Reification: Reflection without Metaphysies
by
Daniel P. Friedman and Mitchell Wand
Computer Science Department
Indiana University

Bloomington, IN 47405

TECHNICAL REPORT NO. 161
Reification: Reflection without Metaphysics

by
D. P. Friedman and M. Wand
May, 1984

This material is based on work supported by the National Science Foundation under grant numbers MCS
83-04567 and MCS 83-03325.

Reification: Reflection without Metaphysics

Daniel P. Friedman
Mitchell Wand

Computer Science Department
Indiana University
Lindley Hall 101
Bloomington, IN 47405 USA

Abstract

We consider how the data structures of an interpreter
may be made available to the program it is running, and
how the program may alter its interpreter’s structures. We
refer to these processes as reification and reflection. We
show how these processes may be considered as an exten-
gion of the fexpr concept in which not only the form and the
environment, but also the continuation, are made available
to the body of the procedure. We show how such a con-
struct can be used fo effectively add an unlimited variety of
“special forms® to a very small base language. We consider
some trade-offs in how interpreter objects are reified. Qur
version of this construct is similar o one in 3-Lisp [Smith
82, 84], but is independent of the rest of 3-Lisp. In particu-
lar, it does not rely on the notion of a tower of interpreters.

1. Introduction

Fexprs extend the Lisp interpreter by seizing the in-
terpreter data structures and allowing programs to work
on them. The basic fexpr mechanism seizes only a por-
tion of the *exp* register (or some similar data structure),
but the so-called “2-argument fexpr® gives the program a
copy of the environment register as well. catch or call/ce
does the same thing with the continuation register or its
equivalent. We refer to constructs of this flavor as reifiers.

In this paper, we provide a systematic reification facil-
ity in the context of continuation-passing interpreters. In
addition, we make these objects first-class citizens of the
language. This gives a more orthogonal design. The result-
ing mini-language is called “Brown.”

This material is based on work supported by the National
Science Foundation under grant numbers MCS 8303325 and
MCS 8304567.

Permission to copy without fee all or part of this material is granted
provided that the copics are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or 1o republish, requires a fee and/or specific permission.

© 1984 ACM 0-89791-142-3. 84 008 0348 $00.75

3438

We present a complete annotated interpreter for Brown
and discuss some of the issues it raises. In Section 2, we
present the basic structure of the interpreter. In Section
3, we define reification and reflection and show how we
chose to implement those motions. This implementation
involved non-trivial design choices. Section 4 concludes the
diecuseion of the interpreter by showing the user interface.
Section 5 shows some examples cf how this facility can be
used to define new special forms. Last, in Section 6, we
present some conclusions.

2. The Interpreter

Our interpreter is written in Scheme 84 [Friedman et
al. 84, Haynes, Friedman, & Wand 84, Section 2| (though
T, Common Lisp, etc. would suffice) and is structured much
like an ordinary continuation-passing interpreter. The main
function, denotation, takes an expression and produces a
Scheme function which in turn takes an environment and a
continuation and produces an answer.

denctation dispatches on the syntactic type of the ex-
pression and invokes one of a set of “semantic auxiliaries,”
which take an expression of known syntactic type and pro-
duce the appropriate semantic function. We distinguish
these auxiliaries by using names which begin with < and
end with >, e.g. <identifier>. In the code that follows,
e, r, and k are expression, environmen$, and continuation,
respectively. A continuation is a function of cne argument,
as usual, and an environment is a function which takes two
arguments, the identifier to be retrieved and the continua-
tion waiting for the L-value associated with that identifier.

(define denotation
(lambda (e)

(case (syntactic-type e)
[identifier (<identifier> e)]
[abstraction

(let ([b (bedy e)1)
(<abs>
(if (reifier? b)
<reify>
<simple>)
(bedy B)))]
[application (<app> e)])))

The first semantic auxiliary is <identifier>, which con-
sults the environment to find the L-value for the identifier,
and passes the associated R-value to its continuation.

(define <identifier>
(lambda (e)
(lambda (r k)
(re
(lambda (cell)
(k (value-of cell)))))))

The first difference between our interpreter and a con-
ventional one is that our application line (implemented in
the semantic auxiliary <app>) uses call-by-text rather than
call-by-value. This choice is forced upon us by the possibil-
ity that a function may seize, using a reifier, the text of its
call.

(defire <app>
(lambda (e)
(lambda (r k)
((denotation (first e))
r
(lambda (£)
(f (rest e) r K))))))

This protocol is utilized in the code for abstractions.
The interpreter supports two primitive kinds of abetrac-
tions: simple and reifying. Each of these causes its body to
be executed in an environment in which the values passed
to it are bound to the formal parameters. Thus the un-
derlying function focr each abstraction (abs Type Formals
Body) is of the form

(lambda (v+ c) ((demotation Body)
(ext r Formals vx)
c))

where r is the lexical environment. The difference is in what
values are passed to this function. In a simple abstraction,
the actual parameters are evaluated in the usual way, and
the list of values is passed as v+. In a reifying abstraction,
what is passed is a list of three elements, consisting of the
list of actual parameters, a representation of the current
environment, and a representation of the current continua-
tion.

We code this by factoring it into two steps: <abs>
produces the underlying function for the abstraction and
then passes it to an abstraction-builder (either <simple>
or <reify>) to build an appropriate function, which will
do the right thing in a call-by-text environment:

349

(define <abs>
(lambda (abs-builder e)
(lambda (r k)
(k (abs-builder
(lambda (v* c)
((denotation (second e))
(ext r (first e) wx)

eI
(define <reify>
(lambda (fun)
(lambda (e r k)
(fun
(list
e

(echemeU-to-brown r)
(schemeK-to-brown k))
wrong))))

(define <simple>
(lambda (fun)
(lambda (e r k)
((rec loop
(lambda (e k)
(1f (null? e) (k nil)
((denotation (first e))

r
(lambda (v)
(loop
(rest e)
(lambda (w)

(k (cons v w))N)))))
e

(lambda (v*) (fum v+ k))))))

An elementary example of a reifying abstraction is
quote, which may be defined as:

(abs reify (e r k) (k (car e)))

This returns the first actual parameter, unevalnated, to the
continuation. This differs from the fexpr version (lambda
(e r). (car e)) only in that it explicitly returns its value
to the continuation k. This definition of quote is basic to
the functioning of the rest of the system. For.example, we
use quoted numbers ('3 instead of 3), to avoid requiring a
geparate case for numbers in the interpreter. Unlike Smith’s
system, 'areturns the atom a, not (quote a); we designed
the interpreter this way to demonstrate the independence of
this mechanism from Smith’s other philosophical concerns.

Having reified the interpreter’s data structures, what
can we do with them? At least one should be able to re-
install them. We refer to this process as reflection. We
provide two methods of reflection. First, we can re-start
the interpreter where it left off by merely invoking a reified
continuation, a8 we did in the code for quote. Alterna-
tively, we may recursively invoke the interpreter through

the function meaning, which is bound in the initial envi-
ronment to

(<simple>
(lambda (v* c)
(c ((denctation (car v=))
(brown-to-schemeU (cadr v*))
(brown-to-schemeK (caddr v+))))))

This allows us to control order of evaluation. We can
illustrate this idea using the example of 1f, which evalu-
ates two of its three arguments. Assume that ef has been
defined as a truth-functional version of ®if” (that is, it eval-
uates all of its arguments, as in (define ef (lambda (b
x y) (if b x y))). Then if can be defined as: '

(abs reify (e r k)
(meaning (car e) r
(abs simple (v)
(meaning
(ef v
(car (cdr e))
(car (cdr (edr e))))
r
E»))

In the next section we shall see in more detail how
reification and reflection are accomplished.

3. Reification and Reflection

In our discussion of the interpreter, we said that a rei-
fier passes to its body representations of the environment
and of the continuation. We did not discuss what a good
representation might be, nor did we discuss how the body
of a reifier might use those representations to alter the be-
havior of the interpreter. We must now turn our attention
to those issues.

It is convenient to have some terminology. We will
use the term reification to mean the conversion of an in-
terpreter component into an object which the program can
manipulate. One can think of this transformation as con-
verting program (i.e. the expression being evaluated) into
data. We will use the term reflection to mean the operation
of taking a program-manipulable value and installing it as a
component in the interpreter. This is thus a transformation
from data to program.

We need one such transformation for each interpreter
component. We use the function schemeX-to-brown for
reifying from the Scheme representation of component X to
a Brown value. This corresponds to up-arrow in Smith’s
work. Conversely, we use the function brown-to-schemeX
for reflecting from Brown values to Scheme representations
of component X. This corresponds to Smith’s down-arrow.
These conversions must satisfy the requirement that the re-
flection of a reified object must be equal to the original, that
is, if z is a schemeX, then (brown-to-schemeX (schemeX-
to-brown z)) = z.

We consider, in turn, this pair of transformations for
each needed domain.

3

2

The first domain we need to consider is the domain
SchemeF of “underlying functions” which are used by both
simple and reify abstractions. We represent such functions
in Scheme by functions which take two arguments, a list
of arguments and a continuation. Since such functions are
intended to evaluate their arguments, they convert to sim-
ple abstractions in Brown. Thus schemeF-to-brown is just
the semantic auxiliary <simple>. The reflection function is
somewhat more involved. It takes a brown function (which
uses call-by-text, so it takes a list of unevaluated actuals,
an environment, and a continuation), and converts it to a
SchemeF, which takes a list of actuals and a continuation.
Since Scheme will always evaluate the arguments, we need
to turn the values of the arguments back into text for the
benefit of the brown function. We do this by wrapping each
of them in quotes. Because its arguments are quoted, the
brown function will ignore its environment argument.

(define schemeF-to-brown <simple>)

(define brown-to-schemeF
(lambda (bf)
(lambda (v* c)
(bf (mapcar wrap/quote v*) initenv c))))

We next turn to continuations. The usual representa-
tion of a continuation, as supplied by call/ce or catch, is
a function of one argument. Similarly, we choose the brown
representation of a continuation to be a simple abstraction
of one argument which, when invoked, evaluates its param-
eter and sends it to the stored continuation. Thus, invoca-
tion of such a function acts like a “black hole®: it throws
away the continuation at the point of call. We will discuss
alternative reifications later in the paper.

(define schemeK-to-brown
(lambda (k)
(lambda (e r k1)
(if (= (lenmgth e) 1)
((denotation (first e)) r k)
(wrong
(list
"gchemeK-to-brown: "
"wrong number of args "

e))))))

The corresponding reflection function, brown-to-sch-
emeK, is similar to brown-to-schemeF, except that we must
be more cunning in our choice of continuation argument
to bf. Since (schemeK-to-brown k) ignores its continua-
tion argument, the requirement that (brown-to-scheme-
K (schemeK-to-brown k)) = k does not constrain us; we
choose it fo be I (= (1ambda (x) x)), so that reified con-
tinuations will return to their caller if they do not invoke a
previously reified continuation. (We will show an example
of this in Section 5).

0

(define brown-to-schemek
(lambda (bf)
(lambda (v)
(b2 (1ist (wrap/quote v)) initenv I))))

The next domain to be considered is that of environ-
ments. Smith reifies environments as data structures. We
reify them as simple abstractions of one argument, in keep-
ing with the usual practice in semantics. The reified envi-
ronment takes one argument, an identifier, and returns the
associated L-value.

Since any simple abstraction of one argument might be
reflected to become an environment, an environment might
do an arbitrary amount of computation while looking up
an identifier. Hence we cannot represent ervironments as
data structures in the usual way. We must instead represent
them as functions.

We represent an environment as a Scheme function
which takes an identifier and a continuation, and which
passes the associated L-value to that continuation. The
function ext builds such functions in place of the usual rib-
cage or a-list extension; it also checks to see that argument
and variable lists are the same length and balks if they are
not. The reflection function converts a brown function to
a corresponding Scheme function in the usual way.

(define schemeU-to-brown
(lambda (r)
(lambda (e ri ki)

(if (= (length e) 1)
((denotation (first e))
ri
(lambda (v) (r v ki)))
(wrong

(list
"schemeU-to-brown: "
"wrong no of args "

e))))))

(define brown-to-schemeU
(lambda (bf)
(lambda (v c)
(bf (wrap/quote v) initenv c))))

(define nullenv
(lambda (v ¢)
(wrong (list "brown: unbound id " ¥))))

351

(define ext
(lambda (r vars vals)
(if (= (lemgth vars) (length vals))
(lambda (v c)
((rec lookup
(lambda (vars vals)
(cond [(null? vars) (r v c¢)]
[(eq? (first vars) v)
(c vals)]
[t (leokup
(rest vars)
(rest vals))])))
vars vals))
(begin
(writeln
"Brown: wrong number of actuals")
(writeln "Formals: " vars)
(writeln "Actunals: " vals)
(wrong "ext failed")))))

4. The Initial Environment

To make this interpreter usable, we need to set up an
initial environment and an initial continuation. In the ini-
tial environment, we provide a small set of initial functions
from Scheme, converted to SchemeF’s. We paciage the
data manipulation functions so that the programmer can
operate entirely in Brown. Thus in the initial environment,
ext is bound to

(lambda (br p* v*)
(schemeU-to-brown
(ext (brown-to-schemeU br) p= vs)))

The complete code for this is shown in the appendix. Last,
we need to set up an initial continuation. This is done by
seizing a Scheme continuation and using it as a SchemeK.
We also define wrong as a SchemeK:

(define run
(lambda (e)
(call/ce
(lambda (caller)
((denotation e) initemv caller)))))

(define wrong
(lambda (v)
(writeln "wrong: " v) (reset)))

5. Defining Special Forms

Just as the Fexpr facility may be thought of as defining
new special forms in the Lisp interpreter, a reifier may be
thought of as defining a new special form in Brown. We
have already shown the examples of quote and if above.
Another standard example is call/ce, which invokes its
argument on the current continuation:

(define-brown call/cc
(abs simple (f)
((abs reify (e r k) (k (£ X))))))

A macro facility can be defined as follows:

(define-brown macro
(abs simple (bf)
(abs reify (e r k)
(meaning (bf e) r k))))

(macro bf) creates a reifying abstraction which, when
invoked, applies bf to its reified application; the result-
ing expression is then evaluated. As an example, we write
lambda as a macro. Here (lambda vars body) expands to
(abs simple vars body); in the code for the macro, e be-
comes bound to (vers body):

(define-brown lambda
(macre
(abs simple (e)
(cons "abs (coms 'simple e)))))

Another illustration of the use of reifiers to control the
order and extent of evaluation is set!. set! evaluates its
second argument and then updates the store in the L-value
associated with its unevaluated first argument:

(define-brown set!
(abs reify (e r k)
(meaning (car (cdr e)) r
(abs simple (v)
(k (update-store
(r (car e))
v))))))

352

Another useful special form is begin (i.e. progn),
which takes a series of expressions and evaluates them from
left to right, returning the value of the last one. We will
include several versions. The first is the simplest:

(define-brown begin
(abs reify (e r k)
((abs simple (dummy)
(meaning (car (cdr e)) r k))
(meaning (car e) r (abs simple (x) x)))))

This version takes two expressions, evaluates the first
with the identity continuation, and evaluates the second,
throwing away the value of the first. This illustrates our
choice of the continuation (lambda (x) x) in brown-to-
schemeK (other feasible choices, such as wrong, would cause
this program to fail). It is, however, rather contrary to
the spirit of denotational semantics, which would prefer a
version in which all continuations were tail recursive. That
more standard version is:

(define-brown begin
(abs reify (e r k)
(meaning (car e) r
(abs simple (v)
(meaning (car (cdr e)) r k)))))

Our third and last version of begin takes an arbitrary
number of expressions. It uses an applicative-order fixpoint
operator 1x1 [Steele & Sussman 78, p. 70] to construct a
local loop for evaluating the expressions.

(define-brown fixi
(abs simple (f)
((abs simple (d) (d 4))
(abs simple (g)
(abs simple (x) (((g g)) x))))))

(define-brown begin
(abs reify (e r k)
((tix1
(abs simple (lecop)
(abs simple (e)
(1f (null? (cdr e))
(meaning (car e) r k)
(meaning (car e) r
(abs simple (v)
(loop (cdr e))))))))
e)))

With some additional programming, one can similarly
define a lexpr facility:

(define-brown lexpr
(abs reify (e r k)
(k (abs reify (el ri ki)
(meaning* el ri
(abs simple (v*)
(meaning
(car (cdr e))
(ext r (car e) (cons v* nil))
E1))NN

where meaning#* takes a list of expressions and computes
the list of their values. Thus one could say:

(define-brown 1ist (lexpr (v) v))

An example which illustrates our choice of reifications
is attach. (attach id body) evaluates body in an envi-
ronment with the property that whenever identifier id is
probed, an informative message is produced. This effect is
more difficult to achieve using Smith’s reification of envi-
ronments as list structures.

(define-brown attach
(abs reify (e r k)
(meaning
(car (cdr e))
(abs simple (v¥)
(begin
(1f (eq? v (car e))
(print "Probed!")
nil)
(r v)))
k)

6. Conclusions

Our goal in this work was to attempt {o understand
the idea of reflection, as advocated by Smith, in a way
which was motivated by our understanding of semantics,
and without being overly concerned with overriding philo-
sophical issues. For us, reification is just a way of giving the
interpreter’s data to the program, and reflection is a way of
loading the interpreter’s registers from the program. From
this point of view, we can begin to explore alternative reifi-
cation/reflection pairs:

1. We chose to reify environments as functions, rather
than the data structures Smith used. We chose func-
tions because they are closer to the traditional seman-

353

tic treatment of environments. Data structures permit
the program to explore and modify the rib or a-list
structure (for better or worse). Functions encapsulate
the rib structure, but make it easier to make procedu-
ral attachments to variables (e.g. attach).

2. We chose to invoke the body of a reifier with the con-
tinuation wrong, so that it was an error to fall off the
end. We could have gotten behavior more like that
of 3-Lisp if we had chosen to use a read/eval/print
loop instead.

8. We chose to make (lambda (x) x) the continuation
parameter in brown-to-schemeK. One gets different
behavior by using, say, wreng instead.

4. We chose a black-hole representation for schemeK-to-
brown. If one invokes a reified continuation one loses
the current context, just as invoking a continuation is
an unconditional goto in Scheme. 3-Lisp uses a differ-
ent reification, in which a continuation returns to the
place it is invoked. This can be done, at the expense
of making the invocation non tail-recursive.

o

We chose to reify the denotation function as a simple
function which returns to its caller when its continu-
ation returns. (See the first version of begin). We
could then trick this mechanism into failing to return
by passing it a continuation which did not return, ei-
ther by concluding with a (reset), a Scheme contin-
uation, or a read-loop. Another approach would be to
reify the meaning function as

(<3simple>
(lambda (v* c)
((denctation (car v+))
(brown-to-schemeU (cadr v+))
(brown-to-schemek (caddr v+)))))

This differs from the present one in that the current
continuation ¢ is ignored; the three arguments are ef-
fectively reinstalled in the registers of the interpreter,
replacing the ones that were there. This function might
be called reflect; it exposes the fact that denotation
is a reflection operation like brown-te-schemel and
brown-to-schemeK. It is somewhat more palatable se-
mantically but is somewhat less tower-like, illustrating
that the idea of reflection is independent of Smith’s
notion of towers of interpreters.

One can ask the same question of a reification facility
that one often asks of the fexpr facility: Why is this better
than macros? The answer is that one can do some things
that one can’t do with macros, such as attaching proce-
dures to identifier accesses in environments. One pays the
price, however, of essentially keeping the compiler (that
is, the function denotation) resident at all times, whereas
macros are expanded once, at compile time, and need not be

resident at run time. A possible compromise lies in recog-
nising that macros are essentially a compile-time reification
facility. We are currently exploring the implications of that
idea.

One cannot forever ignore the philosophical problems
(nominalism vs. realism, reduction vs. evaluation) raised
by Smith’s treatment of reflection. From the Brown expe-
rience, we conclude that reflection per se is independent of
these igssues, as it is independent of the notion of tcwers
of interpreters. We hope to report on these other aspects
elsewhere,

References

[Friedman et al. 84)

(define body cdr)
(define value-of car)
(define firast car)
(define second cadr)
(define rest cdr)

(define wrap/quote (lambda (v) (list ‘quote v)))
(define I (lambda (x) x))
: syntactic auxiliaries

(define abs?

(lambda (£) (eq? (tag %) ‘abs)))
(define reifier?

(lambda (f) (eq? (tag 2) 'reify)))
(define simple?

(lambda (£) (eq? (tag £) ‘simple)))

Friedman, D.P., Haynes, C.T., Kohlbecker, E., and Wand, (define syntactic-type

M. “The Scheme 84 Reference Manual® Indiana Uni-
versity Computer Science Department Technical Re-
port No. 153 (March, 1984).

[Haynes, Friedman, & Wand 84]
Haynes, C.T., Friedman, D.P., and Wand, M., *Con-
tinuations and Coroutines,” Proc. 1984 ACM Symp.
on LISP and Functional Programming.

[Smith 82]
Smith, B.C., Reflection and Semantics in a Procedu-
ral Language, MIT/LCS/TR-272, Mass. Inst. of Tech.,
Cambridge, MA, January, 1982,

[Smith 84]
Smith, B.C., “Reflection and Semantics in Lisp,® Conf.
Rec. 11th ACM Symp. on Principles of Programming
Languages (1984), 23-35.

[Steele & Sussman 78]
Steele, G.L. Jr. and Sussman, G.J. “The Art of the Ia-
terpreter or, the Modularity Complex (Parts Zero, One
and Two),” Mass. Inst. of Tech. Artif. Intell. Memo No.
453, Cambridge, MA (May, 1978).

Appendix — Help Functions

; tagging functions and aliases

(define tagit cons)
(define tag car)

(lambda (e)
(cond
((atom? e) 'identifier)
((abs? e) "abstraction)
(t 'application))))

: ** the interpreter (Sections 2-3) goes here s
: auxiliaries for setting up initeav
i convert direct scheme fcas to schemeF

(define scheme-to-schemeF

(lambda (2)
(lambda (v* c)(c (apply £ v+)))))

(define define-browni
(lambda (name exp)
(call/ce
(lambda (caller)
((denotation exp)
initeav
(lambda (v)
(set! initenv
(ext initenv
(1ist name)
(list v)))
(caller name)))))))

; define-brown is a useful macro

(mkmac (define-brown id val)
(define-browni °'id ‘val))

i ** the top level (Section 4) goes here #+

354

(define boot-initenv
(lambda ()
(let
((scheme-fn-table
(list
(cons ‘car car)
(cons ‘cdr cdr)
(cons 'cons cons)
(cons 'eq? eq?)
(cons 'atom? atom?)
(cons 'null? null?)
(cons ‘addi addi)
(cons °subl subi)
(cons '=0 =0)
(coms '+ +)
{cons '~ -)
(cons *= *)
(cons 'print print)
(cons 'length length)
(cons ‘read read)
(cons ‘"ext
(lambda (br p* v+)
(schemeU-to-brown
(ext
(brown-to-schemel br)
Pt
v+))))
(cons ‘nulleav nullenv)
(cons 'update-store
(lambda (x y)
(value-of (set-car! x y))))
(cons °reifier? reifier?)
(cons "simple? simple?)
(cons ‘abs? abs?)
(cons °wrong wrong)
{cons ‘ef
(lambda (bool x y) (if beol x y)))
(cons ‘'newline newline)
(cons ‘meaning

(lambda (e r k)

((denotation e)
(brown-to-schemel r)
(brown-to-schemek k)))))))

(let ((initvars (mapcar car scheme-fan-table))
(initvals
(mapcar :
(lambda (x)
(schemeF-to-brown ;
(scheme-to-schemeF (cdr x))))
scheme-fn-table)))
(defire initenv
(ext (ext nullenv '(mil t) '(ail t))
initvars
initvals))
(define-brown quote
(abs reify (e r k) (k (car e))))))))

(boot-initeny)

355

