Linear Future Semantics and Its Implementation

by
Stefan Kdlbl and Mitchell Wand

Computer Science Department
Indiana University

Bloomington, IN 47405

TECHNICAL REPORT NO. 162
Linear Future Semantics and Its Implementation
by
Stefan Kolbl and Mitchell Wand

October, 1984

This material is based on work supported by the National Science Foundation under grant

number MCS 83-03325.

Linear Future Semantics and Its Implementation

Stefan Kolbl
Mitchell Wand

Computer Science Department
Indiana University
Lindley Hall 101
Bloomington, IN 47405 USA

This material is based on work supported by the National Science Foundation
under grant number MCS 8303325.

Authors’ address: Mitchell Wand, Computer Science Department, Brandeis
University, Waltham, MA 02254 USA. Stefan K51bl was killed in a bus acci-
dent in Ecuador shortly after completing the first draft of this paper.

Abstract

We describe linear future semantics, an extension of linear history se-
mantics as introduced by Francez, Lehmann, and Pnueli, and show how it
can be used to add multiprocessing to languages given by standard contin-
uation semantics. We then demonstrate how the resulting semantics can
be implemented. The implementation uses functional abstractions and non-
determinacy to represent the sets of answers in the semantics. We give an
example, using a semantic prototyping system based on the language Scheme.

1. Introduction

Linear future semantics is an extension of linear history semantics, as
introduced by Francez, Lehmann, and Pnueli in [1], to languages given by
a continuation semantics. We suppose that we already have a standard
continuation semantics for our language. We want to use it to describe
concurrent systems, after only reasonably simple changes in our semantic
equations.

The purpose of continuation semantics is to model revocable decisions.
Most sequencing decisions in real languages are revocable. For example,
in the compound statement (S;; S3) the statement S, may or may not be
executed following S;, depending on whether S; executes an escape or not.
Some decisions, however, are irrevocable and should be modelled with a flavor
of direct semantics. One example is the production of hard-copy output (2,
Sec. 5.1.4.3].

In this paper we are concerned with other kinds of irrevocable decisions,
such as the communication between processes in a concurrent system, the
termination of processes, and the passage of time. We may describe the
meaning of a process by means of the irrevocable decisions it makes during
the computation. The result is a set of sequences of irrevocable decisions
associated with each process. This set contains all sequences which may occur
if the process is executed. Asin [1], we will call this the set of communication
sequences of a process.

In [1], the semantics kept track of the possible sequences of decisions the
passage of some unit of time without a communication was marked by the
symbol 6 (a “tick”) in the communication sequence. In addition, each op-
eration which took time introduced an uncompleted history (the symbol 1)
into the set of sequences. As a result, processes which never communicated
still made a contribution to the set of sequences. Consequently, no ordering
on communication sequences was needed, and the power set ordering on sets
of sequences sufficed. We will use a similar device.

A direct semantics was used in [1], so that a set of sequences was as-
sociated with each command: the set of communication histories of that
command. Our contribution is to extend this idea to continuation seman-
tics, by making the set of communication sequences be the set of answers of
the continuations. Thus a continuation represents a set of possible commu-
nication futures. The semantics of a command is a transformation on sets of
possible futures.

Given the set of communication sequences for every participating process
in a concurrent system, we will show how to combine these sets in order to
give a description of the whole system, using a coalesced merge as in [1]. This
operation models the irrevocable decisions of process scheduling, etc., so it
is done in direct semantics, operating on the answers from the continuation
semantics. '

In section 2, we discuss linear future semantics in general. We then
apply it to a pre-existing base language with continuation semantics, given
in Section 3. Section 4 shows the required changes to the semantic equations.
In Section 5, we show how the language can be implemented, using a semantic
prototyping system based on the language Scheme [4]. The implementation
uses functional abstractions (suspensions) to model the sets of sequences.

2. Linear Future Semantics

2.1 Linear Future Semantics for a Single Process

In this paper we will deal only with a concurrent system of two processes,
communicating explicitly via messages. Let H be a domain of communicable

2

values, P a set of process names and Msg a set of messages. The set of
communications of a process is the set

Dp = {tick}U{send b | be H}
U{receive b | bec H}U {output b| bec H}

The set of terminators of a process is the set

Tp = { proc-termin msg | msg € Msg}

U { not-done-yet, waiting-to-send, waiting-to-receive }
The set of communication sequences of a process is the set

QP=D; XTP.

Qp consists only of finite sequences; the presence of infinite behaviors
will be deduced from the presence of unbounded sets of finite sequences,
as in [1]. Let 297 denote the powerset of Qp. Then 297 is a semantic
domain ordered under subset inclusion. The linear future semantics for a
stngle process is a mapping

P : (Pgm) — (input-states) — P — 297,

If we apply the linear future semantics of a single process to an input state
and a process name, we receive the set of communication sequences which
can result if the process is executed in an arbitrary environment.

We now take a closer look at the communications and terminators. We
assume that we are in a continuation semantics framework, and we adopt
the general principle that the answer produced by a continuation is the set
of possible communications sequences for this process, that is, the set of
possible futures. Inside a process, therefore, a continuation will be of type
V — 297, A programming language phrase corresponds to a transformer
on continuations. Let x denote a continuation waiting for a result, and
consider some of the plausible operations on x and how they correspond to
the elements of Dp.

1. The action of the program might not include any communication, but
it will consume some amount of time. A tick (the 6 in [1]) denotes
the passage of time. We have to include enough ticks so that every
loop produces at least one tick. This leads to the desired property that
long computations result in long communication sequences, no matter if
the process is actually communicating or not, and therefore least fixed
points work correctly as in [1]. We associate a tick with every time we

3

pass a value v to the continuation, unless a communication takes place.
The future of the process is therefore the set

{tick e | & €kv}.

The process might communicate with the outside world by outputting a
value. We assume that this communication cannot fail and that it does
not require synchronization. The communication output b denotes a
communication with the outside world. Every time the process executes
an output command with a value b we prefix output b to the future of
the rest of the computation, i.e. the future is the set

{output b e | @ € xb*}

where b* is the value passed to its continuation by the output command.

The process may wish to send a value to another process. This com-
munication forces synchronization and it can also fail. If we execute a
send-command with a value b, the future of the process will be the set

{send b o a | @ €kb*}

where b is the value produced by the send command, plus the singleton
set { waiting-to-send } to denote a possible failure.

Similarly, the process may wish to receive a value from another process.
In this case the result is more complex. Because we want to give an
independent semantics for each process, we do not know which value b
is received. To include all possible cases the future has to be the union
of

U {receive b ¢ a | a €«kb}

beH

and the singleton set { waiting-to-receive }.

The terminator not-done-yet has the same function as the symbol L
in [1]. Since the passage of time is a one of the factors in determining the
semantics of a process, we have to include all incomplete communica-
tion sequences which occur during the computation. That means that
every time we append something to the communication sequence, we
also introduce a future consisting of the singleton set { not-done-yet %
Consequently, as in [1], no ordering is needed on communication se-
quences and the power set ordering on 29F suffices.

The singleton set { proc-termin msg} is the future of a process which
has terminated.

2.2 The Linear Future Semantics of a System

We now look at a system of two communicating processes. Let H, P,
Msg be as in the previous section. The set of communications of a system is

Ds = {tick} U {output b | b € H}
and the set of terminators of a system is
Ts = {sys-termin msg | msg € Msg} U { not-done-yet, deadlocked }.
The set of communication sequences of a system is
Qs =D xTs

Again, 295 is the semantic domain of sets of communication sequences.

{ deadlocked } is the future of a system which ran into a deadlock. (In
[1], this was denoted by e()). This can happen either if both processes are
waiting for each other, or if one process is waiting for a communication while
the other one has already terminated. {sys-termin msg} is analogous to
{ proc-termin msg} and is the future of a system whose processes have all
terminated, and { not-done-yet } denotes an incomplete computation.

We are now ready to define the “binding” operator merge, which per-
forms a coalesced merge on two sets of communication sequences. It is based
on the function filter, which takes two single communication sequences and
produces a set consisting of all the possible ways in which the two sequences
may be combined consistently.

merge : 295 x 29s —, 2@r

merge(Q1,Qz) = | J filter (n1,n2)

N1€EQ
M2€EQ2

where 1, and 5, are single communication sequences. The definition of filter
is

filter (n1,n2) =

[if first(n:) € Nonsynch
then { first(n;) e a | a € filter(rest (n1),n2) }]

U [if first(n2) € Nonsynch
then { first(nz) e a | a € filter(ny, rest (n2)) }]

U [if (36)((first(n,) =send b and first(n,) = receive b)

or (first(n,) =receive b and first(n;) = send b))

then {tick e o | a € filter(rest (1), rest (n2)) }]

U [if length(n,) = 1 and length(n;) = 1
then filter-termsnator (n:,n2) |

5

ndy wis wtr proc-term msg,

ndy {ndy} {ndy} {ndy} {ndy}
wis {ndy} {dik} {ndy} { dik}
wir {ndy} {ndy} {dik} { dik}

proc-term msg,| {ndy} {dik} {dik} {sys-term msg* }

Legend: ndy = not-done-yet, wts = waiting-to-send, wir = waiting-to-receive,

proc-term msg = proc-termin msg, dlk = deadlocked.

Table 1. Definition of filter-termsnator

Here, as in [1], we assume an “else 0” appended to each clause, and we
let Nonsynch = {tick } U {output b | b € H} be the subset of Dp which
contains only the elements that do not force synchronization. In this defini-
tion, if either sequence starts with such an element, that element may occur
first. If both sequences start with a matching synchronizing communication,
then the outside world sees only a tick. If both sequences consist only of a
terminator, then more care is required. In any other case, if the sequences
disagree on the value of the transmission or if only one sequence consists only
of a terminator, the pair is regarded as inconsistent and does not contribute
anything to the answer. Because all sequences are finite, the recursion in
filter poses no difficulties.

filter-terminator is defined in Table 1. It may be regarded as a transcript
of 0y X o3 in [1] for the case of two processes. The message msg* may be a
combined message of msg, and msg,.

3. The Base Language

Our base language is a simple expression language with input and out-
put, but without multiprocessing. In the next section we will add multipro-
cessing and show the changes in the semantic equations.

The language is described in Table 2-Table 6. It is an off-the-shelf ex-
ample we have used for several years to illustrate continuation semantics. It
is an expression language which manipulates Lisp S-expressions, has func-
tions as first-class citizens, does input and output, and has escapes (to the
top level only). It is not intended to be minimal, but using this non-minimal
example will help illustrate how our techniques can apply to pre-existing
languages.

The presentation is relatively standard, except for the function casefn
to choose between alternatives in a disjoint union. casefn: (4 + B) — (A —
C) — (B — C) — C may be defined as:

casefn = Az fg.(z € A) — f(z A), g(x B)

6

(Pgm) ::= (Ezp)

(Ezp) ::= (Const)

(Ezp) ::= (Ident)

(Ezp) ::= (error (Msg))

(Ezp) == (if (Ezp) then (Ezp) else (Ezp))

(Ezp) == (fn (Ident)(Ezp))

(Ezp) := (rec (Ident)(fn (Ident){Ezp)))

(Ezp) ::= ((Ezp)(Ezp))

(Ezp) ::= (read)

(Ezp) »:= (print (Ezp))
(Const) ::= (Number)
(Const) = (quoted S-ezpr)
(Const) ==t | nil | car | edr | eq | atom | comns
(Ident) ::= (any other atom)

Table 2. Syntax of the base language.

Name Definition Description
Bas = S-expressions Basic Values
5 = Bas" x Bas® States (input, output)
Msg Messages
A = Bas™ x Msg Answers
E = Bas+ F Expressed Values
Ident Identifiers
Env = Ident - E Environments
K =FE—-S5—- A Expression Continuations
F =E—2K—+5—-A Functional Values

Table 3. Domains for the base language.

P :(Pgm) — Bas® — A
£:(Ezp) > Env—>K— S— A
C:{Const) - E

Table 4. Valuations for the base language

4. Adding Multiprocessing

To add multiprocessing to this base language, we first change the syntax

7

Pl{Ezp)] = Aw.E[(Ezp)])(M . “unbound”)(Av.terminate] “termin”])(mk-state wempty)
E[{Const)] = Apk.c(C[(Const)])
E[(Ident)] = Apk.p((Ident)) = “unbound” — terminate]| “unbound id”], x(p({Ident)))
€ [(error(msg))] = Apk.terminate| “Error”(msg)]
E1(if (Ezp)othen (Ezp),else (Ezp),)] = Apx.E[(Ezp)o] p (AB. B # nil — E[(Ezp),lox, E[(Ezp),]ox)
E[(fn (Ident) (Ezp))] = Apk. k(snE(Avky. E[(Ezp)]p(v/(Ident)]k,))
€[(rec (Ident), (fn (Ident), (Ezp)))] =
Apk.k (fiz(A0. inE (Avk,.E[(Ezp)]pl6/(Ident)][v/(Ident),]x,)))
E1((Ezp), (Ezp),)] = Apk.E[(Ezp),]o(Av.
casefn v (Ab.terminate] “attempt to apply non fen”] Y(Af.€[(Ezp),]p(Xa.f ak)))
€ [(read)] = Ap.do-read
[(print(Ezp))] = Apx. E[(Ezp)]p(do-print«)
Clcar] = snE(Avk.
casefn v (Ab.k (snE(car b)))(Af.terminate] “can’t take car of fcn”]))
Cledr] = inE(Avk.
casefn v (Ab.k (snE(cdr b)))(Af.terminate] “can’t take cdr of fcn”])) -
Clatom] = inE (Avk.
casefn v (Ab.k (snE(atom b)))(Af.terminate| “can’t take atom of fen”]))
Cleq] = inE(Avy k1.casefn vy -
(Aby .1 (tnE (Avako.casefn vo
(Aba.k2 (inE(eq by b2)))
: (A f.terminate[“can’t eq fcn]))))
(A f.terminate] “can’t eq fcn”]))
Clcons] = inE(Av; &, .casefn v;
(Aby .6y (¢nE (Avoko.casefn vo
(Aba.k2 (nE (cons by b2)))
(A f.terminate] “can’t cons fen™]))))
(A f.terminate] “can’t cons fcn”]))
Clt] = inE(t)

etc.

Table 5. Semantic Equations for the Base Language

mk-state = Aw; wo.(w;, wa)

do-read = Ako.null?0, — terminate| “eof on read”|o, « (firsto,)(mk-state (resto,) o3)
do-print = Akvo.casefn v (Ab.kv(mk-statec(02||b)))(Af.terminate] “can’t print fcn”|jo)
terminate = Amsgvo. (02||msg)

casefn = Avf, fo.v € Bas — f, (v|Bas), f2 (v|F)

Table 6. Auxiliaries for the Base Language

to add the new nonterminal (Sys) with the production
(Sys) == (parbegin (Pgm) (Pgm))
and to add productions for the communication primitives:

(Ezp) ::= (receive)
(Ezp) ::= (send (Ezp))

We now address ourselves to the problem of defining the semantics of
the altered language. We assume the processes have independent local states
and communicate only via sending and receiving messages. We should be
able to give the new semantics with only few changes in our equations, and
still describe the concurrent system in a sufficient way. The semantics of a
program will now be a mapping from two input-states (one for each process)
into a set of communication sequences. The associated semantic domains are
297 and 295, as shown in section 2.

The semantics domains Bas, Msg, Ident, S, and Env are the same as in
the base language. To these we add the following:

H = Bas Communicable Values

P o= {1,2] Process Names

As = 29s System Answers

Ap = P —29r Process Answers

K = E—-S— Ap Expression Continuations
F = FE-—>K-—-S— Ap Functional Values

We included the set P of process names. Our example is so simple that
it would be possible to dispense with process names entirely. Nonetheless,
considering a possible extension to a system of more than two processes, we
chose this place to add them. By associating P with the answers Ap we

9

relieve most of the equations of the need to deal with process names. The
valuations are now

§:
P:(Pgm)— S — Ap
€ :(Ezp) > Env—> K — S — Ap
C:(Const) - E

We next modify the semantic equations to produce these sets of com-
munication sequences, in accordance with the protocol in Section 2.

1. We add the new top level

S[(parbegin (Pgm), (Pgm),)]
= Awjwy.merge (P [(Pgm), Jwil, P[(Pgm),|ws2)

Note that this is a direct semantics, since merge deals with the answers
from the two processes. We also add two new equations for our com-
munication primitives:

E[(send (Ezp))] = Apk.E[(Ezp)]p(do-sendk)
E[(receive)] = Apk.do-receive k

where do-send and do-receive are defined in Table 8.

2. To define the interface between the processes and the outside world,
assume that the processes read from separate input streams (part of
their local state), but write to a single shared output stream. Thus
the print expression is associated with the output action of Section 2.
Hence the second component of the state domain (used for maintaining
the output stream) is no longer necessary. We do not alter it, however,
in order to minimize the changes to the semantics.

3. Every appearence of kv for some continuation & and some value v is
replaced by (do-outputk v) inside the do-print-routine and by do-tickxv
elsewhere, where do-output and do-tick are defined in Table 8.

4. The terminator is now defined as
terminate = Amsgvon.{ proc-termin msg}

The definition of merge is the same as in Section 2.3.

This is a complete list of the necessary modifications. For an extension
to a system of more than two processes, do-send and do-recetve would include
the process names, and merge would match them. Table 7 gives a complete

10

list of the semantic equations of the concurrent system. Table 8 gives a list
of the auxiliaries.

5. The Implementation

Our final goal is to implement our language in a natural and correctness-
preserving way. We use for our implementation language the semantic pro-
totyping system described in [4]. This is a suite of tools based on Scheme 84
[3]. Scheme is a dialect of Lisp with lexical scoping and functions as first-
class citizens. Though its reduction is applicative order rather than leftmost,
it is adequate for modelling the reductions of continuation semantics in the
lambda-calculus. Added to this base is a type-checker and a syntax-directed
transducer generator, which permit a rapid transcription of semantic equa-
tions.

As with the semantics, we started off with a pre-existing implementation
of the base language, and our goal was to implement the modified semantics
with as few changes as possible.

The major decisions for the implementation are the choice of represen-
tations for the various semantic domains. In general, we need not represent
every possible value in a domain; we need only represent those that are
reachable in the course of a computation. This often simplifies the represen-
tations.

The most crucial decision is the representation of the sets of communi-
cation sequences. For the implementation, we are not interested in the set of
all possible communication sequences as a result of a computation. We are
interested instead in choosing one of those possible results. We are also not
concerned with incomplete computation sequences. Their purpose was to es-
tablish a simple ordering on our domains. Since we know that this ordering
exists and that we can define the least fixpoint, we can confine ourselves to a
single complete sequence as an answer. This sequence has to be chosen out
of the set of all possible sequences. We also want to ensure that we make a
fair choice, i.e. that every complete communication sequence has the same
chance to be selected.

These considerations lead us to the following representation decisions:

1. We can ignore sequences ending with not-done-yet. Incomplete se-
quences are represented by an actual “not-done-yet”, s.e. our computa-
tion is not yet finished.

2. We can also ignore sequences ending with waiting-to-send or waiting-
to-receive. We represent these sequences with real waiting, t.e. in
merge we only process sequences which are not headed by a send or
receive communication, unless we encounter a matching pair of com-
munications. We get a deadlock if either both sequences are headed

11

S[(parbegin (Pgm), (Pgm),)] = Aw;w;.merge (P[{Pgm),Jw,1, P[(Pgm),]w,2).
(Ezp)] = Aw.E[(Ezp)](A]. “unbound”)(Av.terminate] “termin”])(mk-state wempty)
(Const)] = Apk.do-tick k (C[(Const)])
(Ident)] = Apk.p((Ident)) = “unbound” — terminate| “unbound ¢d”], do-tick x (p({Ident)))
(error(msg))] = Apk.terminate] “Error”(msg)]
(if (Ezp)othen (Ezp) else (Ezp),)] = Apk.E[(Ezp),] p(AB-B — E[(Ezp),lok, E[(Ezp),]pk)
(fn (Ident) (Ezp))] = Apx.do-tick & (snE (Avk,y. E[{Ezp)]p[v/{Ident)]x;))
(rec (Ident), (fn (Ident), (Ezp)))] =
Apk. do-tick k (fiz(A0. inE(Avky. E[(Ezp)]p[6/(Ident),][v/(Ident),]x,)))

El((Ezp), (E2p),)] = Apx.E[(Ezp),Jp(Av.
casefn v (Ab.terminate] “attempt to apply non fen”] Y(Af.E[(Ezp),]o(Aa.f ak)))
€ [(read)] = Ap.do-read
€[(print (Ezp))] = Apx. E[(Ezp)]p(do-print &)
€ [(send (Ezp))] = Apk. E[(Ezp)]p(do-sendk)
€ [(receive)] = Apx. do-recesve k.
Clcar] = inE(Avk.
casefn v (Ab.do-tick k (inE (car b)))(A f.terminate] “can’t take car of fcn”]))
Cledr] = inE(Avk.
casefn v (Ab.do-tick k (inE (cdr b)))(Af.terminate] “can’t take cdr of fcn”]))
Clatom] = snE(Avk.
casefn v (Ab.do-tick k (inE(atom b)))(Af.terminate[“can’t take atom of fcn™]))
Cleq] = inE (v, k,.casefn v,
(Aby.do-tick k, (inE(Avaky.casefn vo
(Abg.do-tick ko (tnE(eq by b2)))
(Af.terminate[“can’t eq fen]))))
(Af.terminate] “can’t eq fcn”]))
Clcons] = inE(Av, &;.casefn v,
(Aby.do-tick k1 (snE(Avaky.casefn vy
(Abg.do-tick ko ($nE(cons by by)))
(A f.terminate] “can’t cons fcn”]))))
(Af.terminate] “can’t cons fcn]))

[
Pl
€l
¢l
£l
£l
¢l
¢l

Clt] = inE(2)

etc.

Table 7. Equations modified for multiprocessing

12

mk-state = Aw; wo.(w;, wa)
do-read = Ako.null?0; — terminate[“eof on read”]o, do-tick « (firsto,)(mk-state (restay) o)
do-print = Akvo.casefn v (Ab.do-output k v (mk-stateo,(o3||b)))(Af.terminate[“can’t print fen”]o)
terminate = Amsgvow.{ proc-termin msg }
do-tick = Akvorw.{tick e @ | a € kvor} U {not-done-yet }
do-output = Akvor.{outputv e | a € kvor } U { not-done-yet }
do-send = Akom.casefn v(Ab.{send bea | a € kvor}
U { waiting-to-send, not-done-yet })
(Af. terminate] “can’t send fen”])

do-recetve = Ako. U {receive b e a | a € kbow} U { waiting-to-receive, not-done-yet }
be H
casefn = Avf fa.v € Bas — fi (v| Bas), fo(v]| F)

Table 8. Auxiliaries for multiprocessing semantics

by a send communication, or both are headed by a receive communica-
tion. We will also get a deadlock if one process has terminated whereas
the other one still has a communication sequence headed by a send- or
receive- communication.

3. Whenever we have a set of sequences representing possible futures, we
will suspend the choice until it is needed. Hence, a continuation, instead
of being a function V' — 295 becomes a function V — Qs which
performs the selection (perhaps implicitly). For example, if we have a set
of sequences associated with a receive-command, we always choose only
one sequence out of this set by waiting for the value b of the matching
send b. The representation of the set

U {receive b ¢ o | a € kbor}
beH

becomes the function
(Ab.k"bor),

where &' is the representation of x that makes the choice.

We now give the description of the representations, and show how they
are translated into the language of the Scheme 84 transducer generator. In
many cases we have used a fairly coarse representation, in that not every
element of the representation corresponds to an element of the represented
type.

13

Tp = { proc-termin msg | msg € Msg}
(define-type-abbrev proc-termin msg)
Ds = {tick } U { output b | b € Bas}
(define-type-abbrev sys-comm (heterogeneous))
In the implementation, Dy is represented as (heterogeneous), as this
information need not be type-checked.
Ag = 2Qs
(define-type-abbrev sys-answer (list sys-commun))
As discussed above, terminators are not represented, and sets of possible
sequences are represented by the chosen sequence.
Ap = P — 2@r
(define-type-abbrev proc-answer (-> (seq procname) proc-commun-seq))
This brings us to the key data type, that of process communication

sequences. We use the domain (Dp + Tp)* to represent these sequences.
The equations for the types in the representation are:

Qp = (Dp +Tp)*
Dp = Dgs + C, + C,
C, = Bas — Ap
C, = Bas

(define-type-abbrev proc-commun-seq (list proc-commun))

(define-type-abbrev proc-commun
(quadrunion
sys-commun
(-> (seq bas) proc-answer)
bas
proc-termin))

Here, quadrunion is a type constructor that constructs a four-way union
type, with a four-way discriminator casecom similar to casefn and injection
functions inP1, inP2, inP3, and inP4.

Thus, a proc-commun is either (1) a sys-commun, corresponding to a
non-synchronizing element, (2) a function from communicable values (bas)
to proc-answer, corresponding to a receive communication, (3) a basic value,
corresponding to a send communication, or (4) a terminator. If the first el-
ement of a proc-commun-seq comes from the second or fourth components,

14

then the remainder of the representing sequence is ignored, as the receive-
function encodes the rest of the represented sequence, and a terminator of
course terminates the sequence. This is an instance of the coarseness men-
tioned previously; here we trade off help from the type-checker against free-
dom of choice of representation.

The new auxiliaries are now

do-output = Akbow.inDp (output b) e k (inE(b))or
do-send = Akvom.casefn v
(Ab.inDp (b) e kvom)
(A f.terminate[“can’t send function”))
do-receive = Akom.inDp (Av.kvom)
do-tick = Akvor.inDp (tick) o kvow

terminate = Amsgvon.inTp (proc-termin msg)

The definition of merge is simpler now. merge only deals with two (pos-
sibly suspended) sequences. We can eliminate the function filter, and merge
becomes directly responsible for scheduling the (simulated) interleaving of
the two sequences. The resulting definition, shown in Table 9, is directly
derived from the definition in section 2.2. We use a function randombool to
introduce nondeterminism in the definition of merge. Consequently, if both
sequences are prefixed by a communication which does not force synchro-
nization, either one may occur first. '

The code for the auxiliaries is given in the Appendix.

We are now ready to translate the semantic equations into the language
of the transducer generator. Par abus de language, we refer to the input
to the transducer generator as the transducer. Some key portions of this
transducer are shown in Table 10. (The entire transducer may be found in
the Appendix).

The transducer is a relatively straightforward bottom-up translator.
Syntactically, it is a list of items. The first item in the list specifies the
parser, which can be written by hand or generated using an interface to the
parser generator yacc [5]. The rest of the items in the list are acttons, one
per production. Each action consists of a production name, the production
itself (to be used by the type checker and the parser generator), dummy vari-
ables, and a body. At each node of the parse tree, the corresponding action

15

merge (e, ez) =
casecom (first(e;))

A ns;. casecom (first(ez))
A nsy.randombool — ns; e merge(rest(e;),ez), ns; o merge (e, , rest(ez))
Are.ns; o merge(rest(e;),ez)
Ase.ns; o merge(rest(e;),ez)
Ate.ns; o merge(rest(e;), e;)

A re; .casecom (first(ez))
A ns. ns o merge(ey, rest(es))
A reo. deadlocked ‘
A se. tick o merge(re; (se), rest(es))
A te. deadlocked

A se; .casecom (first(ez))
A ns. ns e merge(ey, rest(ez))
Are. tick e merge(rest(e,), re(se;))
A se;. deadlocked
A te. deadlocked

Atej.casecom (first(ez))
Ans. ns o merge(e;, rest(ez))
A re. deadlocked
A se. deadlocked
X teg.(tel ® teg)

Table 9. Definition of merge in the implementation.

is consulted. The values of the subtrees are bound to the dummy variables
(like $1, etc. in yacc), and the body is then evaluated.

The transducer is type-checked by associating a type with each non-
terminal symbol. In our case, we declare:

(define-type-abbrev Sys
(-> (seq (list bas) (list bas)) sysans))
(define-type-abbrev Exp
(-> (seq env cont)
(-> (seq state) proc-answer)))

(define-type-abbrev Const value)

(define-type-abbrev Ident (literal))

16

Given these declarations, the type checker then tries to confirm that the
body of each action has the type of the left-hand side of its production, under
the assumption that each dummy variable has the type of its corresponding
non-terminal.

With the help of the typechecker the programming exercise was easy.
Once the program was typechecked, no further debugging was necessary and
the transducer produced the correct answers right away.

6. Conclusions

Starting from the linear history semantics in [1], we gave a new way
to extend a language with continuations semantics to multiprocessing. Our
method was based on the observation that a process makes irrevocable de-
cisions during its computation. We described the semantics of a process in
terms of these decisions. Then we showed a way to combine two processes in
order to describe a concurrent system. Eventually we showed how we have
to modify our results in order to obtain an implementation of the language.
For this implementation we used a transduction facility based on semantic
equations. In this way, we demonstrated that we can use a standard contin-
uation semantics framework, add multiprocessing, and implement the result
in a straightforward way.

An interesting question is the extension of our method to a system
of more than two processes, and to a system where processes are created
dynamically. Statically allocated processes seem manageable by using the
process names more consistently than we have done in our simple example.
Dynamic process creation seems to pose some additional difficulties.

Another theoretical question, not answered in [1] is the following: lin-
ear history (or future) semantics uses only a subset of the power set of se-
quences, as not every set of sequences is a legal set of histories (or futures).
The set must, for example, have the right closure properties with respect
to not-done-yet and tick. Thus the power set is a representation of some
other ordering. We do not know at present just what that ordering is, or what
the proper closure properties are. This is a subject for further research. In
the meantime, linear future semantics appears to be a useful tool for adding
multiprocessing to more realistic languages.

Appendix: Code for Auxiliaries and Transducer

(define-checked do-output

17

(define semP
" (parser-for-semP ., the parser.
(sys ; a production name.
(Sys °lparen ‘parbegin Exp Exp ‘rparen)
. the production:
: Sys -> (parbegin Expl Exp2)
(el e2) ; dummy variables.
(lambda (w1 w2) ; the value of the node.
(merge (((el env$init cont$init)
(mk-state wi nil))
1)
(((e2 env$init cont$init)
(mk-state w2 nil))
2))))
(const (Exp Const)
(c)
(lambda (r k) (do-tick k c)))
(ident (Exp Ident)
(id)
(lambda (r k)
(casefn (r id)
(lambda (b)
(terminate
(1ist "unbound identifier " id)))

(lambda (v) (do-tick k v)))))
(receive

(Exp ’lparen 'receive ‘rparen)

nil

(lambda (r k) (do-receive k)))
(send ;

(Exp °lparen °send Exp ’rparen)

(e)

(lambda (r k) (e r (do-send k))))
.

Table 10. Excerpt from transducer for implementation.

(-> (seq cont bas state) proc-answer)

18

(lambda (k b s)
(lambda (p)
(cons (inP1 (list ‘output b))
(((k (inL b)) 8) p)))))

(define-checked do-send
(-> (seq cont)
(-> (seq value)
(-> (seq state) proc-answer)))
(lambda (k)
(lambda (v)
(lambda (s)
(1ambda (p)
(casefn v
(lambda (b)
(cons (inP3 b) (((k v) 8) p)))
(lambda (f)
(((terminate
(1ist "can’'t send fcn"))
8)
PININ))

(define-checked do-receive
(-> (seq cont) (-> (seq state) proc-answer))
(lambda (k)
(lambda (s)
(lambda (p)
(cons (inP2 (lambda (b) (((k (inL b)) s) p)))
nil)))))

(define-checked do-tick
(-> (seq cont value) (-> (seq state) proc-answer))
(lambda (k v)
(lambda (s)
(lambda (p)
(cons (inP1 (1list ‘tick)) (((k v) &) p))))))

(define-checked terminate
(-> (seq msg) (-> (seq state) proc-answer))
(lambda (m)
(lambda (8)
(lambda (p)

19

(cons (inP4 (list m)) nil)))))

The definition of the function merge follows exactly the definition given
previously:

(define-checked merge
(-> (seq proc-commun-seq proc-commun-seq) sys-answer)
(lambda (el e2)
(casecom (car el)
(lambda (nsi)
(casecom (car e2)
(lambda (ns2)
(if (randombool)
(cons nsi
(merge (cdr el) e2))
(cons ns2

(merge el (cdr e2)))))
(lambda (re)

(cons nsi
(merge (cdr el) e2)))
(lambda (se)
(cons nsi
(merge (cdr el) e2)))
(lambda (te)
(cons nsi

(merge (cdr el) e2)))))
(lambda (rei)

(casecom (car e2)
(lambda (ns)
(cons ns

(merge el (cdr e2))))
(lambda (re2)

(cons (list "deadlocked) nil))
(lambda (se)

(cons (list °"tick)

(merge (rel se) (cdr e2))))
(lambda (te)

(cons (list °deadlocked) nil))))
(lambda (seil)

(casecom (car e2)

20

(lambda (ns)

(cons ns

(merge el (cdr e2))))

(lambda (re)

(cons (list "tick)

(merge (cdr el) (re sel))))

(lambda (se2)

(cons (list °deadlocked) nil))
(lambda (te)

(cons (list ’deadlocked) nil))))

(lambda (tel)
(casecom (car e2)

(lambda (ns)

(cons ns

(merge el (cdr e2))))

(lambda (re)

(cons (list °deadlocked) nil))
(lambda (se)

(cons (list °deadlocked) nil))
(lambda (te2)

(cons (list tel te2) nil)))))))

(define-checked do-read
(-> (seq cont) (-> (seq state) proc-answer))
(lambda (k)
(lambda (s)
(if (null (1son 8))
((terminate (list "eof on read")) s)
((do-tick k (inL (car (1lson 8))))
(mk-state (cdr (lson 8)) (rson s)))))))

(define-checked do-print
(-> (seq cont)
(-> (seq value)
(-> (seq state) proc-answer)))
(lambda (k)
(lambda (v)

(lambda (s)
(casefn v
(lambda (b)
(do-output k

b

21

(mk-state (lson s)
(append (rson s)
(cons b nil)))))
(lambda (f)
((terminate
(1ist "can't print fcn"))

8)))))))

(define semP
* (parser-for-semP

(sys
(Sys °lparen ’parbegin Exp Exp °rparen)
(el e2)

(lambda (wi w2)
(merge (((el env$init cont$init)
(mk-state wi nil))
1)
(((e2 env$init cont$init)
(mk-state w2 nil))
2))))
(const (Exp Const)
(c)
(lambda (r k) (do-tick k c)))
(ident (Exp Ident)
(id)
(lambda (r k)
(casefn (r id)
(lambda (b)

(terminate
(list "unbound identifier " id)))
(lambda (v) (do-tick k v)))))

(error

(Exp °'lparen ‘error Msg ‘rparen)

(msg)

(lambda (r k)

(terminate
(list "error-found: "
msg))))

(if

(Exp 'lparen °'if Exp 'then Exp ‘else Exp ’'rparen)

(e0 el e2)

(lambda (r k)

22

(eO 1

(lambda (v)
(if (val-to-bool v)
(el r k)
(e2 r k))))))

(fn _
(Exp *lparen "fn Ident Exp ’rparen)
(id e)

(lambda (r k)
(do-tick k
(inR
(lambda (v)
(lambda (k1)
(e (ext r v id)
k1)))))))
(rec

(Exp ’lparen ’'rec Ident ’lparen "fn Ident Exp ’'rparen ’'rparen)

(fnid parid body)
(lambda (r k)
(do-tick k

(fix theta
(inR

(lambda (v)
(lambda (k1)

(body
(ext (ext r theta fnid) v parid)
k1))))))))
(applic
(Exp °'lparen Exp Exp ‘rparen)
(el e2)
(lambda (r k)
(el r
(lambda (v)
(casefn v
(lambda (b)
(terminate
(list
(quote

"attempt to apply non fcn"))))
(lambda (f)
(e2 r
(lambda (a)

23

((f a) K)))INN)

(receive

(Exp 'lparen ‘receive ‘rparen)

nil

(lambda (r k) (do-receive k)))
(send

(Exp °lparen °send Exp 'rparen)

(e)

(lambda (r k) (e r (do-send k))))

~ (read

(Exp °lparen 'read ‘rparen)

nil

(lambda (r k) (do-read k)))
(print

(Exp 'lparen 'print Exp °rparen)

(e)

(lambda (r k) (e r (do-print k))))
(number

(Const bas)

(b)

(inL b))
(quoted

(Const bas)

(b)

(inL b))
(t

(Const)

nil

(inL bas$t))
(nil

(Const)

nil

(inL bas$nil))
(car

(Const)

nil

(inR

(lambda (v)
(lambda (k)
(casefn v
(lambda (b)
(do-tick k (inL (bas$car b))))

24

(lambda (f)
(terminate
(1ist "can’'t take car of function"))))))))

(cdr
(Const)
nil
(inR
(lambda (v)
(lambda (k)
(casefn v
(lambda (b)
(do-tick k (inL (bas$cdr b))))
(lambda (f)

(terminate
(1ist "can’'t take cdr of function"))))))))

(atom
(Const)
nil
(inR
(lambda (v)
(lambda (k)
(casefn v
(lambda (b)
(do-tick k (inL (bas$atom b))))
(lambda (f)

(terminate
(1ist "can't take atom of function"))))))))

(cons

(Const)

nil

(inR

(lambda (v1)
(lambda (k1)
(casefn vi
(lambda (b1)
(do-tick ki
(inR
(lambda (v2)
(lambda (k2)
(casefn v2
(lambda (b2)
(do-tick k2

25

(inL
(bas$cons b1 b2))))
(lambda (f)
(terminate

(1ist "cant-cons-fCcn")))))))))
(lambda (f)

(terminate (list "cant-coms-fcn"))))))))

(eq

(Const)

nil

(inR

(lambda (v1)
(lambda (ki)
(casefn vi
(lambda (bi)
(do-tick ki
(inR
(lambda (v2)
(lambda (k2)
(casefn v2
(lambda (b2)
(do-tick k2
(bool-to-val
(bas$eq bl b2))))
(lambda (f)
(terminate
(list "cant-eq-fcn")))))))))
(lambda (f1)
(terminate
(list "cant-eq-fcn"))))))))))
Acknowledgements

Thanks to Christopher T.Haynes and Steven D. Johnson for their de-
tailed comments on the manuscript.

References

26

(1] Francez, N., Lehmann, D.J. and Pnueli, A. “A Linear History Semantics
for Distributed Languages,” 21st Annual Symposium on Foundations of
Computer Science (Syracuse, 1980), 143-152.

2] Gordon, M.J.C. The Denotational Description of Programming Languages,
Springer, Berlin, 1979.

[3] Friedman, D.P., Haynes, C.T., Kohlbecker, E., and Wand, M. “The
Scheme 84 Reference Manual” Indiana University Computer Science De-
partment Technical Report No. 153 (March, 1984).

[4] Wand, M. “A Semantic Prototyping System,” to appear, Proc. ACM
SIGPLAN ’84 Compiler Construction Conference (1984).

5] Johnson, S.C. “Yacc: Yet Another Compiler-Compiler” Technical Report
CSTR32, Bell Laboratories, Murray Hill, NJ, 1975.

27

