EXPLORATORY EXPERIMENTS IN PROGRAMMER BEHAVIOR

Ben Shneiderman
Computer Science Department
Indiana University

Bloomington, Indiana 47401

TEcHNICAL ReporT Ho. 17

EXPLORATORY EXPERIMENTS IN PROGRAMMER BEHAVIOR

BEN SHNEIDERMAN

Revisep: June, 1975

Exploratory Experiments in Programmer Behavior

Ben Shneiderman
Computer Science Department
Indiana University

Bloomington, Indiana 47401

PART I: INTRODUCTION

The literature and research in programming focuses heavily on
machine related issues such as parsing ease, execution efficiency,
and character sets, but deals only superficially with human factors
issues. The thesis of this paper is that we can and must separate
the machine related i1ssues from the human factors issues and that
we should apply the relevant techniques to each area. The utility
of such a decomposition should be obvious in light of the recent
discussions of modular design.

The 1solation of human factors questions from implementation
detalls permits us to exercise our imagination in the creation of
new languages and allows us to pursue a more thorough study of the
programming process by the experimental techniques developed by cog-
nitive psychologists. Although programming is a more complex prob-
lem solving task than most tasks studied by cognitive psychologists,
controlled psychological tests can be extremely helpful in providing
new insights.

The immediate goals of such experimentation would be to compare

specific programming language features such as control structures,

~IBL

argument passing techniques, input/output facilities, and declara-
tion statements. Other immediate goals would be to develop reliable
standards for stylistic issues such as commenting, indentation,
meaningful variable names and the complexity of modules.

Longer range goals include the development of an understanding
of the intellectual skills relevant to programming, the creation
of problem and program complexity measures, the production of pro-
grammer aptitude and ability tests and the improvement of programming
education.

The first step in such a program or research must be the devel-
opment of the experimental methodology. Unfortunately the history
of experimentation on programmer behavior is relatively short (see
1 for a discussion with references). We should reiterate that we
are, in this paper, interested in controlled experimental compari-
sons, not protocol analysis of individual programmer's introspective
comments and not case studies of programmers in non-controlled en-
vironments. Both of these methods are useful, but the focus of

this paper is on controlled experimental techniques.

Categorization of environments

The term "programming" refers to a wide variety of behaviors
and environments. An experiment must focus precisely on a small
number of variables and attempt to eliminate bias by keeping all
other variables constant. The previous experience of subjects plays
a crucial role since the variation in performance of individuals
is enormous. Since we were using university undergraduates, grad-
uates, and faculty, we separated our subjects according to the number

of programming courses they had taken:

Naive No programming courses
Novice Currently enrolled in a first course in
programming

Intermediate Currently enrolled in a second or third

programming course

Advanced Graduate students and faculty

This crude separation is not always sufficient since we found tre-

mendous variation within each group, but this scale is useful in

roughly describing subjects.

A second relevant issue is the size of the problem or program

that is being dealt with.

and we found the following

Small less than
Medium less than
Large less than

Very large more then

Because of the limitations

Our initial work was largely with FORTRAN

gscale useful in our discussions:

100 program statements
1000 program statements
10,000 program statements

10,000 program statements

of our experimental environment, our

first experiments were limited to small and medium sized programs,

but we eventually hope to study larger programs. We hope that the

work on short programs will be generalizeable to larger programs.

In addition to learning programming, we identified four relevant

tasks which needed study:

Comprehension Give subject a program and measure how well

he/she understands the program

Composition Give subject a problem and require a program

to be written

Debugging Give subject a problem withan incorrect pro-
gram for that problem and require the sub-
jects to locate the bugs

Modification Give subject a correct program and require a

modification

These tasks are interrelated since comprehension iIs necessary for
degugging, composition is necessary during modification, etc. There
can be wide variation in the scope and difficulty of each of these

tasks, but this classification is helpful.

Measurement ftechniques

The relevant measurement techniques vary with the task assigned.
Program comprehension can be measured by "fill-in-the-blank" or mul-
tiple choice questions which ask for

© the value of a variable at a specific point in the program

® the sequence of values assumed by a variable

© the number of times a particular statement is eXecuted

© the sequence of statements executed

© the output of the program

© a brief description of the function of the program

© <the impact of an alternaton

"Fill-in-the=blank"™ questions are more difficult to grade but mul-
tiple choice questions are often unrealistic.

Subjective measures such as asking the subject to estimate, on
a 1l to 10 point scale, how well he/she understood the program are
dubious but easy to capture. Time to completion can be helpful,
but may be misleading. Time to criterion, that is, how long did it

take the subject to correctly answer a question, is more appropriate.

il

A final measurement technique for comprehension is the ability
to memorize. Since memorization of complex material is accomplished
by absorbing meaningful "chunks" subjects must comprehend before
memorizing. Memorization is not necessarily an aid to comprehension,
but success at memorization is a measure of comprehension [2,3].

Measurement of the composition task consists of assigning a
problem and requiring subjects to create a program which performs
the required tasks. The most obvious way to do this is to require
the subject to write the program on blank paper or appropriate coding
sheets and then grade the final results. Unfortunately the grading
process is subject to variation and careful attention must be given
to establishing precise standards. Duplicate grading by different
graders can produce more accurate results.

If the test environment permits, subjects may be required to
keypunch thelr programs or enter them on an interactive timesharing
system. The latter approach enables the experimenter to collect
a complete history and accurate timing data. The programs produced
by the subjects can then be executed, tested and debugged. Grading
can include such factors as number of bugs, number of runs, time
to completion, number of statements, execution efficiency, etec.

The test environment for composition can be simplified if sub-
jects are required to write program fragments, only. This approach
enables the experimenter to focus on particular language features
and greatly reduces the time necessary. Another simplification
would be to ask the subject to select, instead of compose, the correct
program from a group of two or more possibilities.

Debugging can be studied experimentally by providing subjects

with a problem description and an error laden program and requiring

==

The subjects to locate the errors. Supplementary aids such as flow-
charts, program output or traces may be given to assist the subject.
Multiple choice questions are probably unrealistic since they strongly
direct the subjects' thought processes. Grading responses is, again,
a difficult task: subjects often have insightful answers which point
up other failures in the program or eliminate the bug in unorthodox

ways. Modification is similar to debugging.

Research topics

Our research began with some simple experimental designs in
which we hoped to develop our methodology. We chose experiments
which were easy to conduct and had few variables. This paper reports
on two experiments: a memorization task based on related work by
Simon [4,5] and a comparison of the logical and arithmetic IF state-
ments in FORTRAN. The first experiment was designed to give use
some insight into the cognitive processes which occur during the
study of a program, while the second dealt with a specific language
feature in FORTRAN.

In more recent work [6] we have studied the effect of modularity
on comprehension and debugging, the utility of comments and meaning-
ful variable names and the ability of naive subjects to learn simple
database query languages. In another series of experiments [7] we
studied the usefulness of detailed standard flowcharts on compre-
hension, composition, debugging and modification.

These experiments have given us new insights into the cognitive
processes 1n programming and a cognitive model has been proposed
to explain our findings [6]. Our future work will be directed at
the verification of this model and to the specific goals mentioned

earlier.

=8
For an alternate discussion of research topics and methodology
see the work of Weissman [8,9], Gannon and Horning [10], and Miller
[11,121.

PART II: EXPERIMENTS

Memorization

This experiment compared the abilities of subjects to memorize
two sequences of FORTRAN statements. One was a proper executable
program while the other contained valid statements in scrambled
order. The experiment, involving subjects of varying experience,
measured short-term memory capacity in an attempt to correlate pro-
gram structure and ease of memorization. Our results indicate that
This correlation exists at a statistically significant level, leading
useto the conclusion that the structure of a program facilitates
comprehension and memorization. The test items were approximately
twenty statements long, but we have not shown that this is the upper
1limit of module size for human comprehension. This question will

be the subject of further experimentation.

Method

Subjects and Design: The subjects were selected from four exper-
ience groups. Group I contained forty-two people who had no previous
experience with FORTRAN. These tests were given to them on the first
day of their introductory FORTRAN class. Group II consisted of ten
people, and the test was given at the end of their introductory
FORTRAN course. Group III consisted of eighteen subjects who had had
an introductory FORTRAN course and were in the process of taking more

advanced computer science courses: assembly language, data structures,

8

or programming languages. Group IV consisted of nine members: grad-
uate students and faculty members of the computer science department
who were considered to have had extensive programming experience.

Subgroups of each group were tested at various occasions for
testing convenience during the summer of 1974. All subjects received
both the proper executable and the scrambled program test item.

They were asked to do one test at a time and record the sequence.

Matenials: Two FORTRAN program listings were used as test items
Program A was a proper executable program (Figure 1). Program B
was a set of statements of a randomly shuffled FORTRAN program (Fig-
ure 2). Program A consisted of 20 lines of code, and Program B
had 17 lines. (These programs were taken from Organick [13], pp.
86-87.)

Procedure: Each group of subjects was run in subgroups for test-
ing convenlence. Sometimes a subgroup consisted of only one subject.
Subjects at each session were evenly divided on a random basis into
two groups. The first group did Program A first, and the second
group did Program B first. Computer printed listings of each program
one per page, were handed out at the beginning of each testing ses-
sion. After each subject received Program A or Program B, the fol-

lowing instructions were given orally:

1. This is a memory test consisting of two parts.
2. Do not turn the page over until you are told to do so. (The
subjects received the test face down.)

3. Print your name on the upper right-hand corner of the page

-0-

and write a 1 (or a 2 during the second part) next to your name.
4. You will have three minutes to memorize the material and four
minutes to rewrite what you have memorized on a second sheet
of paper.
5. To get full credit on the line you copied back, you must write
the line exactly as it appeared in the listing, i.e., 10 is

not the same as 10.0.

The number next to the subject's name, requested in instruction three,
was used for the purpose of identifying the order in which the test
items were taken. Immediately after the three-minute memorization
period was up, each sub-ect was given four minutes to copy back what
he/she had memorized. Part two of the test, the alternate test item,
was given i1mmediately after the four-minute period and the same in-
structions were followed. After the session was over, the test papers
were collected and graded. The papers were graded by the number of
correct lines. A line was considered correct if it was identical to

the original and the relative position was approximately right.

Results

The results of this experiment can be summed up in Table 1.

Experimental | Number Correct
Group A B
I Tl i il
II 10.2 h.6
ZIT 127 5.4
IV 13 6.4

Table I: Mean number and percentage of correct lines

< it

XSMALL
NSMALL
XLARGE
NLARGE
READ(5,82) TEST

82 FORMAT(8F10.0)
B 10 T = 3. H0
READ(5,82) X
IF(X .GT. TEST) GO TO 5
XSMALL = XSMALL + X
NSMALL = NSMALL + 1
GO TO 10

5 CONTINUE
XLARGE = XLARGE + X
NLARGE = NLARGE + 1

10 CONTINUE
WRITE(6,814) NSMALL, XSMALL, NLARGE, XLARGE

814 FORMAT(I1l0, F15.3, I10, F15.3)
STOP
END

)

.0

nuwuu

o OO

Figure 1. Program A

READ(5,81) NEMP
PAY = RATE¥HOURS
IF(HOURS .LE. 40.0) GO TO 5
5 CONTINUE
82 FORMAT(8F10.0)
PAY = PAY + 0.5 ¥ RATE ¥ (HOURS - 40.0)
WRITE(6,85) I, PAY
END
N=N+1
10 CONTINUE
WRITE(6,81) N
STOP
81 FORMAT(8I10)
N =0
DO 10 I = 1,NEMP
85 FORMAT(I10, F15.2)
RFAD(5,82) RATE, HOURS

Figure 2. Program B

o i

Regardless of experience, subjects did equally well on Program B,
but with Program A, the ability to memorize increased with program-
ming experience. We predicted that the order of the test items

would influence the subjects' performance, since

a. If the subject received Program A first, then he/she might
try to spend most of his/her time organizing Program B rather
than memorizing it.

b. If Program B were received first, he/she might not try to
memorize Program A in an organized fashilon.

c. It might take a while for the subjects to gear their intel-

lectual activity to memorizing.

This experimental bias was observed, and it was dealt with by divid-
ing the subjects in each session into two equal subgroups. One sub-
group received Program A first, the other Program B first.

An analysis of variance indicated that our groups representing
different levels of programming experience were significantly dif-
ferent at the 0.001 level. The interaction between groups and type

of program was also significant at the 0.001 level.

Discussion

When a complex problem is encountered, subjects attempt to tackle
it by dividing it into parts. 1In the case of memorizing test items,
human intellectual powers are rather geared to conceptually "group"
as much information as possible which, in turn, eases the burden of
memorizing. This phenomenon is known to psychologists as "chunking".
Chunking is a recoding process that human beings seem to do without

conscious effort. This process involves grouping or organizing the

-1~

input information into "chunks", which are as easy to handle as
individual units. For example, to an experienced programmer, Pro-
gram A reads something like: initialize four variables dn the first
four lines. The fifth line sets a testing varilable, then a group
of instructions are executed forty times. This group of instruc-
tions consists of inputing a test value and the input value; two
variables are set. At the end of forty iterations, the results of
the comparisons are printed. Depending on the experience of the
programmer, that group of instructions can further be recognized

as a comparison with the testing value followed by one instruction
which keeps a running sum and another which keeps track of the number
of occurrences.

The ability to reorganize the test item is more prominent in
experienced programmers. To the non-programmer, FORTRAN is totally
foreign, and each line or even each token is memorized independently.
The existence of this phenomenon is supported by our experiment,
since the number and percentage of correct lines for Program A in-
creases substantially with the level of experience, while the gain
for Program B is only modest.

Studying Program A we find a few similar statements, such as
the first four statements, which lessened the burden of memorization,
even for non-programmers. All subjects seem to have remembered
these four statements as a unit, a chunk. This explains, in part,
why novice programmers did better on Program A, since Program B did
not contain a similar simplification.

With Program B, chunking cannot be applied easily since the sub-
jects have no basis on which to chunk the information, regardless of

experience. The slightly better performance of experienced subjects

s

on Program B can be attributed to the fact that they are familiar
with FORTRAN and remembered each FORTRAN statement as a unit rather
than each token, as non-programmers would do.

The fact that the average number of correctly memorized state-
ments for Program B is five or six brings to mind the well-known
paper by George Miller, "The Magical Number Seven, Plus or Minus
Two; Some Limits on Our Capacity for Processing Information" [14],
which indicates that the short term memory of humans is seven units
plus or minus two. A detailed psychological analysis of the dimen-
sions of our problem of information transfer is complex, but 1f one
accepts a line of FORTRAN code as a unit of information transfer,
our result is well within the limit of Miller's seven, plus or minus
two.

Returning to our results for Program A, we conclude that exper-
ienced subjects have developed an ability to encode the program in
chunks whose size is larger than one statement. Experienced pro-
grammers can deal with sophisticated control structures such as the
DO-WHILE, IF-THEN-ELSE, etc., as a single unit and thus can compre-
hend and memorize substantially longer sections of code. These con-
ceptual control structures can be recognized by experienced program-
mers even when they are implemented in the limited syntactic forms
provided by FORTRAN. Further research in this area could lead to
practical measures of the limits of intellectual manageability and
recommendations as to the optimum complexity of program modules for
differing experience levels. Recognizing that there exists a close
relationship between comprehension, memorization, and chunking, the
memory experiment provides a practical means for conducting this

research.

il

Replication

In response to several criticisms of the first memorization ex-
periment, we performed a simplified version in early 1975. Critics
of our first experiment suggested that there was a poteneial bias
from the fact that we had used different programs of slightly differ-
ent length.

A more complex T4 line FORTRAN program was created in proper
executable and shuffled form. Sixteen non-programmers and sixteen
experienced graduate students were used as subjects. Eight subjects
in each group received the proper executable program and the remain-
ing eight subjects in each group received the shuffled program. Sub-
Jects were given fifteen minutes to memorize and five minutes to
write.

The non-programmer subjects averaged 13.13 correct lines in the
proper executable program and 10.1 correct lines in the shuffled
program. This difference was not statistically significant and
supports the contention that non-programmers could not chunk the proper
executable program. The experienced subjects memorized 24.8 lines
of the proper executable program but only 18.9 lines of the shuffled
program. This difference was statistically significant at the .025
level, thus supporting the chunking idea.

Although these statistics support our contention, we had hoped
for stronger results. Apparently the subjects focused on the multi-
plicity of CONTINUE statements and other highly similar repetitive
statements and achieved high scores by writing these statements
rather than attempting to proceed sequentially. This enabled them

to do relatively well on the shuffled form of the program.

.1

We look forward to testing the capacity of our subjects and to
determine what structures are more difficult to memorize. Hopefully,
we will be able to isolate the structural patterns that the subjects
perceive and study which programming languages provide the best
facility for representing these structures clearly.

It has been suggested that a retest after a day or a week (without
showing the program again) would allow us to determine what aspects
of the program remained most prominent in the subject's mind.

The memorization technique might alsc enable comparative testing
of the usefulness of mnemonic variables, programming languages fea-

tures or other stylistic features.

Conditional Branching

The two conditional branching techniques in FORTRAN are the
arithmetic IF statement and the logical IF statement. The logical
IF statement is not included in the ANSI Standard Basic FORTRAN [15],
but it is more frequently used than the ANSI standard arithmetic IF
statement. An examination of contemporary FORTRAN tTextbooks reveals
that although the arithmetic IF statement is frequently introduced
before the logical IF statement, most authors place more emphasis
on the logical IF statement. McCracken, in his recent book, A Simpli-

fied Guide to FORTRAN Programming [16], takes the extreme position

that "The arithmetic IF has little use in well-constructed programs...
Heavy use of the arithmetic IF leads to intricate programs that are
very hard to read and understand". At many educational institutions,
the use of arithmetic IF statements is either not taught or is dis-
couraged. Is this unfair treatment to the arithmetic IF statement
justified? Our experiment is an attempt to provide experimental

results and guidance for educators and language designers.

w216

Method

Subfects and Design: Forty-eight subjects were recruited in
the summer of 1974 for this study. Twenty-four of them (Group I)
were students who were in the process of taking an introductory
FORTRAN class. Their instructor covered both arithmetic and logical
IF statements, with equal emphasis. The remaining twenty-four sub-
jects (Group II) were students who had completed an introductory
FORTRAN course -and all were in the process of taking a more advanced
computer science course. Graduate students and faculty members were
included in Group II. Within each group, two types of test items
were given: arithmetic IF and logical IF. Within each type, three
levels of difficulty of the test items were given. The difficulty
ratings were based on the subjective judgement of the authors.

The test items were given to the subjects of Group I during one
of their regular classroom sessions. Subjects of Group II were
tested in four sessions for testing convenience.

Matenials: The test items were given in two parts. Part 1 con-
sisted of three FORTRAN programs: LHARD (hard), LEASY (easy), and
LMOD (moderately hard). Only logical IF statements were used in
this part. Part 2 also consisted of three FORTRAN programs, but
only arithmetic IF statements were used. Part 2 consisted of pro-
grams AHARD (hard), AEASY (easy), and AMOD (moderately hard). Asso-
ciated with each program were questions that tested the subjects'
understanding of the program. This was accomplished by asking the
subjects to follow the execution sequence and to reproduce the out-
put of the program. There were four fill-in type questions asso-
clated with programs LEASY, AEASY, LMOD, and AMOD. There were ten
questions (six fill-in type and four multiple choice) associated

with program LHARD.

]

Programs LEASY and AEASY consisted of nine lines each and were
similar. The questions associated with each of them were simple
and similar. They tested the subjects' ability to follow logical/
arithmetic IFs in a simple branching sequence.

Programs LMOD and AMOD were similar programs consisting of nine
and ten lines, respectively. Each program contained an "IF-loop".
Program LMOD checked the termination of the loop at the exit, and
Program AMOD checked at the entrance to the loop. The questions
assocliated with each of these two programs tested the subjects!
ability to follow the execution sequence and understand the role
that the IF statement played in each program. Subjects were required
to reproduce the output generated by a PRINT statement at the ter-
mination of the loop. All programs and questions were in computer
output form. Space was provided for a subjective measure of diffi-
culty of each question and for timing data for each program.

The test papers were collected at the end of each test session
and graded on the number of wrong answers that each subject made.
Additional materials used in the experiment included a general survey
of the subjects' computer.science background. A lesson was also
given to some of the subjects of Group II a few weeks before the
testing session to ensure their knowledge of both arithmetic and
logical IF statements.

Procedune: The survey on the computer science background of
the subjects was distributed and the subjects were asked to respond
to the questions. Half the subjects in each testing group received
a test booklet containing Part 1 first while the other half received
Part 2 first. The following instructions were on the front of the

test booklets:

8

Please wait for the signal then you may start answering
questions appearing on the following pages. It is impor-
tant that you work sequentially and do not go back and
change your answer. Use the spaces to the right of the
questions to give any comment that you care to make.
Please indicate how difficult you find each of the ques-
tions by marking the boxes to the left of each question.
Use the digits 1 through 10 to indicate difficulty: 10

is most difficult; 1 1s easiest.

Students worked at their own pace and turned in the test booklets
when they were done. They were told to mark the clock time to the

nearest minute at the end of each section.

Results and Discussion

The test papers were graded on the basis of the number of errors
the subject made for each program. The average is shown in the

following table:.

i Part 1 Bayt. 2
e s iomee LOGICAL IF ARITHMETIC IF
e LHARD | LMOD | LEASY | AHARD | AMOD | AEASY
i .71 | 2.13] 0.83 | 3.38 | 1.63| 1.25
7T 1.05 | 1.45] 0.62 | 1.50 | 1.15] 1.65

Table II: Average number of errors

Experience Part 1 Part 2
LOGICAL IF ARITHMETIC IF
uHaupe LHARD | LMOD | LEASY | AHARD | AMOD | AEASY
1 17.7 | 53.3] 20.8 [37.6 | 40.8] 31.3
II 10.5 | 36.3) 15.5 | 16.7 | 28.7]| 16.3

Table IITI: Average percentage of errors

1

An analysis of variance was performed on the error data. As expected,
the experienced subjects did statistically significantly better at
the 0.01 level than inexperienced subjects. The two-way interaction
of the difference between the two groups and the two types of test
items was marginally significant. This gives mild support to the
conjecture that logical IF statements tend to be easier for beginners,
while for an experienced programmer, logical IF statements and arith-
metic IF statements are equally difficult.
The difficulty of the programs, in the authors' opinion, is in
this increasing order: LEASY and AEASY, LMOD and AMOD, then LHARD
and AHARD. The analysis of variance yields a significant level of
interaction (0.05) of groups by difficulty. However, according
to Table II the majority of the subjects, regardless of the group,
made errors in questions associated with programs LMOD and AMOD
(the IF-loop problems). Their mistakes tended to be the usual "off-
by-one" type of error. To avoid this type of error, a "DO-loop"
should be encouraged in preference to an "IF-loop". A further possi-
bility in parts LMOD and AMOD is that subjects found it more diffi-
cult to understand loop termination tests at the bottom of the loop.
Unfortunately, some of the subjects did not give the information
for timing of each program and/or hardness of each question. Out
of the limited timing information we have, only eight out of nine-
teen subjects took more time to finish Part 1 in Group I. Of the
sixteen responding in Group II, exactly half took more time on
Part 1. These results are inconclusive and do not support or detract
from our conclusions. The average time for those reporting is shown

on the following table:

i (i

Experience| Part 1 (logical IF)| Part 2 (arithmetic IF)
I ' 9.60 11.35
HEE 11.88 10,50

Table IV: Average time

The difficulty rating of each question is a subjective measure.
Of the eleven subjects in Group I who responded, only two rated
Part 1 as more difficult than Part 2; of the seventeen subjects in
Group II who responded, seven rated Part 1 as more difficult than
Part 2. The fact that the majority of the novice programmers con-
sidered the questions with logical IF statements to be easier, but
almost a half of the experienced programmers rated the problem with
arithmetic IF statements to be easier, further supports the claim
that the logical IF statement is easier for novice programmers and
that the logical IF statement and arithmetic IF statement are equally
difficult for the experienced programmers.

We conjecture that the experienced programmers recode the syn-
tactic form in their minds and deal with a higher level semantic
notion of what the program actually does. The novices are constrained
to deal with the raw syntactic inputs and have greater difficulty
with the complex details of the arithmetic IF statements. This
effect should be even more dramatic with longer and more complicated

programs .

Further Research

The experimental controls in this experiment could be substan-
tially improved if the same program’coded using the arithmetic or

the logical IF were presented to independent subgroups, rather than

s

having each subject act as his/her own control. Longer and more
complex programs would shed further light on the usefulness of the
two branching constructs for novice and experienced programmers.
The influence of the logical and arithmetic IF statements will also
be studied on the tasks of program composition, debugging, and modi-
fication.

In future experiments timing data will have to be collected in
a way that does not interfere with the subject's test-taking. We
are unsure as to the usefulness of subjective measures, but we will

pursue this approach as well.

Interpretation

These experiments have enabled us to improve our methodology
and have demonstrated the need for further study of the cognitive
processes that occur when subJects examine computer programs. Both
experiments suggested to us that experienced programmers recode the
syntactic forms into an internal structure which represents the
semantic structure of the program. This analysis is informally sup-
ported by the fact that in the memory experiment experienced subjects
would reproduce a semantically correct program with syntactic mis-
takes. These mistakes were such items as altered statement labels
or sequencing changes which did not affect the output of the program.

We hypothesize that the internal recoding process also accounts
for the fact that experienced subjects found little difference in
the ease of comprehension of the arithmetic and logical IF statements.
L7].

Further study of the recoding process might lead to an under-

standing of what the chunks consist of and to suggestions for improved

-

language designs, stylistic guidelines, and recommendations for
design strategies. The influence of comment cards, indentation,
meaningful variable names, etc., must all be interpreted with res-

pect to their effect on this recoding process.

Acknowledgement

We would like to express out sincere thanks to Richard Mayer
for enlightening discussions concerning the data analysis and to
Jim Carlisle for his detalled review which substantially improved
the manuscript. The suggestions of the referees were helpful in
broadening the scope of this paper and placing the experiments in
the proper context.

Finally, this work could not be done without the diligence of
the graduate students who carried out the experiments. Mao-Hsian
Ho did the basic memory and conditional experiments while Ken Yasu-

kawa replicated the memory experiment.

e

References

2

2.

3.

h.

5

6.

Toa

8.

10

Shneiderman, Ben. Experimental testing in programming languages,
stylistic considerations and design techniques. Proc. National
Computer Conference, AFIPS Press, Montvale, NJ (1975).

Bransford, John D., and Franks, Jeffery J. The abstraction of
linguistic ideas. Cognitive Psychology 2 (1971), 331-350.

Barclay, Richard J. The role of comprehension in remembering
sentences. Cognitive Psychology 4 (1973), 229-254.

Chase, William G., and Simon, Herbert A. Perception in Chess.
Cognitive Psychology 4 (1973), 55-81.

Simon, Herbert A., and Gilmartin, Kevin. A simulation of memory

for chess positions. Cognitive Psychology 5 (1973), 29-46.

Shneiderman, Ben, and Mayer, Richard. Towards a cognitive model
of programmer behavior (in progress).

Shneiderman, Ben; McKay, D.; and Heller, P. Experimental studies

of flowcharts in programming (in progress).

Weissman, L. Psychological'complexity of computer programs: an
initial experiment. Technical Report CSRG-26, Computer Systems
Research Group, University of Toronto, Toronto, Canada (1973).

----------- . A methodology for studying the psychological complex-
ity of computer programs. Ph.D. Thesis, University of Toronto
(1974). Available as Technical Report, Computer Science Research
Group CSRG-37.

Gannon, J.D., and Horning, J.J. The impact of language design
on the production of reliable software. Proc. 1975 International

Conference on Reliable Software.

Al

11. Miller, Lance. Programming by non-programmers. IBM Research
Report RC 4280 (1973).

12, ——mmmemee - . Naive programmer problems with specification
of transfer-of-control. Proc. National Computer Conference,
AFIPS Press, Montvale, NJ (1975).

13. Organick, E.I., and Meissner, L.P. FORTRAN IV, 2nd Edition,
Addison-Wesley Publishing Co. (1974).

14, Miller, G.A. The magical number seven, plus or minus two: some
limits on our capacity for processing information. Psycholo-
gical Review 63 (1956), 81-97.

15. U.S.A. Standard Basic FORTRAN, ANSI Standard X3.10, American
National Standards Institute, New York (1966).

16. McCracken, D.D. A Simplified Guide to FORTRAN Programming, John
Wiley & Sons, Inc. (1974).

Typed by Christopher Charles

Appendix 1: Logical IF Program.

LHARD

10

20

30

40
50
60

LEASY

10
20

LMOD

i0

PROGRAM A(INPUT»OUTFUT)
READ 6CsIoJsK
IF{1.6T.J1G0 TO 2C
IF{J.6T.KIGO TO 10

IL=K

G0 70 40
th=d

€0 TO &O

IF{ 1.67.K1G0 TO 30
IL=K

GO TO 4O

JIL=T

PRINT 50sIL
FORMAT(3X» I3}
FORMATI3I3)
END

PROGRAM C(INPUTsOUTPUT]}
IA=9

IB=34

IF(IB .G6F. IA&) GO TO 10
PRINT#IB

G0 TO 20
PRINT» IA .
STOP

END

PROGRAM ELINPUTQUTPUT)Y
TJ=5

IX=a

I14-14-1

IX=IX=»1

IF{IJ .GE. 0O} 60 TO 10
PRINTe IX

SToP

END

i

LINE

. LINE
LINE

LINE

_ LINE
LINE

LINE
LINE
L INE
LINE

_LINE

L INE
LINE
LINE

LINE

" LINE

LINE
L INE
L INE
LINE
L INE

o IMNE

LINE
LINE

LINE
L INE
L INE
LINE

CLINE

LINE
LINE
LINE
LINE

DO ~NH U E N

P R b pd D et
CV(n & Wn D

W=~ O £ W pg =2

Wyl o N

i 5

=26

Appendix 2: Arithmetic IF Program.

AHARD

- M
Q)

(S Qo]

[e |

AEASY

Lo RN
7 Bl o e |

AMOD

PROCRAM Ef{TNPUTQUTPUT)
READ 80sT9J K
ITF{TI-J)40+10+18
IFLJ-KI30« 20920

IsS=¥

20 T2 18

ISzJ

86 TH 10
IF{T-K)1E2+50+50
ISTHK

60 YO 78

18=1

PRINT QO0#IS
FoRVATUET 3)
FORMATUZIX I

END

3)

PROCRAM DIINPUT«CUTPRUT)
IMz=27

TL=21

TE(IM-TIL Y1020 30
PRINTs IM

STC?

PRINTs TL

SToP

END

PROCRAM FLINPUT.QUTPUTI
L=7

TTeR

TR TT=TF 109289 30
ITSTT »1

Il =TL~1

CO0 10 5

PRINT» IT»IL

S5TCP

END

LINE
LINE
LINE
L INE
LINT
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
L INE

LINE
LINE
L INE
L INE
LINE
LINE
LINE
LINE
LINE

LINE
L INF
LENE
LINE
LTINE
LINC
LINE
LIND
LINC
LTNE

F M Wwom =4 Fry e

[

Ww =My F N

O W W~ dLE g)=

vy

s s

Appendix 3: Questions

LHARD

1. FOR I=2, J=5, AND K=3, WHAT IS THE OUTPUT?
2. FOR I=3, J=T7, AND K=7, WHAT IS THE OUTPUT?
3. IN ONE RUN OF THIS PROGRAM, HOW MANY TIMES DOES LINE 13
GET EXECUTED?
4. WHAT IS THE MOST NUMBER OF TIMES THAT THIS PROGRAM MAKES
AN 'IF' TEXT?
5. WHAT IS THE LEAST NUMBER OF TIMES THAT THIS PROGRAM MAKES
AN 'IF' TEST?
6. CAN YOU DESCRIBE WHAT THIS PROGRAM DOES?
7. IF THREE INPUT VALUES ARE EQUAL, WHICH VALUE DOES THIS PRO-
GRAM PRINT OUT?
A. I B 4l c. K Df NONE OF THE ABOVE
8. IF I=K AND I ALSO IS GREATER THAN J, WHICH VALUE DOES IT
PRINT OUT?
A. X B. d C. K D. NONE OF THE ABOVE
9. IF ALL .GT.'S WERE CHANGED TO .GE. IN THIS PROGRAM,
A. THE ORIGINAL PURPOSE OF THIS PROGRAM DOES NOT GET
ALTERED.
B. THE NEW PROGRAM DOES THE OPPOSITE OF WHAT THE ORIGI-
NAL PROGRAM DOES.
C. THE NEW PROGRAM OUTPUTS GARBAGE.
D. NONE OF THE ABOVE.
E. DO NOT KNOW
10. HOW COULD ONE MODIFY THIS PROGRAM SO THAT IT PRINTS OUT THE

MINIMUM OF THREE INPUT NUMBERS?

—28-

A. REPLACE ALL .GT.'S WITH .LT.'S.

B. INTERCHANGE I,J; J,K; AND I,K IN LINES 3, 4, AND 9,
RESPECTIVELY.

C. IN ADDITION TO B ABOVE, REPLACE K WITH I, J WITH K,
K WITH I, AND I WITH K IN LINES 5, 7, 10, AND 12, RESPECTIVELY.

D. NO MODIFICATIONS NEEDED.

E. NONE OF THE ABOVE.

F. DON'T KNOW.

LEASY

1. WHAT IS THE QUTPUT OF THIS PROGRAM?

2. PLEASE WRITE DOWN THE SEQUENCE OF LINE NUMBERS THAT ARE
EXECUTED.

3. IF .GT. IN LINE 4 WERE CHANGED TO .LT., WHAT WOULD BE THE
OUTLRRE

i, AFTER THE CHANGE TO .LT., IA=34 AND IB=9, WHAT IS THE OUT-

PUT OF THE NEW PROGRAM?

LMOD

1. WHAT IS THE OUTPUT OF THIS PROGRAM.

2. PLEASE WRITE DOEN THE SEQUENCE OF LINE NUMBERS THAT ARE
EXECUTED.

3. IF .GE. IN LINE 6 WERE CHANGED TO .LT., WHAT WOULD BE THE
NEW EXECUTION SEQUENCE?

4y, WHAT WOULD BE THE NEW OUTPUT?

w

AHARD

l. FOR I=2, J=5, AND K=3, WHAT IS THE OUTPUT?

2. FOR I=3, J=7, AND K=7, WHAT IS THE OUTPUT?

3. IN ONE RUN OF THIS PROGRAM, HOW MANY TIMES DOES LINE 13
GET EXECUTED?

4, WHAT IS THE MOST NUMBER OF TIMES THAT THIS PROGRAM MAKES
AN 'IP' TEST?

5. WHAT IS THE LEAST NUMBER OF TIMES THAT THIS PROGRAM MAKES
AN 'IF' TEST?

6. CAN YOU DESCRIBE WHAT THIS PROGRAM DOES?

PLEASE CIRCLE THE BEST ANSWER FOR THE FOLLOWING QUESTIONS:
7. IF THREE INPUT VALUES ARE EQUAL, WHICH VALUE DOES THIS PRO-
GRAM PRINT OUT?
A. I B.J C.K D. NONE OF THE ABOVE
8. IF I=K AND I ALSO IS GREATER THAN J, WHAT IS THE OUTPUT?
A. I B.J C.K D. NONE OF THE ABOVE
9. HOW COULD ONE MODIFY THIS PROGRAM SO THAT IT PRINTS OUT
THE MINIMUM OF THREE INPUT NUMBERS?
A. INTERCHANGE I, J, J,K, AND I,K IN LINES 3, 4, AND 9,
RESPECTIVELY.
B. IN ADDITION TO B ABOVE, REPLACE K WITH I, J WITH K,
K WITH I, AND I WITH K IN LINES 5, 7, 10, AND 12.
C. NO MODIFICATIONS NEEDED.
D. NONE OF THE ABOVE.

E. DON'T KNOW.

30.

AEASY

1. WHAT IS THE OUTPUT OF THIS PROGRAM?

2. PLEASE WRITE DOWN THE SEQUENCE OF LINE NUMBERS THAT ARE
EXECUTED.

3. IF THE MINUS SIGN IN LINE 4 WERE CHANGED TO A PLUS, WHAT
WOULD BE THE OUTPUT?

4, AFTER THE CHANGE TO PLUS, IF IM=21 AND IL=27, WHAT IS THE

OUTPUT OF THE NEW PROGRAM?

AMOD

1. WHAT IS THE OUTPUT OF THIS PROGRAM?

2. HOW MANY TIMES DOES LINE 6 GET EXECUTED?

3. IF THE '-' IN LINE 4 WERE CHANGED TO '+', WHAT WOULD BE THE
NEW EXECUTION SEQUENCE?

4, WHAT WOULD BE THE NEW OUTPUT?

