to move
from the current state to any other state, making the corresponding node the new root.
(Think of picking up the tree by any node and giving it a good shake so that all paths
lead to the new root.) Each dynamic-wind creates a new state that becomes the root of
the state-space. When a continuation is invoked, the unique path through the state-space
is traversed, with the postludes or preludes associated with each node being performed as
they are passed. Whenever control passes out of body, its postlude is performed and it
is noted that control has exited. Conversely, when control passes back in, the prelude is
performed and it is noted that control has reentered.

In the code that follows, the state-space is extended with a cons cell, cdr of which is
initially nil, and car of which is a thunk that will be thawed when the current state moves
past the cell during a reroot operation. Note that this thunk is to do nothing in the event

that control is already in its state (in is true) and it is the destination of a reroot operation

(indicated by nil in the cdr of its state cell).

16

(let ([space (*state-space)])
(define! *dynamic-wind
(lambda (state-space)
(lambda (prelude body postlude)
(let ([state (state-space °state)])
((state-space °extend)
(let ([in true])
(rec local-state
(cons
(lambda ()
(if (and in (null? (cdr local-state)))
‘do-nothing
(begin
(domain (if in postlude prelude))
(set! in (mot in)))))
nil))))
(domain prelude)
(begin0 (body)
((state-space °'reroot) state))))))
(define! call/cc-dynamic-wind
(lambda (f)
(call/cc-domain
(lambda (k)
(let ([state (state-space °state)])
(let ([cod (lambda (v)
((state-space °reroot) state)
(k v))1)
(£ cob))))N))

When invoked, *state-space returns a new state-space object that responds to the mes-

sages state, extend, and reroot:
(define! *state-space
(lambda ()
(let ([state (cons (lambda () °+) nil)])
(lambda (msg)
(case msg
[state state]
fextend (lambda (new-state)
(set-cdr! state new-state)
(set! state new-state))]
[rercot (lambda (new-state)
(reverse! new-state)
(mapc thaw state)
(set! state new-state))])))))

17

The list be.ing reversed represents the path from the new state to the current state.

While useful for shallow binding, dynamic-wind may cause preludes and postludes to
be invoked too frequently for applications such as file housekeeping. Also, the current
and destination continuations may use different lexical identifiers to record fluid bindings
(as would probably be the case in a coroutine environment), so dynamic-wind is again
unnecessarily performing preludes and postludes. This could be avoided by associating a
different state-space with each set of fluidly-used lexical identifiers. The lexical scope of
each of these state-spaces would then require its own dynamic-wind, call/cc-dynamic-
wind, and bind-f1luid operations.

7. Conclusions

Throughout the history of programming languages, many developments have either pro-
vided more general facilities or restricted the power of existing facilities. For example,
much attention has been given to control constructs that allow goto’s to be restricted or
eliminated. Also, abstract data types provide restrictions on the scope of variables. Con-
tinuations are more general than other control facilities, and we have only begun to explore

their power. However, continuations are clearly too powerful for many applications.

We have illustrated some techniques for constraining this power. In this process we
have emphasized semantics, while ignoring some security and efficiency issues. For security,
one should redefine call/cc, rather than creating versions with new names. Subversion
of call/cc by tampering with the fiuid environment could be prevented by appropriate
use of scope control. For efficiency, the fluid environment could be represented with an

alternate data structure, rather than functional embedding.

In recent years attention has shifted from problems of sequential control to those
of parallel control. Presumably it was felt that sequential control was well understood.

However, we are convinced by our experience with continuations that there is still much to

18

be learned about sequential control. Research on sequential control has a special urgency
as we plunge into the complexities of parallel control.

Acknowledgements: Dynamic-wind was originally suggested by Richard Stallman. Ger-
ald Sussman clarified how dynamic-wind could be used to implement bind-£1uid. Kent
Dybvig suggested that fluids could be implemented by redefining call/cc. Comments by
Don Oxley motivated the domain restriction. Amitabh Srivastava brought bugs in the
state-space code of an earlier version of this paper to our attention. We thank Mitch
Wand, George Springer, Eugene Kohlbecker, John Nienart, Gary Brooks, Bruce Duba and
Matthias Felleisen for detailed comments on this paper.

References

[1] Baker, Henry G., Jr., “Shallow Binding in Lisp 1.5,> CACM 21, July 1978, pages
565-569.

[2] Burge, William H., Recursive Programming Techniques, Addison-Wesley, Reading
MA, 1975.

[3] Friedman, Daniel P., Christopher T. Haynes, and Eugene Kohlbecker, *Programming
with Continuations,” Program Transformation and Programming Environments, ed.
P. Pepper, Springer-Verlag, 1984, pages 263-274.

[4] Friedman, Daniel P., Christopher T. Haynes, Eugene Kohlbecker, and Mitchell Wand.
“The Scheme 84 Reference Manual,” Indiana University Computer Science Depart-
ment Technical Report No. 153, May, 1984.

[5] Hanson, Chris, and John Lamping, “Dynamic Binding in Scheme,” unpublished
manuscript, 1984.

[6] Haynes, Christopher T., and Daniel P. Friedman, “Engines build process abstrac-
tions,” Conf. Rec. of the 1984 ACM Symposium on Lisp and Functional Programming,
1984, pages 18-24.

[7] Haynes, Christopher T., Daniel P. Friedman, and Mitchell Wand “Continuations and
Coroutines,” Conf. Rec. of the 1984 ACM Symposium on Lisp and Functional Pro-
gramming, 1984, pages 293-298.

[8] Hewitt, Carl, “Viewing control structures as patterns of passing messages®, Artif.
Intell. 8, 1977, pages 323-363. Also in Winston and Brown [ed], Artificial Intelligence:
an MIT Perspective, MIT Press, 1979.

(9] Landiu, Peter, “A correspondence between ALGOL 60 and Church’s Lambda Nota-
tion®, CACM 8, 2-3, February and March 1965, pages 89-101 and 158-165.

[10] Rees, Jonathan A., and Norman I. Adams IV, “T: A dialect of Lisp or, LAMBDA:
The ultimate software tool,” Conf. Rec. of the 1982 ACM Symposium on Lisp and
Functional Programming, pages 114-122.

[11] Reynolds, John, “GEDANKEN—A simple typeless language based on the principle
of completeness and the reference concept,” CACM 18, May 1970, pages 308-319.

19

[12] Reynolds, John, “Definitional interpreters for higher order programming languages®,
Proceedings ACM Conference 1972, pages 717-740.

[13] Sandewall, E., “Programming in an interactive environment: the “Lisp® experience,”
Computing Surveys 10, March 1978, pages 35-71.

[14] Steele, Guy Lewis, Jr., “Macaroni is better than spaghetti,” Conf. Rec. of the Sym-
posium on Artificial Intelligence and Programming Languages, SIGPLAN Notices 12,
8 and SIGART Newsletter 64, August, 1977, pages 60-66.

[15] Steele, Guy L., Common Lisp: The Language, Digital Press, Bedford MA, 1984.

[16] Sussman, Gerald Jay, and Drew Vincent McDermott, “From PLANNER to
CONNIVER—A genetic approach”, Proceedings of Joint Computer Conference 41,
part II, AFIPS Press, NJ, (1973) pages 1171-1179.

[17] Sussman, Gerald Jay, and Guy Lewis Steele, Jr., “Scheme: an interpreter for extended
lambda calculus”, MIT Artificial Intelligence Memo 349, December, 1975.

[18] Wand, Mitchell. “Continuation-based multiprocessing,” Conf. Record of the 1980 Lisp
Conference, August 1980, pages 19-28.

(define! call/cc*
(lambda (f)
(let ([k °x])
(letrec ([loop (lambda (f)
(let ([v (call/cc-one-shot
(lambda (k2)
(set! k k2)
(f (lambda (x) (k x)))))1)
(call/cc-one-ghot

(lambda (return)
(loop (lambda (k) (retura v)))))))1)
(loop £)))))

Figure 4. call/cc#

Appendix

Claim: call/cc* ¢s equivalent to call/cc.

See Figure 4. When call/cc* is invoked with a function £, a local binding for k is
created and loop is invoked with £. The call/cc-one-shot on the right-hand side of
the let pair is then invoked, resulting in its “one shot” continuation being bound to k2
and saved in k. f is then passed the closure (lambda (x) (k x)), which is the cob of

call/ccx.

If £ subsequently invokes the cob with a value z, continuation k is invoked with z.
Recall that this is the continuation of the first call/cc-one-ghot expression, the value of
which is bound to v, so that z is bound to v and the second call/cc-one-shot expression is
evaluated. The continuation of this expression is the continuation of the original invocation
of call/cc*, and is now bound to return. loop is then invoked with a function that, when
passed a cob, will ignore it and invoke return with v. The first call/cc-one-shot is now
invoked again, obtaining a new continuation that is identical to the continuation recorded
in k (which was invoked following the cob invocation). This new continuation is then saved
in k, réplacing the one that was consumed. The cob is then passed to the closure (lambda

(k) (return v)), which igncres it and passes v to the return continuation. return is the

21

continuation of call/cc*, and v is passed to the cob, so the proper result has been obtained
upon the first cob invocation. It is return that allows the call/cc#*’s continuation to be

invoked without implicit or explicit invocation of the new k continuation.

Each subsequent invocation of the cob results in the invocation value being bound to v,
and the sequence of actions described above being repeated. With each cob invocation two
continuations are invoked—k and retura. However, with each invocation both call/cc-
cne-shot expressions are evaluated, resulting in unused continuations being recorded in
k and return. Thus the call/cc-one-shot restriction that its continuations be invoked

only once is cbeyed.

22

