Probabilistic Analysis of a Generalization
of the Unit Clause Literal Selection Heuristic
for the k-Satisfiability Problem

by

Ming-Te Chao
Case Western Reserve University

Department of Computer Engineering and Science
Cleveland, OH 44106

and

John Franco
Indiana University
Department of Computer Science
Bloomington, IN 47405

TECHNICAL REPORT NO. 165

Probabilistic Analysis of a Generalization
of the Unit Clause Literal Selection Heuristic
for the k-Satisfiability Problem

by
Ming-Te Chao, Case Western Reserve University

and John Franco, Indiana University
January, 1985

This material is based on work supported by the U.S. Air Force under grant number
AFOSR-84-0372.

To appear in Information Sciences.

ABSTRACT

Two algorithms for the k-Satisfiability problem are presented and a probabilis-
tic analysis is performed. The analysis is based on an instance distribution which
is parameterized to simulate a variety of sample characteristics. The algorithms
assign values to literals appearing in a given instance of k-Satisfiability, one at a
time, until a solution is found or it is discovered that further assignments cannot
lead to finding a solution. One algorithm chooses the next literal from a unit clause
if one exists and randomly from the set of remaining literals otherwise. The other
algorithm uses a generalization of the Unit-Clause rule as a heuristic for selecting
the next literal: at each step a literal is chosen randomly from a clause containing
the least number of literals. The algorithms run in polynomial time and it is shown
that they find a solution to a random instance of k-Satisfiability with probability
bounded from below by a constant greater than gero for two different ranges of
parameter values. It is also shown that the second algorithm mentioned finds a
solution with probability approaching one for a wide range of parameter values.

1. Introduction

This paper is concerned with the probabilistic performance of heuristics for the
k-Satisfiability problem (k-SAT). k-SAT is the problem of determining whether all
of a collection of k-literal disjunctions (clauses) of Boolean variables are #rue for
some truth assignment to the variables. This problem is NP-complete so there is
no known polynomial time algorithm for solving it. k-SAT is a special case of the
Satisfiability problem (SAT) which is the problem of determining whether all of a
collection of disjunctions of Boolean variables are true for some truth assignment
to the variables.

The analysis is based on an equally likely instance distribution which has been
used in other studies of algorithms for this problem. This model has two parame-
ters in addition to k: n, the number of disjunctions, and r, the number of variables
from which disjunctions are composed. The model (which we refer to as M(n,r k))
is described in greater detail in the next section. In [8] it was shown that, under
M(n,r,k), if lim, ; o 2 > 2FIn2 then random instances have no solution with
probability approaching 1. In [1] it was shown that Backtracking solves k-SAT in
exponential average time for all limiting ratios of n to r which are constant. In
[8] it was shown that a variant of the Davis-Putnam Procedure [4] which searches
for all solutions to a given instance requires exponential time in probability un-
der M(n,r, k) for all limiting ratios of n to r which are constant. But, in 6] it
was shown that, for all k > 3, the Pure-Literal heuristic can be used to solve ran-
dom instances of k-SAT in polynomial time with probability approaching 1 when
limp o0 7 < 1. In [3] it was shown that the Unit-Clause and maximum occurring
literal heuristics can be used to solve instances of 3-SAT generated according to
M(n,r,3) in polynomial time with probability bounded from below by a constant
when lim,, ;.o & < 2.9. In this paper it is shown that a generalisation of the Unit-
Clause rule can be used as a literal selection heuristic to solve random instances of
k-SAT, for 4 < k < 40, in polynomial time with probability bounded from below by

- k-2
a constant when limp,s_.op © is less than 2:09:2>~* ('k‘:—;) and with probability

- k-2
approaching 1 when limp, .o 2 is less than L‘%‘_—f—"—: (i%}) . A similar analy-

sis shows that, for all k > 3, the Unit-Clause heuristic alone solves random instafces
= -2
in polynomial time with bounded probability when lim,, ;_, < a;-i (B=t

These results are useful because they indicate the effectiveness of the two heuristics
when used in a Backtrack algorithm for k-SAT.

There are a number of papers which investigate the probabilistic performance of
SAT. These papers present results which are closely related to the results obtained
for k-SAT but are based on the constant-density model for SAT: construct each of n
clauses independently by placing each of r variables independently in a clause with
probability p and complementing those variables in each clause with probability
1/2. Average case results using the constant-density model or a variation are in
1], [9], [10], [11] and [12]. Probabilistic results using the constant-density model
are in [7]. According to the results in [7], when the average number of literals in a
clause is fixed at k, random instances of SAT are nearly always proven to have no
solutions in polynomial time.

2. k-Satisfiability and The Probabilistic Model

The following terms are used to describe k-SAT. Let V = {v;,v;...v,} be a set of
r boolean variables. Associated with each variable v; is a positive literal, denoted
by v;, and a negative literal, denoted by #; and literal v; has value #rue iff the
variable v; has value ¢rue and literal ; has value true iff the variable v; has value
felse. The literals v; and &; are said to be complementary. Denote by L the set
{v1,92...9y, 0, 05...5, } of literals associated with the variables of V. If [is a literal
then comp(l) is the literal which is complementary to I. A clause is a subset of L
such that no two literals in the subset are complementary. A truth assignment to
V is an assignment of truth values to every variable in V. A clause ¢ is satisfied
by truth assignment ¢ if at least one literal in ¢ has value true under t. Let A4;(V)
denote the set of i-literal clauses that can be composed of literals from L. An
instance I of k-SAT is a collection of clauses chosen from Ax(V) and the problem
is to find a truth assignment to V' which satisfies all clauses in I, if one exists, and
to verify that no such truth assignment exists otherwise. A truth assignment which
satisfies all clauses in I is said to be a solution to I.

The probabilistic model used for analysis is presented by describing the method
used to construct random instances. A random instance of k-SAT contains n clauses
chosen uniformly, independently and with replacement from Ag(V). The distribu-
tion associated with this construction is referred to as M(n, , k).

8. The Algorithms UC and GUC

The algorithms we consider, called UC and GUC, take as input a collection of
clauses I and output “a solution exists® or “cannot determine whether a solution
exists®. Both algorithms contain a single loop; at each iteration of the loop a literal
is chosen and some clauses and literals are removed from I. Let C/?(3), for all
1 < ¢ < k, denote the collection of clauses in I containing exactly s literals at the
end of the 5*» iteration where o denotes the sequence of chosen literals. We shorten
C;"°(5) to Ci(5). Then Ci(0) = ¢ for all 1 < § < k— 1 and |C(0)] = n. If the
7 + 1% chosen literal is [then the lines

Remove from I all clauses containing [
Remove from I all occurrences of comp(l)

have the following effect

V1<t<k-1GCi(5+1)={c:ce€Ci(s) and I ¢ Ci(5) and comp(l) ¢ Ci(5)
or c U {comp(l)} € Ciy1(7)}
Ci(5 +1) = {c: c € Ci(y) and I ¢ Ci(5) and comp(l) ¢ Ci(7)}-

The algorithm UC is based on the Unit-Clause heuristic [4]. The Unit-Clause
heuristic requires choosing the 5+ 1 literal from Cy(5) if Cy(5) # ¢. The algorithm
GUC employs a heuristic for choosing literals which is a generalization of the Unit-
Clause heuristic. The generalization requires choosing the 5 + 1°¢ literal from a
smallest clause in I: that is, the 5 + 1°¢ literal is chosen randomly from C,,(7)
where m = min{s : C;(j) # ¢}.

uc(I:

GUC(I):

UC and GUC run in less than O(r?n) time since I must be empty after r
iterations of the loop and the remove operations need look at no more than r+ n
An instance I of SAT has a solution if UC or GUC run on | outputs
one solution to J may be found by assigning the value true to
positive literals were chosen and the value false to all other

literals.

®a solution exists®:
the variables whose

 Ean
Repeat
If C1(7) # ¢ Then choose I randomly from C; (7)
Else choose ! randomly from L
L — L - {l,comp(l)}
Remove from I all clauses containing
Remove from I all occurrences of comp(1)
J—7+1
Until I is empty or there exist two complementary unit clauses in J
If I is empty Then Output(“a solution exists®)
Else Output(“cannot determine whether a solution exists”®)

j0

Repeat
Let m = min{s : Ci(3) # ¢}
Choose ! randomly from C,(7)

Remove from I all clauses containing !

Remove from I all occurrences of comp({)

F=g41
Until] is empty or there exist two complementary unit clauses in [
If I is empty Then Output(“a solution exists®)

Else Output(“cannot determine whether a solution exists®)

variables.

4. Analysis of UC and GUC

In this section it is shown that if instances are generated according to M (n,r, k) and
i k-3
limgyy00 2 < Q—hr ("r:;-) then for some € > 0, the probability that UC outputs

"

“a solution exists® is greater than ¢ in the limit. It is also shown that the probability
that GUC outputs “a solution exists® is bounded from below by a positive constant

x k-2
¢ when limy .o % is less than 29922 (£=1)""" and ¢ approaches 1 in the limit

- k-2
when lim,, ;_, o £ is less than '—'ﬁf_"‘_—-—?’ ff%) under M(n, r, k). To simplify the

analysis it is assumed that both algorithms continue selecting literals and removing
clauses and literals from I even if complementary unit clauses appear in I. Also,
we will assume that the ratio of n to r is a function of k only and that k is fixed.

The following theorem will be used to show how the collections of clauses in
Ci(7) are distributed for both algorithms.

Theorem 1:

Let V,_; be the subset of variables associated with unchosen literals after [}
literals have been chosen. Suppose for all 1 < § < k the clauses in Ci(7) are
independent and are equally likely to be any clause in A;(V,_ 7). Then for all
1 < ¢ < k the clauses in C;(5 + 1) are independent and equally likely to be any
clause in 4;(V,—;_,).

Proof:

Let ¢; be a clause in C;(7 + 1) and let &, be the clause in Ci(7) from which ¢,
was derived after the j + 1° literal was chosen. Let z and y be members of
Ai(Ve—j-1) and let X, X;, Y and Y; be collections of clauses obtained from
Ai(Ve—j—1). Let |X] = |Y|. Define the operator U as follows: if X is as above
and { is the chosen literal then X LI {I} is a collection of clauses obtained from
Aiy1(Ve—;) such that the m* clause of X Li {l} contains all the literals of the
mth clause of X in addition to the chosen literal I. Denote by Ci(5 + 1) the
sub-collection of C;(j + 1) which came from C;(5) and denote by Cit'(+1)
the sub-collection of C(5+1) which came from Ci44(5). Denote by C(5. 1) the
collection of clauses in C;(5) not containing literal I or comp(l) and denote by
Ci+1(4,1) the collection of clauses in Ciy () containing literal I. If A and B
are collections of clauses and each clause in A can be paired with an identical
clause in B then we say that A C B. Then

pr(ci =z) =
pr(é1 = z or & = zU {v} and ¥ was chosen or é; = zU {0} and v was chosen)
= pr(éy =y or & = yU {v} and ¥ was chosen or é; = yU {0} and v was chosen)
=pric1 = y).
Also, pr(Ci(j +1) = X) =

Y pr(Cii+1) =X, and G*'(j +1) = X - X;)
X,CX

=) (G5, 0) = X;) x pr(Cisr (5, D) = XU {l} - Xy L {1})

X EX
=) (GG D) =Ya) +pr{Cins () =Y U {l} - ViU {}})
Y.CY
=pr(G(j+1)=Y).

where we have made use of the hypothesis that all clauses in C;(5) and C;.4(5)
are independent and uniform over A;(V,—;) and A;4;(V,.;) and the fact that
this hypothesis remains true over 4;(V,—;j_1) and A;4 (V- j—1) for all clauses
other than the one from which the chosen literal was taken since the literal was
chosen randomly from the set of smallest clauses.

Corollary 1:

Forall 0 < j < rand 1 <4 < kall clauses in C;(5) are independent and equally
likely to be any clause in A;(V,—;).

Proof:

By induction on 5. The basis step holds because of the assumed distribution
on given instances. The induction step holds because of theorem 1.

Because of corollary 1 a system of differential equations for finding the expected
number of clauses in C;(7) for all 2 < ¢ < k may be obtained. Let n;(5) denote the
number of clauses in C;(7), let w;(7) denote the number of : — literal clauses added
to C;(5) as a result of choosing the 7** variable and let 2;(5) denote the number of
clauses eliminated from C;(7) as a result of choosing the j** variable. These three
terms depend on I and o but this dependence is omitted from the terms for the
sake of simplicity. The w;(7) term may be thought of as representing the “rate of
flow® of clauses into C;(5) when the j** variable is chosen and the z;(5) term may
be thought of as representing the “rate of flow” of clauses out of C;(5) when the 5t
variable is chosen. If the average rate of flow into C; () is always less than 1 the
number of clauses in C;(5) will not, in probability, grow very large since at least one
clause is removed from C)(7) whenever C;(3) # ¢. In this case the probability that
a complementary pair of clauses exists in C}(5) for some j is small. However, if the
average rate of flow into C) (7) rises above 1 for a constant fraction of the values of i
then the number of clauses in C;(7) gets large for a fraction of the values of ;’: since
the flow out of C)(5) is asymptotically no more than one unless |C, (7)| is large. In
this case the probability that there is a complementary pair of clauses in C; (7) for
some j is near 1. Since, as will be seen from the analysis below, if the expected flow
into Cj(7) goes above 1+6 for any § > 0 then it stays above 1 for a constant fraction
of values of , the conditions under which E{w; ()} < 1 for all 1 < 5 < r are the
conditions under which UC and GUC find a solution with bounded probability.
Furthermore, in the case of GUC, if the average “rate of flow® of clauses into Cs(7)
is always less than one then the average number of clauses in C;(3) is o(1) and
the probability that a complementary pair of unit clauses is encountered on any
iteration tends to gero. Thus, the conditions under which E{ws(5)} < 1 for all
1 < j < r are the conditions under which GUC finds a solution with probability
tending to 1.

We now develop the differential equations for finding E{w; ()} and E{ws(5)},
solve them and find the conditions on 2 which cause E{w;(5)} < 1 and E{ux(j)} <
1forall 1 < j < for GUC and which cause E{w;(5)} < 1forall1 < j < r for UC.
Later, it will be shown that these results imply the desired probabilistic results.

Consider UC first. Clearly, for 1 <s < k
ni(5 +1) = m(5) + wi(5 +1) - (5 + 1)
Taking expectations gives
E{ni(j + 1)} = E{ni(5)} + E{wi(5 + 1)} — E{z(5 + 1)}
which can be written
E{ni(j + 1)} - E{ni(5)} = E{ws(5 + 1)} - B{z(5 +1)). (1)
7

For large r we can approximate (1) by

dE{n;(7)}
~F

But, forall2<s<k

= E{wi(5 + 1)} - E{z(5 +1)}. (2)

E{z(5 + 1)} = E{E{z(5 + 1)/m(5)}}

= B n.-(_ﬂ} _ 2+ E{ni(s)} (3a)

r—J r—j

because of corollary 1. Also, forall 1 <s <k
E{wi(5 + 1)} = E{E{wi(5 + 1) /ni41(5)}}

_ B+ xnia(5), _ (E+1) = B{nii(5)}
BRI O B e o &)

and
E{we(s +1)} =0.

Therefore (2), for 2 < s < k can be written

dE{ni(7)} _ (6+1) * B{nis1(5)} _ i+ B{ni(5)}
4 2(r - 3) &

(4a)

and
dE{mi(7)} _ _k* E{n(5)} (4b)
4 r—;3

The solution to these differential equations under the assumption that E{ni(0)} = n
and E{n;(0)} =0forall1 <si<kis

Theorem 2:
Forall2<s<k
s = 52 (%) (1-2) ()
Proof:

Straightforward solution to (4a) and (45).

8

Theorem 2 can be proved another way: the number of clauses in I containing
¢t > 1 literals at iteration j is binomially distributed with parameters n and p =
2(.2,) ("79)/(2*(5)). The mean is np which tends to the expression in Theorem 2
when r — co. We have used differential equations to prove Theorem 2 to prepare
for the analysis of GUC.

Using Theorem 2 we can find the conditions under which E{w, (7))} <1 forall
1<j3<r.

Theorem 3:

Given that inputs to UC are distributed according to M(n,r, k),

al—l

k-2
if k>3 and limp, ;oo 2 < 22 (522) 7 then VI <5<, E{wy()} <1.
Proof:
From (3b) and Theorem 2

s -2 L0 (09 (075

r—3 r) \r r

Taking the derivative gives

dE{':;(.f)} . 2:_ i (:)g [("_:El (%-)k-a (1) %)] % (%-)k—z‘l |

This is gero when j = £=2r. Substituting E=2+ for 5 in (5) and setting

E{w, (-:—E%r + l)} < 1 gives, for large r,

n 2kt fp_1*2
r <k (k—z) :

Now consider GUC. We can use (2) to model the accumulation of clauses in
Ci(y) for all 2 < ¢ < k but the flow equations of (3a) and (3b) must be changed.
Equations (3a) and (3b) may still be used for E{z(j + 1)} and E{w;_,(5+ 1)} if
the 5 + 1 literal (I) is not chosen from C;(5). Thus the expectations conditioned
on the event ! ¢ C;(y) are

E{z(5 +)i ¢ Ci(9)} = ¢+ E{n;(7)|l Ci(5)} (6a)

r—g

9

and :
E{w_;(5 + 1))l ¢ Ci(5)} = s B{ny(5)|l ¢ Os(.ﬂ} (6)
2(r - 3)
If the 5 + 1 literal is chosen from C;(5) then one of the clauses of Ci(7) is surely
removed from I so (3a) and (3b) become

E(s(i+ D e G(j) = 2O Ga} -0 (7a)
and
Bui-(i+ Dlte Gy = DGR -1 (™)

The probability that is chosen from C;(;), denoted Pi(7), and (6a), (6b), (72) and
(7b) can be used to compute E{z(j + 1)} and E{w;_;(5 +1)}. We have

E{z(5 +1)} =
E{z(7 + 1)L ¢ Ci(5)} * (1 - pi(5)) + B{z(5 +)|l € Ci(5)} * i(9)
_tx };‘-}'{—-n;(j)} +pi(7) * (1 - _.-.:_) (8a)

and
E{wi1(7+1)} =

E{wiea(5 + D1 ¢ Ci(3)} + (1 - pi(5)) + Efws—y (5 + 1)L € Ci(9)} * p:(4)

_1xE{n(5)} :
= —Ezr—_—'ﬁ-—ﬁ(ﬂ*m- (82)
The differential equations are:
dE{zf(f)} _ ks IE‘{_n;(J")} —— (1 _ :f—,) i

and forall2<s<k-1

dE{ni(5)} _ G+1)+ B{nisi(5)} i+ B{ni(5)}

dj 2(r - 7) |
“maali)e g - mt) s (1- 7). (9%)

10

Let ym, if it exists, denote the minimum j for which E{wx_pm(5)} > 1 and
let jmax(v) be the value of j for which E{w;_,(5)} is maximum where v is the
maximum ¢ such that 5 exists. We will use jmay When the precise value of v is
unimportant. As for UC we will find the conditions that guarantee
E{w; (Jmax(k — 1))} < 1 in the case of GUC. Also, we will find the conditions that
guarantee
E{w3(jmax(k—2))} < 1 for these will also be the conditions under which GUC solves
random instances of k — SAT in polynomial time with probability approaching 1
as r — 00.

Lemma 1:
If jmax = cr where a is a constant between 0 and 1 then

3) V2<i<k-1,V1<ji<s E{lwi_.(5)} =0(1/r).

b) VI<SmM< k-2 jm < Jmt1 < Jmax if fm and fimyq exist.

) V1<i<k-2 V1<5< i p(3)=00/r).

d) V2<i<k-1,V1<j<a 2EEGL - o(1/r).

) V2<i<k V1S5S jmas 0ild)* 75 = O(1/r).

f) 51 = 1if it exists.

Proof:

a) Since GUC always chooses the next literal from a emallest clause, E{n;(0)} =0
foralll1 <¢ < k—1and E{wi(5)} <1lforl<j< iy, E{n;(5)} is less than a
constant forall 1 < j < ji—i. Therefore E{u;_,(5)} = O(1/r)for1 <5 < Jr—io

b) Follows from a).

c) From a) E{w;(5)} = O(1/r) forall1 < § < jx_;_;. But pi(7) can be no greater
than the maximum rate at which clauses enter Ci(5) which is the maximum
E{wi(7)} over 1 < j < jr—i—1.

d) From the proof of a) E{n;(5)} is less than a constant for all 1 € 7 < Jx—i. The
desired result follows.

e) Obvious.

11

f) Since E{nx(0)} = n, E{wr_,(1)} is approximately kn/r. This is greater than
1 if 5, exists because, from (9a) and (8b), E{wi_,(j)} is nonincreasing as j
increases.

Lemma 2:

a) V1<i<k-2 BV Jk—io1 <7 < Jk—i; E{wi1(5)} > 1 and E{wi(5)} <1
then V jk—i—1 < J < Jk—i, Pi(9) = E{wi(5)} — o(2).

b) V1S4 k=1, VY jhcs < < Ghins, B{ui(3)} > 1 and Efug_y(3)} <1
then V jr—i <J < Jk—i+1, Pi(9) = 1 — E{wi_1(5)} + o(1).

C) Vi < % S k, ifv jk...g’.'.l < J < jmax 3 %’(J) <t s.t. E{w‘:(:')(j)} Z 1 and
Pi(Jk—i+1) = o(1) then Y3k _i41 < 7 < Jmax Pi(9) = o(1).

Proof:

a) Since the ratio of n to r is assumed to be a function only of k, E{n;,1(5)}
rises no faster than linearly with j. Therefore E{w;(7)} rises no faster than
O(1/r) per iteration of GUC. Thus, as r approaches infinity p;(5) approaches
the steady state equilibrium probability that there is at least one clause in
Ci(7). Since E{w;(5)} < 1, E{w;_1(5)} = O(1/r) and GUC always chooses
the next literal from a smallest clause, the equilibrium probability is, in the
limit, E{w;(5)}.

c) The 7 +1° chosen literal will be chosen from C;n(;)(5) where £”(5) < #'(5) for
all Jx—s+1 < 7 < Jmas in the limit.
b) Follows from a) and c) of Lemma 2 and c) of Lemma 1.

The following differential equations result after using the results of Lemma 1
and Lemma 2 in (9a) and (9b) provided the conditions of Lemma 2 are satisfied:
for all 1 < 5 < Jmas

dE(m(0)} _ _k+ E{m(s))

& r—7 —O(l), (loa)
foral1<j<sr—sandforall2<t<k-1
B} _ o), (100)

forall s <j<gr—s41andforall2<s<k-1

dE{ni(i)} _ (i+1)* E{nisa(i)} _ i+ E{m(s)}
&G 2 —17) 2(r—2)

12

-1+40(1), (10¢)

and forall Jx_¢31 <J < jmaxandforall2<:<k-1

dE{ni(5)} _ (+1)* E{ni+1(5)} ¢ * B{ni(5)} o
g 2(r - 7) pog oM)

The solutions to (10a)-(10d) follow. These solutions were obtained first for
J1 £ 3 < 73 then for 5 < 7 < 75 and s0 on. It is easy to check that the conditions of
Lemma 1 and Lemma 2 are satisfied for each interval before solving the appropriate
differential equations for that interval. The solution to (10a) for all 1 < 7 < fmax
under the boundary condition E{ni(0)} = n is

.k
E{ni(3)} = (1 . ;’;) n—ofr). (11a)

The solution to (10b) for all 1 < 5 < jk_; under the boundary condition E{n;(0)} =
Oforall 1<s<k-—1is

E{ni(5)} = o(r). (116)
The solution to (10d) for all jk_i4+1 < § < jmax under the boundary condition

¢ * E{n;(9k—is1)}
2(r ~ Jk—i+1)

E{w;_1(fk—i41)} = ~ Pi(Fr—it1) * =1 (11d")

2(r — Jk—si41)

B = 5 (") ()" (1-2) comtliocmer+ot) (10

m r
m=0
where, forall3<:< k-1
E{ri(e—i1)}

const(Jk—¢41) = : (1 - ;g-_;u)' o(1)
= :é zim (m':‘- '.) (%) mconst(,fk_.'-m-q-n) (112)

and const(j;) = n/r. The solution to (10c) for all 3<s < k—1 and
Jk—i < J < Jr—is1 i8

E(w(7)} = dota(i-s) (1~ £) e 2—(—122)— +ofr)

%

13

k—i—1 - o B
m+1/m+s+1 3 7 a
- Z gm+1 (m+1) ;) (l i ;) const(Jk—s—m)rx

m=0
proGrd
where
dots(fe—;) = ‘—f-z- (1 - &;‘-1)1— ~o(1)
CE) () () et
iM((z En_()+(zl+_1;:_) (1e)

and for all jx_3 < 7 < Jmax

E{n3(7)} =r (1 - ‘-:_-) In (1 - -) +r (l - —) dots(sx—3) + o(r)

E R e £
where -

dots(sk—3) = —In (l - ‘?k"’) —o(1)
k-3 . m 2
E m+1(m+3\ (k-2 Je—2 .
+m=0 2m+T (m + l) (—"_) (l - T) Ol

Fom() " (1-d) -

& (m- DI+ 2!

The points 3 which exist are the points at which

(k—i+1) = B{ne_is1(5)}
2(r-7)

E{w—i(7)} = +0o(1) =1.

14

Thus the following expression locates, in the limit, the points 5 for 2 <s < k — 2:

i-32 . .\ m . \ k—i+1
1=~ 5 TG () (B) 7 (1-2) T comstliomeal
m=0
_ .\~ N e
m i (E=itl)1(8)7 (1- &) _k—i+1 dots(iny) (l_;_;-)—r"" (ki)
= (m—l)!(i‘;;'il+l+l)! k—¢—1 2 r ()
13

The following expression gives the limiting value of E{w;(5)} for ji_s < 5 <
Jmax(k — 1):

e | Ry |
B () (- 2) et 3o 28
£ (1 B g) + okl s): (14)

The maximum of E{w;(5)} in the limit can be computed numerically for a given
ratio of n to r and for k > 4 as follows:

FINDMAXFLOW (n,r,k) :
const(s;) := n/r
dots(s;) := k/(k + 1) * const(s;) + 2/(k — 3)
for ¢ := 2 to k — 2 do begin
Locate 3 using (13)
Compute const(3;) using (11d°) and (11d”)
Compute dots(%) using (11¢’) and (12b)
End
ti=k-1
Locate 7 such that E{w;(5)} is maximum using (14)
Return E{w,(5)}.

Note that for 1 <t < k-2, 1;- is a function only of k since 2 is assumed to be a
function only of k. Also, note that L is a function only of k where 7 is located by
the next to last line of FINDMAXFLOW.

Using FINDMAXF LOW the maximum ratio of n to r giving
E{w1(Jmax(k — 1))} < 1 may be found. The following table lists these results for
values of k from 4 to 40. Inspection of the table reveals that E{w, (Imax(k-1))} <1

y k-2
ifn/rislessthanl'%%:—’(i,::—;) for 4 < k < 40.

15

'Y DO b =t et et pd GO D o

n/r

5.6

17.8

57.4

191

647

2255
7980
28500
103000
7.14 x 107
5.57 x 10!

L T
. - (ﬁ“-—;)

5.56

17.24

55.4

184

630

2203

7822
28113
102078
7.14 x 107
5.54 x 1010

FINDMAXFLOW can be modified to find the maximum ratio of n to r
giving E{wy(5)} < 1 for all 1 < 5 < r: replace the line *for ¢ := 2 to k — 2..°
with the line “for ¢ := 2 to k — 3...2, the line “Return E{w; ()} with the line
Return E{ws(5)} and the line “Locate j such that E{w;(7)}...> with the line
“Locate j such that E{ws(5)} is maximum® where E{w;(5)} is obtained by di-
viding (11c) by .666 * (r — 7). The following table lists the results for values of k

from 4 to 40.

k
4
6
8
10
12
14
16
18
20
30
40

n/r

2.5

9.6

32.6

110

380

1330
4711
16980
61700
4.3 x 107
3.35 x 10

1.845+2%2 (3 *2
k+1 k=2

3.27
10.27

33

110

376

1315
4669
16785
60047
4.26 x 107
3.32 x 10%°

We now prove the main results. In the theorems below k is regarded to be a

constant.

Theorem 4:

16

UC verifies that a solution exists for satisfiable instances generated according
to M(n,r,3) with probability greater than ¢ for some ¢ > 0 when
¥ k—3
limp,¢voo 2 < 2 (E" -
Proof:

From theorem 3 E{w;(7)} <1 forall 1 < j <y when

¥ k-2
limppo0 2 < ’—"k—l (%{—;) . From corollary 1 the clauses entering C; (5 +1)
from C;(5) are statistically independent. Suppose all clauses entering C, (5+1)
are regarded as entering C;(j + 1) in some order which is decided arbitrarily.
Then the probability that the ¢** clause entering Cy(5 + 1) is complementary

to no clause in Cy(5 +1) is

1 n1(5)+q-1
11— — .
(2(r - J))

Therefore, the probability that none of the clauses entering C; (5 + 1) is com-
plementary to any clause in Cy(j + 1) is

1 n1(5)2w1(5)+wi(5)*(wi(s)-1)/2
1- -
(2(r - J))

8o the probability that no complementary pair is encountered during a run of
UCis

r—1 1
S (-5

§=0

n1(5)*ws(5)+ w1 (5)*(ws(5)~1)/2
) pr(e..ms (), 1 ())

r—1 75 (na(s) s w1 () +wi(5)*(wi(5)-1)/2)
1\ ™1 . ;
>T (- 7) pr(-.u(3), 1 (7)..)
i=0
1\ s Bt et
- (1_5;) pr(em(i), wi(i)-). (15)

If the sum in the exponent of (15) is less than = (where & is a constant) with
probability bounded from below by 2/3 then (15) is bounded from below by
%(1- .}—,)"‘" which approaches a constant as r approaches infinity if the limiting
ratio of n to r is constant. To show that the sum in the exponent of (15) is
less than % with probability greater than 2/3 we show that the expectation
of the sum is bounded from above by %= and apply markov’s inequality.

17

To show that the expectation of the sum in the exponent of (15) is less than
5c we need only show that the expectation of each term in the sum is less than
5-3- Denote by s,(7) the 5** term in the sum. Then

E{s1(5)}

< 2(:_ 7 (E{wf(J)} e ZZz *8xt*pr(n(7) =¢t,wy(y) = ,)) . (16)

8=01¢=0

The second term within parentheses is bounded by 7 (1 - f_-)!,?- for j < r—¢3/®
and by 4,(1 - f;)% for 5 > r — r®/° where 7; and v, are constants greater than
gero. Consider the first case, 1 < 5 < r — r3/°, Define n; = E{n;(5)} — n3/4
and n, = E{na(5)} + n®/4. Since n(5) is binomially distributed with mean
E{na(5)} proportional to £(1 —)2n, the probability that n; < n2(7) < ny is
greater than 1 — 2¢=""/*/E{n2(3)} from [5] and this is greater than 1 — 2¢~V®
since £{n3(7)} < n. The double sum of (16) can be split into three parts:

Ezzl:z*“‘ *pr(n1(5) = ¢,n2(5) = u, w1 (9) = 3)

8=0¢=0 u=0

+iz Z‘ 2x3xtxpr(ny(7) =¢t,ny(y) = u,w(5) = s)

8=0¢t=0u=n

2.0 D 2ssxtepr(ni(s) = t,ma(s) = wywy () =)

8=01=0 u=mny

< ;8—3—; + 2+ E{w(7)} * E{ni(5)} (17)

in the limit since E{w;(5)} <1forall1 < j < r and [ng — 7| — 0. But
E{w,(5)} is proportional to (1— 2)7 from (3b) and Theorem 2. Also, E{n,(7)}
is bounded by a constant for all 1 < J < r since E{w;(5)} < 1 and at least
one clause is removed from C,(5) if C(5) # 4. So (17) is less than 4, (1 - 1)a
where v, is a constant greater than sero.

18

Now consider the case r — v*/° < 5 < r. In this range pr(w,(5) = &) <
(O((1 - £)2))°/s! since w,(5) is binomially distributed. Furthermore,
(1-%)*" < (1-£)% in this range. Therefore the double sum of (16) is bounded
from above by

37 n n n .
Do Tstrpr(m() =t)+ Y. Zz"*‘("f) -
=0 £=0 8=38 t=0
<74x E{n (7))} +2 (1— '!;) %‘ (18)

Since w; (7) is binomially distributed with mean E{w;(5)} — 0 and E{w, (5 +
1)} — E{w;(7)} = O(1/r) and since UC always chooses the next literal from a
unit clause if one exists, E{n,(5)} is bounded from above by a constant times
E{w}(5)}. It will be shown later that E{w?(5)} is proportional to E{w,(5)}
hence proportional to (1 — 2)2 in the interval § > r — ¢3/°, This and the fact
that 2 is assumed to be a constant less than 2* In(2) results in the following
inequality based on (18):

2,

) .)\ N
2rsxtspr(m(i) =t,wn(f) =) Sm(1-2)2
=0t

B

Il
=]

as r — 0.

We now need to find a bound on E{w?(5)}. But w;(j) is distributed bino-
mially hence E{w}(5)} = 0?(w1(3)) + (E{w:(5)})? < E{w:(5)} + (E{w:(5)})?

and ;
E(w}(2)} <n(1-2)2.

Let v = max{7;,73}. Substituting 4(1 — £)2 for the double sum in (16) and
then 73 * (1 — 2)2 for E{w?(5)} in the resulting inequality gives

E{s:(9)} < ("3;") nof.2

From this the expectation of the sum in the exponent of (185) is less than £2,
By markov’s inequality the probability that the sum is greater than =2 js Jess
than 1/3. Therefore, the probability that the sum is less than £R is greater
than 2/3. Thus (15) is greater than 2(1 — :1-)2"* which approaches 2.~ as
r approaches infinity. Let e = 2(1 - i o=,

2r

19

Theorem 5:
GUC verifies that a solution exists for random instances generated according
to M(n,r, k) with probability greater than ¢ for some ¢ > 0 when

v k-2
limp,rvoo 2 < 3'02:?: 2 (ﬁ:;) and 4 < k< 40.

Proof:

We first introduce a new algorithm UC’ which runs concurrently with GUC:
initially, UC’ is given a copy I of the input I to GUC and each time 2 literal
l is chosen by GUC all occurrences of comp(l) removed from I are removed
by UC’ from I' and all clauses removed by GUC from I are removed by UC’
from I' except the clause containing the chosen literal - the chosen literal in
this clause is replaced with a literal chosen randomly from the set of all pairs of
literals and their complements neither of which have yet been chosen unioned
with {J,comp(l)} and the clause is removed if it contains l, comp(l) is removed
if it appears in the clause and nothing happens to the clause otherwise. Let
#i2(7) and ; (5) have the same meaning as n2(7) and w;(5) except applied to
uc.

The proof follows the proof of Theorem 4 up to (16); all the random
variables in (16) now represent flows and class sizes under GUC. Again we
consider the region 5 < r — 8/°, The double sum of (16) can then be bounded
from above by the same expression in (17) except with (7) substituted for
w; (7) and fiz(7) substituted for ny(5). Let my = E{#2(5)} — n®/* and n, =
E{#,(7)} + n®/4. This bound may be written

n ny

EZZzuﬂ*w(nn(ﬂ = t,f3(7) = 6, B (5) = o)

8=01?¢=0 u=0

n n My

+ZZ E 2%8xtxpr(ny(7) =t,ﬁg(3)=“:'?’l(3) = 3)

8=0t=0u=n;

F1T D 2easteprimli) = t,inls) = u da() =)

8=0¢t=0u=n,

<£'-‘—2—+2tE{u‘:(')} E{ 19
v 1(7)} * E{n1(7)} (19)

in the limit since #;(7) is binomially distributed with mean equal to the mean
of n3(5) under UC. But E{t; (5)} is proportional to (1 — 2)2 since this mean
is equal to the mean of w;(5) under UC. Also, E{ni(7)} is bounded by a
constant since E{w;(5)} < 1 for all j < r — #8/° and GUC always chooses
the next literal from the set of unit clauses when a unit clause exists in 7.
Therefore, (19) is less than ,(1 —)2 where v, is a constant greater than
gero. The double sum in (16) is bounded by y5(1 — f)% for j > r — r2/® by
using the same argument as in Theorem 4 except with Wy (7) replacing w; (7).
Also,

E{wi(7)} < E(@(5)} < (1 - 2.

The remainder of the proof follows the proof of Theorem 4.
Theorem 6:

GUC verifies that a solution exists for random instances generated according
to M(n, r, k) with probability approaching 1 as r — oo when

_ k-2
Iim,m_.oo$<£‘f—;f—’) —~1for4< k< 40.

Proof:

First we show that the terms represented by (16) are O(r~25/ 12) for 5 < r—r2/9,
Consider the double sum in (16) first. From the proof of Theorem 5 the double
sum is bounded from above by (19). Since E{w,(5)} < 1 for all j<r—o
E{n;(7)} is bounded from above by a constant for all < r — ##/° and this
implies E{w,(5)} < % where K’ is a constant. By Little’s law and the fact
that GUC always chooses literals from C, (7)if Cy(3) # ¢, E{n,1 ()} is less than
3 constant times the maximum of E{w;(7)} in the interval j < r— r8/°, Thus
E{ny(5)} = O(r=2/°) for j < r—#2/° and (19) approaches 74(1-2)2+0(r—2/9)
where 74 is a constant greater than gero.

Now consider the E{w}(5)} term in (16). Since E{w,(7)} < ;*’—f—;-,
pr(wi(5) = &) < .. But

— r-’

g/ n
Ewi(} =3 P sprlmli)=o)+ 3 s%spriw(i) = o)
8=0 e=pifo 4]
ri/s n
52’:1I.{'+ 3" 2 xpr(iy(s) = o)
=0 J s=prl/84)

21

l 2 . 8/9
< ;Hjﬁi'+-;;i:377 forally<r—v /

where f is a constant. Thus, for j < r—r2/° the terms of (16) are all O(r~25/18)
where it has been assumed that 2 is a constant. For § > r — v8/° the terms
of (16) are O(1/r) from the proof of Theorem 4. Thus, in (15), the mean of
the sum in the exponent is O(r—2/!8). By Markov’s inequality, this sum is less
than O(r—!/12) and the entire expcnent is less than O(r'7/18) with probability

17/18
greater than 1 - O(r—1/1%), But (1 - 5‘;-)0(')
tends to 1 as r — oo.

— 1 as r — oco. Hence (15)

8. Conclusions

We have presented algorithms for k — SAT based on the Unit-Clause heuristic and
a generalization of the Unit-Clause heuristic and have shown the conditions under
which these algorithms find a solution to a random instance of k — SAT in poly-
nomial time with probability bounded from below by a constant under M(n,r, k).
We have also shown the condition under which the latter algorithm finds a solution
with probability approaching 1 under M(n, r, k). All the conditions are of the form
limp s .o 7 < Fx(k) where X indicates the algorithm and the kind of probabilis-
tic result and Fx(k) = O(2%/k) for all X. This is a dramatic improvement over
the result in [6] which showed that the Pure-Literal heuristic finds a solution to a
random instance of k — SAT in polynomial time with probability approaching 1 as
r — oo under M(n,r, k) if limp r 0o 2 < 1. However, it is likely that a random
instance has a solution with probability approaching 1 if limy, » e 2 < O(2%).

The method used to obtain the result is general enough to be used to analyze
the performance of similar algorithms applied to other NP-complete problems; two
obvious candidates are the Chromatic Number problem and the Set Cover problem.
The method is also general enough to be used on a variety of input distributions:
these distributions should have the property that all components (clauses in the case
of k — SAT) of the same sige are independently and uniformly chosen from the set
of all possible components of that size consisting of variables given in the problem
instance. For example, this method can be used to get performance results for
SAT under the constant-density model. Finally, if flow equations are too difficult
to solve, a numerical solution usually is possible. For example, an algorithm for
which flow equations can be written but are hard to solve is UC modified so that a
chosen literal always occurs more often than its complement (the variable is chosen
randomly and then the maximum occurring literal associated with that variable is
the chosen literal).

References

[1] Brown, C.A. and Purdom, P.W., *An average time analysis of backtracking,®
SIAM J. Comput. 10 (1981), pp 583-593.

[2] Chao, M.T., “Probabilistic analysis and performance measurement of algo-
rithms for the Satisfiability problem,”® Ph.D. Dissertation, Case Western Re-
gerve University (1984).

[3] Chao, M.T. and Franco, J., “Probabilistic analysis of the Unit Clause and Max-
imum Occurring Literal selection heuristics for the 3-Satisfiability problem,”
Indiana University Tech. Report (1984).

[4] Davis, M. and Putnam, H., ®A computing procedure for quantification theory,”
J.ACM 7 (1960), pp 201-215.

[5] Erdos, P. and Spencer, J., Probabilistic Methods in Combinatorics, Academic
Press, 1074.

[6] Franco, J., “Probabilistic analysis of the pure literal heuristic for the satisfia-
bility problem,” Annals of Operations Research 1 (1984), pp 273-289.

[7] Franco, J., “Sensitivity of probabilistic results on algorithms for NP-complete
problems to input distributions,” Case Western Reserve University (1984).

[8] Franco, J. and Paull, M., “Probabilistic analysis of the Davis Putnam Proce-
dure for solving the satisfiability problem,® Discrete Applied Mathematics &
(1983), pp 77-87.

[9] Goldberg, A., ®Average case complexity of the satisfiability problem,” proc.
4** Workshop on Automated Deduction (1979), pp 1-6.

[10] Goldberg, A., Purdom,P.W. and Brown, C.A., “Average time analysis of sim-
plified Davis-Putnam procedures,” Information Processing Letters 18 (1982),
pp 72-75.

(11] Purdom, P.W., “Search rearrangement backtracking and polynomial average
time,” Artificial Intelligence 21 (1983), pp 117-133.

[12] Purdom, P.W. and Brown, C.A., *The pure literal rule and polynomial average
time,” to appear in SIAM J. Comput..

23

