Storage Allocation for List Multiprocessing
by

Steven D. Johnson
Department of Computer Science
Indiana University
Bloomington, IN 47405

TECHNICAL REPORT NO. 168

STORAGE ALLOCATION FOR LIST MULTIPROCESSING
by

Steven D. Johnson
March, 1985

This material is based on work supported by the National Science Foundation under Grant No.
DCR 84-05241.






STORAGE ALLOCATION FOR LIST MULTIPROCESSING

Steven D. Johnson

ABSTRACT

Communication in a hypothetical general-purpose list multiprocessor is con-
sidered. The gross architecture is a collection of processors sharing access to a
collection of memories through a multi-stage, buffered routing network. The de-
sign goal is to decentralize process coordination through refinements to the network

structure and the design of routing elements.

This issue considered here is storage allocation. Routing elements anticipate
and buffer “new” requests, making the connection network a reservoir for antici-

pated processor demands.

The result is an implicit dissipation of resource demand among memories and
an implicit distribution of resource supply among processors. The ®*new-sink® solves

coordination problems for a fundamental operation on the data space.

Although motivated by a demand-driven computational model for purely ap-
plicative programming, the technique applies to any multiprocessing architecture
with distributed resources, and suggests a general approach to other coordination

problems.






1. INTRODUCTION

This paper sketches elements of a hypothetical multiprocessor—I will call it
LiMP—with a typical gross organization: it is a collection of processing elements
(PEs) connected to a collection of shared storage elements (SEs) by a multi-stage,
buffered routing network. LiMP’s design is distinctive in that it is intended to do
parallel, general-purpose list processing. Hence, among other things it must provide
for automatic storage management in the presence of parallelism. Storage allocation
is an example of an implicit task that must be decentralized if parallel performance
is to be obtained.

Decentralization of storage allocation leads to pervasive refinements in all of
LiMP’s major components. “Available space® is distributed by requiring that each
SE maintain a local pool of new cells for dissemination to the PEs. However,
not much is gained if the PEs are forced to contend directly for access to these
pools. Substantial choreography would be needed to synchronize the locating of,
and transactions with, individual SEs with cells available. The solution proposed
here is similar to the UID network mentioned by Ackerman for data flow computer
memories [1, Section 5.0.5]. A buffered routing network is used to disseminate
resources. Each routing element retains the addresses of a few new cells. The
network becomes a reservoir of available space that both arbitrates and dissipates

procesgors’ resource demands.

The goal of parallel list processing may require some justification. Briefly,
LiMP is motivated by a operational model of computation based on a suspending
constructor, or “lagy CONS® [4]. As a basis for functional programming (no overt
mention of state; no implicit reference to time), a suspending constructor offers a
means to introduce parallelism as a byproduct of apparently ordinary data manipu-
lation [6, 8]. Process creation is transparent, processor assignment is dynamic, and
processor interaction is mediated by the memory. That is, parallelism is subsumed

1



as a property of the data space; it may or may not be addressed at a language level.

In his review of proposed architectures for functional programming [14], Veg-
dahl correctly states that treatments of parallelism based on a suspending construc-
tor* are concerned with a model for parallelism but do not specify an architecture
for implementation of the model. Although some concrete proposals have resulted
from this research (e.g. [7, 15, 16]), they are generalized and presented outside
the context of the model. This paper also deals with an isolated problem, but its
presentation addresses broader issues of performance and programming in LiMP.

Section 3 presents one possible communication architecture for LIMP, a rectan-
gular network. This network was used for a simulation of communication, discussed
in Section 4. Although its details are of marginal relevance to the storage allocation
problem, this example shows how related problems, such as dynamic scheduling, are
diminished by the appropriate choice of network structure and design of network

elements.

The behavior of the new-sink sheds light on other communication issues in
LiMP. The conclusion in Section 5 discusses some of these issues in the context of

the suspending-construction model.

2. CompuTATION IN LIMP

LiMP’s memory is logically organized as a binary-list storage unit. An indi-
vidual PE performs transactions which are analogous to those of an ordinary list

processor. These transactions fall into three categories:

e An RSVP is a transaction which requires a response, like a *fetch® or, in Lisp
terminology, a CAR or a CDR.

* I refer to Vegdahl’s discussion of *Friedman and Wise’s Reduction Machine,®
in which he also mentions that storage management is unspecified.

2



e A STING is like a “store”; it does not require a response.
e A NEW requests the address of an unreferenced list cell.

The SEs are not passive memories. For example, they participate in storage alloca-
tion by maintaining local available-space pools for NEW-requests. The PEs are not
pure mills. Each is executing a locally stored (micro) program. A good example
would be a language interpreter, but assume also that input/output devices are
specialized PEs. Data is introduced to and extracted from the system through the
list-space.

A switching network interleaves RSVP, STING, and NEW transactions with
the shared SEs. It is convenient to use the terms “communication® and ®mes-
sage” in discussing this interleaving, but the sense of these terms is restricted to
the elementary transactions just mentioned. It is easier to think of the routing
network as having separate layers for PE-to-SE communication and for SE-to-PE

communication.

Since messages are small, it is appropriate to consider using buffered switches
and a multi-stage routing network. This trades *turnaround®—the time it takes to
complete a transaction—for “throughput®—the number of transactions that can be
in progress. Each layer of the network is composed of individual routing elements
which interact through message ports. Each routing element contains a cross-bar
switch through which it transfers a permutation of its input-messages to its output
ports. Transfer to an occupied port is inhibited. Figure 1 is a high-level block
diagram for one layer of a 2 x 2 routing element. It resembles a general-purpose
router proposed for data flow prototyping [2].

The “New-sink®.

STINGs and RSVPs suffer turnaround proportional to the distance between

source and destination in the routing network. STINGs are about half as expensive

3



as RSVPs because there is no response. The turnaround for NEWs can be reduced

to about unit time if the network participates in storage allocation.

In a third communication layer, message ports store (the address of) an avail-
able cell. When a processor-side port is empty, the routing element transfers a new
cell from its memory-side port. Cells migrate toward the PEs, making the routing
network into a reservoir of available space. Once the reservoir is filled, sporadic
NEW transactions are served immediately by the routing elements; holes in the
reservoir are filled as empty buffers ripple back toward the SEs.

A burst of NEW-requests from an individual PE will dissipate in the new-sink;
each successive stage makes more cells available to supply the burst. If the supply
of cells is limited to a few SEs, they will be distributed according to PE demand.

3. AN ExamprLE NeTWORK FOr LiMP

Figure 2 depicts an instance of rectangular routing network with the structure
of a banyan network [13]. The banyan network is attractive for LIMP because it
yields a uniform and decentralized addressing mechanism:

o The leading bits of a message’s destination address define a path through the
network to a unique SE, independent of the source of the message. Take ‘1’ to
mean “route left” and ‘0’ to mean “route right®. Figure 2 shows the path to

destination ‘101’ from all sources.

e The source-address of a message can be dynamically reconstructed—in this
or any other network—by recording the switch states along its path. Let ¢x’
denote a left-right, right-left transfer, and let ‘=" denote a left-left, right-right
transfer. With destination ‘101°, the path record ‘x=x’ (‘=x=") is recorded
for a message originating at PE, (PEs).

4



e The control of the routing elements is uniform and extensible. The path-
control bit is consumed by shifting the destination field, and this leaves room
for inserting the path-record bit.

If a banyan network—or a network with similar characteristics—is used, a
process can be placed in any PE without address translation. The target address
for a STING or an RSVP is independent of its source. Responses to RSVPs are
determined dynamically by the path record. Storage allocation is also relative; the

home SE of a new cell is computed by the new-sink.

3. SoME OBSERVATIONS ABOUT LiMP’s PERFORMANCE

A preliminary simulation* of communication in LiMP reveals some finer points
about message traffic. PEs are modeled as stochastic processes with states IDLE,
NEW, STING, and RSVP. The communication network model is as described in
Section 3. PEs wait for STINGs to be absorbed by the routing network, for NEWs to
be satisfied by the new-sink, and for the responses to RSVPs. Of these behavioral
assumptions the last is perhaps simplistic: one might expect PEs to multiplex
several processes and thereby carry out concurrent RSVPs. However, some amount
of waiting is beneficial: the resulting “holes® in the routing network reduce message
blockage.

In the new-sink, performance thresholds occur when the supply of new cells
approximates the demand. Figure 3(a) shows the typical relationship between PE
utilization and SE responsiveness: the rate at which an SE it can respond to NEW
transactions. Utilization reaches its maximum as responsiveness approaches the

rate at which processors issue NEW requests.

To conserve locality, the new-sink is biased by defining a preferred switch setting
for transfers. For example, if each routing element attempts, when possible, to use

* Details are given in [11]



the ‘=’ switch position, then each PE tends to get its resources from the SE directly
across from it. If the switch-preference is uniform, then each PE is associated with
one SE.

In the banyan network all communication paths have the same length. Never-
theless, if the association between an PE and its preferred SE can be maintained,
traffic in the network is better organized and less subject to message blockage.
Figure 3(b) shows the typical relationship between locality and responsiveness, as-
suming a fixed rate for NEW requests. Locality is worst when supply matches

demand.

Bias for the other communication layers may be harmful. In moderate traffic,
utilization diminishes slightly as locality improves. Messages that go ®against the
grain® are blocked for longer periods. This phenomenon disappears quickly if there

are a few holes in the network because of waiting.

6. CoNcLUSIONS AND REMARKS

Communications in LiMP include bi-directional RSVP transactions and uni-
directional STINGs. From the PE’s point of view, and subject to message blockage,
NEWs and STINGS are served in unit time, so RSVPs are the dominant expense
in computation. If the routing network participates in storage allocation, then the
fundamental transaction of obtaining a new cell is uni-directional and has minimal

delay.

There is little point in distinguishing uni-directional and bi-directional traffic if
messages are sufficiently mixed. However, there are significant examples of purely
uni-directional communication. One of these is input, where a device introduces
new data to the list space through a succession of NEWs and STINGs. Similarly, a
context-swap would involve construction of a process activation record using several

new cells and requiring no fetches.



The remainder of this section reviews related results about programming and
performance in LiMP. A general-purpose list-multiprocessor could could serve as
a vehicle for demand-driven computation based on the suspending-construction

model. However, further refinement of its components would be needed.

A suspending constructor initializes newly allocated records with suspensions,
which are formally described as valuations [4]. In operational terms, a suspension is
a process which computes a manifest result, that is, another record. In this context,
the terms “suspension® and “process® are synonymous. The continuation of every
suspension is to converge, that is, to store a result in its home location and thus to
de-reference itself. Two rules define the basic process-coordination mechanism in
the model:

1. A process attempting a fetch from memory must wait for a manifest value.

2. The sole obligation of a process is to converge.

Suspensions are transparent and ubiquitous. They are created by the list-
constructor primitive. A process is blocked when it encounters a suspension in the
course of manipulating manifest data. Any transaction with memory may reveal—

to the system—a needed suspension and hence an inter-process dependency.

Suspending construction was originally proposed as a basis for applicative pro-
gramming. Its effects include call-by-need semantics for a standard language inter-
preter, the facility to manipulate non-finite data structures, automatic co-routine
behavior, and a direct implementation of data recursion. Experience tends to sup-
port the thesis that a practical programming discipline can evolve in a purely ap-
plicative setting, provided that certain issues are resolved in hardware. The best
example is input-output, where the suppression of notions about state and time
must be extended to peripheral devices [3, Chapter 5).

7



If side-effects are prohibited, then suspensions are autonomous. They may be
activated arbitrarily should idle processors be available. The worst possibility is
that an extraneous activation might consume otherwise useful resources. However,
suspensions often take up more space than their results; so their activation may

also free resources.

A uni-directional STING raises questions about process synchronisation. A
weak-but-adequate arbitration primitive has been proposed [7], in which “stores® to
memory are inhibited once an “inoculating bit® has been set. This condstional-store
is sufficient o coordinate concurrent computation in the suspending-construction
model [10, 8, 12].

The addressing transparency in the banyan routing network clears the way
for dynamic processor allocation. A process is another example of a consum-
able resource. Thus, the routing network might participate in process-allocation—
scheduling—by providing a “need-sink® (or perhaps “source®) for disseminating
(the addresses of) revealed processes. A dynamic scheduling strategy has been pro-
posed in which need is measured by proximity to an output device [6]. Put another
way, output devices are a source of absolute, resolute need, which is communi-
cated via RSVPs to the data-space [5]. In the proposed scheme, RSVPs in LiMP
would generate responses if the target is manifest and need-messages if the target

is suspended.

Paralle] storage reclamation is apparently harder than parallel storage alloca-
tion. Maintenance of available space entails substantial processing in the SEs. Ref-
erence counting has advantages in a distributed scheme, but propagation of counts
raises still another communication problem and can recover only some circular struc-
ture [9]. Occasional garbage collection is necessary; a parallel collector for LIMP
seems possible but has not been designed. Wise has designed a binary-heap mem-

ory, which maintains a local available-space pool, does internal reference-counting,



supports a conditionai-store operation, and can be collected when necessary [16].



path record:

2 N O | o o

O B WO

Z Eputh control

occupied

FIGURE 1. One Layer of a Routing Element.

10




“RPUPRS
N

BK
S D<A
Nololololololole

~©

P

/X

/

Ficure 3. A Possible Network for LiMP.

11




LPE Utilization

M’ LPE .request

l rate
_ ]
LSE responsiveness

(a)

Stieky =) BlChp—

/ LPE r-eq'ues{ -quef
F 4 : i g .

{

]

LSE responsiveness

(b)

Ficure 3. Effect of the New-sink on Performance.

12




REFERENCES

[1]

[2]

8]

(4]

[s]

[6]

(7

(8]

Ackerman, W. B., A Structure Memory for Data Flow Computers, M. S. Thesis,
Dept. of Electrical Engineering and Computer Science, MIT, 1977. Published
as MIT/LCS/TR-186, MIT Laboratory for Computer Science, 1977.

Dennis, J. B., G. A. Boughton, and C. K. C. Leung, “Building blocks for data
flow prototypes,” Proc. ACM-SIGARCH Seventh Annual Symp. on Computer
Archstecture, (1980) pp. 1-8.

Filman, R., and Friedman, D. P., Coordinated Computing: Tools and Tech-
niques for Distrsbuted Software, McGraw-Hill, New York, 1084.

Friedman, D. P. and D. S. Wise, “CONS should not evaluate its arguments,®
Automata, Languages and Programming, (eds.) S. Michaelson and R. Milner,
Edinburgh University Press, 1976, pp. 257-284.

Friedman, D. P. and D. S. Wise, “Output driven interpretation of recursive
programs, or writing creates and destroys data structures,® Information Pro-
cessing Letters 5, No. 6 (1976), pp. 155-160.

Friedman, D. P. and D. S. Wise, “Aspects of applicative programming for
parallel processing,” IEEE Transactions on Computing C—27, No. 4 (1978),
pp. 289-296.

Friedman, D. P. and D. S. Wise, “Sting-unless: a conditional, interlock-free
store instruction,” In M. B. Pursley and J. B. Crus, Jr. (eds.), Proc. 16th An-
nual Allerton Conf. on Communication, Control, and Computing, University
of Ilinois (Urbana-Champaign, 1978), pp. 578-584.

Friedman, D. P. and D. S. Wise, *An approach to fair applicative multipro-
gramming,” Proc. of Iil. Symp. on Semantics of Concurrent Computation (eds.)
G. Kahn and R. Milner, Springer, New York, 1979, pp. 203-225.

13



[9] Friedman, D. P. and D. S. Wise, *Reference counting can manage the circular
environments of mutual recursion,” Inform. Proc. Ltrs. 8 (1979), pp. 41-44.
[10] Friedman, D. P. and D. S. Wise, *Fancy ferns require little care,® Technical
Report No. 106, Computer Science Dept., Indiana University, 1981. Also in
Symposium on Functional Languages and Computer Architecture. (eds.) S.
Holmstrom, B. Nordstrom, and A. Wikstrom, Lab for Programming Method-
ology, Goteborg, Sweden, 1981.

[11] Johnson, S. D., “Connection Networks for Output-Driven Multiprocessing,”
Technical Report No. 114, Computer Science Dept., Indiana University, 1981.

[12] ®A semaphore-free promotion strategy for £rons,” unpublished.

[13] Tripathy, A. R. and G. J. Lipovski, “Packet switching in banyan networks,”
Proc. ACM-SIGARCH Sizth Annual Symp. on Computer Architecture (1979)
pp. 160-167.

[14] Vegdahl, S. R., “A survey of proposed architectures for the execution of func-
tional languages,” IEEE Transactions on Computing C-88 (1984), pp. 1050~
1071.

[15] Wise, D. S., *Compact layouts of banyan/FFT networks,” in VLSI Systems and

Computations, ed. H. T. Kung, B. Sproull, and G. Steele, Computer Science
Press, Rockville Maryland, 1981.

[16] Wise, D. S., “Design for a multiprocessing heap with on-board reference count-
ing,” Indiana University Computer Science Dept. Technical Report No. 163
(1985), submitted for publication.

14



