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First Class Continuations are described, and a means for their ex-
plicit access is defined by a meta-circular interpreter. We pose and
solve the “Devils and Angels Problem” that utilizes the indefinite
extent of continuations. Some ramifications of continuations with
respect to language implementation and non-blind backtracking
are presented.

1 Introduction

Progress in programming language design has often been achieved by
making an abstraction a “first class object”, one that can be passed to and returned
from procedures and entered in data structures. For example, the importance of
functional parameters has long been recognized, though it is only more recently
that actor semantics [2] and object oriented programming have demonstrated the
power of first class functional objects. This paper illustrates, with a novel example,

the power of first class control objects, called continugtions.

Control objects, such as labels in Algol 60, are not new to programming
languages. However, such objects are not first class—though they may be passed to
procedures, they may not be returned or entered in data structures. For example,
when an Algol label is invoked it is impossible for the computation to return to
the state it had when the goto was executed. This is a consequence of the stack

allocation of both environment (parameters and local storage) and control (return
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address) information. When a label is invoked the stack is popped and the context

of the computation subsequent to the transfer of control is lost.

Several Lisp dialects, including Common Lisp [7] and T [4], provide mech-
anisms similar to labels in an expression (rather than statement) oriented context.
These mechanisms were motivated by the catch and throw expressions (for ex-
ample, see [11]). The catch statement binds the current continuation, or control
state, to an identifier and then evaluates an expression contained in the catch state-
ment. Within that expression it is possible at any point to “throw” an arbitrary
value to the continuation associated with the identifier. This value is then returned
immediately as the value of the entire catch expression, from which point evalua-
tion proceeds in the environment saved with the continuation. However, as with
the labels discussed above, once the catch expression has been exited, it is no longer
possible to reinvoke its continuation. This is again a consequence of the stack
allocation of the continuation (though the environment is now being dynamically
allocated on a heap). The principal uses of this mechanism are error exits and
“blind” backtracking. Non-blind backtracking, in which it may be necessary to
resume a computation at the point where a continuation is invoked, is not possible

in these languages.

In Scheme 84 [1] the call-with-current-continuation expression described by
the form (callfcc (lambda (k) Fzp)) causesthe expression Ezp to be evaluated
in an environment where k is bound to the continuation of the entire call/cc
expression. The continuation bound to k is a first class functional object that,
when invoked, returns the value of its single parameter as the value of the entire
call/cc expression. Such continuations may be passed to functional objects (even
other continuations!), returned from procedures, and preserved indefinitely in data
structures. The control and environment information associated with continuations
is recorded in storage that is dynamically allocated. It is reclaimed only when all

references to the continuation have been abandoned. This allows complete manage-

T‘See Conniver [10] for a description of an artificial intelligence language that addresses problem
solving with non-blind backtracking.
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ment of the control behavior of the computation that includes not only arbitrary
backtracking, but also other forms of context switching such as the resumption of

coroutines [1] and interrupt driven multiprocessing [12].

In the next section a problem is posed to motivate the power of first class
continuations. This is followed by a brief introduction to Scheme 84 and by a meta-
circular tail-recursive Scheme 84 interpreter that provides an operational semantics
for continuations. A solution to the proposed problem is then presented, and other

implications of first class continuations are discussed.

2 The Devils and Angels Problem

Consider a program that includes, in addition to the standard expressions,
three types of special purpose expressions: milestones, devils, and angels. The com-
putation described by the program has the goal of finishing despite the existence of
devils. A devil sends control back to the last milestone, with the same environment
it had at that milestone. The value given to the devil is passed to the continuation
commencing at the milestone, as if that value were the result returned by the mile-
stone expression. Presumably this allows the computation to take a different path,
possibly avoiding the devil that is lurking somewhere ahead on the previously used
path. If another devil, or maybe even the same devil, is subsequently encountered,
then control passes back to the penultimate milestone, not to the one just used. In
other words, each milestone can be returned to exactly once; a succession of devils

pushes the computation back to earlier and earlier states.

An angel sends the computation forward to where it was when it most
recently encountered a devil, with the environment it had at that time. The value
passed as a parameter to the angel is given to the devil’s continuation as if it were
the value of the devil. A succession of angels pushes the computation forward to

more and more advanced states.

A milestone is a function of one argument that acts as the identity function,

as well as recording the current context for later use by devils. If a devil is
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encountered before ary milestone has been reached, the devil has no effect; if an
angel is encountered before any devil, the angel has no effect. To recharge any
milestone—to make it again a possible return point for some devil once a devil has

caused control to jump back to it—the milestone must be re-evaluated.

The problem we are proposing is to define the three functions milestone,
devil, and angel so that they have the described behavior. It is helpful to observe
that there is no non-determinism in this problem; the control path is followed by a

single process.

A helpful metaphor for these constructs is one of solving a multi-part
problem. Frequently mathematics texts present problems with many parts, and the
overall structure is something like “assuming the results of parts (a), (b), and (c),
prove (d)”. Imagine that someone trying to solve the entire problem—do all the
parts—has no prior knowledge that (a), (b), and (c) are useful in solving (d). In
fact, it may be that result (a) is not really what is needed for (d), but some partial
result obtained by solving (a). Our problem solver begins working on (d), thinking
it looks easiest. She soon gets stuck and thinks about trying to tackle another part,
say (a). But, before beginning work on (a), she records where she was in solving (d);
she establishes a milestone. Then, while working on (a), she discovers some partial
result that is just what she needed to proceed with (d). So, she resumes work on
(d) where she had left off, but with some new information, the discovery from (a).
This corresponds to invoking a devil. Later, she decides to work again on (a). If she
is finished with (d), she can simply return; if not, she must set up a new milestone

and then return. The return to (a) is modeled by the invocation of an angel.

It is tempting at this point to think we are describing coroutines, for it is
easy to set up a collection of coroutines for the above example that have behavior
superficially similar to continuations. However, on closer examination, it is seen
that continuations are far more general than coroutines. Each coroutine has its
own unique locus of control that is constrained to remain within its textual bounds.
Clearly continuations may be used to model coroutines, for this locus of control

(and its associated environment) may at any time be captured as a continuation
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and recorded in a data structure associated with the coroutine. But continuations
are not in general constrained to such a one-to-one relation between a control object
and its possible extent. Furthermore, because continuations are first class objects
they may be manipulated as data by the programmer. Thus they are not limited
to some particular use envisioned by the language designer. In abstracting the idea
of a control object, the designers of Scheme have placed an important tool of the
language implementor into the hands of the language user. A language with first
class continuations does not need to include coroutines as part of its definition.
Those users who want them can implement them, and those who need other sorts

of control constructs can implement them as well.

3 An overview of Scheme 84

The problem we present in this paper has no direct solution in tradi-
tional programming languages. However, it does have a solution in Scheme, a
programming language designed and first implemented at MIT in 1975 by Gerald
Jay Sussman and Guy Lewis Steele, Jr. [6,11] as part of an effort to understand
the actor model of computation. Scheme may be described as a dialect of Lisp that
is applicative order, lexically scoped, and properly tail-recursive; but most impor-
tantly Scheme—unlike all other Lisp dialects—treats functions and continuations

as first class objects.

A subset of the core of Scheme 84 [1], an extended version of Scheme, is
composed of the following syntactic constructs.

<expression>::= <constant>
| <identifier>
| (lambda ( {<identifier>} ) <expression>)
| (if <expression> <expression> <expression>)
| (change! <identifier>> <expression>)
| (call/ec <expression>)
| (begin <expression> {<expression>} )
| (comb <expression> {<expression>} )



lambda is the sole binding operator of Scheme 84. change! side effects an existing
identifier binding or initializes a global identifier. call/cc is described below. begin
provides the usual sequential evaluation of its list of expressions and returns the
value of the last. comb evaluates its expressions (in an unspecified order) and applies

the first expression to a list of arguments formed from the remaining expressions.

Scheme 84 provides a syntactic preprocessor that examines the first ob-
ject in each expression. If the object is a syntactic extension (macro) keyword,
the procedure associated with the indicated syntactic extension is invoked on the
expression, and the expression is replaced by the resulting transformed expression.
If the object is not a keyword or core expression identifier (Lambda, if, etc.), then
it is assumed that the expression is 2 a normal function application, a combination,

and the preprocessor inserts the core identifier comb.

A few important syntactic extensions follow. ( = indicates that an ex-
pression of the form on the left is transformed into one of the form on the right,

and brackets are interchangeable with parentheses.)
Qet ([I, E})...[I, E.]1) E) = ((Qambda (L ...I;) E) E, ... E,)
(define I E) = (begin (change! I E) (quote I))

(begin0 Ep E, ... E,;) = (et ([z Eol
[y (1ambda () (begin E; ... E,))]1)
(begin (y) z))
let is used to make local identifier bindings. define changes an existing identifier
binding or initializes a global identifier. It returns the identifier, rather than its
new binding, which is returned by change!. The last macro beginO evaluates its
expressions sequentially, as does begin, but returns the value of the first expression

rather than the value of the last.

call/cc evaluates its argument and applies it to the current continuation
represented as a functional object of one argument.T In order to specify the current

continuation at any point in a computation, 2 contlinuation semantics is necessary.

sting this primitive we can define catch, a version of Landin’s J operator [3,5,11].
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We provide such a semantics with the meta-circular Scheme 84 interpreter of Figure
1.1 The syntax of Scheme differs from the lambda calculus of traditional denota-
tional semantics [8,9], but the same semantic techniques are evident. A significant
difference between Scheme and the lambda calculus is the applicative order of
evaluation in Scheme; arguments are evaluated before application. In a continua-
tion semantics, every recursive procedure receives a continuation parameter, and is
obligated to pass any results directly to this continuation, rather than simply return.
Continuations, abstractly functions of one argument, represent the remainder of the
computation at the point where the procedure is invoked. The value passed to the

continuation is the result of the computation up to the point where it is invoked.

For example, consider meaning in Figure 1. The constant, identifier, and
lambda expressions pass their values directly to the continuation k. However, the
other cases are more subtle. In the if case, meaning is recursively invoked on the
test-pt (predicate) of the expression in the current environment. Its continuation,
denoted by a lambda expression, will be passed the value of the test-pt. Depending
on this value, meaning is invoked on the then-pt or else-pt with the original

continuation k of the if expression.

If the meanings of 1ambda expressions, closures, were not first class objects,
then the environment could be maintained on a stack. This stack corresponds to the
static chain of Algol-like languages. In addition, if continuations were not first class,
then the control information could be recorded on the same stack. In this context,
the closures that we use to represent continuations in meaning would contain the

same information as a stack activation record.

4 Solution to the Devils and Angels Problem

Having introduced call/cc and having defined the semantics of continua-

tions, we are now in a position to present a concise solution to our problem. First

t('.‘,'l.tr interpreter is not compositional in its present form, but can be made so, at some expense
in clarity.
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Figure 1: Meta-circular interpreter for a subset of Scheme 84

(define meaning
(lambda (e r k) : e = expression, r = environment, k = continuation
(case (type-of-expression e)
[constant (k e)]
[identifier (k (R-lookup e r))]
[lambda (k (mk-closure (body-pt e) (formals-pt e) r))]
[1f (meaning (test-pt e) r
(lambda (v) (if v (meaning (then-pt e) r k)
(meaning (else-pt e) r k))))1]
[change! (meaning (val-pt e) r
(lambda (v)
(k (store! (L-lockup (id-pt e) r) v))))]
[call/cc (meaning (fn-pt e) r
(lambda (v)
(apply-function v (cons (mk-cont k) nil) k)))]
[begin (evaluate-all (exp-list-of e) r k)]
[comb (meaning-of-all (comb-parts e) r
(lambda (vals)
(apply-function (car vals) (cdr vals) k)))1)))

(define evaluate-all
(lambda (exp-list r k)
(meaning (car exp—-list) r
(1f (null? (cdr exp-list))
k

(lambda (v) (evaluate-all (edr exp-list) r k))))))

(define meaning-of-all
(lambda (exp-list r k)
(meaning (car exp-list) r
(lambda (v) (if (null? (cdr exp-list))
(k (cons v nil))
(meaning-of-all (cdr exp-list) r
(lambda (vr) (k (cons v vr)))))))))

(define apply-function
(lambda (fnrep args k)
(case (type-of-fn fnrep)

[primitive (k (apply-primitive fnrep args))]

[closure (meaning (closure-exp fnrep)
(extend-env (closure-env fnrep)

(closure-formals fnrep) args)

)]

[continuation ((cont—pt frnrep) (car args))])))



we define the stack operations push and pop, and define past and future to be
references to initially empty stacks. Since the stack arguments to push and pop are

to be side effected, we pass references to the stacks instead of the stacks themselves.

(define push
(lambda (stk-ref val)
(set-ref! stk-ref (cons val (deref stk-ref)))))

(define pop
(lambda (stk-ref)
(iet ([stk (deref stk-ref)])
(1f (null? stk)
(lambda (x) x) ; the ldentity functlon
(begin0 (car stk)
(set-ref! stk-ref (cdr stk)))))))

(define past (ref nil))
(define future (ref nil))

pop returns the identity function if the stack is empty. Because Scheme is untyped,

objects of any type may be pushed on a stack, including cortinuations.

milestone grabs its continuation with call/cc, pushes the continuation
on the past stack, and returns its single argument. A milestone is thus an identity

function with a side effect on the past stack.

(define milestone
(lambda (x)
(call/cc (lambda (k)
(begin (push past k)
x)))))

The devil procedure also grabs its continuation and saves it by pushing
it on the future stack. It them pops the past stack, obtaining the state of
control at the last milestone, and invokes this continuation with the value of its
single argument. The computation continues as if the last milestone procedure had

returned this value.



(define devil
(lambda (x)
(call/cc (lambda (k)
(begin (push future k)
((pop past) x))))))

Finally, the angel procedure pops the future continuation stack, obtain-
ing the state of control at the time the last devil was invoked, and passes the devil's
continuation the value of the angel’s single argument. This resumes the computation

as if the devil had returned this value.

{(define angel
(lambda (x)
({pop future) x)))

If the future stack is empty, the angel procedure acts as an identity function, as

does the devil procedure when the past stack is empty.

5 Significance

Beyond their entertainment value, devils and angels may be used to imple-
ment break packages and other systems in which both forward and backward trans-
fers of control are desired. These mechanisms are more powerful than the traditional
break packages of Lisp programming environments that are stack based. Such sys-
tems allow backing out of nested break levels, but not the direct resumption of a
previous break state. Continuations are the necessary tool to effect this behavior.
This implies that languages lacking continuations as first class objects cannot begin

to address these concerns in a coherent way.

In solving our problem, we recorded continuations on a pair of stacks.
However, storing continuations in other data structures is possible. Coroutines may
be implemented by recording continuations in own variables. Artificial intelligence
applications with extensive backtracking may utilize far more sophisticated data

structures. Prolog implementations contain a variety of constructs for backtracking,
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but lack the capabilities to resume a prior state or manipulate continuations as data.

A naive view of continuations is found in many imperative languages that
provide labels and gotos. There is no concept of a continuation within an expression;
it is impossible to suspend and then later resume the computztion of an expression
with a given value. Furthermore, the extent of continuations is limited by the
traditional stack discipline. We feel such constraints are too restrictive; they imply
that if a designer wishes to provide such facilities as coroutines, he must find other
ways. If he instead allowed for a more generalized means of transferring control—
continuations as first class objects—he could leave this decision to the user. The
designer need not make any particular choices which might render the language

unsuitable for some applications.

We have demonstrated the power of first class continuations and have
argued that languages that rely upon stack allocation of their control information
do not provide equivalent power. So we must ask: is the efliciency of stack allocation

still worth the sacrifice?
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