An Implementation of 2-Lisp
by

Charles D. Halpern

Computer Science Department
Indiana University
Bloomington, IN 47405

TECHNICAL REPORT NO. 160

An Implementation of 2-Lisp

June, 1984

by
Charles D. Halpern

This material is based on work supported by the National Science Foundation
under grant numbers MCS 83-04567 and MCS 83-03325.

An Implementation of 2-Lisp
Charles D. Halpern

Computer Science Department
Lindley Hall 101
Indiana University
Bloomington, Indiana 47405

Abstract

2 Lisp is a dialect of Lisp designed by Brian Smith. The goal of this project is
to provide a convenient exposure to 2-Lisp. To this end, this paper begins with a
short introduction to 2-Lisp. Also, an annotated implementation of 2-Lisp, written
in Franz Lisp, is provided.

1. INTRODUCTION

2-Lisp is a dialect of Lisp designed by Brian Smith [Smith 82]. This paper in-
cludes an introduction to 2-Lisp and an implementation of 2-Lisp written in Franz
Lisp. The introduction to 2-Lisp includes an analogy between the simplification of
fractions and the normalization of 2-Lisp structures. Simple interactions with the
processor are shown. After the 2-Lisp processor’s standard mode of input and out-
put are used, the nonstandard modes are shown. These nonstandard modes reveal
how the 2-Lisp processor uses Frans Lisp objects to represent the 2-Lisp structures
it reads and prints. Finally, the complete code of the implementation is presented,
with annotations.

2. AN INTRODUGCTION TO 2-LISP

Previous introductions to 2-Lisp have emphasized the contrasts with other lan-
guages. This introduction does not take that approach. Similarities, not contrasts,
are shown.

The 2-Lisp processor operates interactively. The user types something to the
machine, the machine types something in return, and the cycle repeats itself. This
mode of interaction is familiar to those acquainted with Lisp’s read-eval-print loop.
The processing done by the 2-Lisp machine between reading and printing is called
normalization. The normalization of 2-Lisp expressions can be compared to the
ssmplification of fractions.

This material is based on work supported by the National Science Foundation under
grant numbers MCS 83-04567 and MCS 83-03325.

2 An Implementation of 2-Lisp

1. Simplification. For the purposes of this paper, these are three different fractions:

2 .
1 10

And these are two different retionals:

6+3 2 2+1 0.4 4+10

The equals sign is used to show identity.

& £ 2 4 2:1 = 2

The fractions are thought of as concrete structures, the rationals as Platonic
ideals. Each fraction designates exactly one rational. More than one fraction des-
ignates the same rational. A vertical single arrow shows this relationship between
sign and signified.

3 2 4
3 1 10

l l l

653 = 2 = 231 # 04 = 4+10

Not every downward arrow that could have been drawn has been drawn. It’s
important to realize that since 6+ 3, 2, and 2+ 1 are one and the same, this diagram
is also correct:

8 2 ER

3 1 10

| | |
241 = 6+3 = 2 # 04 = 410

¢ and 2, though different fractions, designate the same rational. They are called
co-designators. A fraction may be in simple-form. L is in simple-form; § and %
are not. Simplification is the process that takes a fraction and returns a fraction in
simple-form that designates the same rational as the original. Simplification takes
fractions to their simple-form co-designators. A horizontal double arrow shows

simplification.

[
=

An Introduction to 8-Lisp

2. The Fraction Processor. An interactive fraction processor would consist of a
read-simplify-print loop. It would begin by prompting the user.

Fractiea ?
The user would respond with a fraction to be simplified.
Fraction ? ¢

The processor would then read the fraction, print a simple-form co-designator
of the fraction, and then cycle back to the prompt.

Fraction ? §
mmy i.

Fraction ?

If the fraction that was entered was already in simple-form, the processor’s job
would be especially easy.

Fraction ? ¢
== %

Fraction ? %
== %

Fraction 7

Rationals are never typed by the user or printed by the processor. Only fractions
are actually manipulated.

8. Normalszation. In 2-Lisp, 2-Lisp structures take the place of fractions. Numer-
als, booleans, closures, rasle, handles, atoms, pairs, and maps are the eight types of
2-Lisp structures. The place of the rationals is taken by numbers, truth values, func-
tions, sequences, environments and the eight types of 2-Lisp structures. Numerals
designate numbers, booleans designate truth values, closures designate functions,
rails designate sequences, maps designate environments, and handles designate 2-
Lisp structures.

The numeral 67 designates the number 57.
67

l

57

4 An Implementation of 2-Lisp

Numerals are already in normal-form, so they can normalize to themselves.
There is only one numeral for each number, so they must.

57 = &7
l l
57 = &7

Booleans, like numerals, are already in normal-form.

$T = §T
| |
Truth = Truth

Closures designate functions [Smith 84]. The atoms that are the names of the
primitive operations normalize to closures and designate functions.

® => {expr prim [n1 n2] Franz}
! l
the plus function = the plus function

A rail designates the sequence of the designations of the elements of the rail.
Thus, the rail [$T $F] designates the 2-element sequence (Truth, Falsity).

[$T $F] $T $F
1 because 1 and j_
(Truth, Falsity) Truth Falssty

Handles are 2-Lisp structures that designate other 2-Lisp structures. For ex-
ample, the handle *$F designates the structure $F. There is exactly one handle for
each structure, one structure for each handle. All handles are in normal-form.

‘6F = °§F

l l

$F = §F

An Introduction to 2-Lisp

Atoms may designate anything. An atom designates the same thing that its
binding (in the appropriate environment) designates. Atoms are never in normal-
form. An atom always normalizes to its binding. If the atom ident is bound to the
numeral 13, the following diagram is correct.

ident = 13

l l

13 = 13

Pairs, like atoms, may designate anything. Pairs designate the application of
the designation of the left hand side to the designation of the right hand side. If
a pair is to have a designation, its car must designate a function and its cdr must
designate an argument. Just as 6 + 8 was 2 in the simplification subsection, so
the application of a function to a sequence may be anything in any of the thirteen
categories listed in the first paragraph of this subsection.

(+ . [23]) = (+23) = &
l l
the plus function applied to (2,3) = 5

A pair may designate a Platonic number, as above—or a concrete rail structure,
below.

(zcons °(+ 2 3) °°$1) = °[(+ 2 3) °$T]
l |
the rcons function applied to ((+ 2 3),°8T) = [(+ 2 8) °$T]

4. The 2-Lisp processor. The 2-Lisp processor has a read-normalize-print loop
in place of the read-simplify-print loop of the fraction processor. It begins by
prompting the user.

2-Lisp ?

The user responds with a structure to be normalized.

2-Lisp ? (rcoms °(+ 2 3) °°$T)

@ An Implementation of £-Lisp

The processor then reads the 2-Lisp structure (a pair in this case), prints a
normal-form co-designator of the structure, and cycles back to the prompt.

2-Lisp ? (zcoms °(+ 2 3) °°$T)
==> °[(+ 2 3) "$T]
2-Lisp 7

If the structure that is entered is already in normal-form, the processor’s job is
especially easy.

2-Lisp ? (+ 2 8)
==» B
2-Lisp ? 6
==> §
2-Lisp ?

Note that the 2-Lisp processor reads the numeral 5 and prints the numeral 5.
The sumber 5 is neither read nor printed.

3. THE REPRESENTATION

The following examples use the override facilities to show how Franz Lisp objects
are used to represent 2-Lisp structures. Overrides are entered by typing a tilde
followed by a Frans expression. The first override used is the “echo override. This
tells the 2-Lisp processor not to normalize what it reads, but rather to just print it
out again.

2-Lisp ? “eche
==> QOverride: echo
2-Lisp ? (+ 2 3)
= (+23)
2-Lisp 7

Design Godls

The “print override causes the processor to print out the Frans Lisp represen-
tation of the 2-Lisp structure. With both the “echo and the “print overrides in
effect, the 2-Lisp processor becomes a machine that shows the internal representa-
tion of each 2-Lisp expressions it reads.

2-Lisp 7 “echo
==> (Override: echo

2-Lisp 7 “print
= (Override: print

2-Lisp ? 67

= (N . B7)
2-Lisp 7 §T

= (B . t)

2-Lisp ? [$T §F)

= (R(B.t)R(B)R)
2-Lisp 7 (+ 2 3)

= (P(A.+)RMN.2R(N. 3R
2-Lisp ?

The details of this representation scheme appear in the Implementation section
of this paper.

4. DESIGN GOALS

The primary design goal for this implementation is convenience. It is designed for
the person whod like to try the examples in Smith [82]. Two aspects of convenience
are stressed in this paper.

1. Conformsty. The first aspect of convenience is conformity. The user should
be able to type in examples just as they appear in Smith [82]. This requires that
all of 2-Lisp’s special syntax be supported. The use of brackets for rails, dollar
signs for booleans, single quotes for handles, etc. are all carefully mimicked in this
implementation.

Motivated by the goal of convenience, one major break with Smith [82] is made.
Instead of using Smith’s names for most primitives, an extension of the Scheme 84
[Friedman et al. 84] taxonomy is used. set! replaces set, for example. A side-by-
side listing of Smith’s names and their replacements can be found in an appendix.
Since most users of this implementation are accustomed to Scheme 84, this decision
can be viewed as a decision in favor of conformity. This implementation conforms to
what most fingers want to type. The Scheme 84 naming-system is slightly extended,
however. For example, the exclamation mark is used in the names of all functions
with side effects. This fits in with Smith’s theme of uniformity.

8 An Implementation of 2-Lisp

2. Speed. The second aspect of convenience is speed. The user shouldn’t have
to wait all day to see a simple example processed. This requirement means that
time/space trade-offs are uniformly decided in favor of time.

Smith [82] includes a MacLisp implementation of 3-Lisp as an appendix. That
implementation represents atoms with MacLisp atoms, mumerals with MacLizp
numbers, and uses fewer tags then this one to represent rails. This implemen-
tation tags all representations. The mumeral B7 is represented by (N . 67) for
example. This uses more space, but it means that much can be done with simple
table dispatches.

The effect of this next speed-increasing technique is part real, part psychologi-
cal. Each time this implementation prompts the user, it prints its prompt and then
does a garbage collection before reading. If the input is long (a function definition,
say), the garbage is collected by the time the user is finished. This is parallel pro-
cessing on a small scale. If the input is short-and typed immediately-the processor
takes slightly longer to respond than normal (it has to finish the garbage collection
first). The printing of the prompt before the once-a-cycle garbage collection makes
the user feel like the machine is responding quickly. This trick helps make up for
the extensive use of tags (garbage).

5. TEE IMPLEMENTATION

The 2-Lisp processor is loaded by loading the file /usiu/charlie/2/s/all.1. (The
2 is for 2-Lisp, the s is for speed.) This file loads all the other files. It will provide
an outline for the following discussion.

(load ®/usiu/charlie/.lisprc®)

(chdir ®/usiu/charlie/2/e®)
(load "m/manage.l®)
(load *m/alist.l")

(load °f/maneage.1%)
(load ®f/read.l®)

(load *#/write.l®)
(load ®*f/normal.l®)
(load *f£/alist.l®)
(lead ®#/primitives.l®)
(load ®*£/initalist.l®)
(load ®"£/loop.1®)

First the files containing macros are loaded, then the files containing functions.

The Implementation 9

1. m/manage.l. These macros create and manipulate representations of 2-Lisp
structures, such as handles and rails. define-syntax is not actually used to define
the macros; defmacro is used. Definitions using define-syntax are easier to read
because they avoid the use of backquotes and commas. define-syntax is just
another name for mkmac [Kohlbecker 84].

Each representation is tagged with a symbol (Franz atom) that corresponds
to the type of the 2-Lisp structure it represents. Given a representation, tag-pt
returns this symbol. The tag will be one of the following: N, B, C, R, H, A, P, O, .

(define-syntax
(tag-pt struc)
(car struc))

nume? is a predicate that checks whether its argument is the representation of
a 2-Lisp numeral. Numerals are represented by Franz Lisp fixnums, appropriately
tagged. mk-nume yields a representation of a 2-Lisp numeral from a fixnum. nfixnum
takes a representation of a 2-Lisp numeral, and strips off the tag-returning a fixnum.

(define-syntax
(nume? struc)
(eq °N (car struc)))

(define-syntax
(nk-nume fixnum)
(cons °N fixmum))

(define-syntax
(afixnum nume)
(cdr nume))

Up to this point in the paper, Franz Lisp objects are referred to as representa-
tions of 2-Lisp structures. For example the Franz Lisp (N . 7) is said to represent
the 2-Lisp numeral 7. Since only one way of representing 2-Lisp structures with
Franz objects is used in this implementation, it is convenient to identify Franz ob-
jects with the 2-Lisp structures they represent. From this point on, (N . 7) ¢ the
numeral 7. Similarly, the Franz (B . nil) is the 2-Lisp boolean $F; and (B . ¢),
(B . B7), etc. are all the 2-Lisp structure $T. Note that this paper also blurs the
distinction between notations and internal structures.

10 An Implementation of 2-Lisp

(define-syntax
(bool? struc)
(eq °B (car struc)))

(define-syntax
(mk-bool tmnil)
(cons °B tnil))

(define-syntax
(btail bool)
(edr bool))

The closure structure is tagged with a C and includes a type, environment, pat-
tern and body. The type is a Franz symbol: expr, impr or macro. The environment
is a Franz a-list that matches Franz symbols to 2-Lisp structures. The pattern is a
2-Lisp rail-atom tree. (A rail-atom tree has rails for internal nodes and atoms for
leaves.) The body is a 2-Lisp expression.

(define-syntax
(clos? struc)
(eq *C (car struc)))

(define-syntax
(mk-clos type list pattern body)
(cons °'C (cons type (coms alist (cons pattern body)))))

(define-syntax
(ctype clos)
(cadr cles))

(define-syntax
(calist ecles)
(caddr cles))

Since primitives need only the primitive environment, the following trick can
be used. The environment field of a primitive closure does not contain an a-list
but rather the symbol prim. This indicates that the body field contains Franz code
instead of the usual 2-Lisp. cprim? is the predicate that checks whether a closure
is primitive.

The Implementation 11

(define-syntax
(cprim? proc)
(eq (calist proc) °prim))

(define-syntax
(cpattern clos)
(cadddr clos))

(define-syntax
(cbody cles)
(cddddr cles))

Next come rails. ¥ s;, 9, ..., 8, are 2-Lisp structures, then (Rs; Reg R...Ro, R)
is a 2-Lisp rail structure. Notice that the entire structure is tagged with an R, as is
each tail.

Smith [82] also inserts R’s. A rail starts out with only one R, and more R’s
are replaced in when tails are manipulated. Hence there can be any number of
R’s-anywhere in the representation. This results in the heavy use of functions that
skip over all the initial R’s, in order to find what they’re really looking for. That
representation may use less space in most situations, but this one allows quick
manipulation of rail structures. This design decision was made keeping in mind the
goal of this project, to attain reasonable speeds on small examples.

There are at least two things to note about the rcons macro. First, its name.
recons is mnemonic for rail constructor. But it isn’t named mk-zail, which would
be in the tradition of mk-nume, mk-boel, and mk-clos. This is because there is an
important difference between the mk- functions and the cons functions. The mk-
functions make 2-Lisp structures out of Franz objects. Fizxnums, a-lists, etc. are
all non-2-Lisp objects. The arguments to cons functions, on the other hand, are
always 2-Lisp structures themselves.

Second, note that rcons can take any number of arguments. It does this by
taking advantage of the fact that a macro takes as its single argument the entire
unevaluated expression that invoked it. rcons-h is then applied to the list of
arguments; this constructs the code that replaces the macro invocation.

(defun rcons-h (args)
(if (null args)
*(cons °R nil)
‘(cons ‘R (cons ,(first args) ,(rcons-h (rest args))))))

12 An Implementation of 2-Lisp

(define-syntax
(rail? struc)
(eq ‘R (car struc)))

(def rcons (macro (1)
(let ([args (cdr 1)])
(rcons-h args))))

xcons constructs redexes (from 2-Lisp structures-thus coms, not mk-). For
example,

(xcons °(A . plus) "(N . 3) *(N . 4))
returns
(P (A . plus) R (N . 3) R (N . 4))
which in 2-Lisp notation is (plus . [3 4]), or more commonly (plus 3 4).

(def xzcons (macre (1)
(let ([proc (cadr 1)]
[ergs (eddr 1)])
*(pcons ,proc ,(rcons-h args)))))

A primitive gets its arguments packaged as a single rail structure. The first
four elements of this structure are frequently needed. Thus, in the interest of speed,
(znth3 ---) is just a fast equivalent of (rath 3 --.).

(define-syntax
(rnthl rail)
(cedr rail))

(define-syntax
(rath2 rail)
(cadr (cddr rail)))

(define-syntax
(znth3 rail)
(cedr (cddr (cddr rail))))

(define-syntax
(rath4 rail)
(cedr (cddr (cddr (cddr rail)))))

The Implementation 13

riirst, rrest and rprep are the car, cdr and cons familiar to all.

(define-syntax
(rfirst rail)
(cadr rail))

(define-syntax
(rrest rail)
(cddr rail))

(define-syntax
(rprep first rest)
(cons °R (cons first rest)))

(define-syntax
(rempty? rail)
(aull (cdr rail)))

(define-syntax
(runit? rail)
(and (cdr rail) (null (cdddr rail))))

Handles are straightforward. hcoms puts a handle on a structure. hstruc
removes this handle.

(define-syntax
(hand? struc)
(eq "H (car struc)))

(define-syntax
(hcons struc)
(cons °H strue))

(define-syntax
(hstruc hand)
(cdr hand))

An Implementation of £-Lisp

Notice again that it’s mk-atom, not acons.

(define-syntax
(atom? struc)
(eq ’A (car struc)))

(define-syntax
(nk-atom symbol)
(cons °A symbel))

(define-syntax
(asymbol atom)
(cdr atom))

Pairs illustrate the mk-/cons distinction beautifully: there’s both a mk-pair
and a pcons. When a Frans list is transformed into a 2-Lisp pair, mk-pair is used.
When two 2-Lisp structures are paired, pcons is used.

(define-syntax
(pair? struc)
(eq 'P (car struc)))

(define-syntax
(pcons a d)
(cons ‘P (cons a d)))

(define-syntax
(pcer pair)
(cadr pair))

(define-syntax
(pcdr pair)
(cddr pair))

(define-syntax
(mk-pair list)
(cons °P list))

(define-syntax
(plist pair)
(cdr pair))

The Implementation 15

Overrides are Franz objects that pretend to be 2-Lisp structures so that the 2-
Lisp processor won’t choke on them. They are used to toggle readtables and other
similar features.

(define-syntax
(over? struc)
(eq °0 (car struc)))

(define-syntax
(nk-over franz)
(cons °0 franz))

(define-syntax
(ofranz over)
(cdr over))

Maps are environment designators. Smith [82] uses rails as environment des-
ignators; environments are identified with sequences. A case could be made for
using closures as environment designators; environments would be identified with
functions. Rails are rejected in this implementation because the act of clobbering
a 2-Lisp environment designator should clobber the corresponding internal a-list.
This would be difficult to do with rails. This problem is solved by making maps
nothing more than tagged a-lists. This solution has the added convenience of al-
lowing 2-Lisp map-manipulating primitives to run with a-list speed.

(define-syntax
(mep? struc)
(eq "N (ecar struc)))

(define-syntax
(mk-map alist)
(cons °N alist))

(define-syntex
(malist map)
(cdr map))

(define-syntax
(mcons newer-map older-map)
(mk-map (append (malist newer-masp) (malist older-map))))

18 An Implementation of 2-Lisp

2. m/alist.l. There are several macros for dealing with association lists. The first
macro takes a 2-Lisp atom and an a-list, and returns the atom’s binding in the
a-list. Since the a-lists match Franz symbols not 2-Lisp atoms, binding first strips
the tag of the 2-Lisp atom that it is given. Because symbols are used instead of
atoms, assq can be used rather than assoc to find the appropriate term. (Term is
used in this context to refer to one of the dotted pairs in the a-list.) assq (which
uses eq) is faster than assoc (which uses equal). assq returns nil if no term
matches.

(define-syntax

(binding atem alist)

(let+ ([id (asymbol atom)]
(lu (assq id alist)])

(if 1u
(cdr 1lu)
(error (append °(binding: unbound variable:)
(list (asymbol atom)))))))

assq searches from left to right, so newer bindings can be pushed on an a-list
by appending them to the left of the older bindings.

(define-syntex
(ext older-alist newer-alist)
(append newer-alist older-alist))

The 2-Lisp processor pattern matches a closure’s formal parameter and the
actual argument. bind takes a formal parameter pattern, a pattern of bindings
that are to match the formals, and an a-list to extend with the new terms. match
takes a rail-atom tree and a rail-binding tree and produces a symbol-to-binding
a-list.

(define-syntax
(bind pattern binding alist)
(ext alist (match patterm binding)))

set-binding! starts out the same as binding. K it finds a matching term,
though, it clobbers the old binding with the new. If it doesn’t find a matching
term, it creates one and clobbers the a-list with this new term.

The Implementation

(define-syntax
(set-binding! atom new-binding alist)
(let* ([id (asymbol atom)]
[1u (assq id alist)])
(if 1u
(zrplacd lu new-binding)
(nconc alist (list (coms id mew-binding))))))

hr-to-rh transforms a handle on a rail to a rail of handles. maprfirst is to
rails what mapear is to lists. hecons-£ does the same thing that hcons does, except
it is a function instead of a macro.

(define-syntax
(hr-to-zh hand)
(let ([s (hstruc hand)l)
(if (rail? s)
(maprfirst °hcons-f s)
(ezror "hr-to-zh®))))

3. f/manage.l. This is the first file to contains functions. type summarizes the nine
tags. The N tags map structures. Maps designate environments, just as numerals
designate numbers and closures designate functions.

(defun type (struc)
(caseq (tag-pt struc)

[N °numeral]
[B *boelean]
[C *closure]
[R *raill
[*handle]
[A "atenm]
[P ’pair]
[0 °override]
(N *map]
[t (error ®type: unknown tag®)l))

17

18 An Implementation of 2-Lisp

The accepted rules of good programming style dictate that the representation
of 2-Lisp structures be hidden by type and the other manipulation functions. tag-
pt is used rather than type, however. This is done for reasons of speed, but it also
makes for nicely formatted dispatch tables. The following definition provides an
example of this.

(defun 2-equal? (s1 s2)
(and (eq (tag-pt si) (tag-pt s2))
(caseq (tag-pt si)

(E (2-equal? (hstruc si) (hstruc s2))]

[C (eq 81 82)])

[R (eq s1 82)]

(P (eq 81 82)]

[N (eq 81 82)]

(N (eq (nfixnum s1) (nfixnum 82))]
[B (eq (not (btnil e1)) (not (btnil 82)))]
{A (eq (asymbol 1) (asymbol 22))]
[0 (eq (ofranz s1) (ofranz 82))]
[t (error ®2-equel?: unknown tag®)])))

2-equal? uses not on the boolean line in order to make all non-nils eq each
other. Notice that composite structures may print the same but not be equal.
Atomic structures are different. There is only one numeral for each number; there
are only two booleans; two atoms that print the same are the same.

(defun rcoms-1 (list)
(if (aull list)
(list °R)
(cons °R (coms (first list) (rcoms-1 (rest list))))))

(defun rlength (rail)
(if (rempty? rail)
0
(eddi (rlength (rrest rail)))))

(defun rnth (n rail)
(cond [(> 1 n) (error ®rnth: index less than 1°)]
[(rempty? rail) (error ®rnth: index greater than length of rail®)]
[(onep n) (rfirst rail)]
[t (znth (eubl n) (rrest rail))]))

The Implementation 19

rset-n! clobbers the nth element of a rail. zset-t! clobbers the nth tail of a
rail.

(defun rset-n! (n rail new-element)
(progn (rset-n!-h n rail new-element)
rail))

(defun rset-n!-h (n rail new-element)
(cond [(> 1 n) (error "rset-m!: index less than 1°)]
[(rempty? rail) (error "rset-n!: index greater than length of rail®)]
[Conep n) (rplaca (cdr rail) new-element)]
[t (rset-n!-h (subl n) (rrest rail) new-element)]))

(defun rset-t! (n rail new-tail)
(progn (rset-t!-h n rail new-tail)
rail))

(defun rset-t!-h (n rail new-tail)
(cond [(> 0 n) (error "rset-t!: index less tham 0%)]
[(zerop n) (rplacd rail (cdr new-teil))]
[(zempty? reil) (error "rset-t!: index greater than length of rail®)]
[t (rset-t!-h (subl n) (rrest rail) new-tail)]))

maprfirst is used by hr-to-rh in m/alist .1 above.

(defun maprfirst (fun rail)
(if (rempty? rail)
(zcons)
(zprep (funcall fun (rfirst rail))
(maprfirst fun (rrest rail)))))

(defun rreverse (rail)
(rreverse-h rail (rcoms)))

(defun rreverse-h (rail ans)
(if (rempty? rail)
ans
(rreverse-h (rrest rail) (rprep (rfirst rail) ams))))

20 An Implementation of 2-Lisp

rlast returns the last element of its argument. rstart returns the rail that
includes everything but the last element of its argument.

(defun rlast (rail)

(iz (runit? rail)

(rfirst rail)
(rlast (rrest rail))))

(defun rstart (rail)

(if (runit? rail)
(zrcons)
(rprep (rfirst rail) (rstart (rrest rail)))))

(defun hcons-f (struc) (hcons struc))

pset-car! strips the tag from its argument, clobbers it with a set-car!, and
replaces the tag. pset-cdr!, on the other hand, is difficult to understand.

(defun pset-car! (pair struc)
(mk-pair (rplaca (plist pair) struc)))

(defun pset-cdr! (pair struc)
(mk-pair (rplacd (plist pair) struc)))

4. f/read.l. The goal of this project is convenience. It is not convenient to type
(P (A.plus) R (N . 2) R (N . 3) R) when (plus 2 3) is intended. Thus
this file becomes an exercise in readtables. First, a new readtable is created and
the old one is given a name.

(setq 2-readtable (makereadtable nil))

(setq Franz-readtable readtable)

Then the new readtable is altered to treat some characters differently. §, {, [,
* (=% =, and . signal that what follows must be read in a special way. }, 1, .,
and) are to be treated as ordinary Franz symbols.

The Implementation 21

(let ([readtable 2-readtable])
(setsyntax °|{| °“macro °(lambda () (read-cles)))
(setsyntax °|}| °macro °(lambda () °i}]))
(setsyntax °|[| °‘macro °(lambda () (read-rail)))
(setsyntex °|]| °‘macro °(lambda () °I1D))
(setsyntax °|°| °‘macro °(lambda () (read-hand)))
(setsyntax °|(| °macro °(lambda () (read-pair)))
(setsyntax °|.| ’macro °(lambda () °|.[))
(setsyntex °|)| ‘macro °(lembda () *1)1))
(setsyntax °|”| °macro °(lambda () (read-over)))
(setsyntax °|%| °macro °(lambda () (read-map)))
(setsyntax °|~| °macro °(lambda () (zread-up)))
(setsyntax °|_| °‘macro °(lambda () (read-down))))

When a left brace is encountered, control is passed to read-clos. read-cles
knows that the 2-Lisp readtable is already in effect, so it uses 2-read* instead of
2-read. The left brace has been passed, so the next thing read is a 2-Lisp atom,
either expr, impr or macro. The tag is stripped off, leaving a Frans symbol. The
next thing read is a map. The tag is stripped off the map to reveal an a-list. The
pattern is a rail-atom tree. The body is a 2-Lisp structure. After these four parts
are read, the closing brace is skipped over. The four parts are now packaged up
and tagged as a closure.

(defun read-cles ()
(let* ([type (asymbol (2-read:))]
[alist (malist (2-read+))]

(pattern (2-read+)]
[body (2-reads)]
[rightbrace (read)])

(mk-clos type alist pattern bcdy)))

Rails are read by accumulating all the elements in one list and feeding this list
to rcons-1. The end of a rail can be signalled by either a right bracket or a right
parenthesis. The right parenthesis is included to handle input like (plus 2 3),
where a rail is implied. read-pair takes care of the plus and then calls read-rail
in this situation.

22

An Implementation of 8-Lisp

(defun read-rail ()
(do ([acc nil (append acc (list in))]
[in (2-read*) (2-read*)])
[(or (eq in °[]I)
(eq in "))
(zcons-1 ace)]))

Notice that *x does not expand into (quote x). It becomes a 2-Lisp handle
structure.

(defun read-hand ()
(let ([stzruec (2-read+)])
(hcons struc)))

When a pair is read, it may take one of two forms. Either it will be a proper
dotted pair like (plus . [2 8]) or it will be in the abbreviated dotless style,
(plus 2 3). Either way, the left hand side of the pair is read first. if a dot comes
next, then the right hand side is read. The right parenthesis is discarded. Remember
the 2-readtable treats the dot and the right parenthesis like ordinary symbols. If a
right parenthesis has been read, the right hand side is the empty rail. Otherwise,
the first element of the implied rail has been read, and read-zail is called to read
the rest. read-rail skips over the closing parenthesis. Now the left and right sides
are paired.

(defun read-pair ()
(let* ([lhs (2-read+)]
[lock (2-read+)]
[zhs (cend [(eq °l|.| look)

(let+ ([zhs (2-read+)]
[rightpar (2-read*)])
rhs)]

[Ceq 1) 1look) (zcons)]
[t (rprep lock (read-rail))])])
(pcons lhs rhs)))

The Implementation

Overrides are Frans objects that pretend to be 2-Lisp structures. To read an
override, the readtable is switched to the Franz readtable, a Frans s-expression is
read and tagged, and the 2-Lisp readtable is restored. There’s one exception. If the
user should find herself in the nasty situation where the 2-Lisp readtable is running
but 2-Lisp isn’t, a =~ will disable the 2-Lisp readtable.

(defun read-over ()
(progn (setq readtable Franz-readtable)
(let ([in (read)])
(i (eq *I°| in)

(progn (print ®back to Franz readtable®)
(terpri))

(progn (setq readtable 2-readtable)
(mk-over in))))))

Maps, environment designators, are an addition to 2-Lisp, and so require both
justification and explanation. The justification appears in the section devoted to
n/meanage.l. The explanation is done below with an example.

This is the notation for a map structure: %[[x 2] [y 8] [x 4]]. This map
designates an environment where x is bound to the numeral 2 (designates the num-
ber 2) and y is bound to the numeral 8 (designates the number 3). It should be easy
to see how this notation can be converted into an a-list. The % character was chosen
because it looks like the notation commonly used for substitution in environments,
as in plz/id).

(defun read-map ()
(k-map (rail-to-alist (2-read:))))

(defun rail-te-alist (rail)
(cond [(rempty? rail) nil]
[t (coens (rail-to-term (rfirst rail))
(reil-to-alist (rrest rail)))]))

(defun rail-to-term (rail)
(cons (asymbol (rfirst rail))
(rnth2 rail)))

23

24 An Implementation of 2-Lisp

Up and down arrows (~ and -) expand into up and down just like the single
quote (°) expands into quote in Frans Lisp.

(defun read-up ()
(let ([arg (2-reads)])
(pcons (mk-atom °‘up) (rcoms arg))))

(defun read-dowa ()
(let ([arg (2-read*)])
(pcons (mk-atom °down) (rcoms arg))))

The only difference between 2-read and 2-read# is that 2-read+ assumes that
the 2-Lisp readtable is already in place.

(defun 2-read ()
(let ([readtable 2-readtable])
(2-zeadt)))

(defun 2-read* ()
(theta-2ix (read)))

Closures, rails, handles, pairs, overrides and maps all start with reserved char-
acters that can be caught by the readtable mechanism. Booleans start with a
special character too. Unfortunately, when this special character is stripped from
$7T one is left with the tricky-to-handle T. Whether booleans can be caught easily or
not, numerals and atoms certainly can’t be. This means that the readtable mecha-
nism cannot fully do the job of theta, the function that takes notations to internal
structures. theta-£ix fills in this gap.

(defun theta-fix (in)

(cond [(eq in *I111) °I111]
[Ceq in °1.1) *1.1]
[(eq in "DDI) °DI]
[(numberp in) (mk-nume in)]
[(eq in °$T) (mk-bool t)]
[C(eq in "$t) (mk-bool t)]
[Ceq in °$F) (mk-bool nil)]
[Ceq in °$2) (mk-bool nil)]
[(atom in) (nk-atom in)]
[t in]))

The Implementation 28

5. f/write.l. These are the functions that print out 2-Lisp structures with all the
special characters. The internal representation may be printed with 1-print. But
the interest lies in 2-print. A dispatch table is the natural way to proceed. Divide
and conquer.

(defun 1-print (struc)
(print struc))

(defun 2-print (struc)
(selectq (tag-pt struc)
[N (print-nume struc)]
[B (print-bool struc)]
[C (print-cles struc)]
[R (print-rail struc)]
(B (print-hand struc)]
[A (print-atom struc))
[P (print-pair struc)]
[0 (print-over struc)]
[N (print-map struc))
[othervise (error ®2-print: unknown tag®)]))

Frans Lisp is perfectly able to print fixnums.

(defun print-nume (nume)
(patom (afixnum nume)))

Booleans are also easy to handle.

(defun print-bool (bool)
(it (btnil beol)
(patom °[$TI)
(patom °I$F[)))

26 An Implementation of 2-Lisp

When a closure is printed, instead of printing out the environment, either prim or Imep is
printed, as appropriate. In 2-Lisp, all primitives have Franz code where their bodies belong.

(defun print-cles (clos)
(progn (princ °|{l)
(patom (ctype clos))
(cond [(cprim? clos) (patoa °| prim |)]

[t (patom °| %map |)1)
(2-print (cpattern clos))
(princ °|)

(caseq (ctype clos)
[(expr impr macro) (if (cprim? clos)
(patom °|Franz|)
(2-print (cboedy cles)))]
[t (2-print (cbody clos))])
(prine °[}1)))

print-rail is straightforward. print-rail-guts has been given a separate existence so
that it can be used elsewhere.

(defun print-rail (rail)
(progn (prinmec °I[I)
(print-rail-guts rail)
(princ *111)))

(defun print-rail-guts (rail)
(do ([left rail (rrest left)])
[(zempty? left) °done]
(2-print (rfirst left))
(iz (not (runit? left))
(princ *| 1))

The Implementation 27

To print a handle, first print a single quote mark. Then print the rest.

(defun print-hand (hand)
(proga (primec °|°|)
(2-print (hstruc harnd))))

Printing atoms is exactly the same as printing numerals.

(defun print-atom (atom)
(patom (asymbol atom)))

There are two ways to print a pair, provided the right hand side is a rail. It can be printed
with or without a dot. This is decided by the global det-f1lag.

(defun print-pair (pair)
(if (and (reil? (pecdr pair))
(net dot-flag))
(print-pair-not pair)
(print-pair-dot pair)))

(defun print-pair-dot (pair)
(progn (primec *I(l)
(2-print (pcar pair))
(patem '| . I)
(2-print (pedr pair))
(princ *1D1)))

If the pair is going to be printed without a dot, then the square brackets around the rail on the
right hand side must also be dropped. This is where print-reil-guts is used.

(defun print-pair-not (pair)
(progn (prime *I(I)
(2-print (pcar pair))
(princ °| |)
(print-rail-guts (pedr pair))
(pzrine *1)1)))

28 An Implementation of 2-Lisp

Overrides are only expected to be used at the top level.

(defun print-over (over)
(progn (patom °|Override: |[)
(print (ofranz over))))

Printing maps follows a pattern symmetrical with reading them. But the process is flipped
across the a-list/rail axis.

(defun print-map (map)
(progan (primc °1%1)
(2-print (alist-to-rail (malist map)))))

(defun elist-to-rail (alist)
(if (null alist)
(zcons)
(zprep (term-to-rail (car alist))
(alist-to-rail (cdr alist)))))

(defun term-to-rail (term)
(rcons (mk-atom (car term))
(cdr term)))

6. f/normall. This file can be considered the heart of the matter. Numerals, booleans,
closures, handles and maps all normalize to themselves. So do overrides. One can think of
overrides as Frans Lisp voyagers making a fantastic journey through the 2-Lisp processor. In a
ship consisting of an 0 and a cons-cell.

(defun nermalize (struc r)
(caseq (tag-pt struc)

[N struc)
(B struc]
[C stzue]
[R (normalize-rail struc r)]
[E struc)
[A (binding struc r)]
[P (reduce (pcar struc) (pedr struc) r)l
[0 struc]
[N strucl
[t (error "mormalize: unkmown tag®)l))

The Implementation 29

The only structures with which the 2-Lisp processor does anything are rails,
atoms, and pairs. For rails, the processor just calls itself recursively. Atoms get
replaced with their bindings. Pairs get reduced, which is where the work is. Note
that this implementation does not handle tail recursion properly.

(defun nermalize-rail (rail r)
(iz (rempty? rail)
(zcons)
(rprep (normalize (rtirst rail) r)
(normalize-rail (rrest rail) r))))

reduce needs the following three macros, which turn out to be operationally
identical. The variable name args! contains normalized arguments; args contains
arguments that have not been normalized.

(defmacro reduce-prim-expr (proc! args! alist)
*(funcall (cbody ,proc!) ,args! ,alist))

(defmacro reduce-prim-impr (proc! args alist)
*(funcall (cbedy ,proc!) ,args ,alist))

(defmacro reduce-prim-macro (proc! args elist)
*(funcall (cbody ,proc!) ,args ,alist))

The three macros above are for primitives. The function below is for user
defined functions. It normalizes the body of the closure in an environment that
has been extended by matching the formal parameter pattern against the actual
argument pattern. The actual argument may or may not have been normalized
beforehand.

(defun expand-closure (proc! args!)
(normalize (cbedy proc!)
(ext (calist proc!)
(match (cpattern proc!)
args!))))

2-Lisp-unlike Scheme-must analyze the left hand side of redexes first. The left
hand side of a pair should normalize to a closure. After reduce has a closure, there
are six cases to consider.

30 An Implementation of 2-Lisp

Cases 1 and 2. Both primitive exprs and user-defined exprs have their argu-
ments normalized. The difference, from the point of view of reduce, is that primitive
exprs get to manipulate r, the a-list that serves as the current environment.

Cases 3 and 4. Neither kind of impr has its arguments normalized. A user-
defined impr is given a handle on the actual structure that is its argument. A
primitive impr is given the actual structure. Remember, a primitive impr is actually
Frang code. A handle would be nothing more than an extra cons-cell getting in the
way. Things would be different if the either the primitive or reduce itself were
written in 2-Lisp.

Cases 5 and 6. Once again, the arguments are left unnormalized. A user-defined
macro is given a handle on the argument structure with which it was called. The
macro body should designate the structure that is to replace the calling pair. Thus,
it normalizes to a handle (the only normal-form structure that designates another
structure). The structure this handle designates is then normalized. reduce knows
that primitive macros don’t bother to tack on the handle.

(defun reduce (proc args r)
(let ([proc! (normalize proc r)])
(caseq (ctype proc!)
[expr (let ([args! (normalize args r)l)
(i (cprim? proc!)
(reduce-prim-expr proc! args! r)
(expand-closure proc! args!)))]
[impr (if (cprim? proc!)
(reduce-prim-impr proc! args r)
(expand-closure proc! (hcons args)))]
[macre (if (cprim? proc!)
(normalize (reduce-prim-macro proc! args r) r)
(normalize (hstruc
(expand-closure proc! (hcons args))) r))]
[t (error ®reduce: type not expr, impr, or macro®)])))

7. f/alist.l. One a-list manipulator is defined as a function. The rest are defined
as macros in m/alist.l. Notice especially the second cond clause of match. This
is not at all what one would expect. When patterns are being matched against
bindings, Smith breaks the rules for the sake of convenience. If the binding is °[1
2 3], he allows it to be replaced by [°1 °2 °8] if the latter will pattern-match
better. This is used frequently by imprs and macros.

Notice also that if there is “too much binding, too little pattern” the extra
arguments are ignored without an error. This can be argued for as a “feature.” But
in fact it was done for the speed that comes with minimal error-checking.

The Implementation S1

(defun match (pattera binding)
(cond [(atom? pattern) (list (cons (asymbol pattern) binding))]
[(and (hand? binding)
(rail? (hstruc binding))) (match patterm (hr-to-rh binding))]
[(zempty? pattern) nil]
[(zrempty? binding) (error "too ammch pattern, too little binding®)]
[t (nconc (match (rfirst patterm) (rfirst binding))
(match (rrest pattern) (rrest binding)))]))

8. f/primitives.l. This file contains the bodies of all the primitive closures. The bodies are
taken out of the primitive closures so that they can be compiled. The one help function, rh-te-
hr, is the inverse operation to hr-to-rh, defined in m/alist.l. It transforms a rail of handles
to a handle on a rail. It is used once, in the rcons primitive.

(defun rh-te-hr (rail)
(hcons (maprfirst °(lambda (hand) (hstruc hand))
rail)))

(def prim-numeral?
(lambda (args! r)
(let ([struc (rnthi args!)])
(mk-beol (and (hand? struc)
(nume? (hstruc struc)))))))

(def prim-boolean?
(lambde (args! r)
(let ([struc (rathi args!)])
(mk-bool (and (hand? struc)
(bool? (hstruc struc)))))))

(def prim-closure?
(lambda (args! r)
(let ([struc (rathi args!)])
(mk-beol (and (hand? struc)
(cles? (hstruc struc)))))))

An Implementation of 2-Lisp

(def prim-ccons
(lembda (args! r)
(let ([type (asymbol (hstruc (rnthi args!)))]
[alist (malist (hstruc (rnth2 args!)))]
(pattern (hstruc (rath3 args!))]
[body (hstruc (rnth4 args!))])
(hcons (mk-clos type alist patterm body)))))

(def prim-ctype
(lambde (ergs! r)
(let ([cloes (hstruc (rnthi args!))])
(hcons (mk-atom (ctype clos))))))

(def prim-cmap
(lembda (args! r)
(let* ([cles (hstruc (rnthi args!))]
[elist (calist cles)])
(if (and (atom alist)

(not (aull alist)))

(hcons (mk-atom alist))

(hcons (mk-map alist))))))

(def prim-cpattern
(lambde (args! r)
(hcons (cpattera (hstruc (rathi args!))))))

(det prim-cbedy
(lanbda (args! r)
(hcons (cbody (hstruc (rathi args!))))))

(def prim-rail?
(lanbda (azgs! r)
(let ([struc (rnthi args!)])
(mk-bool (and (hand? struc)
(rail? (hstruc struc)))))))

(det prim-rcons
(lambda (args! z)
(rh-to-hr args!)))

(def prim-rfirst
(lambda (args! r)
(hcons (rfirst (hstruc (ranthi args!))))))

(def prim-rrest
(lambda (args! r)
(hcons (rrest (hstruc (rnthi args!))))))

(def prim-ranth
(lambda (args! r)
(hcons (rnth (nfixnum (rnthi args!))
(hstruc (rnth2 args!))))))

(def prim-rprep
(lambda (args! r)
(let ([head (hstruc (rathi args!))]
[tail (hstruc (rnth2 args!))])
(hcons (rprep head tail)))))

(def prim-rlength
(lambda (eargs! r)
(nk-nume (rlength (hstruc (ranthi args!))))))

(det prim-rset-n!
(lembda (args! r)
(hcons (rset-n! (nfixnum (rnthi args!))
(hstruc (zath2 args!))
(hstrue (raths args!))))))

(def prim-rset-t!
(lambda (args! r)
(hcons (rset-t! (afiznum (rathi args!))
(hstrue (znth2 args!))
(hstrue (zath3 args!))))))

(def prim-handle?
(lambda (args! r)
(let ([struc (rathi args!)])
(mk-bool (and (hand? struc)
(hand? (hstruc struc)))))))

(def prim-atom?
(lambda (args! r)
(let ([struc (rathi args!)])
(mk-bool (and (hand? struc)
(atom? (hstruec struc)))))))

(def prim-acons
(lambda (args! r) (hcons (mk-atom (gemsym)))))

The Implementation 33

84

An Implementation of 8-Lisp

(def prim-pair?
(lambda (args! r)
(let ([struc (rnthi args!)])
(mk-boel (and (hand? struc)
(pair? (hstruc struc)))))))

(def prim-pcons
(lambda (ergs! r)
(let ([a (hstruc (rnthi args!))]
[d (hstruc (rnth2 args!))])
(hcons (pcons a d)))))

(def prim-pcar
(lambda (args! r)
(let ([p (hstruc (rnthi args!))])
(hcons (pear p)))))

(det prim-pecdr
(lambda (args! r)
(let ([p (hstruc (rathi args!))])
(hecons (pecdr p)))))

(def prim-pset-car!
(lambda (args! r)
(hcons (pset-car! (hstruc (rmthi args!))
(kstrue (zath2 args!))))))

(def prim-pset-cdr!
(lambda (args! r)
(hcons (pset-cdr! (hstruc (rathi args!))
(hstruc (rnth2 args!))))))

(def prim-map?
(lambde (args! r)
(let ([stzuc (rnthi args!)])
(nk-bool (and (hand? struc)
(map? (hstruc struc)))))))

(def prim-mcons
(lambda (args! r)
(let ([newer-map (hstruc (rnthi args!))]
[older-map (hstruc (rnth2 ergs!))])
(hcons (mcons newer-map older-map)))))

(def prim-mbound?
(lambde (args! r)
(let ([atom (hstruc (rnthi args!))]
[map (hstruc (rmth2 args!))])
(mk-bool (lockup atom (malist map))))))

(def prim-mbinding
(lambde (args! r)
(let ([atom (hstruc (rathi args!))]
[map (hstruc (rnth2 args!))])
(hcons (binding atom (malist map))))))

(def prim-mbind
(lambda (args! r)
(let ([pattern (hstruc (rnthl args!))]
[binding (hstruc (rath2 args!))]
[map (hstruc (rnthS args!))])
(hcons (mk-map (bind pattern
binding
(malist map)))))))

(def prim-mset-binding!
(lambda (args! r)
(let ([atom (hstruc (rathl args!))]
(binding (hstruc (rath2 args!))]
[map (hstruc (rath3 args!))])
(set-binding! atom binding (malist map))
(heons binding)))

(def prim-number?
(lambda (args! r)
(let ([struc (rathi args!)])
(mk-bool (nume? struc)))))

(def prim-+
(lanmbda (args! r)
(let ([n1 (afixnum (rnthi args!))]
[(n2 (afixnum (rath2 args!))])
(mk-nume (+ ni n2)))))

(def prim--
(lambda (args! r)
(let ([n1 (nfixnum (rnthi args!))]
[n2 (nfixnum (rnth2 args!))])
(mk-nume (- ni n2)))))

The Implementation 8B

36 An Implementation of £-Lisp

(def prim-+
(lambda (ergs! r)
(let ([n1 (afixnum (rnthi args!))]
[n2 (nfixmum (rnth2 args!))])
(mk-nume (* ni n2)))))

(def prim-/
(lambda (ergs! r)
(let ([ni (nfixnum (rathi args!))]
[n2 (nfixnum (rath2 args!))])
(mk-nume (/ ni n2)))))

(def prim-truth-value?
(lambda (args! r)
(let ([struc (znthl args!)])
(mk-bool (bool? struc)))))

(def prim-and
(lambda (ergs! r)
(zk-bool (and (btnil (rathil args!))
(btail (rath2 args!))))))

(def prim-or
(lambda (args! r)
(mk-bool (or (btanil (rathi args!))
(btnil (rath2 args!))))))

(def prim-not
(lambda (args! r)
(mk-bool (mot (btnil (rathi args!))))))

(def prim-sequence?

(lambda (args! r)
(let ([struc (rnthi args!)])
(mk-boel (rail? struc)))))

(def prim-scons
(lambda (args! r) ergs!))

(def prim-sfirst
(lambda (ergs! r)
(rfirst (rnthi args!))))

The Implementation 87

(def prim-srest
(lambde (args!)
(rrest (zathi args!))))

(def prim-enth
(lambda (args! r)
(znth (nfixnum (rnthl args!)) (rmth2 args!))))

(def prim-sprep
(lanbda (ergs! r)
(zprep (zathi args!) (znth2 args!))))

(def prim-slength
(lambda (args! r)
(mk-nume (rlength (rnthi args!)))))

(det prim-function?

(lambda (ergs! r)
(let ([struc (rnthi args!)])
(mk-bool (clos? struc)))))

(def prim-lambda
(lambda (args r)
(let* ([type (asymbol (rnthi ergs))]
[pattern (rath2 args)]
[bedy (znth3 args) 1)
(mk-clos type r pattern bedy))))

(def prim-xcons
(lambda (args! r)
(hcons (pcons (hstruc (rfirst args!))
(maprfirst °(lambde (hend) (hstruc hand))
(rzest args!))))))

88 An Implementation of 8-Lisp

=? says that it can’t deal with functions, but it makes an attempt nonetheless.
It’s true that it’s impossible to tell in all cases whether two algorithms compute the
same function. But that doesn’t mean that it’s never possible to tell. Similarly, if
two maps are the same, they must designate the same environment.

(def prim-=?
(lambda (args! r)
(let ([s1 (rnthi args!)]
[s2 (rnth2 args!)])
(mk-bool
(cond [(hand? s1)
(and (hand? 82)
(2-equal? (hstruc si)
(hstruc 82)))]
[(clos? s1)
(and (clos? s2)
(or (equal si 82)
(error ®=? can’t deal with functions®)))]
[(map? s1)
(and (map? 82)
(or (equal si 82)
(erzor ®=? can’t deal with maps®)))]
[t (equal s1 82)])))))

(def prim-if
(lambde (args r)

(let+ ([pred (rathi args)]
[then (znth2 args)]
[else (rnth3 args)]
[pred! (normalize pred r)l)

(if (btnil pred!)

(normalize then r)
(normalize else r)))))

The begin macro is primitive because Franz code is faster than 2-Lisp code,
and begin is frequently used.

The Implementation 89

{def prim-begin
(lambda (args r)
(if (runit? args)
(rlast args)
(xcons (xcons (mk-atom °lambda)
(mk-atom ‘expr)
(mk-atom °?)
(rlast args))
(pcons (mk-atom °begin)
(rstart args))))))

up just tacks on a handle. Notice that exprs are supposed to be defined in terms of the
designations of the arguments that are typed. But of course when the boolean $T is typed in,
the Franz code manipulates (B . t), not Truth.

(def prim-up
(lambda (args! r)
(let ([x (rnthi args!)])
(heons x))))

(def prim-down
(lambda (args! r)
(let ([hand (rnthi args!)])
(if (hand? hand)
(normelize (hstruc hand) r)
(error “error in dowa®)))))

(def prim-define!
(lambda (args r)
(lets ([id (znthl args)]
[clos (zmth2 args)]
[clos! (normalize cles r)])
(progn (set-binding! id cles! r)
(heons id)))))

(def prim-set!
(lambda (args r)
(let+ ([id (rnthi args)]
[bind (rnth2 args)]
[bind! (normalize bind r)])
(progn (set-binding! id bind! r)
bind!))))

40 An Implementation of 2-Lisp

(def prim-read!
(lambda (args! r)
(hcons (2-read))))

(def prim-print!
(laxbda (args! r)
(progn (2-print (hstruc (rmthi args!)))
(drain)
(mk-bool t))))

(def prim-new-line!
(lambda (args r)
(progn (terpri)
(mk-beol ¢))))

9. f/instalist.l. This file contains one help function and the initial association list.
The help function, symbols-to-ra, takes any number of unquoted Franz symbols
and creates a rail of 2-Lisp atoms. It is used to make the pattern part of each
primitive closure. For primitives, the pattern is just for show. It’s there for when
the primitive closure is printed. The real formal parameter list is part of the Franz-
code body of the primitive.

(def symbols-to-ra
(macro (1)
(let ([symbols (cdr 1)])
(cons °rcons
(mapcar *(lambda (symbol) °(mk-atom (quote ,symbol)))
symbels)))))

And now, the initial association list.

(setq initalist
‘([numeral? . ,(mk-clos °expr ‘prim
[eymbols-to-ra arg]
*prim-numeral?)]

[boolean? . ,(mk-clos °expr ’prim
[symbols-to-ra argl
*prim-boolean?)]

The Implementation 41

[closure? . ,(mk-clos ‘expr °prim
[symbols-to-ra argl
*prim-closure?)]

[ccons . ,(mk-clos ‘expr °prim
[symbols-to-ra atom map pattern body]
*prim-ccons)]

[ctype . ,(mk-clos ’expr ’prim
[symbols-to-ra clos]
*prim-ctype)]

[cmap . ,(mk-clos °expr °prim
(symbols-to-ra clos]
*prim-cmap)]

[cpattern . ,(mk-clos ‘expr °prim
[symbols-to-ra clos]
‘prim-cpattern)]

[cbedy . ,(mk-clos ‘expr ’prim
[symbols-to-ra clos]
*prim-cbedy)]

[rail? . ,(mk-clos ’expr ‘prim
[symbols-to-ra arg)
‘prim-rail?)]

[rcons . ,(mk-cles ‘expr ‘prim
[eymbols-to-ra struci struc2 |...|]
‘prim-rcons)]

[rfirst . ,(mk-clos ‘expr °‘prim
[symbols-te-ra rail)
‘prim-rfirst)]

[zrest . ,(mk-clos ‘expr ‘prim
[symbols-te-ra raill
‘prim-rrest)]

[rath . ,(mk-clos °expr °‘prim
[symbols-to-ra n rail]
*prim-rath)]

42 An Implementation of £-Liop

(rprep . ,(mk-clos ‘expr °prim
[eymbols-to-ra head tail)
*prim-rprep)]

[rlength . ,(mk-clos ‘expr ‘prim
[eymbols-to-ra rail]

*prim-rlength)]

[rset-n! . ,(mk-clos ‘expr ‘prim
[symbols-to-ra n rail struc]
‘prim-rset-n!)]

[rset-t! . ,(mk-clos ‘expr ’prim
[symbols-to-ra n rail tail]
‘prim-rset-t!)]

[handle? . ,(mk-clos ’expr ‘prim
[symbols-to-ra arg)
*prim-handle?)]

(atom? . ,(mk-clos ‘expr ‘prim
[symbols-to-ra arg)
‘prim-atonm?)]

[acons . ,(mk-clos ‘expr ‘prim
[symbols-teo-ra]
‘prim-acons)]

[pair? . ,(mk-clos ‘expr ‘prim
[symbols-to-ra argl
*prim-pair?)]

[pcons . ,(mk-clos °expr ‘prim
[symbols-to-ra car cdr]
*prim-pcons)]

(pear . ,(mk-clos ’expr ‘prim
[symbols-to-ra pair]
*prim-pcar)]

[pedr . ,(mk-clos ‘expr °prim
[symbols-to-ra pair]
*prim-pcdr)]

The Implementation 43

[pset-car! . ,(mk-clos °expr ’prim
[symbols-to-ra pair car]
‘prim-pset-car!)]

[pset-cdr! . ,(mk-clos ‘expr ‘prim
[symbols-to-ra pair cdr]
‘prim-pset-cdr!)]

(map? . ,(mk-clos °expr °prim
[symbols-to-ra arg]
*prim-map?)]

[mcons . ,(mk-clos ‘expr °prim
[symbols-to-ra newer-map older-map]
*prim-mcons)]

[mbound? . ,(mk-clos ‘expr °prim
[symbols-to-ra atom map]
*prim-mbound?)]

[mbinding . ,(mk-clos "expr ‘prim
[symbols-to-ra atom map]
*prin-mbinding)]

(mbind . ,(mk-clos °‘expr ‘prim
[symbols-to-ra pattern binding map)
*priz-mbind)]

[mset-binding! . ,(mk-clos ‘expr °prim
[symbols-to-ra atom struc map]
*‘prim-mset-binding!)]

[number? . ,(mk-clos ‘expr ‘prim
(symbols-te-ra argl
‘prim-number?)]

[+ . ,(mk-clos ‘expr ‘prim
[symbols-to-ra ni n2)
‘prim-+)]

[- . .,(mk-clos °expr °'prim
[symbols-to-ra ni n2]
‘prim--)]

44 An Implementation of 2-Lisp

[+ . ,(mk-clos ‘expr °prim
[symbols-to-ra ni n2]
*prim-+)]

[/ . .(mk-clos °expr °prim
[symbols-to-ra nl n2]
*prim-/)]

[truth-value? . ,(mk-clos ‘expr ‘prim
[symbols-to-ra argl
*prim-truth-value?)]

(and . ,(mk-clos ‘expr ‘prim
[symbols-to-ra tvi tv2]
‘prim-and)]

[or . .(mk-clos ‘expr ‘prim
[symbols-to-ra tvi tv2]
‘prim-or)]

[net . ,(mk-clos °expr ‘prim
(symbols-to-ra tv]
‘prim-not)]

[sequence? . ,(mk-clos "expr ‘prim
[symbols-to-ra arg]
‘prim-sequence?)]

[scons . ,(mk-clos °‘expr °prim
[symbols-to-ra el e2 |...|]
‘prim-scons)]

[stirst . ,(mk-clos ‘expr ‘prim
[symbols-te-ra sequ]
*prim-sfirst)]

[srest . ,(mk-clos ‘expr °prim
[symbols-to-ra sequ)
*prim-srest)]

[snth . ,(mk-clos °"expr ’prim

[eymbols-to-ra n sequ]
*prim-snth)]

The Implementation 456

[sprep . ,(mk-clos ‘expr °prim
[symbols-to-ra £irst sequ]
*prim-sprep)]

[slengtk . ,(mk-clos °expr ‘prim
[symbols-to-ra sequl
‘prim-slength)]

[function? . ,(mk-clos °expr ‘prim
[symbols-to-ra arg]
‘prim-function?)]

[lambda . ,(mk-clos °impr ‘prim
[eymbols-to-ra type pattern bodyl
*prim-lambda)]

[xcons . ,(mk-cles ‘expr ‘prim
[symbols-to-ra proc argl arg2 |...|]
‘prim-zcons)]

[=? . ,(mk-clos ‘expr °'prim
(synmbols-te-ra argl arg2]
‘prim-=7)]

[if . ,(mk-clos ’impr ’prim
[symbols-to-ra pred then else]
‘prim-if)]

[begin . ,(mk-clos °macro ‘prim
[symbols-to-ra expl exp2 |...I]
*prim-begin)]

[up . ,(mk-clos ‘expr ‘prim
[symbols-to-ra signified]
*prim-up)]

[down . ,(mk-clos ‘expr ‘prim
[symbels-to-ra sign]
*prim-down)]

[define! . ,(mk-clos °impr °prim
[symbols-to-ra id binding]
‘prim-define!)]

48 An Implementation of 2-Lisp

[set! . ,(mk-clos °impr °prim
[symbols-to-ra id binding]
*prim-set!)]

[read! . ,(mk-clos °impr °prim
[symbols-to-ral
*prim-read!)]

[print! . ,(mk-clos ‘expr °‘prim
[symbols-to-ra struc]
*prim-print!)]

[new-1line! . ,(mk-clos ’impr ‘prim
[symbols-to-ra)
‘prim-new-line!)]

))

10. f/loop.l. This file contains the top level read-normalize-print loop. 2-Lisp
serves two purposes. First, it provides a convenient entry point; it’s the intended
entry point. Second, it uses errset to recover from errors without throwing the
user back to Frans Lisp.

(defun 2-Lisp ()
(prog mil
repeat
(if (errset (read-mormalize-print initalist))
(retura °stopped))
(ge repeat)))

The most useful and interesting aspect of read-normalize-print is the over-
ride facility. Overrides are typed in preceded with a tilde, as in “dot. They are
represented internally like this: (0 . det). They normalize to themselves, and are
printed out like this: Override: dot. After they are printed, but before read-
normalize-print cycles back to read the next input, they are matched against a
list of meaningful overrides. The meaningful overrides are “read, “echo, “print,
“dot, “stop and “exit. If there is a match, the corresponding switch is toggled
(“read, “eche, “print, or “dot) or the 2-Lisp processor returns control to Franz
Lisp and its readtable (“stop or “exit).

The Implementation 47

(defun read-normalize-print (z)
(prog (in out)

(setq read-flag =nil)

(setq echo-flag nil)

(setq print-fleg nil)

(setq dot-flag nil)

(setq readtable 2-readtable)

loop (setq in (promptéread))
(setq out (if echo-flag
in
(normalize in r)))
(promptéreply out)
(if (and (not (atom out))
(over? out))
(selectq (ofranz out)
[read (setq read-flag (not read-flag))
(setq readtable (if read-flag
Franz-readtable
2-readtable))]
[echo (setq echo-flag (mot echo-flag))]
[print (setq print-flag (mot print-flag))]
[det (setq dot-flag (not dot-flag))]
[stop (progn (setq readtable Franz-readtable)
(return °stopped))]
[exit (progn (setq readtable Franz-readtable)
(return °stopped))]))
(go loop)))

Notice that a garbage collection is done before reading, but after the user has
been prompted. The drain makes sure that the prompt is printed right away, not
just before the read.

(defun promptéread ()
(progn (if read-flag

(patom °|1-read ? |)
(patom °[2-Lisp 7 |))

(drain)

(ge)

(if read-flag
(read)
(2-zead*))))

48 An Implementation of 2-Lisp

(defun prompté&reply (out)
(progn (if echo-flag
(patom °| = |)
(patom °| ==> |[))
(if print-flag
(1-print out)
(2-print out))
(terpri)))

These two I/O functions should make clear the effects of the “read and “print
overrides. The code for read-normalize-print shows what “echo, “stop and
“exit do. The dot-£lag is referenced in £/write.1.

6. CONCLUSIONS

The overall goal of convenience for the user is achieved by making this implementa-
tion conform closely to the special syntax presented in Smith [84]). The primitives
are named uniformly and descriptively. Design choices are uniformly decided in fa-
vor of speed over space. The Franz code is written in as natural a style as possible
to make clear exactly how the processor does what it does; issues of tail recursion
are ignored.

7. ACKNOWLEDGEMENT
This project was directed by Daniel Friedman.

References

8. REFERENCES

[Foderaro et al. 83]
Foderaro, J.K., Sklower, K.L., and Layer, K., “The Frang Lisp Manual,” Uni-
versity of California at Berkeley (June 1983).

[Friedman et al. 84]
Friedman, D.P., Haynes, C.T., Kohlbecker, E., and Wand, M., “The Scheme 84
Reference Manual,” Indiana University Computer Science Department Techni-
cal Report No. 153 (March 1984).

[Kohlbecker 84]
Kohlbecker, E., “Using mkmac,” Indiana University Computer Science Depart-
ment Technical Report No. 157 (March 1984).

[Smith 82]
Smith, B.C., Reflection and Semantics tn a Procedural Language,
MIT/LCS/TR-272, Mass. Inst. of Tech., Cambridge, MA, January, 1982.

[Smith 84]
Smith, B.C., “Reflection and Semantics in Lisp,” Conf. Rec. 11th ACM Symp.
on Principles of Programming Languages (1984).

49

50 Appendiz—Names of Primitives

Appendix—Names of Primitives

The following table shows the correspondence between Smith’s names for primitives
and the names used in this implementation.

Smith This implementation
NUMERAL numeral?
BOOLEAN boolean?
CLOSURE closure?

CCONS ccons

PROCEDURE-TYPE ctype

ENVIRONMENT cmap

PATTERN cpattern

BODY cbody

RAIL rail?
RCONS rcons
riirst
rrest
rath
rprep
rlength
RPLACN rset-n!
RPLACT zeet-t!
HANDLE handle?
ATON atem?

ACONS acons
PAIR pair?

PCONS pcons

CAR pear

CDR pedr

RPLACA pset-car!

RPLACD pset-cdr!

map?
mcons
mbound?
mbinding
mbind

mset-binding!

NUMBER

TRUTHE-VALUE

FUNCTION

SEQUENCE

vectors

redexes

- P

OR
NOT

LAMBDA

scons

18T
REST
NTH
PREP
LENGTH

XCONS

EXPR
INPR
NACRO

Appendis—Names of Primitives B1

number?

b O I

truth-value?
and
or
not

function?
lambda

sequence?
scons
sfirst
srest
sath
sprep
slength

rails and sequences

redexes

Xcons

expr
impr

Bacro

B2 Appendis—Names of Primitives

IF

BLOCK
NANE
REFERENT
DEFINE
SET
READ

PRINT
TERPRI

=7

begin

down

define!
set!

read!
print!
new-line!

Appendis—Quick Guide B3

Appendix—Quick Guide

This appendix is intended as a supplement to the previous appendix. Together, the
two appendices serve as a quick guide-sheet to this implementation of 2-Lisp.

on switch => (load "/usiu/charlie/2/s/speed.l®)
-> (2-Lisp)

off switch “stop (0 . stop)

1-read/2-read toggle “read (0 . read)

echo/normalize toggle “echo (0 . echo)

1-print/2-print toggle “print (0 . print)

dot/not toggle “dot (0 . dot)

return to Franz readtable <2»: -~

