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ABSTRACT

A definition is given for n-valued disjointly
separable functions, and examples of such functions
are provided. It is shown that 2-valued disjointly
separable functions coincide with linearly sepa-
rable Boolean functions. Examples are provided
of functions which are n-valued disjointly sepa-
able for each n=2. This work gives a basis for
future enumerations of n-valued disjointly sepa-
able functions of m arguments, for various values
of n,m> Such enumerations are already known for
n=2, m<3.

I. INTRODUCTION

We generalize linearly separable Boolean
functions (binary threshold functions) [1, 5,
9, 10] to n-valued disjointly separable functions,
where n22. Since the definition we give for
2-valued disjointly separable functions differs
from a standard definition for linearly separable
Boolean functions [p.584,4], we prove that these
two notions are equivalent.

While there have been other multiple-valued
generalizations of linearly separable Boolean
functions [6, 7], our approach is different.

Our presentation of n-valued disjointly separable
functions exploits disjoint operators [3] in
a new way.

Examples are given of n-valued functions
which for each nz2 are n-valued disjointly sepa-
rable. Attention is then concentrated on 3-valued
disjointly separable functions of three arguments.
Examples of such functions are given. An example
is given of a 3-valued function of three arguments
which is not a 3-valued disjointly separable
function.

While no enumerations are given, this work
lays a basis for future work in this direction.
For n-valued disjointly separable functions of
m arguments, such enumerations are already known
for n=2, m<8 [8].

II. DISCUSSION
For n-valued functions we use Post functions

of order n[2], where the variables range over the

linearly ordered wvalues [0, 1, ---, n-1]. It

is understood that ei represents the constant i,

O=i<n-1, and Ci(j)=n—l for i=j, with Ci(j)=0

for 1 # j, where 05i,jsn-1. Over these linearly
ordered values, iVvj represents max(i,j) and iaj
represents min(i,j). The usual arithmetic opera-
tions of addition and multiplication are denoted
by a + b and ab, respectively.

Definition: Let f be an n-valued function
of m arguments X1 Ty K- Then f is n-valued

disjointly separable if there exist Ehresholds Tk‘
m n-
weights N . and a funection S = Z. L. N .C.{(x )
pi p=l i=0 piivp
1 whenever f=n-1; Tk+l>SETk when—

ever f=k, k=1,2,-+--,n-2; and Tl>S whenever £=0.

such that SaTn_

With regard to this definition, a referee of
this paper has noted that the C, (x),i=0,1,-+*-,n-1,
may be regarded as arithmetic polynomials in x of
degree n-1. Thus § involves for each of the m
arguments xp,p=l,2,"-,m, n polynomials of degree
n-1.

This definition gives a generalization of
linearly separable Boolean functions. Consider
this definition for the case n=2. The function §

m
becomes § =P§1 (Npocﬂ(xp) + Nplcl(xp)) with S=T

whenever f=1, Tl>S whenever f=0. For n=2,

C{x)=% , C,{x)==x . By the definition of
07 p P’ 17p g

1

a linearly separable Boolean function at least

one of N ., N for each p=1,++,m must be O.
p0’ “pl

Hence any linearly separable Boolean function is
a 2-valued disjointly separable function. For

m
th -se, consider §' = L. N'C, %,
e converse, consider s J(p)({p)
where for each p, j(p) = 0 or 1, and the threshold

Ti is such that S'kTi whenever f=1, Ti>S' whenever



N;O = Npll

and if Npl<N 0’ j(p)=0. Also

£=0. Let N; = L IE N

0Ny, 1)1

m
¥ ol — 3
Tl T1 pgl min(NpO, Pl). It suffices to prove
m
1 = —
that S s pgl min (N D’Npl)' For any p.,
Npoxp + Nplxp p j(p)(x ) mln(V 1) for

x =0 and for x =1 over the cases N_.<N .,
2] p p0 “pl

Np0=Npl’ Npl<Np0'

summation over p.

The result follows by

Theorem 1

Let f(xl, ",xm) be a 2-valued disjointly

separable function, with threshold T and

p=l
or 1. We create, for each n, an n-valued dis-

m
S =7 Npcj(p)(xp)’ where for each p, j(p) =

jointly separable function g(yl,- -,ym), obtained
| Co(yi).

x, = Cn_l(yi) for each i=1l,*--,m. For each n,

g is n-valued disjointly separable with

# 921 N ORY

j'(p)=(n-1)j(p), and with n-1 thresholds
-(n L)T.

from £ by the substitutions ;I =

, where for each p,

satisfying T <T2<°- <'I‘n 2

Proof: There exists an >0 such that

S<T-(n-2)e. Set I' (n~1)(T-(n-1-j)e). Thus

i f 1 T
(n-1)T= T 1>Tn > >T1
The weights NP’ p=l,---,m are taken to be

positive [p.585,4]. The functions f and g are
each expressible as a disjunction of conjunctive
terms.

If g=n-1, then there is at least one con-
junctive term of g which is n-1l. This occurs
for certain variables ¥i of this term assuming

0 or n-1 values. There is a corresponding con-
junctive term of f which is 1 for corresponding
Xy assuming 0 or 1 values. These ®s values

yield jéJ szT, where the index set J depends
on these X values. It follows that
- - = '
3y DN2@DT = T)_,.
If g=0, let each y; assume value v(i).
Since f is unate [Theorem 16.13, 4], at most
one of Co(yi),

If v(i) is 0 or n-1, set v'(i)=v(i).

cn—l(yi) occurs in g [p. 579,4].
Otherwise

L i |
if Co(yi) appears set v'(i) = n-1; if Cn_l(yi)

appears set v'(i)=0. Consequently
gv(l), -+, v(m)) = g(v' (1), --,v'(m)). Since
the v'(i) values are all 0 or n-1, there is a
corresponding sequence of 0,1 values for X
This Yields,kgK Nk<T~(n-2)e
for some index set K. Using values v(i), since

which makes f£=0.

S' contains only terms C,(x ) where j=0 or n-1,
there is a subset K' of K such that
e Mg Sl Y= T2k

REK‘ (n-l)Nk<(n-l)(T—(ﬂ—2)€)=Ti

Finally

Example 1

The Boolean function f = (xlA;:)V X, is
2-valued disjointly separable with S=:~:.L + E; + 2x3
and T=2.
g=(C4(Y1)AC0{y2))VCA(y3) is 5-valued disjointly

By Theorem 1 using n=5,

separable with S'=C4(yl)+co(y2)+2ch(y3). Using
¢=0.01, we have T;=&(2)=8,Té=d(1.99)=?.96,
Tj=4(1.98)=7.92, and T{=4(1.97)=7.88. If
g=4,8'2T)=8; if g=0,5'<T]=7.88.

Theorem 2

The n-valued function f = xlv %, is n-valued

d1s501nt1y separable for each nz2, w1th
le 1§D N C (x ) where Nl =N, 24 =(2 —l)f(n—l)
for each 1-0 » ¥ .n—l and T =2"_1 for k=1l,---,n-1.

Proof: Let f=k, O=ksn-1.
of § 18 (-1)+E-1y=2F"12,
of § is Zk-l. Thus for Tk=2k~l, k=1,***,n-1,
T This completes the proof.

The maximum value

The minimum value

k+l>s and SETk.
While the total number of possible n-valued
m

functions of m arguments is large, nn , the

requirements T, >52T , k=1,***,n-2 are stringent.

k+1 k

To study this stringency, we investigate the
3-valued case for a number of examples, using
three arguments. In each example we first
determine the maximum value of T, and the

minimum value of Tl, then establish that the
function is 3-valued disjointly separable by

showing that T2>52Tl.
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Example 2
The 3-valued function fzﬂcl(xl)v(xznx3) is
3-valued disjointly separable, with S=6Cl(xl) +
+ + =
3C2(x2) 2Cl(x2) 3C2(x3) + 2C ) and Tl T

T2=12.
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When f2=2: x1=l or x2=x3=2; s0 max(T2)=12.
When f2=0: {xl=0 or 2} and (x2=0 or x3=0); 50
min(Tl)Pé.
When f2=l: (xl=0 or 2) and min(xz,x3)=1; 50
8<5<10.

Example 3

The 3-valued function
f3-(elA(Cl(x2)vC2(x3)))V X is 3-valued disjointly
separable, with S=ﬁcz(xl) + Cl(xl} + C1(x2) +

=1. T.=
Cz(x3) and Tl % T, 8.

When f3=2: x1=2; 50 max(T2)=8.
When f3=0: Xy
(x3=0 or 1); so min(Tl)>0.

=0 and (x2=0 or 2) and

When f3=l: (xl=0 and (x2=l or x3=2)) or

xl=l; so 2=8s6.

Example 4
The 3-valued function f4=62(xl)A(x2 W x3) is
3-valued disjointly separable, with S=6£2(xl) +

3C2(x2) + C Y+ 3C2(x3) H Cl(x3) and T,=13,

T2=18.

1%, 1

When f4=2: xl=4 and (x2=2 or x.,=2); so

3
max (T2)=18.
When f4=0: (xl=0 or 1) or xz-x3=0; s0
min (Tl)>12.
When f&=1: X
14<S<16.

l=2 and max(xz, x3)=l; s0

For the general case, the weights and
threshold can be determined by linear programming.
If the n-valued function of m arguments is not
n-valued disjointly separable, the linear pro-
gramming will fail.

We give one further result for n=3, m=3,
an example of a 3-valued function which is not
3-valued disjointly separable.
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Theorem 3

The 3-valued function h= w v (xAv) is not a
3-valued disjointly separable function.

Proof: For ease of understanding, we rewrite
the coefficients Npi appearing in S as follows:

5 = aCO(w) + fCle) s kcg(w)
+ dlCO(x) = glcl(x) + bICZ(x)
+ dzco(y} + gZCl(y) P bzcz(y)-

We attempt to maximize T2 and minimize Tl

such that TldT? and whenever h=2, T,=8; whenever
h=0, S<T1; whenever h=1, TlSS<Tq.

Consider h=2. This occurs for w=2 or x=y=2.
It follows that T2/2=min(k+dl+d2.k+d1+g2,k+dl+h2,
k+gl+d2,k+gl+gz,k+gl+b2,&+b +d k+bl+g2,k+b +b2,

R 1
a+bl+b2,f+bl+h This yields eleven possible

values for TZ'

2)'

Consider h=0. This occurs for w=0 and
(x=0 or y=0). It follows that
T1!2=max (a+dl+d2 ,a+dl gz,a+dl-H:2 ,a-!-gl+d2 ,a«i-bl-édz)

+el, where 51>O. This yields five possible

values for Tl.

Thus there are 1l x 5=55 cases to consider in
this theorem. We have found proofs for all these
cases, and give below two representative proofs.
These two proofs establish 12 of the 35 cases.

The other 43 cases are established through proofs
in a similar vein.

The following table shows the constraints
which arise when h=l.

h=1 when . ) .
i corresponding constraints
W K ¥ -
2 1

TI/Z = a+gl+gz < TZ/Z

01 ! 2 TIKZ < atg b, < IZXZ !
0} 2 1 T,/2 < atb +g, < T,/2 j
1]0}o0 T, /2 % fHd Hd, < T,/2
¥ i ‘." =

1j0}1 T,/2 < f+d +g, < T,/2

U T,/2 S T4g K, < T,/2 !
% A T T,/2 = f+g,+g, < T,/2 :
T 4 1 k2 T,/2 = £+g +b, < I,/2 ]
T b2 f &

T /2 € Eby+g, < T,/2 |
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1. Consider Tlf2=a+d +dz+el, e >0, For

b T
this proof T2f2 may take any of its eleven possi-

ble values.

By definition of T
Tl/2=a+dl+d2+s12a+dl+g2+el. Hence dzagz.
Likewise Tl,"2=a+d1+d2+slza+gl+d2+el and d g, .
Thus dl+d22gl+gz. We will obtain a contradiction

to this.

ls

From the table for w=0,x=1,v=1, we have

a+gl+gzle/2, that is, a+gl+gzza+d +d +e >0.

freae ey

Hence gl+gz>d +d This completes the proof by

h Rz
contradiction, and establishes 11 of the 55 cases.

2. Consider:

T2/2 k+dl+d2
T1f2 = a+d1+b2+£l,el>0.

This is one of the 55 cases.

From the table for w=0,x=1,y=2,
a+gl+b22Tl/2, that is, a+gl+bzza+dl+h2+el.

Hence gl}dl' We will obtain a contradiction

to this.

From the table for w=1, x=1, y=2,
2<T2,’2.
2= + .
Tzf k+dl d25a+bl4b2
That 1 +b.-g. .
1at is, f<a bl g1

f+gl+b By definition of T,

2

Therefore f+gl<a+bl.

From the table for w=l,
f+dl+d22Tl/£.
Tl/2=a+dl+b2+elaa+bl+d2+el.

f+ﬂ1+d22a+bl+d2+el. Since f<a+bl—gl we have
atb

l—gl+dl+d2>a+bl+d2+sl. That is, dl>gl.

This completes the proof by contradiction for

x=0, y=0,
By definition of Tl,

Therefore

this case.

III. SUMMARY

We have presented a generalization of linearly

separable Boolean functions to n-valued disjointly
separable functions. We have given a number of
examples of such functions, and have shown a
3-valued function which is not a 3-valued dis-
jointly separable function.
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