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ABSTRACT

Connectionist theories of the neural basis of cognition have concentrated on long-term imernory and cer-
tain specialized short-term processing operations. They have not been much concerned with general issues
of short-term information-processing. Several varieties of connectionist theory are investigated here. It is
pointed out that short-term information-processing must be pervaded by the manipulation of ancillary
information structures. For instance, neural assemblies must frequently be marked to indicate that they
are temporarily playing some special réle. Also, lists of assemblies must be rapidly created and updated.
It is shown that most varieties of connectionist theory face problems of efficiency in trying to account for
the manipulation of ancillary information structures. The considerations lead to a preference for a partic-
ular variety of theory. That variety acts as a base from which the author’'s own theory was derived.

(This theory is not described here.)



1 INTRODUCTION

In recent years there has been a growing amount of work on ‘‘connectionist’ theories of cognition.
[Anderson & Hinton (1981), Anderson & Mozer (1981), Anderson et al (1977), Cottrell & Small (1983),
Edelman (1978), Feldman (1981a, 1981b, 1982), Feldman & Ballard (1982), Fahlman (1979, 1981), God-
dard (1980) {refining the theory of Hebb (1949)}, Hinton (1981a, 1981b), Kohonen (1981), McClelland &
Rumelhart (1981), Pollack & Waltz (1982), Rumelhart & McClelland (1982), Small (1982), Wickelgren
(1979).] Connectionists have concentrated on showing how their systems can perform certain specialized
computational operations (often concerned with retrieval from long-term memory) [e.g. Fahlman & al
(1983)], on devising systems for perceptual processing [e.g. Hinton (1981a); Feldman & Ballard (1982)] or
on devising systems that are meant to produce human-like behaviour on certain aspects of natural-
language processing. |[E.g. Cottrell & Small (1983), McClelland & Rumelhart (1981), Pollack & Waltz
(1982), Rumelhart & McClelland (1982), Small (1982). See also Gigley (1982) for related work at a less
“physiological” level. ]. Connectionists often acknowledge that the specialized operations or systems
they study will eventually have to be woven into the larger tapestry of general, complex, short-term
information processing, involving activities such as inference, planning, and rule execution [Cottrell &
Small (1983), Fahlman et al (1983), Hinton (1981b), Kohonen (1981), Rumelhart & Norman (1981)]. Fahl-
man (1979, 1981) has perhaps been the one to take most detailed note of this fact, by including a central-
ized, conventional sequential processor. Also, Hinton has noted [1981b, p.183f] the need to account
eventually for such things as rule execution, variable instantiation, and quantification in representation
structures. As Rumelhart & Norman (1981, pp.2,5) observe, it is 2 matter of faith that the models in
Hinton & Anderson (1981) (i.e. those of Hinton, Kohonen, Anderson, Sejnowski, Feldman, Fahlman and
others) can capture complex global goal-directed processing. Feldman (1983) states the current impor-
tance of seeking to close the gap between the complex symbolic information-processing models used in
artificial intelligence and cognitive-psychology research on the one hand and present neurally-based work,

such as connectionism, on the other.

It is therefore of interest to see whether current connectionist theories can be extended to encompass

more general, short-term information-processing, without being deprived of their essential connectionist



nature. This paper shows that the inclusion of such processing leads to some tricky problems for some
varieties of connectionism. We are therefore led to a preference for particular varieties, though no
variety appears entirely free from problems. The problems are more in the nature of challenges to con-
nectionist researchers than necessarily insurmountable obstacles. It would be dangerous to claim they are

insurmountable, especially since what is under attack is not a specific theory but rather a broad paradigm.

Because of space limitations, the reader is assumed to have a basic familiarity with connectionist
theories. The sets of neurons that are the basic “‘atoms of representation’’ in a connectionist theory will
be called neural assemblies. Data structures take the form of sets of assemblies joined by connections,
which are facilitated transmission paths. (The creation of a connection is assumed to be the conferring of
a non-zero weight on a transmission path. Deletion consists of placing a zero weight on the path. For
simplicity, all connections are taken to be excitatory. This restriction in the discussion does not lead to
artificial problems. Facilitation of a transmission path may consist of increased synaptic efficacy, lowered
thresholds of neurons acting as relay stations on the path, other special states of such neurons (as in Feld-

man (1982)), and so on.)

In concentrating on short-term matters I shall ignore long-term issues almost entirely. I do not, for
instance, discuss how short-term pieces of information are converted into long-term pieces of information,

or how a short-term structure could arise from retrieval processes acting on long-term memory.

The considerations expressed in this paper have led me to propose a class of theories specifically
geared towards general manipulations of short-term symbolic information-structures. This class of
theories will be described elsewhere. < <Note to referees: it is sketched in the optional appendix included
with this paper.>> Early versions of the ideas are presented in Barnden (1982a, 1982b, 1983). The

theory class can be viewed as a development from a certain type of connectionist theory.

2 PLAN AND PREAMBLE

We shall assume throughout that short-term information structures are implemented in the brain as

active connectionist structures. These are networks of neural assemblies joined by connections, where



each neural assembly has a level of activity different from its ‘‘resting’’ activity. As a simple example, the
proposition that John loves Mary might be implemented, in some connectionist theories, as the active con-
nectionist structure shown in Fig.1(a).! In this illustration the network is very similar to a semantic net~
work [Findler (1979)] that might be used to represent the proposition (see Fig.1(b)), but in other connec-

tionist theories the correspondence is not so straightforward. F
G -

We assume that (much) short-term information-processing consists of a sequence of manipulations of
active connectionist structures. Each manipulation is the execution of some processing rule whose trigger-
ing condition is satisfied by the current set of active connmectiomist structures. (The paradigm being
appealed to here is of course that of ‘‘production systems” [Davis & King (1977), Waterman & Hayes-
Roth (1978)].) This sequence-of-manipulations view of cognition is mot antithetical to connectionism as
normally portrayed — it is simply that most reports of connectionist work only discuss operations that
could form parts of individual rule-executions. Thus, for instance, the relaxation process by which the
system of Cottrell & Small (1983) recognizes word-meanings in an English sentence could be viewed as a
part or the whole of a rule execution. Similarly, an associative retrieval operation could be an operation
in a rule execution. Many comments in the connectionist literature recognize that eventually the opera-

tions discussed will have to be seen as part of a larger computation, and the usual implication is that the

computation would consist of a manipulation sequence of some sort.?

Consider a rule-execution sub-sequence that effects a complex computation such as the understand-
ing of a spoken English sentence of ordinary complexity, under normal conversational circumstances.
Presumably the sub-sequence contains many rule-executions. Therefore, the processes of triggering and
executing rules must be fast. The main points to be made in this paper are that (a) rule execution and
triggering is pervaded by the necessarily-rapid manipulation of very short-lived ancillary data siructures,
and that (b) it is not easy to see how a connectionist theory could provide sufficiently rapid manipulation of
these structures (without a certain sacrifice of elegance). We shall see that some types of connectionist
theory can plausibly provide enough speed but are implausible in the amount of mechanism they demand
(and in other ways), while other types require an amount of connection-probing that is probably excessive.

(Connection-probing will be defined below: roughly, it is an attempt to determine what connections



impinge upon a given neural assembly.)

I shall categorize connectionist theories using four orthogonal dichotomies: the separable-assembly
versus inseparable-assembly dichotomy; the permanent-reservalion versus recruiiment dichotomy; the
visible-association versus invisible-association dichotomy; and the local-state versus non-local-state dicho-
tomy. Fortunately, we shall not need to pay explicit attention to the differences between all sixteen

induced theory types.

Before proceeding we must introduce some terminology. Consider the problem of representing, in a
connectionist scheme, a group of facts or hypotheses such as that John loves Mary, Mary loves Bill, and so

on. Assume that for each person p, there is a neural assembly P, representing that person, and that there

is a neural assembly L representing the relationship ‘“love”. It is clearly not enough to connect each Pi to

L, because the relationships would then become confused. What we need® are ‘‘instance satellites” —
neural assemblies that stand for particular instances of relationships. Thus, the statement that John loves
Mary would be represented by an instance satellite S, for “love”, suitably connected to the neural assem-
blies for John and Mary; and the statement that Mary loves Bill would be implemented by a different

instance satellite S, for “love”. Presumably all instance satellites for a relationship are connected in some

way to the neural assembly for the relationship itself (e.g. L above).

3 VARIETIES OF (EXTENDED) CONNECTIONIST THEORY

Here we define the four dichotomies mentioned above and make some preliminary observations.

A separable-assembly connectionist theory is one in which in any neuron assembly N there is a sub-
set N’ of neurons that are not members of any other neuron assembly. Therefore, each neuron in N’
determines N and can be viewed as a ‘“representative’” of N. An inseparable-assembly connectionist
theory is one in which that condition is not fulfilled — and we assume in fact that for most neuron assem-
blies N there is no subset N’ of neurons that do not appear in any other neuron assembly. Theories such
as that of Hinton (1981b) are inseparable-assembly theories (and are usually said to be “distributed”

theories). Theories such as those of Fahlman (1979, 1981), Feldman (1981b, 1982), Feldman & Ballard



(1982) and Wickelgren (1979) appear to be separable-assembly theories. In fact it is often the case in such
theories that N’ is the whole of N. We say a theory is disjoint-assembly if N' is always the whole of N.
Most of the time I shall be concerned with the distinction between disjoint-assembly and non-disjoint-

assembly theories, rather than that between separable-assembly and inseparable-set theories.

We turn now to the distinction between theories that have ‘‘permanently reserved’’ instance satel-
lites and theories that have ‘‘recruited’’ instance satellites. We shall see that the former are impractical,

and concentrate on the latter in the rest of the paper.
3.1 Permanent-Reservation Methods

In a permanent-reservation theory, neural assemblies are permanently reserved for particular propo-
sitions. There would be an instance satellite LSAT (for ‘“love”) permanently reserved for the task of
representing the proposition P that John loves Mary. Similarly, there would be an instance satellite
BSAT permanently reserved for the task of representing the proposition B that Bill believes that John
loves Mary. We do not specify here the methods that might be used to actually indicate that, say, LSAT
is currently part of either short-term or long-term memory. All we say is that LSAT is available for

representing the proposition P, and cannot be used for any other proposition.

The huge number of permanently-reserved instance satellites needed makes permanent-reservation
theories implausible. Let us count roughly how many propositions there are of certain types at certain
levels of complexity. Let us confine attention to descriptions and propositions of the following forms.
The descriptions are single names or are of the form ‘“the person who loves D or of the form “the person
who believes that P, where D is a description and P is a proposition. The propositions are of the form
“D loves D' "’ and “D believes that P"". (Thus, a possible proposition is ‘‘the person who loves Mike
believes that John loves the person who believes that Jim loves Mary”. Note that the replacement of a
description D occurring within a proposition or description X by another description D’ with the same
referent as D is taken to yield a proposition or description X' different from X. We are concerned here
with information structures, not with their meanings.) We can then ascribe complexity levels to the
descriptions and propositions. A name is a level-0 description, and there are no level-0 propositions. A

description of form ‘‘the person who loves D'' or ‘‘the person who believes that P" is at a level one



greater than the level of D or P respectively. A proposition of the form “D loves D' ” or “‘D believes that
P” is at a level one greater than the maximum of the levels of D, D' (for the first form) or of the levels of
D, P (for the second form). Of course, there is presumably some limit on the complexity level of proposi-

tions and descriptions implementable in the brain.

Let the number of distinct names be N. Then it can easily be shown that the number of proposi-

tions at level L (>0) is greater than NFU+? where F(k) is the kth. number in the Fibonacci series 1, 1, 2,

3, 5, 8, 13, 21, 34, ... (each number being the sum of the two previous ones). Thus, the number of propo-
sitions at level 3 (e.g. “‘John loves the person who believes that Jim loves Mary”) is greater than N®, and
the number of propositions at level 4 is greater than N®. Even if we take N to be as low as 200, this
means that the number of propositions at level 3 is greater than 32.10'°, which is greater than the number

of neurons in cortex (that number being about 5.10', according to Mountcastle (1978)). Therefore, there
is 2 dramatic combinatorial explosion of propositions as levels are ascended, and a permanent-reservation
theory is totally implausible unless only propositions (and descriptions) at the very lowest few levels of
complexity are allowed. Moreover, we have the rather curious result that far more instance satellites are
reserved at the higher levels than are at the lower levels, although presumably the lower level propositions

are more comimon.

Nothing in the foregoing argument depends on any peculiar properties of belief: belief was merely
taken as a convenient way of illustrating levels of proposition that result from nesting. We get exactly
similar phenomena if we nest by means of logical connectives. Indeed, propositions at the higher levels of
this hierarchy will surely be more common than high-level propositions resulting from iterated belief. (We
assume that a proposition to the effect that X implies Y, say, is implemented by an instance satellite of an
“imply”’ neural assembly. The treatment of connectives as analogous to relationships is based on a
respectable tradition, in artificial intelligence research at least [see papers in Findler (1979)].

An inseparable-assembly theory has a greater chance of coping with the mentioned combinatorial
explosion than a separable-assembly theory has, since the former does not imply that there are at least as
many neurons as assemblies (whereas the latter does). Nevertheless, it would be incumbent on a

inseparable-assembly, permanent-reservation connectionist theory to show that it could provide emough



neural assemblies to cope with a respectable number of complexity levels.
3.2 Recruitment Theories

From now on we ignore permanent-reservation theories and consider only recruitment theories. A
recruitment theory assumes a pool of “‘free” neural assemblies that can be recruited for the purpose of
representing propositions. So, if a short-term structure for the proposition that John loves Mary has to be
set up, an instance satellite LSAT is grabbed from the pool. (We are assuming here that the proposition
does not already exist in long-term memory. If it does, it may well be that some neural assembly is per-
manently reserved as an instance satellite for the proposition, and that that neural assembly is also used
when the proposition is accessed in short-term information processing.) The way LSAT might be deployed
in the representation of the proposition differs according to whether a ‘‘visible-association’” recruitment
method or an ‘‘4nvisible-association’’ recruitment method is used. As the paper unfolds we shall argue
that both visible-association recruitment methods and invisible-association recruitment methods are

problematical.

As in the case of permanent-reservation theories, I ignore the problem of distinguishing between free
neural assemblies, neural assemblies in use as instance satellites in short-term structures, neural assemblies
in use as instance satellites in long-term structures, and neural assemblies in use as instance satellites in

both.
8.2.1 Visible-Association Recruitment Theories

In a visible-association recruitment theory, the presence of a short-term association between two
neuron assemblies is signalled by a special neuron assembly, called an ‘‘association-indicator’”, being
active. There is a separate association-indicator for each possible short-term association. An association-
indicator is connected permanently to two other meural assemblies, and when the association-indicator is
active we are to regard those two neural assemblies as being temporarily associated. Consider the propo-
sition P that John loves Mary. P would be implemented by the active connectionist structure shown in
Fig. 2. JohnLSAT, MaryLSAT and LoveLSAT are association-indicators which are activated as well as J

(the neuron assembly for John), M (the neuron assembly for Mary) and LSAT (a recruited neuron assem-
bly).

L R
hj’l



An association-indicator together with its two special connections is called a ‘““connection-duple”. It
may or may not be the case that an active connection-duple can be regarded as an (indirect) temporary
connection. That is, it may or may not be the case that the fact that the association-indicator is active
allows activity to flow between the two associated neuron assemblies. That is why the term ‘‘association™

has been used rather than ‘‘(indirect) connection’’.

It is important to understand the benefits and limitations of association-indicators. If a processing
mechanism needs to “‘know’’ whether two given meural assemblies are to be taken to be associated, then
the presence or absence of activity at the association-indicator on a connection-duple joining the neural

assemblies is enough in theory to provide the answer. However, if a processing mechanism wishes to find

one or several neuron assemblies associated to a single given? neural assembly, where the mechanism has
no advance knowledge of which neural assemblies they might be, then association-indicators do not pro-
vide much help. The mechanism presumably has to use a probing process similar to that which will be

postulated below in the case of invisible-association theories: we postpone the issue of probing until then.

Feldman (1981a, 1982) mentions association-indicators in passing, though he does not call them that.
(The active connection-duples in his case do act as indirect, temporary connections.) The neural assem-
blies associated by his duples are “long-term’’ ones, in that they permanently represent something. He
points out that the number of association-indicators required is implausibly large if it is to be possible to
associate any pair of normal neural assemblies. However, a visible-association connectionist theory does
not necessarily propose that any pair of long-term neural assemblies must be able to be temporarily asso-
ciated. It may only be necessary to temporarily associate pairs where at least one of the assemblies is
recruited (such as LSAT in Fig. 2). If then the pool of recruitable neural assemblies is not very large, the

number of association-indicators needed is not so troublesome.

In order to get round the problem of the number of association-indicators, Feldman proposes more
complex temporary connections. The creation of a temporary connection now consists of the stimulation
of several intermediate neural assemblies on a permanent connection path between the assemblies to be
associated. A given intermediate assembly is shared amongst many such connection paths, so that the

presence of activity in any one intermediate assembly does not determine a unique temporary connection.

10



Nevertheless, the presence of activity in all the intermediate assemblies between two normal assemblies
does determine a unique temporary connection. Hence, that whole set of intermediate assemblies can be
regarded as an association-indicator (and we have connection-tuples, not connection-duples). For simpli-
city, I shall ignore this more complex variant of the idea; but the discussion can easily be modified to

encompass it.
8.2.2 Invisible-Association Recruitment Theories

In an invisible-association theory, the creation of temporary structure consists of the creation or
deletion of some connections, and there are no special neural assemblies signalling the presence of connec-
tions. So, for instance, to represent the heard sentence ‘‘John loves Mary" the system might recruit a
“love’ instance satellite LSAT and create connections between it and the neural assemblies for John and
Mary; the creation might take the form of the facilitation of synapses or the reduction of neuron thres-
holds on transmissin paths. See Fig.1(a). (It is possible to envisage connection-deletion methods, which
inhibit (temporarily delete) unwanted connections. So, LSAT would be already connected to many neural
assemblies that (could) represent people, and all but two of these would be deleted. From now on, how-
ever, we consider only connection-creatiou methods. The discussion can be modified to encompass

connection-deletion methods.)

Since connection creation in an invisible-association theory may be a matter of synapse facilitation,
a potential problem is that facilitation may just not be fast enough for the purposes of short-term struc-
ture creation. Most claims about connection creation in the connectionist literature concern the acquisi-
tion of long-term connections over some learning period much longer than the time scales we are
interested in. Also, Feldman (1981a, p.18) agrees with the common assumption that synaptic weights can-
not change quickly enough for the purposes of rapid, short-term connection creation and deletion. How-
ever, it does appear conceivable that synapse modification could happen at the necessary speed (within a
very small fraction of a second [Routtenberg (1982)]). Therefore the creation-speed problem would be a
difficult one to argue at present. The next observation about connection-creation theories is that a short-
term term information structure will often have to decay or be deleted, so that there must be two types of

connection: short-term term and long-term. Although extra complication is hereby introduced, transmis-
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sion paths may well be able to entertain several different types of facilitation [Matthies (1982)]. Goddard

(1980) presents a version of Hebb’s (1949) theory that uses different types of facilitation.

A processing mechanism M that works on the short-term information structures must have some
way of knowing or finding out which neural assemblies are connected to which in that information struc-
ture. In an invisible-association theory it is obviously not enough for M to detect the activity in neural
assemblies. Presumably, M must detect connections by probing them. The activity at one end of the con-
nection must be changed in some way, and then the change in activity of other neural assemblies noted.
Problems arise when we look at how probing might actually be done. Suppose it must be determined
whether there is a connection from neural assembly N to neural assembly N’ . An initial suggestion
would be to make N active and then observe whether N’ becomes active. The trouble with this is that it
seems to be the case in connectionist theories that at any given moment all the neural assemblies in the
data structure currently being attended to are active, so that N and N’ would already be active. The
idea of probing by momentarily switching off the activity of N is also problematical, because the presence
of other active neural assemblies connected to N’ is likely to preserve the activity of N’ . A more work-
able idea is to temporarily give N a higher activity level than any neural assembly normally has, and then
to wait for an increase in the activity level of N’ (or, equivalently, decreasing the activity level of all the
other active nmeural assemblies: however, the need to restore their activity a moment later introduces
further complication into the story); but in all of these probing methods it is not clear how to avoid

interference from paths of connections from N to N’ via other neural assemblies N' / .
It was noted that a visible-association theory has a need for probing (of connection-duples). This
probing would proceed much on the lines indicated for invisible-association theories, and faces the same

sorts of difficulty.
3.3 Local-State and Mark-Passing Connectionist Theorles

We come now to the fourth and final dichotomy. Some connectionist theories [see e.g. Feldman
(1981b), Feldman & Ballard (1982), Fahlman (1979, 1981)] allow neural assemblies to be in one of a set of
discrete, local states. We say these theories are ‘‘local-state’” theories. The way the states are used

makes them symbolically significant. I consider such theories to depart from ordinary connectionist prin-
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ciples, whereby the only “state” that a neural assembly has is a level of activity, which is interpreted as
indicating the degree of attention being devoted to that assembly or the degree of confidence that the
assembly is appropriate in some sense. Once discrete, local states are allowed in, the door is open to sug-
gesting something more general and sweeping: namely that neural assemblies are somewhat like
computer-memory locations, having at any moment a state as rich in significance as a bit-string. This
would be entirely against connectionist principles. Yet it seems ad hoc to restrict the réle of states in the

way they are in fact restricted in connectionist theories that use them.

Some theories [e.g. Fahlman (1979, 1981)] allow discrete marks, rather than just levels of activity, to
be transmitted along connections. I regard such theories also as departing from pure connectionism, for
somewhat similar reasons. For example, it appears to be a central tenet of connectionism that neural loci

in the brain do not transmit symbols to each other. But transmitted marks are a type of symbol.

I shall not presume to banish discrete-state and mark-passing theories from consideration. Indeed, I
shall finally conclude that certain varieties of local-state connectionist theories are to be preferred over

connectionist theories without local states.
3.4 An Orthogonality

There is a danger of confusing the separable-assembly /inseparable-assembly distinction and the
permanent-reservation /recruitment distinction, which are orthogonal. A separable-assembly theory dedi-
cates some neurons to particuler neural assemblies (so every neural assembly contains some neurons that
do not appear in any other neural assembly, and are thus ‘‘representatives” of that set), whereas a
permanent-reservation theory dedicates neural assemblies to particular tasks (such as being an instance
satellite for a particular relationship). Thus, a separable-assembly, recruitment theory postulates a pool of
free neural assemblies, where in each neural assembly there is a subset of representative neurons. On the
other hand, in an inseparable-assembly, permanent-reservation theory each neural assembly has a fixed

representational function, but generally do not contain representative neurons.
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4 CONNECTION DELETION IN INVISIBLE-ASSOCIATION THEORIES

A particular problem arises in non-disjoini-assembly invisible-association connectionist theories. In
the absence of strong reasons to the contrary, it is fair to assume that short-term information-processing
in an invisible-association theory often requires the deletion of individual connections in shori-term
structures . (As pointed, out below, it is conceivable that all or most connection-deletion could be

avoided, but the cost involved is high.)

Suppose a connection from neural assembly N to neural assembly N' must be deleted. Because we
are considering a non-disjoint-assembly theory, N in general shares neurons with some other neural
assemblies N' and M shares neurons with other neural assemblies M’ . Therefore, the degree of facilita-
tion on fibre paths from neurons in N to neurons in M reflects not only the connection from N to M that
is to be deleted, but also connections from N’ assemblies to M’ assemblies. If the N-M connection were
to be deleted then facilitation on N-M paths would be reduced, but there is no way of knowing the size of
the required reduction without somehow analysing the other connections that use those paths. Any pro-
cess, if there is one, to manage this would be cumbersome and would run the risk of being too time-

consuming, especially if the connection-deletion is meant to be a small part of some larger modification.

It is possible in principle to avoid all or most connection-deletion by refusing ever to change a net-
work of connections, but rather to “copy it with modifications’”’. That is, a copy of the network is made,
except that the portions to be deleted are skipped over (and new portions may be added). By this means
we could perhaps ensure that connections are only ever created and never deleted (though we must
presume that old networks that are no longer of interest eventually disappear by virtue of their connec-
tions disappearing by some decéy-o[—facilitation process). Clearly, however, the reconstruction involved in
the copy-with-modifications techniqué makes it undesirable as a way of avoiding the problems of

connection-deletion.
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5§ PROCESSING-LOCUS IDENTIFICATION

Suppose the following inference rule must be implemented in a connectionist scheme: ‘“‘if a man m

11

loves a woman w who loves a man m’ (other than m), then m hates m’ . What we want to happen
here is that if connectionist structures representing a particular example of the antecedent of the rule are
recognized, then a connectionist structure implementing the consequent is set up. The consequent struc-
ture must involve, in the right way, the neural assemblies M, M’ representing the particular men m

and m' . Thus, the act of recognition of an example of the antecedent must communicate the right “pro-
cessing loci” — the identities of those neural assemblies — to the mechanism that sets up the consequent
structure.® We shall point out various broad possibilities for how this could be done, splitting the discus-
sion between visible-association and invisible-association theories. We shall confine ourselves to a very
simple example of a processing rule. This rule should respond to any proposition that some particular
man is hungry by outputting the word ‘“‘hungry’’ and then outputting the man's name. We assume there
is a set of neural assemblies permanently representing some particular people. By outputting the name of

person X we mean stimulating a neural assembly I‘*IA]!V!]E)x that represents the name. We assume the
existence of a connection from the neural assembly X representing the person to NAME . We assume that

there is a neural assembly HUNGRY representing the property of being hungry. By outputting the word

“hungry” we mean stimulating a neural assembly WORDMY

The main conclusion of the discussion will be that, in order for a connectionist theory to account for
locus identification in a way that is practical and in tune with the spirit of connectionism, there is a need
for the marking of neural assemblies and, paradoxically, for sequential traversal of connectionist struc-

tures. Marking is viewed as a simple sort of ancillary data structuring.

5.1 Locus-Identification in the Visible-Assoclation Case.

Fig. 3 shows some connection structure needed for the representation of some propositions of hungri-
ness. We assume for simplicity that at any time only one proposition about a man being hungry is active,
though there may be some active propositions about women being hungry. We shall look at some ways of

implementing the desired processing rule.

SIS -~
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(I) The first method of implementing the rule is illustrated in Fig. 4. We have separate pieces RULE,, of

neural mechanism for each man-neuron-set M. For each neural assembly H that is recruitable as an

instance satellite for “hungry”’, RULE,, receives both an input connection CMHHUNGRY from the

association-indicator between H and HUNGRY and an input connection CMHM from the association-

indicator between H and M. We call H the source of the input-connection pair. RULE,, has an output
connection to NAME_ (for the man m represented by M) and to WORD, . When for some H both

C\mpunry 20d €y, transmit activity to RULE,, (i.e. the relevant association-indicators are active)

then RULE,, transmits activity along its output connections.
R o -3
The method solves the locus-identification problem by encoding processing loci as the very identi-

ties of the RULE,, mechanisms. The action of the rule is simple and fast. Clearly, however, the price
paid is great: the number of distinct RULE,, mechanisms is the number of man-neuron-sets. (Note also
that other rules might have to deal with neural assemblies representing complex descriptions of entities,
not just with neural assemblies that represent entities ‘‘directly” and permanently.) In the simple example
chosen, the mechanism in RULE, is fairly trivial since the rule has a trivial task to do, but of course for
more complex tasks the replication of that mechanism for each man would be intolerable. The amount of
replication itself becomes much greater when we turn to more complex trigger conditions, containing more
variables like M. Also, it is difficult to see how the mechanism could plausibly have been created by a
learning process. Further, in the simple example chosen the triggering proposition is not affected by the
rule. Suppose instead the rule had to, say, delete the proposition by eliminating the activity in the active
H (and attendant association-indicators). We then might have each input-connection pair to RULE, gat-
ing an output connection to the H that is the “‘source’ of that input pair. Such measures merely make
the method more cumbersome.

(1) Let us now reduce the amount-of-mechanism problem encountered in (I) by having just one piece of
mechanism, RULE, which has an input-connection pair as in (I) for every H and every M. The result is
illustrated in Fig. 5. RULE is not, of course, associated with any particular M, so must presumably have

an output connection to each NAME,, and have the input-connection pairs gating these connections. The
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action of the rule is still simple and fast, but now the computation in the rule’s action part is embodied
only once. However, we still have the problem of how the input-connections could have arisen in a learn-
ing process. Also, even if the necessary number of connections in our simple example is tolerable, it is
unclear that it remains so when we try to extend the method to more complex trigger conditions. For
instance, consider a rule that responds to the presence of any proposition of the form ‘‘woman w believes
that man m is hungry” by outputing the name of the woman. Such a proposition would be represented
by an active connectionist structure like that illustrated in Fig. 6. Instead of input-connection pairs we
have input-connection pentuples, as there are five association-indicators needed to identify each one of the
relevant propositions. The number of pentuples needed is the product of: the number #W of woman

neural assemblies W, the number #M of man neural assemblies M, and the square of the number #I of

neural assemblies recruitable as instance satellites.® If we take #W and #M to be 500 and #I to be only

100 or so, then we are talking about 250 million pentuples, for just one rule.

(ITT) The third method seeks to reduce the amount of circuitry drastically by having a mechanism RULE

that has an input connection c from the association-indicator mediating between HUNGRY and

H,HUNGRY
each neural assembly H recruitable as an instance satellite. RULE also has an input connection c,, from
each man neural assembly M. See Fig. 7, Clearly, both the triggering and the action of RULE must be
more elaborate. In fact, we see that both must depend on probing operations. In the triggering case, it is
not just that the particular hungry man is not yet known, but also that it is not even yet known that a

man is hungry. When RULE receives activily on ¢ a probe operation applied to H (or to the

HHUNGRY’

association-indicator between H and HUNGRY) must be initiated. ¢ must presumably perform a

HHUNGRY

gating function to get the probe to go to the right place (say H). Also, measures must be taken to ensure
that the probe does not simply detect the connection-duple to HUNGRY. Ignoring this problem, and
assuming that the only active hungriness proposition is that man m is hungry, let us suppose that the
probe is successful in somehow singling out the correct man neural assembly M: let us say by putting it
into an abnormally high state of activity. Let us now say that this in turn has the effect of sending

stronger activity down the c,, connection to RULE. RULE then “knows” both that it is indeed a man

who is hungry and the identity of the man; the c,, connection can gate the output connection to NAME, .
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This account has been vague about the nature and control of probing. We have pointed out that probing
in connectionist theories is intrinsically problematical. Quite apart from these intrinsic problems, how-
ever, the present method has the following drawbacks. First, it departs from the appealing ‘‘associative
retrieval’” flavour of methods (I) and (II), and is thus less in the spirit of connectionism as usually con-
ceived; in particular, we are making heavy use of a sequential style of computation (which amounts to a
traversal of a structure). Second, we have possible interference from active propositions about women
being hungry. The probing operations must be able to try again if the wrong H is tried first and found to
be associated with a woman, and must also be able to avoid looking at the very same piece of structure on
the second try. Third, in a more complex rule there could well be several neural assemblies whose identi-
ties must become known to RULE, not just the one M in our simple example. In the above account, we
assumed that M was ‘‘marked’” by virtue of having an abnormally high activity level, for the sake of
argument. But, if several identities have to be communicated to RULE, then in general several different

neural assemblies will have to be “marked” in different ways.

It might be objected that the detection of the right M could be done without any need for traversal,
by a process that engages in massively-parallel transmission of distinguishable marks between neural
assemblies, on the lines of the proposal of Fahlman (1979, 1981). This observation is correct, but ignores
the point that the passing of distinguishable markers departs somewhat from pure connectionism, as noted
in section 3.3. In any case, one of the main conclusions we need to draw from the present discussion is

precisely that marking is a necessity in connectionist information-processing.

A final ohservation about the present method is that we have almost entirely ignored the
association-indicators (except for those mediating between the Hs and HUNGRY). We were reduced to
probing to find associations, whereas the putative task of association-indicators is precisely that of signal-
ling the presence of associations. Recall the limitations of association-indicators that we observed in sec-

tion 3.2.1.

(IV) A variant of (III) is to have RULE having just one input connection: a connection from HUNGRY.

This method has consequences very similar to those of (III).
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These four methods are not meant to exhaust all possibilities, but it seems that other methods will

be essentially similar to them. The main conclusions are the following.

(a) The only method that has a reasonable chance of being practical is one (namely (III)) which appears
to make little use of association-indicators. This would suggest that we plump for invisible-

association schemes anyway; however, we shall have to look again at this suggestion in section 6.

(b) That method, (III), involves the marking of neural assemblies, where there must be several distin-

guishable ways of marking, not just one.

(¢) Some of the need for marking comes from a need for traversal involved in a search for processing

loci (unless, possibly, a2 Fahlman-like mark-transmission scheme is used).

(d) Some of the need for marking comes directly from the need to specify and distinguish processing

loci.

(e) Methods like (I) and (II) allow the processes mecessary for testing the condition parts of different
rules to proceed in parallel, but rules (III) and (IV) probably force rules to be tested one at a time
(except when some rules are so different in their domain of discourse that there is no possibility of

interference).

As regards (d), it might be objected that instead of marking a neural assembly we could instead
transmit to RULE a pulse train that uniquely identifies that neural assembly (much as a bit-string in a
computer can be used to identify a memory location uniquely). Such a possibility is interesting, implausi-

ble, and completely against the spirit of connectionism.

5.2 Locus-Identification in the Invisible-Association Case.

There are only two basic methods, which we shall call (III' ) and (IV’ ), for implementing the simple
rule we have been looking at. The methods correspond to methods (III) and (IV) in the visible-
association case. In (III' ), RULE just has an input connection from every neural assembly recruitable as
an instance satellite, an input connection from HUNGRY, and an input connection from the neural assem-
bly M for each man m. In (IV' ), RULE simply has an input connection from HUNGRY. In both (III' )

and (IV' ), the rule cannot fire unless the HUNGRY input is active. Also, triggering of the rule requires
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probing much as in (III) and (IV). However, in (III' ) extra probing is needed in order to determine that
the instance satellite sending input to rule is actually connected to HUNGRY. The issue of marking is

exactly as portrayed for the visible-association case.

Variants of the methods can be suggested. For instance, RULE might have an input connection
from the neural assembly representing the class of men, where this input must be transmitting activity for
RULE to respond. A variant of (III' ) arises when some neural assemblies are set aside to be recruitable
only as “hungry” instance satellites; then, there is no need for a check to see whether the instance satel-

lite sending input to RULE is connected to HUNGRY.

5.3 Locus Identification: Summary

Locus identification requires a traversal in the form of a sequence of probes (unless a Fahlman-like
scheme can be used), and requires the marking of parts of a structure (whether or not a Fahlman-like
scheme is used). Marks must be introduced during rule satisfaction, and must be detected and (usually)
deleted during rule execution. Further, the possibility of interference between the probing and marking of

different structures often forces rules to be examined one by one.

The association-indicators of a visible-association theory provide little help, it seems. However, we

shall see in section 6 that they could be of great use in facilitating traversal.



6 TRAVERSAL OF CONNECTIONIST STRUCTURES

We saw in section 5 that connectionist structures may need to be traversed. This is despite the
existence of the associative matching operations discussed in the conmectionist literature le.g. Fahlman
(1979, 1981), Fahlman et al (1983), Hinton (1981), Kohonen (1981)]. Now, the associative-matching
operations obviate the need for traversal during searches for particular, given connectionist structures: so
we might have expected traversal to be unnecessary in rule triggering. But the triggering methods that
are most like the associative match processes (methods I and II in the visible-association case) are imprac-
tical. The reason is that we are looking not for a particular connectionist structure but rather for a par-

ticular class of connectionist structures.

Associative match operations also do not afford a mechanism for “blind” traversal. Blind traversal
does not seek particular predefined substructures, but instead examines a connectionist structure sys-
tematically in order to apply some particular operation to the substructures encountered, whatever
they are. For instance, if information held in network form has to be converted into some linear form
(such as a spoken sentence or a series of actions) then some appropriately organized blind traversal must
presumably take place. Similarly, transformation of one network N into another network M (e.g., during
sentence production, a transformation from an active-voice network representation, N, of the sentence to
a passive-voice network representation, M) presumably involves an organized blind traversal of N. It is
hard to see how a ‘‘one-shot”, non-sequential operation, or a non-systematic sequential examination,

could do the required transformation to all possible relevant networks N.

Blind traversal is also necessitated by the copying of connectionist structures from one region of the
neural mass to another, at least in the invisible-association case. (This is shown in Barnden (1983).) It
could be that the different regions are able to perform different sorts of manipulation on the structures.

Copying might be used in the interests of redundancy and reliability.

In conclusion, rapid traversal of connectionist structures must be accounted for by a connectionist
theory extended to deal with manipulation of short-term data structures. The next step is to note that, in
general, traversal necessitates the manipulation of temporary ancillary data structures that serve to record

information needed by backtracking mechanisms and to “mark’’ nodes as having been visited. For the
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purposes of backtracking there must be a temporary, varying list of neural assemblies; this list

corresponds to the lists used in traversal of graph structures implemented in computers [see e.g. Knuth

(1973), Standish (1980)].7 Figs. 8(a,b) illustrate the abstract nature of such lists and suggests one form
they might take in an invisible-association theory. Such lists are an important consideration for us, but
for brevity we shall look in detail only at the implications of neural-assembly marking, while bearing in
mind that this is but a simple special case of the maintenance of ancillary data structures. -
~— T, § (a,4)
It would be possible to dispense with the special neural assemblies in Fig. 8(b) by creating special
connections between the “‘normal’”’ neural assemblies, but this technique would require far more transmis-
sion paths (assuming that the pool from which the extra neural assemblies are taken is considerably
smaller than the number of normal neural assemblies.) In an invisible-association theory, another way of
avoiding both the need for extra neural assemblies and the need for extra connections would be to mark
connections during traversal. See Fig. 8(c). A connection is marked in some way when it is followed in a
traversal step; when a backtracking step is performed, the marked connection from the first neural assem-
bly F on the backtrack list is found, the mark is erased, and the assembly at the other end of the connec-
tion from F becomes the new first assembly on the list. The identification of the first assembly on the list
could be done by marking as in Fig. 8(c) or by pointing as in Fig. 8(b). However, as will be noted in sec-

tion 7, it is not at all clear how connections are to be marked, especially as we do not want to introduce

extra assemblies or connections. W e F%‘ g (C)

Traversal presents essentially the same difficulties in a visible-association theory as it does in an
invisible-association theory, with one very important reservation. The analogy of connection-marking is
the marking of connection-duples. But this can be done by marking the association-indicators (though it
does not have to be). Hence, the implementation of backtrack lists in a visible-association theory can
easily be reduced to neural-assembly marking. It is at this point that we go back to the suggestion in sec-
tion 5.3 that from the point of view of locus-identification we might as well adopt an invisible-association
theory. We now see that a visible-association theory may allow the traversal required by rule-triggering
to be more efficient than it could be in an invisible-association theory, because less machinery is needed to

implement backtrack lists.



It is not often pointed out that we can abstractly view the backtrack list at any moment as being a
set of marks on nodes. For instance, when the list is (d,c,b,a) in the example, we can view d as being
marked with the number 4, ¢ with number 3, b with 2 and a with 1. A node is added to the list by being
marked with the lowest.-vélued unused integer. The node at the front of the list is removed from it by
being unmarked, and having its mark deemed to be unused now. (It is also necessary to keep a record of
what the lowest unused mark is, or of what the highest used one is.) Thus backtrack-list manipulation can
in principle be reduced to manipulation of neural-assembly marks, even in an invisible-association theory.

This view turns out to be unhelpful, as we shall see when we consider marking methods.

7 MARKING METHODS

We have seen that locus identification and traversal impose a need for marking. In this section we
look at various possible ways to implement the marking of neural assemblies. (We look briefly at
connection-marking at the end of the section.) We assume that there are several distinct types of marks
that can be placed ‘“‘on’’ neural assemblies, and that neural assemblies must also be able to be unmarked
(unless the structure containing the neural assemblies marked is no longer of interest). Note also that we
must assume that at any given time there may be several different marks on a given neural assembly. I
shall point out that the implementation of marking causes awkward problems. The argument will not be
to the effect that connectionist theories cannof encompass marking (though real difficulties will be pointed
out for some varieties of theory) but rather that to encompass it they must include ad hoc or cumbersome

provisions.

We shall look first at three ways in which marking might be done in a connectionist theory. The
first method is called the local-state method, and assumes a local-state theory. Neural assemblies are
marked by putting them into a special mode of activity, or by giving the neuroms special membrane
potentials, or by changing the concentration of some chemical in or around the neurons, or by changing
the local state of the assembly in some other way. (We must remember here that different sorts of mark-
ing must be accounted for, and that an assembly may have several marks simultaneously.) The first point

is that there is the difficulty in a non-disjoint-assembly theory that neural assemblies often share neurons,
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so that there could be conflict between the ways in which those neural assemblies are marked. This prob-
lem of conflict may not be insoluble, but at present it is a great impediment to accepting the local-state
method in non-disjoint-assembly theories. The problem disappears when we turn to disjoint-assembly
theories, and indeed the local-state method is then attractive. However, there is the methodological
objection (mentioned in section 3.3) that it requires neural assemblies to have several symbolically distinct
states. A technical objection to the method is that there is often a need to discover neural assemblies that
are marked in a given way, rather than to discover the marks on a given neural assembly; but it is by no
means clear how the former type of discovery can occur if marks take the form of local states. Finally,
we must remember that marking is just a special case of the use of ancillary data structures. Even if the
marking method being considered is deemed satisfactory, we are left with the problem of other ancillary

data (e.g. lists used during backtracking in traversal).

The replacement method is a second conceivable marking approach. A neural assembly n is marked
by replacing it by a neural assembly n' that acts as the “marked version of n”. Processing mechanisms
are assumed to be able to recognize that n’ is a marked version of something and that n is not. Replace-
ment of n by n’ (or vice versa for unmarking) is effected by somehow putting n out of play and linking
n' into the rest of the connectionist structure in just the way n is connected. Presumably, in an
invisible-association theory, ‘‘putting n out of play”’ means actually deleting its connections with the rest
of the connectionist structure, and, in a visible-association theory, it means deactivating the analogous
connection-duples: we certainly do not want to get into the vicious circle of putting n out of play by
marking it! (We could instead put n out of play by inhibiting it in some way which ensures that it can
never be stimulated until a later special disinhibition signal is sent to it. But then we might just as well
adopt the local-state approach.) The deletion or deactivation would be a time-consuming operation if
there were many such connections or duples: and, of course, in a non-disjoint-assembly invisible-
association theory the connection-deletion needed by the neural assembly replacement is problematical
(see section 4). (Clearly, we would not want to avoid the connection-deletion by means of the “copying
with modifications” technique explained in section 4: this would be a highly time-consuming thing to do
just for the purposes of marking, and in any case we would be risking a vicious circle because the copying

involves traversal, which involves marking in general.) A further difficulty is that it is not at all clear how
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processing mechanisms are to recognize that a neural assembly is a marked version of something, and
that processing mechanisms that do not care whether a particular neuron set is a marked version or not
will have to be able to deal with both cases. All this is quite apart from the fact that for each neural
assembly we need a special companion marked-version neural assembly — indeed, we need a different one

for each type of marking.

Our last suggested marking method is the pointer method. It appears to be the most natural

approach to take in a connectionist theory. There are some special neural assemblies M (at least one for

each of the different ways in which neural assemblies can be marked). In an invisible-association theory,
we mark an ordinary neural assembly n by creating a connection between n and one of the special neural
assemblies M;. Unmarking consists in deleting such connections. The special neural assembly acts as a
pointer to n. An immediate objection in the case of theories of the non-disjoint-assembly invisible-
association variety is that we have seen that conmnection deletion (which is required by unmarking) is
highly problematic. But there is another objection, in the case of both disjoint-assembly and non-
disjoint-assembly theories. In order for a processing mechanism to take account of the fact that a meural
assembly N is marked, it has to detect the connection between N and the mark neural assembly - and
this detection requires probing. Bearing in mind that mark-detection is an extremely frequent operation
during traversal and rule-execution, and that probing is a troublesome and (potentially time-consuming)
operation, we see that an invisible-association theory faces a significant efficiency problem. We call this

the pervasive probing problem.

We might suggest modifying the pointer method in the invisible-association case by allowing the use
of association-indicators on the connections to the special mark neural assemblies. This is tantamount to
using a visible-association scheme just for the limited purposes of marking. Such a step is possible, of

course, but is distinctly ad hoc.

If we now generalize away from marking to more general ancillary data structures, which are
presumably implemented as connectionist structures of some sort, we come to essentially the same conclu-
sion. Use of ancillary data structures requires connection probing in general — but such use is all-pervasive

and such probing is troublesome.
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In the visible-association case, the direct analogue of the pointer method is to have special mark
neural assemblies M, just as before, and to have a connection-duple between each non-mark neural
assembly and one mark neural assembly of each type t. The neural assembly n is t-marked if and only
if the association-indicator between n and the t-mark neural assembly is active. Hence no probing is
necessary to detect a particular, given mark on a particular, given neural assembly. Probing is still neces-
sary to discover neural assemblies marked by a given mark, and probably also to discover the mark(s) on
a given neural assembly. Therefore, in a visible-association theory the manipulation of marks leads to
pervasive probing much as it does in the invisible-association case. The reason is that it is not true in
general that connection-detection (of which mark detection is a special case) is necessarily detection of a

connection between fwo given neural assemblies.

Backtrack lists cause problems for a visible-association theory. For instance, comnsider the
backtrack-list implementation shown in Fig. 8(b) with connections replaced by connection-duples. Sup-
pose the front element is to be deleted. Then a probe is needed to find out which special neural assembly
A is pointed at by the “list start” neural assembly, and then a further probe is needed to find out which
special neural assembly B is pointed at by A (because now the list-start assembly must be made to point
to B). Let us now see whether we can avoid the pervasive probing problem if we adopt connection-duple
marking as the implementation of backtrack lists. We assume duples are marked by virtue of the
association-indicators being marked with a mark we call BT, and that this marking is done by the local-
state or pointer method. The first neural assembly on the backtrack list is indicated by being marked
with a mark we call FIRST. Consider a backtrack step: that is, the first neural assembly A is to be
deleted from the list by having its FIRST mark removed, and that neural assembly B associated with A
by a BT-marked connection-duple D is to be FIRST-marked. (Also, the BT mark on D must be
removed.) The backtrack step could be effected as follows. Peculiar to each ordered pair (A, B) of neural
assemblies recruitable for use in short-term connectionist structures there is a rule-like mechanism

STEPA'B that effects a backtrack step for the case when A is FIRST-marked and D is BT-marked.

Suppose first that marking is done by the local-state method. See Fig. 9(a). STEPAB has input con-

nections from A and the association-indicator D on the connection between A and B (for simplicity we
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assume there is only one connection between A and B). STEP ap 3lso has a control input that tells it to
try to do a backtrack step. STEI-"MB has output connections to A, B and D. STEPu is triggered if and

only if the following holds: the control input is active; A and D are active; A is FIRST-marked (we assume
that the input from A is only active when A is active and FIRST-marked); and D is BT-marked (similar

assumption). STEPAB then immediately sends output to A, B and D, with the effect of making the right
mark-changes. Hence, a backtrack step is simple and fast, and does not require any sort of probing. Of
course, the method being proposed is analogous to method (I) in section 5.1, and suffers from a similar
problem of replication of machinery — k? mechanisms STEPM‘B are needed, where k is the number of
recruitable neural assemblies. To try to avoid the replication, we could turn to a method involving prob-
ing. (The test for a BT mark on a given association-indicator may be fast, but probing is needed to find
the association-indicators of duples impinging upon F.) It is not clear, however, that much mechanism, if
any, will be saved by doing this.

If the pointer method is used for marking, then we run into a very similar situation. See Fig. 9(b).
We assume the existence of special mark assemblies Mprst 20d M. We have mechanisms STEP AB
much as before. STEP, ; has a control input, an input from the association-indicator A:Mp o on the
connection between A and M., and an input from the association-indicator D:Mg;p on the connection
between the association-indicator D (D as before) and M__... (Notice the new factor here: association-
indicators subordinate to other association-indicators.) STEPA‘B has outputs to A:Mp... and D:M_ .,
and also to B:Mj ..., the association-indicator between B and Mpgsr STEP ap I8 triggered when and

only when all three of its inputs are active, and then immediately sends output that switches AEME s

and D:M___ off and B:MFIRST on. We again have k? mechanisms STEPAB. In an attempt to avoid this
replication, we could either (a) probe from F to find the association-indicators on duples impinging upon
F, and test those association-indicators for being BT marked, or (b) probe from the special neural assem-
bly My to find BT-marked association-indicators and test them for impingement on F, or (c) perform a

dual probing process starting from F and Mo (such a process being reminiscent of the techniques used

by Fahlman (1979, 1981)). Again, it is not clear that there is actually any saving of mechanism.
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In section 6 we mentioned that backtrack-lists could be implemented by neural-assembly marking
even in an invisible-association theory. Could we implement the necessary marking using the local-state,
replacement or pointer methods? The local-state approach would cause difficulties, because of the large
size of the mark set. (Nor is it obvious how the mark ordering would be implemented and used.) The
replacement method would likewise cause difficulties because of the large number of possible marks, and
yet more circuitry would be needed to effect the ordering. The pointer method could be used, and the
mark neural assemblies could be connected together to form an ordered chain. But the result is much the
same as the implementation shown in Fig. 8(b). Therefore, the assembly-marking implementation of

backtrack lists in an invisible-association theory is not beneficial.

Finally, we lock briefly at connection-marking in invisible-association theories. (We noted in section
6 that the analogy in visible-association theories, connection-duple marking, can reduce to neural-
assembly marking.) One option is to modify the theory by splitting each connection into a pair of connec-
tions joined by a neural assembly much like an association-indicator in a visible-association theory, and
then marking the special neural assembly. But then it seems that we might as well use a visible-
association theory anyway. Other options are to give connections local states similar to those of assem-
blies, or to allow connections to impinge upon connections as well as upon assemblies. Such options

depart considerably from standard connectionist ideas.

8 SUMMARY

We have defined four orthogonal ways of categorizing connectionist theories: as separable-assembly
versus inseparable-assembly (with the related dichotomy: disjoint-assembly versus non-disjoint-assembly);
as permanent-reservation versus recruitment; as visible-association versus invisible-association; and as
local-state versus not local-state. We rejected permanent-reservation theories of all types, as they demand
implausibly large numbers of neural assemblies. We then saw that locus-identification (concerned with
how *‘variables” in rules receive values as a result of rule satisfaction) requires mark creation (during rule
satisfaction) and detection and deletion of those marks (during rule execution). Traversal of structures is

also needed in rule triggering, unless a Fahlman-style parallel mark-passing scheme is used (but of course



such a scheme reinforces the need for, and complexity of, marking). We saw that traversal is needed also
for other purposes. Traversal itself imposes a need for marking and for the use of other ancillary data
structures. We observed that marking, and the manipulation of ancillary data structures in general, must
be done frequently and rapidly. However, we encounter difficulties in accounting for such manipulation in

(recruitment) connectionist theories.
The points made lead to the following preferences:

(a) disjoint non-local-state invisible-association theories over non-disjoint non-local-state invisible-
association theories (because the former simplify connection-deletion, which is needed in particular

for the removal of marks);

(b) visible-association theories over invisible-association theories (because the detection of an association
between two given neural assemblies is in principle easier in the former variety, and because back-
track lists can be implemented more simply and efficiently, though still possibly with a great need

for probing);
(¢) non-local-state theories over local-state theories, from the point of view of connectionist purity; yet:

(d) disjoint local-state theories over other types of theory, from the point of view that the former allow
the use of the local-state marking method, which is the simplest method (without disjointness there

would be interference between the local states of different neural assemblies).

Combining (b) and (d), we arrive at a preference for local-state, disjoint-assembly, visible-association
theories. (provided that, with local-state marking, there is some way in which neural assemblies marked

with a given mark can be efficiently discovered).

The remarks in this paper may serve to focus research in connectionism in a new way. My own
reaction to the points raised, however, has been to propose a rather different class of theories of the
nature of short-term information-processing in the brain A detailed, up-to-date description of this class
is in preparation, and there is no space even for an outline here. The class can be regarded as a (radical)
development of local-state, disjoint-assembly, visible-association connectionist theories; however, it is less
prone to the difficulties we have raised in this paper. The development is radical because connections are

no longer the means by which associations between information items are encoded! An impression of the



theory class can be gained from Barnden (1982a,b, 1983).
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FOOTNOTES

(1) A complication we are ignoring here is that the réles of John and Mary in the loving must of course be
distinguished. The problem of réles is important and interesting, but for simplicity we do not discuss it.
In any case, it is not specifically to do with short-term structuring. Particular approaches to the problem
can be found in Cottrell & Small (1983), Hinton (1981b), and Kohonen (1981). Similarly, we ignore the
strongly related problem of deciding on the directions of connections. Whenever we mention connections
in this paper we assume that the direction of a connection is appropriate to the representation task at
hand.

(2) The sequence-of-manipulations view is employed in this paper for simplicity and definiteness, and is
probably an over-simplification. It may in reality be more appropriate to replace it by a more complex
view involving parallelism — for instance, by a view in which there is a merely-partially ordered set of
rule executions.

(8) This need should be argued for in detail, but we do not have the space to do that here. The need is
frequently expressed or implied in the literature.

(4) The term ‘“‘given’’ here begs for an analysis which is difficult to undertake unless a particular, precise,
given theory is at hand.

(5) The communication of processing loci corresponds to “‘variable binding’”’ in computer-implemented
computation. We avoid this term, lest it give the impression that there necessarily are things in the brain
identifiable as variables.

(6) The last factor could be reduced by assuming different pools of neural assemblies for different
relationships/properties; but this measure seems ad hoc, and is positively harmful if a situation arises in
which an instance satellite for relationship R is needed, there is none such, but there is a free instance
satellite for some other relationship.

(7) (2) It is important in what follows that a “list” is an abstract mathematical object: it is convenient
for us to take a list to be a function from some (possibly empty) set {1,2,....L} of integers to the set of
nodes in some graph structure. What is at issue is the neural implementation of such lists.

(b) Backtracking can be avoided in some circumstances by the use of special links, called threads, in the
implementation of the structure [Knuth (1973), Standish (1980)]. However, threading amounts to a trick
which cannot plausibly be ascribed to the workings of the brain.



FIGURE LEGENDS
Fig. 1.

(a) A possible active connectionist structure implementing the proposition that John loves Mary (ignoring
any consideration of the direction of connections and of how réles in relationships are distinguished).

(b) A semantic-network fragment which could be used to encode the proposition that John loves Mary.

Fig. 2. An active connectionist structure implementing the proposition ‘‘John loves Mary’ in a visible-
association, recruitment theory. (Once again we ignore the connection-direction and réle issues.) Triangles
stand for association-indicators. All neural assemblies shown (including the association-indicators) are
active.

Fig. 3. Several hungriness propositions. Triangles stand for association-indicators.

Fig. 4. Method I in a visible-association, recruitment theory for implementing the rule specified in the
text. Lines with arrowheads indicate input and output connections for the rule mechanisms. Double lines
indicate other connections. H and H' are just two of the set of neural assemblies recruitable as instance
satellites. Neural assembly M is a neural assembly representing some man.

Fig. 5. Method II in a visible-association, recruitment theory for implementing the rule specified in the
text. Lines with arrowheads indicate input and output connections for the rule mechanisms. Only one
instance satellite is shown for each man, but, for a given M, RULE receives an input pair [cMH e

cM.H.M] for each recruitable neural assembly H. (So, in particular, RULE has input pairs (cMH. HUNGRY’

Cnir ,M) and (c,, HHEUNGRY’ M HM ) as well as the ones shown.)

Fig. 8. If all the neural assemblies are active, this structure implements the proposition that woman w
believes that man m is hungry. Note that detection of activity in fewer than all five association-indicators
is insufficient to determine the presence of the proposition (because each instance satellite has connection-
duples linking it to many neural assemblies not shown).

Fig. 7. Method III in a visible-association, recruitment theory for implementing the rule specified in the
text. There are extra connections (not shown) to effect probing (see text). The probing operations are
started when RULE receives stimulation along € HUNGRY for at least one H and along Cpt for at least one

M. Such input is not in itself enough to make the rule fire, because, for instance, there is a connection-
duple between H and M’ and a connection-duple between H' and M. (These connection-duples are not
shown.) All that the mentioned input conveys to RULE is that there is some active hungriness proposition
and that there is some proposition involving a man.

Fig. 8.

(a) Showing how a node list can be used to organize the traversal of a directed graph structure. The list
always holds a path from the starting node to the current node in the graph. The list currently contains
the nodes d, ¢, b, a in that order. When there is a move from the current node to a new node, the new
node is added to the front of the list. When a node which has no unvisited successors is reached (and has
just been put on the list), backtracking occurs. This consists of retracing steps by removing nodes one by
one from the front of the list until a node with an unvisited successor is found. Visited nodes are indi-
cated by ticks. Thus in the graph shown the list is about to contract and expand as follows: (c b a), (ec b
a), (gecba)(ecba)(cba)(ba),(fba),(ba), a null. (For details of this and other traversal
methods, see e.g. Knuth (1973), Standish (1980).)

(b) Possible implementation of a backtracking list in an invisible-association, recruitment theory. The
uncrossed boxes show neural assemblies corresponding to some nodes in (a). The crossed boxes are neural



assemblies recruited as backtrack-list elements. The list-head neural assembly is present throughout the
traversal, and always “points to’’ the neural assembly acting as the first list element. The connections
shown are created and deleted as necessary to reflect the expansions and contractions of the list. The hor-
izontal connections implement the ordering within the list. The vertical connections establish the
significance of the list-element neural assemblies.

Fig. 8(c). The connection-marking implementation of backtrack lists in an invisible-association theory.
A connection is BT-marked when it is followed (in either direction) during traversal. A backtrack step
causes one BT mark to be removed. The front assembly of the list is indicated by being marked with a
special label, FIRST.

Fig. 9 STEPA‘B performs a backtrack step when it receives a pulse on its control input, A is active and
FIRST-marked, and D is active and BT-marked. STEPA'B unmarks A and D, and FIRST-marks B. In
(a), local-state marking is used. In (b), the pointer marking method is used.

ig. 10

A network diagram with five instances of the node-pattern, two instances each of the AGENT-pattern and
the OBJECT-pattern, and numerous instances of the dot-pattern. The nodes are circles, all of same size.
All instances of a given label-pattern are of the same size and orientation. The label-patterns are words
for the purposes of illustration only. Link lines are not necessarily straight, and may cross each other.

Fig. 11. The function of the pattern-recognition mechanism. LA_ . is the node-pattern location array
for the network configuration in Fig. 10. LA, . and LA, are the AGENT-pattern and dot-pattern

location arrays for that network configuration. Dots in this array boxes in the figure indicate the 1s. All
the other values in the arrays are zero. Not shown are the location arrays for the node labels and for the
link labels other than AGENT.

Fig. 12. Sketch of mechanism needed for a rule triggered by the presence in the PM of two nodes one of
which is labelled with label A and the other of which is labelled with label B. (We take a single node
labelled with both A and B to be a valid trigger.) LMmde_l_ﬁL and LM are like location matrices, but

specify instances of composite patterns. LMmkH_A has high activity at position (x,y) when LM, and
LM, have high activity at or near position (x,y). (Similarly for B.) The rule fires (i.e. RULE starts some
processing) when LMnode+A and LMmde_'_B both contain at least one element with high activity. Highlight-
ing (see later in text) can be performed by RULE sending output to LMnode+A and LMM. This output
causes any active elements in those matrices to be highlighted. There are outputs from LMmd«_ML and
LMmde_'_B to LM . (and other LMs). The purpose of these outputs is for the highlighting at a position
(x,¥) in LM__ 4a OF LM, .o to cause highlighting of elements at or near (x,y) in LM_,. The pattern-
recognition mechanism is such that highlighting of an element in LMW!e can be used to highlight the node
# centred at (x,y) in the PM.

Fig. 13. Implementation of a backtrack list in a network-configuration traversal. The metwork is the
same as the one in Fig. 8(a). No extra nodes or links are used. The list is implemented by instances of a
special mark, BT, on links. A link is BT-marked when it is followed (in either direction) during traversal.
A backirack step causes one BT mark to be removed. The front node of the list is indicated by being
marked with a special label, FIRST. Recall that we toyed with an analogous implementation in the case
L of connectionist theories.
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FOR POSSIBLE INCLUSION if referees think it appropriate and it does not make the paper too long.
This appendix is a summary of a paper in preparation.

APPENDIX: SKETCH OF AN ALTERNATIVE PARADIGM

I propose a paradigm called ‘‘patternism” as an alternative to connectionism. According to patter-
nism, a short-term data structure is a configuration of neural activity made up of inter-associated sub-
configurations, where an association between two sub-configurations rests on their relative positions
(rather than on connections). The basic sub-configurations are instances of certain ‘‘unanchored’” prim-
itive activity-patterns. These patterns are unanchored in not being tied to a particular set of neurons, as
they can be instantiated in different neural positions. In fact, they can be instantiated anywhere within
certain neural areas called pattern matrices (PMs). PMs are, abstractly speaking, two-dimensional rec-
tangular arrays of small neural networks called basic elements. There is a set of aclivilty modes, and each
basic element has some intensity of activity in each mode. Normally, a basic element has a “‘resting
level” of activity in each mode, but when the element is part of a set of basic elements supporting a pat-
tern instance it has non-resting activity in at least one mode.

Fig. 10 shows an example of an important sort of PM activity configuration, playing the réle that
the active connectionist structures have played in this paper. Such a configuration is called a2 network
configuration. The primitive patterns are the node pattern, a large set of label patterns, and the dot pat-
tern. Any instance of the node pattern occupies, roughly, a “circle’” of basic elements. Any instance of
the dot pattern occupies a small localized group of basic elements; instances are placed in a PM so as to
form lines (called “links”) that have much the significance that links have in diagrams of semantic net-
works. Label-pattern irstances are placed mext to nodes and links, the intention being to label them in
much the way, again, that labels are used in semantic network diagrams. Another view is that nodes in
network configurations play the réle that neuron sets play in the connectionist paradigm, and the links
play the réle of connections. There are types of PM configuration other than network configurations, but
for brevity we ignore them here — see Barnden (1982a, 1982b). There are are also some issues and details
concerning network configurations which are not discussed here; for example, the lines in network
configurations can be given directions, in a number of different ways. Network configurations themselves
in the form depicted in Fig. 10 are not to be taken too seriously — they are intended only to be first
approximations to activity configurations appearing in the brain.

The most fundamental form of association between sub-configurations is relative position — and in
fact for network configurations we need only consider adjacency relationships between sub-configurations,
For instance, labels are associated with particular nodes and links by virtue of being adjacent to those
nodes and links in a PM. Links are associated with particular nodes by virtue of the adjacency of their
ends to the nodes. Links are made up of dot-pattern instances associated by their adjacency. On the
other hand, adjacency does not necessarily imply association: thus, two links or labels might be near to
each other without their being taken to be associated. Whether an adjacency constitutes an association
depends on the use made of PM configurations by processing rules (see below). Association by adjacency
is closely analogous to the association between bit-strings that arises in computer-implemented data struc-
tures when the bit-strings are in neighbouring locations. However, adjacency in patternism is a much fuz-
zier matter than that occurring in computer memory.

Links serve to associate modes, of course. This form of association is parasitic on adjacency-
association, but can conveniently be considered to be primitive most of the time. A third form of associa-
tion is similarity association, and is closely analogous to ‘“‘content-addressing” in computers. There are
some special labels that can be placed next to nodes, the intention being that two nodes with the same
special label are considered to represent the same thing (to be, in a sense, the same node). This form of
association allows individual PM configurations to be simplified and allows PM configurations in different
PMs to be tied together.
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We assumed that short-term information processing in the conmectionist paradigm consists of a
sequence of rule-executions manipulating connectionist structures. In patternism, the processing consists
of a sequence of rule-executions manipulating network configurations. The action parts of the rules are
sequences of primitive operations that move pattern instances around in PMs, introduce new instances of
patterns, delete pattern instances, and interact with other mechanisms (for instance, move PM
configurations into and out of long-term storage — an issue not discussed here). A rule is fired by the
presence or absence of instances of particular patterns, where the instances must have particular adja-
cency relationships. For example, a rule might be fired by the presence of a node that has an instance of
a particular label-pattern next to it provided that it does not also have an instance of some other particu-
lar label-pattern next to it. Rules are not generally interested in the absolute positions of pattern
instances.

Clearly, the rules require the existence of a pattern-recognition mechanism capable of finding the
locations of the instances of the different patterns. A particular pattern-recognition mechanism has been
devised. For simplicity, we assume in what follows that there is just one PM. The output of the
pattern-recognition mechanism comnsists of neural activity configurations in 2 set of location matrices.
There is one location matrix I"Mp for each primitive pattern p. A location matrix is an array of elements
that is isomorphic to the PM. The configuration in a location matrix consists of some standard nomn-zero
level of activity at each position (x,y) such that in the PM there is an instance of the pattern p centred at
(x,y). The mode that that activity is in is the same as the mode used by the pattern instance (we assume
for simplicity in this account that a pattern instance involves non-resting activity in only one mode.) See
Fig. 11. The mechanisms which implement rules actually take their input from the location matrices, not
from the PM itself. Fig. 12 shows an outline of the mechanism needed for a certain rule to be fired.

The important point is that adjacency associations can be detected easily without a process analo-
gous to connection-probing, yet the action mechanism for a rule does not have to be replicated for all
the possible PM positiens in which the pattern instances in its condition part might be. The avoidance of
connection-probing in adjacency-association detection means that marking can be conveniently and
efficiently done by placing special labels next to nodes (or, indeed, next to labels or links). A slightly
different type of marking is used for locus identification. When a rule condition part is satisfied, pattern
instances that led to the satisfaction can be highlighted in different modes. (A pattern instance that does
not use mode h becomes highlighted in mode h when all basic elements occupied by the instance are
stimulated into non-resting activity in mode h. Also, highlighting of a pattern instance in the PM has the
effect of highlighting the corresponding point in the LM for the pattern.) Activity modes used for
highlighting can therefore be employed by rule action parts to identify pieces of the PM configuration.
The ability of the rule-satisfaction mechanisms to cause highlighting rests on the ability of the pattern-
recognition mechanism to be ‘‘run backwards” in order to insert as well as to detect patterns (see below).
Highlighting can be viewed as a special case of the previous type of marking — placing labels next to pat-
tern instances. For, we can take the “label” to be another instance of the same pattern, only using the
mode h this time; and we have identity of position rather than adjacency.

The detection of structures involving links may require a probing process (although the process is
less problematic than connection-probing in connectionist thecries). It therefore might appear that patter-
nisin does not counter the efficiency problems that face connectionism in regard to the manipulation of
ancillary data structures more general than marks. However, patternism has less need of links in ancillary
data structures than connectionism has need of connections in them. Consider, for instance, a list used in
backtracking during traversal of a network. Fig. 13 shows the possible implementation of the list in a
PM: no extra nodes or links are needed, because link-marking is used. The figure should be contrasted
with Fig. 8(b). Section 6 toyed with the idea of connection-marking, but section 7 found it to be prob-
lematic. In a patternist theory it is just as natural and easy to mark a link (or even a label — or a mark)
as to mark a node.

The proposed pattern-recognition mechanism is based on Fourier transforms. It has often been
noted that Fourier transforms can be used to perform template matching [Duda & Hart (1973), pp.3054].
If Fourier transforms are produced by parallel computation in meurazl nets, templates can be matched
against an image with no scanning or sweeping. The proposed mechanism uses a variant of the usual
Fourier technique. To “sharpen” the configurations in LMs, a relaxation (settling down) method is used
in combination with mutual inhibition among the elements of each individual LM. An important feature
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of the mechanism is that it is easy to run it backwards to achieve insertion of pattern instances (whose
positions are specified by active points in the LMs for the patterns). Instance deletion is also easy to
achieve. It has been suggested that the brain uses Fourier techniques to perform visual pattern-
recognition (which is strongly related to the pattern-recognition needed). [See e.g. Campbell (1974), Pol-
len & Taylor (1974).]

It might appear that, since the rule mechanisms take input from the LMs, there is no need to have
the PM itself in the first place, and therefore no need for patterns or pattern-recognition. However, there
are important uses for them, such as providing channels between long-term memory and short-term
memory.

Patternism can be viewed as springing from local-state, disjoint-assembly, visible-association connec-
tionist theories (the preferred variety — see section 8). We can regard the set of basic elements used by a
pattern-instance as forming a recruited neural assembly similar to those in a recruitment connectionist
theory. Pattern-instances use more-or-less disjoint sets of basic elements. The idea of line-links joining
pattern-instances can be viewed as being derived from the idea of association-indicators in visible-
association connectionist theories. Highlighting is derived from local-state ideas in connectionist theories.
However, highlighting is more in tune with the theory as a whole than local states are with pure connec-
tionism.

My present research concerns the simulation of the action of the pattern-recognition mechanism (at
an abstract level — not for the moment at the level of neural circuits). When the logical adequacy of the
mechanism has been confirmed by simulation, it will be appropriate to investigate its neural plausibility
in more detail.
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(a) A pbs‘ssible active connectionist structure implementing the proposition that John loves Mary (ignoring
any consideration of the direction of connections and of how roles in relationships are distinguished).
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(b) A semantic-network fragment which could be used to encode the proposition that John loves Mary.

Fig. 1.



neural assembly representing
- the relationship “love”
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representing John representing Mary

Fig. 2. An active connectionist structure implementing the proposition *‘John loves Mary’ in a visible-
" association, recruitment theory. (Once again we ignore the connection-direction and role issues.) Triangles

stand for association-indicators. All neural assemblies shown (including the association-indicators) are
active.
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Fig. 3. Several hungriness propositions. Triangles stand for association-indicators.



Fig. 4. Method I in a visible-association, recruitment theory for implementing the rule specified in the
text. Linés with arrowheads indicate input and output connections for the rule mechanisms. Double lines
indicate other connections. H and H' are just two of the set of neural assemblies recruitable as instance
satellites. Neural assembly M is a neural assembly representing some man.
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Fig. 5. Method II in a visible-association, recruitment theory for implementing the rule specified in the
text. Lines with arrowheads indicate input and output connections for the rule mechanisms. Only one
instance satellite is shown for each man, but, for a given M, RULE receives an input pair (cw{.mm,
for each recruitable neural assembly H. (So, in particular, RULE has input pairs ("'M.H S
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neural assembly representing
the “believe” relationship

BELIEVE
instance satellite B
for ‘‘believe”
w neural assembly
representing w
M
H
HUNGRY

Fig. 6. If all the neural assemblies are active, this structure implements the proposition that woman w
believes that man m is hungry. Note that detection of activity in fewer than all five association-indicators
is insufficient to determine the presence of the proposition (because each instance satellite has connection-
duples linking it to many neural assemblies not shown).
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Fig. 7. Method IIl in a visible-association, recruitment theory for implementing the rule specified in the
text. There are extra connections (not shown) to effect probing (see text). The probing operations are
started when RULE receives stimulation along €l HUNGRY for at least one H and along ot for at least one

M. Such input is not in itself enough to make the rule fire, because, for instance, there is a connection-
duple between H and M’ and a connection-duple between H' and M. (These connection-duples are not
shown.) All that the mentioned input conveys to RULE is that there is some active hungriness proposition
and that there is some proposition involving a man.



(starting node)

(a) Showing how a node list can be used to organise the traversal of a directed graph structure. The list
always holds a path from the starting node to the current node in the graph. The list currently contains
the nodes d, c, b, a in that order. When there is a move from the current node to a new node, the new
node is added to the front of the list. When a node which has no unvisited successors is reached (and has
just been put on the list), backtracking occurs. This consists of retracing steps by removing nodes one by
one from the front of the list until a node with an unvisited successor is found. Visited nodes are indi-
cated by ticks. Thus in the graph shown the list is about to contract and expand as follows: (c b a), (ec b
a), (gecba)(ecba)(cba)(ba),(fba)(ba),a null. (For details of this and other traversal

methods, see e.g. Knuth (1973), Standish (1980).)

|
\ “list head’

(b) Possible implementation of a backtracking list in an invisible-association, recruitment theory. The

uncrossed boxes show neural assemblies corresponding to some nodes in (a). The crossed boxes are neural
assemblies recruited as backtrack-list elements. The list-head neural assembly is present throughout the

traversal, and always “points to'’ the neural assembly acting as the first list element. The connections
shown are created and deleted as necessary to reflect the expansions and contractions of the list. The hor-
izontal connections implement the ordering within the list. The vertical connections establish the
significance of the list-element neural assemblies.

Fig. 8.
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Fig. 8(c). The connection-marking implementation of backtrack lists in an invisible-association theory.
A connection is BT-marked when it is followed (in either direction) during traversal. A backtrack step
causes one BT mark to be removed. The front assembly of the list is indicated by being marked with a

special label, FIRST.
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Fig. 9 STEP, , performs a backtrack step when it receives a pulse on its control input, A is active and
FIRST-marked, and D is active and BT-marked. STEPAB unmarks A and D, and FIRST-marks B. In
(2), local-state marking is used. In (b), the pointer marking method is used.
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A network diagram with five instances of the node-pattern, two instances each of the AGENT-pattern and
the OBJECT-pattern, and numerous instances of the dot-pattern. The nodes are circles, all of same size.
All instances of a given label-pattern are of the same size and orientation. The label-patterns are words
for the purposes of illustration only. Link lines are not necessarily straight, and may cross each other.
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Fig. #4« The function of the pattern-recognition mechanism. LA ioide is the node-pattern location array
for the network configuration in Fig. 10. LA, .. and LA, , are the AGENT-pattern and dot-pattern

location arrays for that network configuration. Dots in this array boxes in the figure indicate the 1s. All
the other values in the arrays are zero. Not shown are the location arrays for the node labels and for the
link labels other than AGENT.
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Fig. 12. Sketch of mechanism needed for a rule triggered by the presence in the PM of two nodes one of
which is labelled with label A and the other of which is labelled with label B. (We take a single node
labelled with both A and B to be a valid trigger.) LMnod&i-A and LM“NH_B are like location matrices, but
specify instances of composite patterns. LM _, o+a Das high activity at position (x,y) when LM, and
LM, have high activity at or near position (x,y). (Similarly for B.) The rule fires (i.e. RULE starts some
processing) when LM, 4o 20d LM ;o5 both contain at least one element with high activity. Highlight-
ing (see later in text) can be performed by RULE sending output to LMMA and LMnodH_B. This output
causes any active elements in those matrices to be highlighted. There are outputs from LMMA and
LM jers to LM, (and other LMs). The purpose of these outputs is#ms that the highlighting at a posi-
tion (x,y) in LM, jeyn OF LM, .5 may cause highlighting of elements at or near (x,y) in LM .. The
pattern-recognition mechanism is such that highlighting of an element in LM, , can be used to highlight

the node centred at (x,y) in the PM.
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Fig. 13. Implementation of a backtrack list in a network-configuration traversal. The network is the
same as the one in Fig. 8(a). No extra nodes or links are used. The list is implemented by instances of a
special mark, BT, on links. A link is BT-marked when it is followed (in either direction) during traversal.
A backtrack step causes one BT mark to be removed. The front node of the list is indicated by being
marked with a special label, FIRST. Recall that we toyed with an analogous implementation in the case
of connectionist theories.



