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1. Introduction

The Satisfiability problem (SAT) is the problem of determining whether a given
collection I of disjunctions (clauses) of boolean literals can all be satisfied (have
value true) by some consistent assignment of truth values to the literals of I (truth
assignment). SAT is NP-complete so there is no known efficient algorithm for solving
this problem.

The Davis-Putnam Procedure (DPP) [4] is a well known, much studied method
for solving instances of SAT. The probabilistic analysis of variants of DPP under
the assumption of constant-density input distributions such as in [7), [8] and [9] has
given the impression that the Davis-Putnam Procedure is intrinsically a very fast
method for solving most instances of SAT. This impression is moderated somewhat
by the results of this letter which show that the following two trivial algorithms, run
concurrently, solve “more” instances of SAT in polynomial time than any previously
studied algorithm.

Al (I) .
Repeat
Randomly choose a truth assignment ¢ to variables in I
Until ¢ satisfies ]
Return (¢)

Az(I):

Search I for a null clause
If a null clause is found Then Return (“not satisfiable®)
Else Return (“cannot determine whether I is satisfiable®)

The results reported here represent the conclusion of work begun in [6]. They
indiczte that the favorable results previously obtained are probably due more to the
probabilistic model chosen than to characteristics of the Davis-Putnam Procedure.
Furthermore, it appears likely that similar statements can be made about proba-
bilistic results obtained for some NP-complete problems on random graphs because
of a certain property of constant-density models. This point will be expanded later.



2. Previous Probabilistic Results for SAT

The results of 7], [8] and [9] are based on the probabilistic model (or a closely related
model) which we refer to as M(n,r,p). According to M, (n, r,p) each of n clauses
is constructed independently by including each of r boolean variables in the clause,
independently, in the following way: with probability p the positive literal associated
with the variable is placed in the clause and with probability p the negative literal
associated with the variable is placed in the clause. Thus, both literals associated
with the same variable are in the clause with probability p? and neither literal
associated with the same literal is in the same clause with probability (1 — p).
According to the results of [7],[8] and [9] a collection of variants of DPP and other
algorithms solves SAT in polynomial average time under M; (n,r,p) if a) n < tin(r),
b) p < t(In(r)/r)3/2, ¢) n > exp(er) and d) p > € where ¢ is a positive constant equal
to the exponent of the polynomial which bounds the average complexity and ¢ is
any constant greater than gero. In this letter it is shown that algorithm A; finds a
solution to a random instance of SAT under M;(n,r,p) with probability tending to
1 when p > In(n)/r and A, verifies that no solution exists with probability tending
to 1 when p < In(n)/(2r) and n is not exponential in r. If n is exponential in r then
-exhaustive search will determine satisfiability in polynomial time.

3. Analyais of A1 and Aa

The result for A; requires finding the probability that a random truth assignment is
a solution to a random instance I of SAT. The probability that a truth assignment,
T, to r variables does not satisfy a random clause, c, is the probability that none of
the r literals made ¢rue by T are in ¢ and this is (1 — p)*. Therefore the probability
that T satisfies n independent clauses is (1 — (1 — p)")". If, for large r and n,
p = a-In(n)/r, where a is a constant and n is not exponential in 7, then (1 — p)™
is approximately ezp(—a - In(n)) = n~%. But (1 — n™*)" approaches 1 as n gets
large when a > 1 and approaches 0 when a < 1. Thus T is a solution to a random
instance of SAT, with probability tending to 1, when limp ;.o p > In(n)/r and A4,
finds a solution to a random instance of SAT in polynomial time with probability
tending to 1 for the same limiting range of p.

Since any instance of SAT with a null clause is unsatisfiable (this is true under
the interpretation given in [7],[8] and [9]), algorithm A, verifies that some instances
of SAT are unsatisfiable in polynomial time. The analysis of A; requires finding the
probability that a null clause exists in a random instance of SAT. The probability
that none of 2r literals is in a random clause is (1 — p)2". Therefore, the probability
that at least one literal is in ¢ is 1 — (1 — p)®" and the probability that at least
one literal is in every clause of I is (1 — (1 — p))". Thus, the probability that



there is no gero-literal clause in [ is 1 — (1 — (1 — p)?")". If, for large n and
r, p = a-In(n)/r and n is not exponential in r then (1 — p)?" is approximately
exp(—2a - In(n)) = n=2%, But 1 — (1 — n~2%)" approaches 1 as n gets large when
a < 1/2. Thus, I contains a gero-literal clause, with probability tending to 1, when
limp ¢y~ 00 p < In(n)/(2r). Since A; runs in time bounded by a polynomial in n
and r, A, verifies that no solution to I exists in polynomial time with probability
tending to 1 when limy, ¢ o0 p < In(n) /.

4. Concluding Remarks

The results obtained assuming the constant-density model M; (n, r, p) are interesting
in light of some probabilistic results obtained for the constant-component-size model
M;(n, 1, k): each of n clauses is selected independently and uniformly from the set
of all possible k-literal clauses that can be constructed from r variables. Under
M;(n,r, k) the algorithms of (7], [8] and A; and Aj; require exponential average
time for any constant limiting ratio of n to r (see [6]) but the algorithm of [5]
finds solutions to random instances of SAT when limp y—.00 n/r < 1 for any k > 3.
Furthermore, algorithms based on the unit-clause rule find solutions to random
instances of SAT under Mj;(n, r, k) in polynomial time with probability approaching
1 when limp, ;.0 n/r < O(2%/k) (see [2] and [3]).

The apparent disparity between the two sets of results is due in large part to a
property of the constant-density model for SAT: the constant-density model allows
gero-literal clauses with about the same probability that it allows one-literal or two-
literal or m-literal clauses, m a constant. Therefore, a random instance generated
according to M, (n,r,p) has no solution with high probability unless the average
number of literals per clause is increasing with n and r. But, if the average number
of literals per clause is increasing with n and r then the probability that a clause
is satisfied by a random truth assignment is increasing with n and r fast enough so
that the probability that a random truth assignment satisfies a random instance of
SAT under M;(n, r, p) is high in this case.

The same phenomenon can be observed when constant-density models are
used to generate random graphs as instances for certain NP-complete problems
on graphs. For example, consider the problem of finding a hamiltonian circuit in
a given graph. This problem was studied in [1] under the assumption of the fol-
lowing constant-density model: n vertices are given and the probability that an
edge (undirected) connects any pair of vertices is p independent of any other edges
appearing in the graph. Under this model the probability that a vertex is isolated
(no edges between this vertex and any other) is about the same as the probability
that a vertex connects to one other vertex or two other vertices or m other vertices
where m is fixed. But a graph containing an isolated vertex has no hamiltonian cir-
cuit. "horefore, under the constant-density model, a random graph does not have a
hamiltonian circuit unless the average number of edges per vertex is increasing with
n. But then the chance of a hamiltonian cicuit being in a random graph is great
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and one may be found with high probability using the algorithm of [1]. It would
be interesting to see how well the algorithm of [1] works probabilistically under the
constant-component size model (known as the constant-degree model) for random

graphs.

In view of the observations above and the observation that algorithms which
perform well in probability on constant-component-size models also perform well in
probability on constant-density models it seems reasonable that constant-component-
size models be used in preferrence to the constant-density models when obtaining
probabilistic performance benchmarks.
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