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Preface

Preface

This report describes the use and implementation of eu-Prolog, a dialect of Prolog.
It is a reference manual and user-guide for that system; a prior understanding of
the Prolog unification and backtracking procedures are assumed.

eu-Prolog is not a full-blown Prolog system; much of what appears in a standard
Prolog system is missing. Rather, this version is an educational tool designed for
the teaching of the basics of programming in Prolog. It was completed as a project
for Professor John Barnden’s course Artificial Intelligence II.

Various implementations of Prolog dialects have been produced in Lisp. For
examples, see Wallace’s paper [Wallace 1983] and Komorowski’s thesis [Komor-
owski 1981]. Also, Wand has produced an embedding of the Prolog unification
and control capabilities in Scheme [Wand 1983]. Instead of being an embedding of
Prolog within Scheme, eu-Prolog is a true Prolog that runs on top of Scheme and
Franz Lisp [Foderaro et al. 1983)].

Even though these other implementations and embeddings exist, an implemen-
tation of Prolog in Scheme 84 [Friedman et al. 1984] is interesting because of the
convenience of that language’s first-class continuations. Both backtracking and the
cut are understood as invocations of continuations; each is seen to be the resump-
tion of an earlier state of the Prolog interpreter. An interesting question for further
thought is, are there other places in the Prolog control mechanism that would pro-
vide useful continuations for different computations.

The files which contain the eu-Prolog code are in the iuvax directory
“[usiufeugene /prolog™.

They are
prolog.s  system initialization and loading
prolog.1 Franz Lisp functions for eu-Prolog
prolog.o  compiled version of prolog.l
protop.s  read-execute-print loop and top-level command interpreter
exe.s eu-Prolog interpreter
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To load eu-Prolog, enter Scheme 84 and load the file
“fusiu/eugene/prolog/prolog.s”.

You should see
Scheme 84 version 0 (27-Feb-84)

>>> (load ‘prolog.s)

[fesl /usiu/eugene/prolog/prolog.o]
t

>2>>

To run eu-Prolog, invoke the Scheme 84 prolog function:
>>> (prolog)

[Return to top level]
eu-Prolog (version 27-Feb-84)

prolog>
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1. Introduction

This section presents an overview of the eu-Prolog system. It includes a discussion
of the conventions used in this report. A brief demonstration of the use of the
system is provided.

The portion of the code that is written in Lisp deals with the unification
algorithm—it involves only list processing. Originally written in Scheme, it was
translated into Lisp so that faster execution speeds could be obtained. However,
because it is desirable to use the power of Scheme’s first-class continuations and
lexical closures, the actual Prolog control mechanism was written in Scheme 84.

To simplify the implementation, a Lisp-like syntax was chosen, eschewing the
brackets, commas, and vertical bars of other Prolog systems. This means that the
list data structure is represented as in Lisp: with parentheses and occasional uses
of ¢.» (Lisp pair notation). The truly concerned can, of course, fiddle with the
Franz Lisp reader and alter this aspect of the syntax.

Furthermore, all top-level operations and primitives are written in prefix, rather
than infix, notation. There are no infix arithmetic operators in eu-Prolog.

As is customary in some Prolog implementations, identifiers that begin with a
capital letter are regarded as variables. Those with lower case initial letters are re-
served as the names of top-level operations, primitives, and user-defined procedures
and data.

One of the most important aspects in discussing the behavior of a system is
defining the terms that are to be used. The grammar presented in the next sec-
tion will serve as the formal definition of terms used to describe parts of Prolog
expressions. Other technical terms are be defined informally here.

A Prolog procedure definition is an assertson list. In eu-Prolog all assertions
are created with the “:-” operator. This is true for program text as well as data
that are to be entered into the store. When a procedure is called, the appropriate
definition is retrieved from that store.

The assertion that eu-Prolog is currently trying to instantiate is its goal. The
assertion name is always the head of the list that represents the goal. The assertions
in the assertion list are matched, one by one with the goal until one is found whose
first clause unifies with the goal. The remaining clauses are taken as a list of
subgoals that must all be instantiated in order to successfully instantiate the goal.
If all the subgoals cannot be instantiated, that assertion fails, and further attempts
are made at unifying another head clause with the goal. This means that the order
of the assertions in the assertion list is important; Prolog systems conduct their
gearch for valid instantiations in the fixed order specified by the assertion list.

Moreover, the subgoals are processed in order. Should a failure be encountered
for any subgoal, the system backtracks to the previous subgoal, attempting to find
another valid instantiation of it. If one is found, processing continues with the
subgoal list in order from the newly instantiated goal. However, it might be that
there are no subsequent valid instantiations, and so, the system would backtrack
another step. In this fashion, it is possible to backtrack out of the entire subgoal
list. If this happens, the assertion has failed, and, as already stated, the search
continues with the next assertion in the assertion list.
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The formal result of a successful procedure call is a pair: an environment and a
faslure contsnuation. The environment is in the form of a most-general unifier that
when applied to the original procedure call will yield a valid instantiation of the
relation described by the call. The system never actually prints this environment;
instead, for top-level calls—those made directly by the user—the instantiated goal
is displayed. The failure continuation is also not printed. It remains in the back-
ground, ready to restart the computation should backtracking be triggered. Thus,
the internal result of any procedure call is in a form suitable for use with subse-
quent calls. Only at top-level does it seem that a successful call produces a valid
instantiation of that call.

As implied, every call takes place with an environment and a failure continua-
tion in effect at the time of the call. The top-level read-execute-print loop provides
these two values for user calls. For calls encountered during the execution of any
procedure, the system uses the environment and continuation that resulted from
the immediately preceding successful call, extending them both to produce a new
result.

If a call cannot be instantiated or if the user requests further top-level attempts
at instantiation, the current failure continuation is invoked. This failure continua-
tion is a Scheme procedural abstraction of the backtracking mechanism; invoking it
means to backtrack, using the standard search strategy of Prolog systems.

If no more backtracking is possible, that is, all the search-tree branches have
been fully explored, then the initial failure continuation is invoked. This special
continuation prints the word fail on the terminal and gives the user a new top-
level prompt.

Using eu-Prolog. After loading eu-Prolog into Scheme 84 and invoking it by calling
the Scheme function (proleg), the system is ready to accept procedure definitions.
As a simple example of the use of the system, consider the eppend procedure.

prolog> (:- (append nil A A))
append

prolog> (:- (append (A . B) C (A . D))
(append B C D))
append

The system is now ready to accept calls to append:

prolog> (append (e £) (g (h)) Ans)
(append (e £) (g (R)) (e £ g (h)))
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The semicolon prompt indicates that there is an awaiting failure continuation,
prepared to investigate via backtracking the rest of the search-tree. The user can
either stop, returning to the top-level read-execute-print loop, or can tell the system
to continue, with go:

» BO

fail

prolog>

In this example, there were no further valid instantiations to be found. The system
wrote the fail and supplied another prompt.

Below i8 another call to append, illustrating the system’s behavior when there
are multiple valid instantiations and the use of stop.

prolog> (eppend L1 L2 (a (b ¢) d))
(append nil (a (b c) d) (a (b ¢) 4))

: g°
(append (2) ((b ¢) d) (a (b c) d))
: 8°

(eppend (a (b ¢)) (d) (a (b c) 4))
. stop

prolog>
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2. Syntax

For those who like this sort of thing, this section presents an extended Backus-Naur
Form (BNF) grammar for assertions in this dialect of Prolog. Non-terminal symbols
within braces indicate zero or more occurrences of that symbol.

assertion ::= (:- simple-clause {clause})

clause ::= simple-clause
| (call clause)
| (not clause)
| (asserta clause)
| (assertz clause)
| (retract clause)
| (write clause) | (write term)
| !

| fail
simple-clause ::= (assertion-name {term})
| ( variable {term} )

assertion-name ::= primitive-name | user-defined-name
term ::= constant | variable | data-object
data-object ::= ({term}) | (term {term} . term)

primitive-name ::= add | mult | < | > | atom | is-def

All variables are Scheme identifiers that begin with an upper case letter. Any
other Scheme atomic symbol is treated as a constant. Data-objects have the same
syntax as Lisp lists.

The keywords call, not, asserta, assertz, retract, ! (the cut), fail, and
write make up the core of eu-Prolog. They perform special operations affecting
the store and the flow of control during the execution of a procedure. write is a
simple output operation.
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3. Top-level Operations

This section describes the top-level operations that eu-Prolog recognizes. A top-
level command is anything that the user types to the system except for procedure
calls. The eu-Prolog top-level is indicated by either the “prolog> ” or semicolon
prompt. The semicolon prompt indicates that there is currently a non-top-level
failure continuation.

The commands allow creating, deleting, editing, and listing assertions; forcing
backtracking and aborting the current search; saving of the store on a file; loading
of a file containing prolog assertions; and returning to Scheme 84.

What distinguishes these top-level operations from the core operations of eu-
Prolog? Calls to top-level operations may not contain variables other than those
used inside procedure definitions, nor can they appear within the body of a pro-
cedure; core operations can do both. Top-level operations are not goals to be
instantiated; they serve only to provide the user with an interface to the underlying
Scheme 84 and host operating system. Core operations are assertions, designed to
be evaluated just as if they were defined by a user.

1. Defining assertions and making procedure calls. The *: -” operator is eu-Prolog’s
means of entering both programs (i.e., prolog procedures) and data into the global
store. The appropriate syntax is given in the BNF grammar of Section 2, and an
example of its use appears in Introduction, Section 1. Here, another example and
gsome discussion are provided.
Consider the procedure member. An instantiation of
(member A B)

is valid if either A is the first element of B or if A occurs in the tail of B. The procedure
member is entered as

prolog> (:- (member A (A . B2)))
member

prolog> (:- (member A (B1 . B2))
(member A B2))
member

prolog>

eu-Prolog responds to each assertion with the name of the procedure or data begin
defined. Also, note that the order in which the assertions are made is relevant; as
with all Prologs, eu-Prolog will consider the elements of the store in the order they
were entered while it is looking for a valid instantiation.

Another important thing to observe is that in the first assertion,

- (:- (member A (A . B2))),
there is only one clause. This kind of assertion represents a tautology—it is always
valid.
To call a procedure, the clause to be instantiated is typed at the prompt. If
eu-Prolog does not recognize the input as either a top-level command or a core
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operation, it attempts to instantiate the goal. Unsuccessful attempts result in the
printing of fail; successful ones result in the printing of the valid instantiation and
the semicolon prompt to indicate that there is a non-empty backtracking continu-
ation.
Examples of the use of member follow.

prolog> (member b (b a d c a t))

(member b (b a dc at))

: B9

fail
This succeeded once because b occurs in the list (b a d ¢ a t). The attempt at
finding subsequent valid instantiations made by typing the command go failed.

prolog> (member a (badca t))

(member a (badcat))

: Bo

(member 2 (badcat))

; g°

fail

This succeeded twice. The next call has no valid instantiations.

prolog> (member ¢ (ba d c 2 t))

fail

Prolog procedures can be used to determine valid variable bindings in the re-
turned environment:

prolog> (member A (ba d c a t))

(member b (b a d c a t))

; 8o

(member a (badc at))

; Bo

(member d (badc at))

; 8

(member ¢ (badc at))

; go

(member a2 (b adcat))

;g

(member t (badcat))

: 80

fail

prolog> (member a L)

(member a (a . G00147))

. g°
(member a (C00149 a . G00152))

: 89

(member a (G00149 00164 a . G00167))
. E©

(member a (G00149 GOO154 GOO169 a . G00162))
. stop

-
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The gensym’d variables (e.g., G00149) in the last example represent eu-Prolog’s
way of saying that any environment binding of the variable will result in a valid
instantiation. Because there are infinitely many valid instantiations of the last call,
the example was terminated by the stop command.

In summary, “:-” is used to define assertions; calls to procedures are made
by typing the eu-Prolog clause that is to be instantiated; subsequent attempts at
instantiating the same goal are forced by the go command; and the discarding of
all future backtracking is made by the stop command. go and stop have no effect
at top-level:

prolog> go
fail

prolog> stop

prolog>

2. Manipulating assertions. eu-Prolog provides three commands to alter and verify
collections of assertions associated with a given name: listing, edit, and -: (the
removal of all assertions).
To list on the terminal all assertions associated with a given name, type the
command
(listing name).

For example,

prolog> (listing member)

(member A (A . B2)) :-
(member A (B1 . B2)) :-
(member A B2)

prolog>

The assertions are listed in the order they were made using an infix “:-” rather

than prefix notation. This has the effect of reducing the number of parentheses
needed in the display. The null right-hand side of the first assertion indicates that
it is a tautology.

If the name has no assertions associated with it in the store, that information
is reported:

prolog> (listing mem)
(Prolog message---no assertions: mem]

prolog>
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To alter the set of assertions without removing them altogether and retyping
them, an interface to the Franz Lisp structure editor is provided. To access it use
the command

(edit name).
For example,

prolog> (edit member)
edit

# pp

(((member A (A . B2))) ((member A (B1 . B2)) (member A B2)))
¢ (r AX)

(&) (& &))
& pp

(((member X (X . B2))) ((member X (Bi . B2)) (member X B2)))

# ok
prolog> (listing member)

(member X (X . B2)) :-
(member X (B1 . B2)) :-
(member X B2)

prolog>

The list structure being edited is is the form of a list of assertions, each with the *: -
symbol removed. As long as the user is careful about syntax, the set of assertions
can be rearranged, extended, or diminished as the user sees fit.

As in Franz Lisp, if the editor is exited with the stop command instead of ok,
the changes made during the editing session will not be preserved.

If the user desires to remove all the assertions associated with a given name,
the command

(-: name)

is used. For example,

prolog> (-: append)
[(Prolog message---removed all assertions: append]

prolog> (listing append)
[Prolog message---no assertions: append]

prolog>
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$. Saving and loading eu-Prolog files. The system provides a means of saving the
entire global store in a file and of loading a file which contains eu-Prolog assertions.

To save the entire store, use the command
(save filename)

as in

prolog> (save "foo.pro®)

foo.pro

prolog>
The file will not be pretty-printed, but will be in a form suitable for later use by
load.

To restore a saved store or to load a file of eu-Prolog assertions created in some
other fashion, use the command

(load filename).

For example,

prolog> (load ®foo.pro®)
foo.pro

proleg>

When using either save or load, it is not necessary to supply a double-quoted
string as filename. As long as the name contains only characters which are legal
within Scheme 84 atoms, the user can type the name without the quotes.

(load foo.pro)

works just as well as the string version shown in the example.

4. Eziting eu-Prolog. For returning to the underlying Scheme 84 system, the exit
command is provided.

proleg> exit

[Return to top level]
Scheme 84 version 0 (27-Feb-84)

2>>

11
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4. Core operations

This section describes the behavior of the core eu-Prolog operations. Core keywords
are recognized prior to any attempt at execution of a primitive or user-defined
procedure. Thus, no user definition of a procedure with the same name as a core
operation will have any effect.

The eight core operations in eu-Prolog are asserta, sssertz, retract, call, not,
the cut !, fail, and write.

1. Store side-effects. There are three core operations which provide side-effects to
the global store:

(esserta clause),
(essertz clause), and

(retract clause).

For all three, the variables within the clause are resolved in the current environmént
to yield an instantiated clause. This instantiated clause is the value used in the
subsequent action described below.

The store is organized by assertion names—the constant that appears in the
head of the list structure in the representation of a fully instantiated simple-clause.
For each assertion name, a list of associated assertions is maintained in the store. It
is this list, in a pretty format, that is printed when the 1isting top-level command
is given. The three core operations described in this subsection allow dynamic
creation and modification of assertion lists as either top-level calls or as clauses to
be invoked within the body of a procedure.

asserta and assertz add tautologies to the store; asserta places the assertion
(:- snstantiated-clause)

on the head of the appropriate assertion list, assertz places it on the tail. For
example,

prolog> (:- (demo A B)
(asserta (A B)))
demo

prolog> (demo foo bar)
(demo foo bar)

» B°
fail
prolog> (listing foo)

(foo bar) :-
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prolog> (assertz (foo 1 2 3))
(assertz (foo 1 2 3))

: B9
prolog> (listing foo)

(foo bar) :-
(foo 1 2 3) :-

prolog>

retract examines the appropriate assertion list in order and removes the first
assertion whose head unifies with the instantiated clause. If there is no matching
assertion, then the retract fails.

prolog> (retract (foo bar))
(retract (foo bar))

: B°
fail

prolog> (listing foo)

(foo 1 2 3) :-

prolog> (retract (foo 1 2 3 4))
fail

prolog> (listing foo)
(foo 1 2 3) :-
prolog>

ssserta and assertz can only be instantiated once; if reached a second time
via backtracking, they will fail. However, a retract can be satisfied more than
once; injudicious use of retract can do serious damage to the store. Consider the
following example.

prolog> (listing append)

(append nil A A) :-
(eppend (A . B) C (A . D)) :-
(append B C D)

prolog> (retract (appemd nil X X))
(retract (append mnil X X))

; 80

fail
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prolog> (listing append)

(append (A . B) C (A . D)) :-
(append B C D)

prolog> (asserta (append nil A A))

(asserta (eppend nil A A))

: 8°

prolog> (listing append)

(append nil A A) :-

(append (A . B) C (A . D)) :-
(append B C D)

prolog> (retract (eappend X Y Z))

(retract (append X Y 2))

: 8o

(retract (append X Y 2))

; go

fail

prolog> (listing append)
[Prolog message---no assertions: append]

prolog>



{. Core operations

2. Evaluation operators. There are two core operations which are similar to the
function eval in Lisp systems; these are

(call clause) and
(not clause).

The first provides a means of determining the value of a data object, that is, a list,
as if it were a call to a prolog procedure; the second, a form of negation.

For both forms, the clause is instantiated in the environment in existence at
the time the invocation of the form occurs. This tnstantiated-clauee is then further
processed by the system.

In a call, the instantiated-clause is treated as if it were any other goal to be
instantiated. The interpreter is invoked as if it were typed at top-level or appeared
within the body of a procedure. For example,

prolog> (call (append X Y (e £)))
(call (append nil (e £) (e £)))
EcE;I (append (e) (£) (e £)))
Ecﬁl (eppend (e £) nil (e £)))
zei1

The principal use of call is in providing a way of passing Prolog procedures as
arguments to other procedure invocations. Consider the following example of such
a procedure; arith23 is designed to take the name of an arbitrary binary arithmetic
operation and compute the result of applying the operation to the numbers 2 and 3.

prolog> (:- (arith23 A B)
(call (A 2 3 B)))
arithZ3

prolog> (arith23 add R)
(arith23 add 6)

: go

fail

prolog> (arith23 mult R)
(arith23 mult 6)

: B9

fail

15
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The core operation not reverses the roles of successful instantiation and fail-
ure. If a call to the instantiated-clause succeeds, the not operation fails—triggers
backtracking; if the call fails, then the not operation succeeds. It is equivalent to
the user-defined procedure

(:- (=/ 4)
(call A)
1

£2il)

(:- (=/ A))

The cut “1” and fail operations are described in the next subsection.

not is incapable of adding any new variable associations to the environment. If
the attempt to further instantiate the snstaentiated-clause succeeds, then the entire
not instantiation must fail. In this case, all variable associations are discarded. If
the attempt at further instantiation fails, the not succeeds but with no new variable
associations. Values that cause failure of the not operation are not retained in the
environment.

Here are some examples of using not.

prolog> (not (member a (e £ g)))
(not (member a (e £ g)))

: go

fail

prolog> (not (member a (a b 2)))
fail

prolog> (not (not (member b (a2 b ¢ b))))
(not (not (member b (a b ¢ b))))

: B9

fail

prolog> (not (not (member b (a ¢))))
fail

3. Control Operations. eu-Prolog supplies two core commands for control of the
backtracking mechanism: the cut “!” and fail. After discussing each of these,
this section presents representative control structures that may be written with the
core operators.

The cut is easiest to describe in terms of continuations. Whenever the eu-Prolog
interpreter begins searching an assertion list, looking for a head clause which is
unifiable with the goal, it records its state. Then, after finding the matched clause
and while processing the subclauses in the body, if a cut is encountered, then the
entire backtracking control function is replaced with a new function. However this



4. Core operations

new controlling function is derived from the previously recorded state; it is the
continuation of the original goal clause.

fail is used to force backtracking. It is identical in effect to typing the go
command at a semicolon prompt.

The definition of =/ in the previous subsection used both the cut and fail.

The cut, in the context of two-element assertion lists, creates a conditional control
structure. The schema is

(:- (foo ...) test! then-part)
(:- (oo ...) else-part)

so that, if the test clause succeeds, instantiation of the then-part will take place.
However, should backtracking be requested out of the then-part, the test will not be
re-done, nor will the second assertion ever be examined. The original call to foo
fails. Of course, if the fest-part failed, then the second assertion is used; the else-part
is run. This is precisely what happens in evaluating calls to =/. If the (call A)
succeeds, the entire =/ goal fails; otherwise, the entire goal succeeds, trivially.

Here is another example which further illustrates the use of fail without the

cut. The procedure retractall removes all assertions from the store which match
the supplied one, instead of only the first, like retract.

proleg> (listing retractall)

(retractall N) :-
(retract N)
fail

(retractall N) :-

The fail causes the retract to be performed repeatedly until it finally fails because
there are no more matching assertions to remove. The second assertion in the
definition insures that retractall always succeeds.

4. Output. There is one core operation included in eu-Prolog for output. It is
(write object),

where object is either a clause or a term. Any variables within the object are
resolved within the existing environment, and the result is printed on the terminal.
The output from a write operation has a single asterisk appearing in the left-most
column.

17
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For example,

proleg> (:- (count 0))
count

prolog> (listing counter)

(counter) :-

(count N)

(retract (count N))

(add 1 N N)

(write N)

(esserta (count M))
(counter) :-

(counter)

prolog> (counter)
* 1
(counter)
; go

* 2
(counter)
; g0

* 3
(counter)
: go

* 4
(counter)
; Btop
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5. Primitives

This section describes the six primitive relations add, mult, <, >, aton, and is-def
present in the system. Primitives are always recognized prior to any user-defined
relation. So, while it is possible to define a procedure with the same name as a
primitive, such a definition will have no effect.

What distinguishes the primitives from the core operations? There is no differ-
ence in the way each is used. The separation of these forms into two categories was
an implementation decision. The cut, fail, call, and not all deal with the control
of the eu-Prolog interpreter; because they directly utilize the aruments of the basic
Prolog interpreter, they are core operations. asserta, assertz, and retract were
placed in the core because they produce side-effects upon the store; write because
it was an I/O operation. These last four could have been implemented as primitives.

What determined which primitives were included? Some common lisp primi-
tives like cons, car, cdr, null, and equal have elementary eu-Prolog definitions in
terms as user-defined procedures. But, the arithmetic operations and the atom test
do not. In addition, an operation which returned the assertion list of a user defined
procedure from the store was needed to implement the meta-circular interpreter
described in the next section.

(edd A B O)

Succeeds if A+ B = C. If given any two values, add will find the third value
that satisfies this equation.

(mult A B O)

Succeeds if A+B = C. If given any two values, mult will find the third value
that satisfies this equation.

(< A B)
Succeeds if A < B and both values are known when < iz called.

(> AB)
Succeeds if A > B and both values are known when > is called.

(is-def Goal Procedure)

Succeeds if the assertion list Procedure is associated in the store with the
assertion name of Goal. In practice, Goal is usually known, so that calling
is-def has the effect of associating in the environment the variable Pro-
cedure with the assertion list that corresponds to Goal. The form of the
assertion list is the same as that used by the top-level command edit. An
example of the use of is-def is provided in the next section.

The arithmetic primitives behave anomalously; most prolog procedures can be
successfully called when any number of the variables have associations in the current
environment. The calls to member and append already presented in this report are
examples. However, when the looked-for variable association is a number, eu-Prolog
has no means of representing answers from a set of cardinality greater than one.
For example,

19
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(edd A 3 B)

succeeds because eu-Prolog can find the one association for A that validly instanti-
ates the goal. But
(add A B 5)

fails because there are several possible associations for the pair of variables A and B.
eu-Prolog cannot represent sets of numerical values.
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Komorowski provides a meta-circular interpreter for Prolog [Komorowski 1981].
This section presents that interpreter transcribed into eu-Prolog. It utilizes the
unification facility of the underlying Prolog system as its own means of unifying
clauses.

The top-level procedure is topexe.
(:- (topexe Goal)

(is-def Goal Procedure)
(exe Goal Procedure))

The primitive is-def is used to retrieve the definition of a eu-Prolog procedure
previously defined by the user. is-def is careful enough so that the actual definition
that is returned contains unique variable names, guaranteed not to occur in any
other definition.

The syntax of the returned definition is similar to that used in defining it except
that the “:-” is not present. Furthermore, it includes all clauses defined with the
same procedure name as Goal. For example, assume that append has been entered
in the eu-Prolog store as

(:- (append nil A A))

(:- (eppend (A . B) C (A . B1))
(append B C B1))

Then the call
(is-def (append (a) (b) C) Procedure))

returns an environment in which Procedure is bound to the list

(((append nil G101 G101))
((append (G101 . G102) G103 (G101 . G104))
(2ppend G102 G103 G104)))

where the Cxxx variables are not otherwise used in either the store or the environ-
ment.

After successfully retrieving a procedure definition, topexe calls exe.

(:- (exe Goal Procedure)
(is-found Goal Procedure Body)
(exebody Bedy))

is-found matches the Goal with one of the clauses in the definition Procedure,
returning with Body bound to the body of the matched clause. This relies on the
eu-Prolog unification algorithm.

(:- (is-found Goal ((Goal . Body) . Rest-of-Procedure) Body))

(:- (is-found Goal (Wrong . Rest-of-Procedure) Body)
(is-found Goal Rest-of-Procedure Body))
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22 6. Meta-circular Interpreter

exebody separates the first term in the Body from the rest of them, recursively
calls topexe to determine an environment in which the first term is satisfied, and
then uses that environment to instantiate the rest of the terms.

(:- (exebody nil))

(:- (exebody (First . Rest))
(topexe First)
(exebody Rest))

It is helpful to remember that a successful Prolog procedure call actually returns
two things: an instantiating environment and a continuation which will direct the
computation if it is told to look for a different environment. In the implementation of
eu-Prolog, is was decided not to print these environments or continuations; the call
itself, with all of its variables resolved in the returned environment is printed instead.
Furthermore, while the continuation is not seen, it is waiting in the background,
ready to be invoked should a failure be detected.
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This section presents the main sections of the Scheme 84 source code of this imple-
mentation.

The unification algorithm and the mechanics of applying a most-general unifier
to a clause are well-known and will not be shown. See the book by Nilsson [Nils-
son 1980] for a discussion of these matters. In the implementation of eu-Prolog they
are written in Franz Lisp. Also in lisp are certain low-level operations for manipu-
lating the store and the environments. The store is implemented using Franz Lisp
property lists; environments are association lists.

The code displayed in this section is written in Scheme 84.
The top-level routines with which the user directly interacts are presented first.

(define prolog-top-level ; prolog top-level prompt
(lambda ()
(newline)
(print ®proleg> ®)
(prolog-read-eval)))

Since there are actually two top-level prompts, “prolog> ” and the semicolon, it
was convenient to separate the prompt-printing from the rest of the read-eval-print
loop.

(define prolog-read-eval ; prolog read-eval code
(lambda ()
(let ([e (read)])

(case (type-input e)
[goal (evaluate e)]
[backtrack (force-backtracking)]
[stop (set! force-backtracking

(lambda () (writeln °fail)))]

[exit (return-to-Scheme)]
[edit (prolog-edit (body e))]
[save (prolog-save (file-name e))]
[load (prolog-load (file-name e))]
[assert (essert (rest e))]
[listing (prolog-pp (body e))]
[remove (remove-assertions (body e))]
[else (prolog-error e ®"illegal command®)])

(prolog-top-level))))

The original force-backtracking function is set to the same value that a stop
command restores it, a thunk that prints the word “fail”.

23
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When the type-input function determines that the user’s entry is not one of
the top-level operations, the evaluate function is invoked, beginning the attempt
at instantiating a goal. It sets up the appropriate continuations and environment
structure and then calls the actual prolog interpreter prolog-eval.

(define evaluate
(let ([default-cont (lambda (ignored)
(vriteln °fail)
(prolog-top-level))])
(lambda (e)
(prolog-eval e nil default-cont
(lambda (result)
(it (£fail? result)
(begin (writeln °fail)
(set! force-backtracking
(lembda () (default-cont nil)))
(prolog-top-level))
(begin (writeln
(apply-unifier (env-pt result) e))
(set! force-backtracking
(lambda ()
((cont-pt result) nil)))
(print *; @)
(prolog-read-eval))))
default-cont))))

The arguments to proleg-eval are

e the goal clause,

r the current environment,
back the backtracking continuation,
k the result continuation, and

cutter the continuation needed should a cut occur.

The result continuation makes up the bulk of the code in evaluate; it specifies what
the system is to do with a result, whether it is in the form of a failure or a valid
instantiation of the goal. If the goal cannot be instantiated, the default continuation
is invoked. If a valid instantiation is found, the result continuation displays it and
sets the force-backtracking function to the value needed to resume this particular
computation, should it be requested.

At top-level, both the backtracking and cut continuations are always the default—
trigger backtracking if possible, otherwise write out “fail”.
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prolog-eval is the main interpreter. It does a dispatch on the type of goal.
Core commands are recognized directly; primitives and user-defined procedures
require more processing.

(define prolog-eval
(lambda (e r back k cutter)
(case (call-type e)
[cut (k (cons r cutter))]
[fail (k °fail)]
[asserta (begin (asserta (epply-unifier r (body e)))
(k (cons r back)))]
[assertz (begin (essertz (epply-unifier r (body e)))
(k (cons r back)))]
[retract
(k (if (retract (apply-unifier r (body e)))
(cons r
(lambda (ignored)
(prolog-eval e r back k cutter)))
*fail))]
[print
(begin (writeln ®* .
(apply-unifier r (body e)))
(k (cons r back)))]
[call (prolog-eval (apply-unifier r (body e))
r back k cutter)]
[not (prolog-eval (apply-unifier r (body e)) r back
(lambda (result)
(k (if (£fail? result)
(cons r back)
*fail)))
cutter)]
[clause
(k (cond [(primitive? e)
(eval-prim (apply-unifier r e) r back)]
[(user-defined? e)
(do-asserts (apply-unifier r e) r
(essert-list e))]
[t °£fail]))]
[else (prolog-error e ®illegal clause®)])))

In all non-error cases, either the atom fail or an environment-continuation pair
is returned to the result continuation. A non-core goal is recognized as a simple
clause, termed a clause in the code.
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Primitives are handled by eval-prim. It does a dispatch on the particular
primitive, calling the Franz Lisp function which does the actual work. The result
is either the failure atom or a pair made up of the environment obtained while
processing the primitive and the unchanged backtracking continuation back.

User-defined procedures are evaluated by retrieving the correct assertion list
from the store and invoking do-asserts. Its arguments are

e the original goal with variables resolved in r,
the environment in existence when the call was made, and
al the assertion list corresponding to the goal.

(define do-asserts
(lambda (e r al)
(cell/cc (lambda (cut)
(if (null? el)
(cut °"fail)
(begin
(call/ce
(lambda (back)
(let* ([first-assert
(unique-idents (first al))]
[newrib (unify e (lhs first-assert))])
(if (£2il7? newrib)
(back °fail)
(cut (do-body
(zhs first-assert)
(extend-env r newrib)
back cut))))))
(do-asserts e r (rest 2l))))))))

The call/cc expression grabs the continuation that is to become the cut continua-
tion; that continuation is the return to prolog-eval. If the assertion list is empty,
a failure can be reported immediately. Otherwise, the backtracking continuation
is marked and an attempt is made to match the head of the first assertion, ex-
tracted by lhs, with the goal e. Success means that interpretation will continue
with a clause-by-clause instantiation of the body of that assertion by the function
do-body. Failure forces the consideration of the rest of the assertion list.
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The arguments to do-body are

b the subgoals, the list of clauses in the body of an assertion,
r the environment with associations made while

unifying the head clause with the goal,
back the backtrack continuation, into the midst of checking

the assertion list, and
cutter the cut continuation, out of processing the goal altogether.

(define do-body
(lambda (b r back cutter)
(if (null? b)
(cons r back)
(prolog-eval (first b) r back
(lambda (result)
(if (fail? result)
(back °'fail)
(do-body
(rest b)
(env-pt result)
(cont-pt result)
cutter)))
cutter))))

If the subgoal list b is empty, a result is immediately returned to do-asserts and on
back to k waiting in prolog-eval. Otherwise, prolog-eval is recursively called on
the first subgoal, with the current environment and the appropriate continuations.
Failure forces backtracking, and success causes the rest of the subgoal list to be

processed.
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