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C-Scheme Reference Manual

Abstract

This manual describes a new version of Scheme called C-
Scheme. Like Scheme, C-Scheme is lexically scoped,
supports full funciion closures and coatinuationms., and is
implemented in such a way that tail-recursions perform
iteration. (C-Scheme curries all function definitions and
applications, providing a mechanism for partial application.
C-Scheme provides a timer interrupt facility which can be
used with continuations to implement multitasking.

The C-Scheme implementation consists of a powerful
preprocessor, a parser and an interpreter for the parser
output. It is intended to be usable as the core of a
production-quality Scheme system.

C-Scheme is coded in the C programming language and runs
on a Vax 11/780 minicomputer under the UNIX} timesharing

system.

t UNIX is a Trademark of Bell Laboratories.
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Preface

This thesis describes C-Scheme, a new implementation of Scheme for the Vax11-780 computer

running 4.1 bsd Unix. It is intended to serve as the reference manual for C-Scheme.

C-Scheme is a programming system with a complete lexical scanner for input expressions; a
macro preprocessor, parser and evaluator for these expressions; an output facility for C-Scheme
data; and an allocator for dypamic storage allocation. C-Scheme features full continuations,

lexical scoping, full function closures, curried function definition, and timer interrupts.

Scheme was originally written as a dialect of Lisp, and retains the syntax and many of the list
processing functions of Lisp. Like Lisp, Scheme’s primary program construct is function
application. Lisp and Scheme both support automatic allocation and deallocation of data
structures. Programs in both languages are represented with data structures supported by the
languages, making programming tools such as debuggers and program editors easy to implement.
Scheme is smailer, cleaner and easier to learn than most of the current Lisp dialects, making it an
excellent tool for teaching and research. Scheme is lexically scoped and supports full function
closures (that is, functions can be passed to or returned from other functions). Lisp is usually
dynamically scoped and usually does not support full function closures. Also, Scheme supports
continuations, a general non-local exit mechanism. Full continuations allow jumps back into code

which may have already finished execution, and make possible the implementation of coroutines

and other interesting control structures.

Because Scheme is so similar to Lisp, anyone not already familiar with Lisp will find it useful

to read The Little Lisper [Friedman 1974] or the Lisp, 1.5 Primer [Weissman 1968].

Scheme is similar in many respects to Pascal and other block structured languages, because of
lexical scoping and Scheme’s block structuring macros /et and letrec. However, Pascal programs
tend to use less funciions and more assignment statements. Also, Pascal compilers support

allocation of data objects but usvally only support a primitive deallocation mechanism.

C-Scheme has several features not found in other Scheme systems. The most important



feature is complete currying of function definitions and applications. Currying allows the
programmer to view any function as taking its arguments one at a time. Conversely, any function
of one argument which returns a function may be viewed as a function of more than one
argument. It is often useful to create intermediate functions by applying a general function to less
arguments than it expects. One nice result of currying is that the function apply, which applies a

function to a list of arguments, may be written in C-Scheme without the use of eval.

Another feature of C-Scheme not found in most other Scheme systems is a timer interrupt
facility. A single function, apprﬁpriately called zimer, controls an internal clock. The user may
program the timer for am arbitrary time interval. When the timer expires, the user-specified
interrupt routine is invoked. The interrupt routine may use continuations to save the current
computation and to start another; this provides enough mechanism to write a multitasking

scheduler.

C-Scheme also allows the keywt;rds for syntactic extensions (macrcs), special forms and
functions to overlap; the syntactic extension is performed first. The special form lambda is
extended to allow a name which is visible only within the body of the lambda. When the closure
for the lambda expression is built the name will be bound to the closure. This permits self-
contained and concise recursive function definitions. Unlike some recent implementations of

Scheme, C-Scheme supports full continuations.

C-Scheme has a preprocessor which condenses the code into a small kernel language. The
preﬁroce.ﬁsor expands syntactic extensions and curries function definitions and applications. The
output of the preprocessor is called the kerne! language. A parser further reduces the language
into threaded code. The output code acfua]ly contains pointers to evaluation functions so that very

little work has to be done by the interpreter at run time.

C-Scheme has a small set of special forms, only quote, lambda, if, prog2 and change!. Prog2
actually generates no code and thus incurs no overhead at run time. Most of the language

constructs are implemented with syntactic extensions or functions.



C-Scheme’s allocator/collector was designed with recent technology and allows objects of
arbitrary size to be created. Vectors and strings can be handled more efficiently than in systems

capable of allocating only fixed-sized blocks.

Certain types of function applications are optimized. Most notably, a function application
with a lambda expression in the function position is in-line coded and incurs only the overhead of
adding values to the environment. A closure is not created for the lambda expression. This
optimization is important since the frequently used macros let, ler* and letrec translate into this

type of application.
This thesis gives many example C-Scheme functions, including:
e a queue function showing how data may be abstracted with C-Scheme;
e a stack function which is a module with local data and several entries;
o four different factorial functions t;z:hich highlight currying and tail recursion;
e a stream constructor macro which implements lazy cons;

o an elementary scheduler which shows how continuations and timer interrupts may be used to

implement multitasking.

This work has been supported by members of the computer science departments of both Indiana
University and The University of North Carolina at Chapel Hill. In particular, I would like to
acknowledge the guidance and support of Dan Friedman and Mitch Wand. I would also like to
thank Rick Snodgrass and Bruce Smith for suggestions and comments on the final drafts. Also, I
appreciate the patience of Don Stanat and Gyula Magé and the use of UNC resources for the
completion of my thesis. Special thanks go to my wife, Sue, for proofreading each draft and

helping me battle the text formatter. -



1. Introduction

This is the reference manual for a new version of Scheme called C-Scheme. The C-Scheme system
is not built on top of an existing Lisp system as many previous Scheme systems have been.

Rather, it is intended to be the core ofa production-quality system.

C-Scheme is coded in the C programming language and runs on a Vax 11/780 minicomputer

under the UNIX? (4.1 BSD) timesharing system.

Section 2 of this manual gives the information necessary to begin using C-Scheme, including
a sample session. Section 3 gives some examples of C-Scheme programming. Section 4 describes
the data objects available to the C-Scheme programmer. C-Scheme identifiers are described in
section 5. Control structures such as function definition, conditionals and sequencing are given in
section 6. Sections 7 through 13 define C-Scheme functions for manipulating data. Section 14
describes the reader. The implementation is discussed in sections 15, 16 and 17. References and
an index of forms conclude the manual in sections 18 and 19. The remainder of this introduction

gives 2 brief outline of the features of -C-Scheme.

1.1 C-Scheme

C-Scheme is an applicative-order, lexically scoped programming language based on Alonzo
Church’s lambda calculus [Church 1941]. Scheme was introduced by Guy Steele and Gerald
Sussman [Sussman & Steele 1975], [Steele & Sussman 1978]. Steele and Sussman call it a dialect
of Lisp, since it uses Lisp syntax, datastructures, and many Lisp functions. However, the
language framework more closely resembles Algol, with lexically scoped identifiers and block
structure. Lisp syntax aids the developmeﬁt of programming tools since programs are represented
as data structures in the language. For example, C-Scheme has a macro-preprocessor which is

itself written in C-Scheme.

C-Scheme’s primary construct is function application. Unlike Lisp and Algol, C-Scheme

supports full function closures. A function is closed with the lexical environment it is created in so

T UNIX is a Trademark of Bell Laboratories.
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that identifier bindings are passed along with the function. The resulting closure can be used as an

argument to other functions or returned as a value.

C-Scheme is implemented in such a way that a function call from the tail of an expression
behaves as if it were a jump. This means that tail-recursive functions execute without net growth
of the interpreter stack and thus may be used to perform iteration. Although most compilers

perform this optimization, interpreters usually do not.

One of the nicest features of C-Scheme, as with other Schemes, is the ability to request the
continuation of any expression being evaluated. Intuitively, a continuation is the total information
needed to complete the execution of the expression from a given point. In this implementation,
the continuation consists of the control stack and current lexical bindings. Once requested, the
continuation can be invoked just like a normal function closure. Invocation of a continuation has
the effect of returning the computation to the point where the continuation was requested. One
obvious use of this mechanism is for non-local exits or error trapping. However, it is more
powerful than a simple non-local GOTO, since the state can be reinstated even after the
computation has completed. As Iong as the continuation exists, its control stack and environment
remain intact, and the computation can be restarted any number of times. This can be used for

unusual looping constructs, coroutines and backtracking searches.

Unlike other Scheme systems, C-Scheme supports currying of function paﬁamete:rs
[Rosser 1982], [Stoy 1977]. Any function of n arguments is represented as a function of 1
argument whose value will be a function of n-1 arguments (n > 1). Because of this, function
arguments may be passed in one at a time, yiclding interesting intermediate functions. (For
example, if + normally takes two integers and returns their sum, applying + to only one integer,

say 10, would produce a new function which adds 0 to its argument. )

. Timer interrupts are another feature of C—Scheme not included in most Scheme systems.
The timer can be enabled by using an enable function with two arguments: the number of discrete
intervals (called ricks) to wait and an interrupt service routine. When the specified number of
ticks has elapsed, control is passed to the interrupt service routine. If the routine returns without
doing anything, control proceeds as if the interrupt did not happen. Multitasking may be

performed with this timer using continuations, as shown by Wand [Wand 1980].
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C-Scheme does not support the fluid binding of [Steele & Sussman 1975].

Several other Scheme systems are currently in existence. The [Scheme 311]] Reference
Manual [Fessenden, et.al. 1983] describes a Scheme system used for several computer science
courses and for research at Indiana University. Computer Science students at MIT use Scheme for
one of their first programming courses. A somewhat different flavor of Scheme intended for

production use, T, is being developed at Yale [Rees & Adams 1932].

1.2 Syntax

The BNF grammar below gives the syntax for C-Scheme expressions. Expressions followed by an

asterisk may be repeated zero or more times.

<exp> gza <constants
i <identifier>
| <syntactic extension>
| <special form>
| <combination>
<constant> ot <integer> | nil | <string> | <vectors>
<identifiers 1= <symbols>
<syntactic extension> $¥= {<macro xeyvord> <object>#)
<macro keywords> si= <symbol>

<special forms>

(quote <object>)

{lambda (<symbol>*) <exps)
(if <exp> <exp> <exp>)
{prog2 <exp> <exp>)
(change! <symbol> <exp>)
({<exp> <exp>*)

<combinations

(1]
L1
L}

Nil is a special null pointer, and is used to mark the ends of lists and represents the boolean value
false in conditional expressions. <object> is any C-Scheme data type, e.g. symbols, numbers,
strings and lists. The data types are discussed in §4. Macro keywords are symbols with the

**macro** property on their property list.

C-Scheme identifiers are not automatically changed to either upper or lower case. This
means that two identifiers which differ only in case are different identifiers. Currently, all
identifiers recognized by the C-Scheme interpreter are lower case. Global identifiers (except
function symbols) and property list keywords (see §4) are normally enclosed in two pairs of
asterisks, as with **macro** above, to prevent clash with user identifiers. Special forms, macros

and functions which cause side-effects are normally followed by an exclamation point, as with



changel.

Expressions written as lists (special forms, syntactic extensions and combinations) are
referred to as forms. The BNF grammar for forms is actually ambiguous. It is possible for some
forms to be parsed as more than one kind of form. Syntactic extensions are checked for first,

followed by special forms. If the expression is neither, it is assumed to be a combination.

Special forms make up the core of C-Scheme. There are only five special forms: quore,
lambda, if, prog2 and change!. Programs use quote to introduce literal data, Lambda to define
functions, if for conditional execution, prog2 for sequencing execution, and change! to change
identifier bindings. |

Syntactic extensions are created by defining symbols as .preprocessor macros. Macros can
improve the readability of code by abbreviating commonly used structures. Most of the control
structures described in this manual are implemented as macros. Macros are written entirely in C-

Scheme, and are expanded by the C-Scheme-coded preprocessor (see §17).

Combinations, or function applications, are the most common forms in C-Scheme programs.
A combination is a form conmstmg of a function expression and zero or more argument
expressions. C-Scheme executes a combination by first executing the function and argument
expressions, then applying the function to the arguments. The expressions may be executed in any

order, so C-Scheme programs should not depend upon the order of evaluation.

Combinations are automatically curried before evaluation begins. Applying a function to
zero arguments is the same as applying it to nil. The application of a function to more than one
argument is equivalent to applying it to one at a time (associating to the left). Function
definitions (using lambda -- see §6) are transformed similarly. In each of the following examples

the left form is equivalent to the right.

(£) (f nil)

(f x) (£ x)

(f xy) ((f x) ¥)

(f xy z) (((f x) 7) z)

{lambda () beody) {lambda nil body)

(lambda (x) body) (lambda x body)

(lambda (x y) body) (1lambda x (lambda ¥ body))

The functions included in the basic C-Scheme system are either primitive (coded in C), or library
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(coded in C-Scheme). Both print as ** closure **. It should not matter to any computation
whether a function is primitive or library. Either type of function may be invoked directly, or
passed as data to be invoked later. This is not true of the keywords to special forms or syntactic
extensions. These really are syntax and only make sense when written directly. Attempting to
pass a macro or special form keyword will cause an error unless the keyword has a function

definition as well.

1.3 Evaluation of C-Scheme Expressions

Execution of a C-Scheme expression takes three steps: preprocessing, parsing and evaluating. The
preprocessor expands macros, curries functions, and attempts to evaluate time-independent
expressions (expressions which evaluate to a constant in any context). The parser resolves local
variable references and compiles special forms and combinations into a more compact, partially
threaded stack machine language. Finally, the evaluator is a virtual stack machine for this

language.

The parser and evaluator togeth;j' form the interpreter kermel and are coded enptirely in C.

The preprocessor is coded in C-Scheme.



2. Using C-Scheme

C-Scheme is an interactive system. To start C-Scheme simply type “scheme”. The C-Scheme
toplevel will print an asterisk (*) on the screen to let you know it is ready for input. When you

have completed a C-Scheme session, invoke the function exiz. Exit takes no arguments.

2.1 C-Scheme Toplevel

The user interface to C-Scheme is a top level read-execute-print loop. It loops forever, reading an

expression, evaluating the expression and printing the result.

The looping is actuzlly performed by the C-Scheme kernel, and the read-execute-print is
performed by a C-Scheme-coded function. The C-Scheme kernel assumes that the global value of
the identifier **toplevel** is a function of zero or one arguments. The kernel loop applies

**1oplevel** to nil and throws away the result.

A default **toplevel** is provided. It is reasonable to change **toplevel™* to customize it to
personal taste or needs, but care must be taken. Once **toplevel®* is trashed, there is no

recovery!

The default **toplevel** prompts the user with an asterisk (*), reads one expression, prints a
newline, executes the expression and prints the result with another newline. If all goes well (no
errors), the global value of the identifier **last-inpus** is set to the input expression, and **last-
outpur** is set to the result of the execution. **last-inpur** and **last-output** may be used in the
next input expression, usually in the event that the user forgot to save them. In the following short
sample session, the percent sign (%) is the operating system prompt, the asterisk (*) is the C-

Scheme prompt and the user input appears only on lines with a prompt:



% scheme
Schene version 1.0

#(plus 2 3 4)

9
¢ (times *=*last-ontputes* 10)

a0
*(lambda (x) (times x =x))

** closure %
*(define sguare **last-output®®)

sguare
¥ (sguare 3)

=(exit)
®

2.2 Errors and Interrupting Computation

C-Scheme doss not yet have a break package. When an error occurs, a descriptive message is

printed to the standard error file and control returns to the toplevel.

If a C-Scheme program appears to be in an infinite computation, the break key may be hit.
This causes the message “interrupted” to print on the standard error file and control to return to
the top level. (The interrupt may be caught by a user-defined keyboard interrupt service routine.

Sec §6.)

2.3 Loading C-Scheme Code

C-Scheme functions can be placed on a file and loaded into the C-Scheme system with the load
function. Load takes a single string argument which must be the pathname of an existing file, e.g.
“liblscheme/myfuns.s". Each C-Scheme expression in the file is executed. Loads may be nested, of

course.



3. Sample C-Scheme Functions

This section gives a few simple C-Scheme functions, highlighting some of C-Scheme’s features.
More examples are spread throughout the text. These examples assume familiarity with Scheme or
Lisp. Refer to later sections of this manual for the definition of any unfamiliar construct or

function.

3.1 Four Factorial Functions

The factorial function is used to illustrated various C-Scheme programming styles.

{define fact-1
(lambda (x)
(if (0? x) 1 (times xz (fact-1 (1- x))))))
(define fact-2
(lanbda f (x)
(if (0? x) 1 (times x (f (1- x))))))
{define fact-3

(lambda £ (a x)
(if (0? x} a (f (times a x) (1- x)))})

{define fact-4
{(lambda f (a x)
(if (0? =) 2 (f (times a x) (1- x})))
1))

Fact-1 is the basic recursive factorial function. It is a function of one argument. If the
argument is 0 the value is /. Otherwise the value is the argument times the value of calling fact-1

with the argument minus 1.

Fact-2 is only slightly different from facr-1. It is a also a function of one argument with
essentially the same definition. The only djﬁereﬁce is that it does not rely on the value of the
symbol it is bound to remaining constant; it is self-contained. If the function is moved to another
identifier it will still work even if the original identifier’s value changes.

Fa'cr-.:‘} is. a tail rcﬁﬁ:sive version. This can be useful since tail-recursive functions behave like
. loops and will not cause the interpreter’s control stack to grow. Many recursive functions can be
written with tail-recursion. However, it is not always desirable to do so, since the tail-recursive

version is usually not as clear and the recursion may not go deep enough to matter.
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Fact-3 uses an accumulator a to collect the value, multiplying a by x each time through the
loop. When x reaches 0, a is returned. Facr-3 must be called with I as its first argument in order
to initialize the accumulator properly. This is normally done with the use of another function

which other routines call.

Fact4 is similar to facz-3 except that it takes advantage of currying. Before the function is
ever bound to the identifier facr< it is applied to a single argument, I/, initializing the

accumulator.

Currying .is used for -pam‘az application of functions to arguments. Dwyer and Dybvig
suggest a more general form, bind, which allows any of the arguments to be bound, not just the
first [Dwyer & Dybvig 1981]. Georgeff describes many of the advantages of partial application
and arg‘ues thet the implementation need not be less efficient than a system without partial

application [Georgeff 1982].

(fact-1 3) => 6

{(defire fact-i-save fact-1) => fact-l-save
(define fact-1 (lambda (=) 0)) => fact-1
{fact-1-save 3) - => o

(fact-2 3) => G

{(define fact-2-save fact-2) => fact-2-save
(define fact-2 (lambda (x) 0)) => fact-2
(fact-2-save 3) => 8

(fact-3 1 10) => 3628800
(fact-3 2 10) => T237600
(fact-4 10) => 3628800

3.2 Queue: An Abstract Data Type

Since C-Scheme is lexically scoped, abstract data types may be constructed without any additions
to the language. The following is an example of a queue data type, with operations type, empty,
put and get. No one outside the queue object can access the queue’s data or change the

functionality of the operations on queues.
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(define gueue
(lambda ()
(let
((head nil) (tail nil))
{lambda (request)
{case reguest
{type ‘gueune)
{empty (null head))

(put
(lambda (v)
(progn
(if (null he=zd)
{change! head (change! tail (comns v nil)})
{change! tail
{edr (rplacd tail (coms v nil)))))
v)))
(get

(if (rpull head)
{error °qucue get: gqueue is empty® nil)
(let ((v (car head)))
(progn
(if (null {(change! head (cdr head)))
{change! tail nil))
v))))
{otherwise (error ®gueue: invalid reguest® request))})

)
)
{define g (gueue)) - => q
{q *type) => queue
(g ’eapty) => t
(g ’‘put 3) : => 3
(q ’‘empty) => nil
{gq ‘get) => 3
(define putq (g ‘put)) => putqg
{putg ‘(2 b e)) => (a be)
{putg 8) => B8
{putg *hi®v) => "hi®
(g ’get) = (abe)
(g ’get) => 8
(g ‘get) => *hie

(g ’empty) => t

3.3 Suspending Cons

Friedman and Wise have suggested. that cons should not evaluate its arguments
[Friedman & Wise 19?6], [Wise 1982]. That is, the car and cdr fields are suspended when cons is
mvoked. Evaluation occurs only when the car or cdr is accessed. This example gives a version of
cons, called scons (for stream cons) which suspends its scclond argument (the cdr). This allows

infinite structures to be described with C-Scheme.
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Scons is written as a macro. It leaves the first argument untouched and suspends its second,

using the freeze macro to package the argument as a function of zero arguments. (freeze x) is

equivalent to (lambda () x).

A new cdr function, scdr, is needed which checks to see if the end of the list is a closure. If
it is, it uses thaw to invoke the closure, replaces the cdr of the list with the value and returns the
value.

{macro scons

(lambda (m)
‘*(cons ,{cadr m) (freeze ,{(caddr m}))))

(define secdr

{lambda (x)
(progn (if (procp (ecdr x)) (rplacd! xz (thaw (edr z))))
(edr x))))
(scons 3 4) => (3 . *= closure *3%)
(cdr (scons 3 4)) => s closure **
{scdr (scomns 2 4)) => 4

The function stream-access takes a stream s and an integer n and returns the nth element of s.

(define stream-access
(lambda (s n)
(if (0? n) (car s) (stream-access (secdr s) (1- n)})))

Here scons is used to create a stream of Fibonnaci numbers:

{define fiblist
(scons 1
({(lambda fibgen (fib-2 fib-1)
(Ilet ((x (plus fib-2 fib-1))) (scoms x (fibgen fib-1 x))))

0 1)))
fiblist => (1 . ** closure **)
(stream-access fiblist 5) => 8
fiblist => (L12358 . ¢ closure **)
{stream-access fiblist 20) => 10946 '

3.4 Apply-all and Mapcar

Apply-all 1s a function which takes two lists and applies each of the elements of the first to the

corresponding element in the second. The two lists should be of equal length.
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Apply-all builds up a list, /, by adding the result of each successive apply to the end of the
list. When the function list becomes empty, / is returned.
(define apply-all
{{lambda loop (I funs args)
(if (null funs)

1

(loop (appernd 1 (list ((car funs) (car args))))
{edr funs)
(edr args))))

nil)))

(apply-all (car ecdr 1+ 1-) “((a b) (c d) 10 20)) => {a (d) 11 19)

The C-Scheme function mapcar is somewhat similar. It applies a single function to the

elements of a list:

(mapcar 1+ ‘(1 2 3 4 5)) => (2 3 4 5 8)

Mapcar suffers from the limitation that the function it applies must be a si.ﬁgie argument function
(or the result would be a list of closures). Apply-all can be used with mapear to produce a macro,
mapcars, which accepts multiple argument lists. A macro must be a function of one argument. It
will be passed the list structure representing the entire invoking expression (for example, if moo is
a macro in the expression (moo x y) then the argument passed to moo by the preprocessor would be
(mooxy)). The expression returned by the macro will be used in place of the invoking
expression.

The mapcars macro translates input in the form (mapcars f11 i2 ...) into the corresponding

calls to mapcar and repeated calls to apply-all. For example:
(mapcars (lambda (x y z) (list x ¥y z)) (abe) "(de f) (g h i))
is equiyalent to

(apply-all (apply-all (mapear cons ‘(a b c)) *(d e £)) ‘(2 h i))
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(macro mapcars
(let
((help
{lambda help (x 1)
(if (null 1)
x
(help *(apply-all ,x ,(car 1)) (edr 1))))))
(lambda (m)
(help *(mapear ,{cadr m) ,(caddr m)) (cdddr mj)))))

Mapcars uses mapcar with the function and the first argument list. Apply-all is used to apply this

list to the second argument list, again to apply this result to the next list and so on.

(mapecars 1+ (1 2 3)) => {2 3 4)
{mapcars cons ‘{a b c) (1 2 3)) => {(a . 1) (b . 2) (c . 3))
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4. Data Types

C-Scheme contains a small set of built-in data types. This section describes each of the data types,

with examples where appropriate. The exact syntax accepted by the reader is given in §14.

All of the data types except for cons cells are considered to be atoms, even though some of
the other data types may not truly be atomic (vectors, for example). This fact is often used in list
manipulation routines to determine the boundaries of the list structure. C-Scheme provides the

predicate atom of one argument as well as explicit predicates for each of the data types.
4.1 Inums

Inums are positive and negative integers, consisting of a sequence of digits optionally preceded by a
plus or minus sign, e.g. 982374, -723, +1. Inums are directly coded into pointers, so they take up
no storage space. Because they are coded as pointers they have limited magnitude, approximately

2%, Currently, C-Scheme supports no other numeric types.

4.2 Symbols

Symbols in C-Scheme are character sequences not containing left-parens, right-parens, or other
characters interpreted specially by the reader. Only sequences which cannot be interpreted by the
reader as a number are symbols, e.g. plus, hi-there, 1+, this_is_a_long_symbol. Symbols are used
as identifiers or data objects in C-Scheme programs (see §5). Every symbol has an associated
property list, consisting of the symbol’s global value followed by a list of alternating keys and
values which can be accessed using the functions ger and-put (see §10). The symbol’s global value
can only be changed by the change! special form; it is used by the evaluator and cannot otherwise

be accessed.
4.3 Nil

Nil, also written (), represents the null pointer. It usually marks the end of a list. It also
represents the boolean value false in conditional expressions. Nil’s value is always itself; its global.

value cannot be changed and nil cannot be rebound locally.
4.4 Cons cells

Cons cells are the building blocks of lists, trees, and other data structures. A cons-cell is an
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ordered pair of C-Scheme objects, the car and the cdr, printed as (car . cdr). A list consists of a
sequence of cons-cells linked by the cdr field, with the last cdr field pointing to nil, e.g.
(elementl . (element2 . (elememt3 . nil))), which can be (and normally is) abbreviated by

(element] element2 element3). The cars of each of the cons-cells point to the elements of the list.

—

4.5 Vectors

Vectors are included in C-Scheme for efficiency in the access of fairly static, large structures.
Normally there is no need for arrays in C-Scheme programs, cons-cells serve quite well. This
version supports only the special class of one-dimensional arrays, or vectors. Each element in the
array is a pointer to a C-Scheme object. Vectors are created by the primitive vec and vector

elements may be accessed or altered with special array accessing primitives getv and setv.

The reader builds vectors automatically out of a list of expressions delimited with brackets,

e.g. [12 34 5], [(the first vector element is a list) [the second is itself a vector]].
4.6 Function Closures

Closures, or function objects, are vaLd data types in C-Scheme. Since C-Scheme is lexically
scoped, the variable bindings in existence when a function is defined must be retained as long as
the function exists. These bindings are kept in a data structure calied an environmenz. When a
function is defined, it is closed in the current environment, yielding a function closure, or simply a

closure.

While closures print as ** closure ** they cannot be entered directly; only the special form

lambda can create function closures.
4.7 Strings

Strings, or character vectors, are provided. They are read and printed with surrounding double
quotes, e.g. “hi there. I am a string". They are typically used as arguments to some of the system -
primitives and in printing messages to enable blanks and cther s;pecial characters without escapiné.

There are currently no C-Scheme primitives for creating or pulling apart strings.
4.8 Files

File pointers are C-Scheme objects created by the system calls infile and outfile. They are
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necessary for all input and output. The three files stdin, stdout and stderr are created by the

system and globally bound to symbols of the same names.

While file pointers print as ** file pointer **, there is no way to enter one directly.
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5. Identifiers

C-Scheme identifiers are symbols which are either bound lexically or globally to a C-Scheme
object. An identifier may be globally bound by the special form change! or the macro define.
Local (lexical) bindings are created by lambda expressions and by the macros let, let* and letrec.
A local identifier’s value may be changed with change! or define, although this is almost never

needed in C-Scheme code.

5.1 Scope

C-Scheme identifiers are lexically scoped as in Algol 60. That is, the set of identifiers accessibie
by an expression depends only upon the context it is created in. An expression can only reference

identifiers bound in lexically surrounding text.

Since C-Scheme is lexically scoped, it is always possible to determine the local identifiers
accessible to an expression by analyzing the surrounding text. This is not true in most Lisp systems
since Lisp is normally dynamically scoped. In a dynamically scoped system the set of identifiers
accessible within a function depends u;ou tae context of the expression at run time (the flow of
control). With lexical scoping an identifier can be seen only by subexpressions of the expression
which defines the identifier. In C-Scheme, only the body of a lambda expression can use its
formal parameters. The C-Scheme parser takes advantage of the lexical scoping to generate

efficient code for accessing local identifiers.

5.2 Extent

The extent of an identifier is the time during which there is some active code which might
reference the identifier. In traditional Lisp and in Algol 60 the extent of an identifier is limited to
the life of the declaring code. This is not true for C-Scheme. Ici:;.ntiiiers in C-Scheme have
indefinite extent. The reason is that function closures are firsz-class data objects [Stoy 1977]. When
a function is defined, it is closed with the current environment and this environment is restored
whenever the function is applied. Since the function closure might exist in the system indefinitely,

so might the bindings of the identifiers it uses.
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5.3 Data Hiding

This combination of lexical binding and indefinite extent can be used to hide data and create
abstract data types. A function or set of functions can be defined within an environment
containing local identifiers not accessible to any other functions (using ler). These functions can be

made accessible while the data remains hidden.

Example:
(let ((stack ()))
(progn
{define ezpty
{lambda () (null stack)}))
(define push
(lambda (x)
(progn (change! stack (cons x stack))
x)))
(define top
{lambda () (car stack)))
(define pop
{lambda ()
- (let ((x (car stack))})
(progn {chanze! stack (cdr stack))
x)}3))))

{enpty) = => t
(push ‘a) = => a
(top) => a
(push ’b) => b
(list (pop) (pop)) => (b a)
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6. Control Structures

This section describes the C-Scheme special forms quote, lambda, if, prog2 and change!. Other

forms which help structure C-Scheme programs are given, mostly macros.

The following format for describing C-Scheme forms is used in this section and throughout

the remainder of the manual:

form [class]
Alias:  alias] alias? ...
Returns: value returned
Errors: what makes it produce error messages

Description and examples.

Form gives the syntax of the expression. The form always begins with a keyword or function
name. For special forms and macros, the syntax can be fairly complex, involving combinaticns of
C-Scheme expressions. For functions, the syatax always consists of the function name followed by
ZEIo Or more argumcnfs. The name given function arguments is significant; odj means any C-

Scheme object is allowed, symbol means only a symboi is allowed, etc.

Class is one of special (for special forms), macro, primitive or library (C-Scheme-coded
functions). It is possible for one identifier to have more than one syntax or c{ass. For example,
lambda is described as both a macro and as a special form. The preprocessor notices when the
result of a macro has the same macro keyword as the invoking expression, and thus prevents
infinite recursion. This is further explained in §17. The brackets around class are merely to

separate it from form.

Aliases are alternate symbols usable in place of the keyword or function name (see the alias

primitive).
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6.1 Quote

(quote objecr) [special]
Returns: object with no interpretation -
This is useful for creating list or identifier data. As noted in the reader section, ’exp is the

same as (quote exp).

{quote 3) => 3
{gquote a) => a
‘a => a
‘(a b e) => (a b c)
**{hi there) => (quote (hi there))
*{lambda (x) 3) => (lambda (x) 3)
6.2 Function definition
(lambda (id! id2 ...) exp) [special]
(lambda id0 (idl id2 ...) exp) [macro]

Returns: function closure
Lambda closes idl id2 ... with exp in the current environment. When the ciosure is
applied, the arguments are added to the closed environment as bindings for idl id2 ...

and exp is evaluated in the extended environment.

The preprocessor performs the translation of this form into the curried version. The
curried version is not accepted by the preprocessor. Since function definitions are curried,
there is no need to apply this closure to all of its arguments at once. It is often worthwhile
to apply a closure to one argument at a time, yielding an intermediate function of less

arguments.

If id0 is specified, id0 is bound to the resulting closure itself within the closed
environment (but not outside the closed environment); this allows terse definitions of

recursive functions.

The case where the list of formals (id! id2 ...) is empty is handled by creating a
closure with nil as a parameter. It is still a function of one argument, but the argument is
ignored, since ril is constant in all environments, and any local binding is incffective.

Thus, exp is conceptually frozen in the current environment until the closure is
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subsequently applied. It may be applied to no arguments, e.g. (foo), which is translated

by the preprocessor to (foo nif). See freeze and thaw below.

{lambda (x) x) =>
((lambda (x) =) ‘anything) =>
({(lambda (x) (* x x)) 13) =>

{lambda (x ¥)
(times x© (plus ¥ ¥))) =>

{(lambda (zZ ¥)
(times x (plus ¥ ¥)))
B} =>

{((lambda (x ¥)
(times x (plus ¥ ¥)))
8)
2) =>

{lambda fact (x)

(if (0?7 x)
1
(* x (fact (1- x))))) =>

((lambda fact (x)

{(if (07 x)
1 =
(* x (fact (1~ x)))))
4) =>

{ (lambda (f)

(f 3 4))
cons) =>
(lambda () 1234) =>
((lambda () 1234)) =>

{ (lambda (x)
(lambda () x))
1234) =>
(({lambda (x)
(lambda () x))
1234)) =>

(freeze exp)

Returns: exp frozen in the current environment

s plosure **
anything

225

** closure =

** closure **

32

=* closure =*

24

(3 . 4)

** closure *=*
1234

*=* plosure =

1234

_[macro]

Equivalent to (lambda () exp). This is useful in conjunction with thaw to implement call-

by-name.
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(thaw exp) | [macro]

Returns: result of invoking exp with no arguments
Errors:  exp not a closure

(thaw (freeze (+ 2 3))) => 5
{define thunk

{{lambda (x)
(freeze x))

‘hithere)) => *+ closure **
{thaw thuni) => hithere
(iterate id0 ((id! expl) (id2 exp2) ...) exp) [macro]

Same as:

((lambda ido (idl id2 ...) exp)
expl exp2 ...)

6.3 Conditionals

(if test-exp then-exp else-exp) - (special]
(if test-exp then-exp) [macro]

Returns: value of then-exp or else-exp, depending upon value of test-exp. If
else-exp not specified, it defauits to nil

First test-exp is evaluated. If the result is non-nil, then-exp is evaluated and returned.
Otherwise, else-exp is evaluated and returned. Else-exp is generally only left out when the
value is not needed, i.e. then-exp performs a side-effect such as a read or print.

(if t ‘then ‘else) > ‘then

(if nil ‘then ‘else) => ‘else

(if (cdr ’(a b ¢)) ‘then ‘else) > ‘then
(if (cdr ‘(a)) (princ ‘yes)) > nil (nothing printed)
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(cond (test-expl expl) (test-exp2 exp2) ...) [macro]
(cond (test-expl expl) (test-exp2 exp2) ... (final-exp))
Returns: the value of expi corresponding to the first non-nil test-expi, or nil.
The tests are evaluated sequentially starting with fest-expl. If any is non-nif, the
correspending expi is evaluated and returned as the result of the cond. If none of the tests

are non-nil, nil is returned.

In the second form, if none of the tests are true, the value of final-exp is returned,
i.e. final-exp is the “otherwise’ clause.

{define equal
{lapbda (x= ¥)
(cond ((eq x y) t)
{(atom =) nil)
{(egual (car =) {ear 7))
(equal (cdr x) (cdr 7))))))

{equal ‘a *'b) => nil
(egual ‘a ‘a) => t
{equal ‘(a b ec) ‘(=2 b d)) => nil
(equal (1 (2)) (1 (2))} => t

(case tag-exp (idl expl) (id2 exp2 ...) [macro]

(case tag-exp (idl expl) (id2 exp2) ... (otherwise final-exp))
Returns: value of expression with id eg to value of tag-exp. If no id matches the
value of tag-exp, nil is returned (or the value of final-exp, if the

otherwise clause exists).

Tag-exp is evaluated first and bound to the identifier tag in the same environment as the

expi.
{mapcar
{lambda (x)
(case x
(a2 ’A)
‘(b *'B)
(c ’C)

{otherwise ‘F)))
‘{tb eda b+)) => {(BCFATF)
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(or expl exp2 ...) [macro]
Returns: 7 if any of the expressions evaluates to a non-zil value, nil otherwise
The expressions are evaluated in sequence; once one of the expressions vields a non-nil

value no more of the expressions are evaluated.

{or nil nil mil) => nil
(or nil nil ’a) => +
(or ‘a nil) => t
{define x t) => x
(or x© (change! x 0)) => t
x => t
(and expl exp2 ...) {macro]

Returns: nil if any of the expressions evaluates to a nif value, ¢ otherwise
The expressions are evaluated in scquence; once one of the expressions vields a nil value

no more of the expressions are evaluated.

{fand t t &) => £
(and *{(hi) nil ‘a) => nil
{and "there® nil) => nil
{define x nil) => =
(and ¥ {(change! x 0}) => nil
x => nil
(test expl exp2 exp3) [macro}

Returns: if expl is non-nil then exp2 is evalvated and applied to the result of
expl, otherwise exp3 is is evaluated and returned.
Errors: expl evaluates to true and exp2 dees not evaluate to a closure.

Test can be used with predicates which return useful non-zil values.

(test (memg ‘a “(1 2 3 2 b’ c)) cadr nil) => b
(test (edr °(a b c)) (lambda (x) x) ‘empiy) > (b c)
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6.4 Sequencing

(prog2 expl exp2) [special]
Returns: value of exp2
Expl is evaluated and its value ignored, then exp2 is evaluated and its value returned.

Note that exp/ and exp2 are guaranteed to be executed in sequence. Prog2 is used

primarily by the progn macro.

(progn expl exp2 ...) [macro]

Alias:  block
Returns: value of the last exp

Equivalent to (prog2 expl (prog2 exp2 (prog2 ...))).

The expressions are evaluated in sequence starting with expl. All of the values
except for the last are thrown away; the last value is returned. Progn is normally used to

sequence side-effects, especially i/o.

(progn) => nil
{progn 1) N => 1
{progn (read) (read)}) => reads two objects,
returning the second.
6.5 Identifier Assignment
(change! id exp) ' [special]

Alias:  change, setq
Returns: value of exp
Errors:  id is nil or 1 (unless # is bound locally)
Exp is evaluated and id is bound to its value. If there is no local binding of id, the global

value of id is set.

{change! x “(a b e d e}) => {(a becde)
{length- x) => 5

(chznge! x (cdr x)) => (becde)
x => (becde)

((ilackda (x)
(proga (chanze! = 3)
(1+ x)))
‘ignored) => 4



(define id exp) [macro]

Returns: id
Define is the same as change! except that it returns id instead of the value of exp. It is

generally used to create global variables, especially function definitions.

{define x 3) => x
{(+ x 10) =3 13

(define identity

{(lambda (=) x=)) => identity
{identity [a D c d]) => [a b ec d]

(let ((idI expl) (id2 exp2) ...) exp) [macro}

Returns: value of exp in the current environment augmented by the bindings of
the idis to the expis

The expis are evaluated (in any order) and bound to the corresponding idis.

(let ((2 "(a b e)) (b "(1 2 3}))
(append a b)) => (abecl1l 2 3)
{define c...Tr
(let B
{{a car)
{(d ecdr))
(laobda (=)
{lambda recurse (1)
(if (nulil 1)

x
((if (eg (car 1) ‘a)
a
d)
(recurse (cdr 1))
)31 )) TR C...T
{(CooeT (1 (2 3) 4) ‘(2 d a d)) = 3

(let* ((idI expl) (id2 exp2) ...) exp) [macro]

Returns: value of exp in the current environment augmented by the bindings of
the idis to the expis

The expis are evaluated from left to right and bound to the corresponding idis. Each expi
is evaluated in an environment which contains the bindings of the previous identifiers.

(let* ({(x ’(a b c d})) (¥ (length x)))

{cons ¥ X)) => (4 abed)
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(letrec ((idl expl) (id2 exp2) ...) exp) [macro]
Alias:  labels

Returns: value of exp in environment augmented by the bindings of the idis to the
expis

The expis are evaluated (in any order) and bound to the corresponding idis. If any of the
expis return closures these closures are bound in an environment which includes the new
bindings. This allows the definition of murtuaily recursive functions.

(letrec ({2 (a b e)) (b (1 2 3)))
(append a b)) => (abel?2 3)

(letrec
((x 3)

{(f (lambda (¥)
(if (0?2 y) 'f (8 (- x 7)))))
(g (lambda (=)
(if (07 z) g (£ (+ z 1))))))
(f 1)) => £

6.6 Continuations

Continuations are special closures which carry with them sufficient information to continue the
computation from a given point. A pzlrﬁcular continuation is invoked with the value of each C-
Scheme expression that is evaluated. For example, during evaluation of (1+ (car x)) there will be
a continuation waiting for the value of (car x) which will add I to it and return (via another

continuation).

C-Scheme allows the user to request the continuation at any point with the function call-

with-current-continuation, or calllcc.
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(call-with-current-continuation closure) [primitive]

Alias:  call/ec
Returns: the value of applying closure to the current continuation

Within the body of closure, the formal parameter will be bound to the continuation of the
callicc application. At any time this continuation (which acts like a normal closure) may
be invoked with a single argument x. This will return x to the original caller of call/cc. If
the continuation is not invoked in the body of ciosure, control passes back normally to the

caller.

So far, callicc looks like a label for non-local exits, While this is the most common
use for call/cc, things can get much more complex. The continuation may be passed back,
or set to an identifier visible outside the callfcc. Even after the call/cc returns normally
the continuation may be invoked successfully. This causes control to return back to the
calllcc as if the invocation had occurred within closwre. Thus, control may be thrown
both up and down the expression being evaluated. Coroutines and backiracking searches

may be implemented with call/éc, and other more unusual control structures.

See the macros catch and throw for alternate syntax.

A multitasking scheduler using continuations with timer interrupts is shown in the
next subsection, after the explanation of timer interrupts.

See [Wand 1980], [Fessenden et.al. 1983] and [Stecle & Sussman 1978] for some

interesting uses of call/cc (as carch).

{calls/cc
(lambda (c)
{cons ‘a (cons ‘b ‘ec)))) => (fab . c)
{call/ce
(lambda (c)
(cons ‘a2 {c 3)))) : => 3

{change! ¢

(callscc (lambda (c) c))) => 22 cjosure *%*
= {c ¢) => s closurec %
(c 3) => 3

2 => 3
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(catch id exp) [macro]
Returns: value of exp, o1 val if id is applied to val

Equivalent to (callicc (lambda (id) exp)). See the primitive function call/cc.

(throw expl exp2) [macro]

Returns: does not return to caller
Errors:  exp! does not evaiuate to a continuation {closure)

Equivalent to (expl exp2).

Throw merely invokes exp! with exp? and is normally used to emphasize that the
expression being invoked is a continuation.
{define read-til-eof
(lambda (£p)
{catch yreturn
{ (laakda loon (1)
(let ((z (read fp ‘eocf)))
{(if (eq = ‘eof)
(throw rTeturn 1)
(loop (cons x 1)))))
~  mil))))
This function will read from file fp, building up a first-in-first-out list of the expressions
read. When an eof is found, the list is returned. (This function could be written without

the carch.)

6.7 Timer Interiupts

C-Scheme currently allows the user to handle three types of interrupts: timer interrupts set by user
control, keyboard interrupts and a garbage collection interrupt. The control of collector and

keyboard interrupts is discussed in §13.

C-Scheme allows the user to set a count-down timer which invokes an interrupt routine after
2 specified number of discrete time intervals, called ricks. Each tick is a constant number of
virtual machine cycles (see §1_6). The interrupt routine may be any function of zero arguments,
i.e. a thunk. The continuation of the interrupt routine is the state of the current computation, so
the computation will continue if the routine returns normally. Of course, the routine is free to

save the computation with call/cc, or to pass control to a continuation formed earlier, or to
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generate an error. A multitasking scheduler may be built using continuations with timer interrupts

(see the example below).

The function timer is used to control the timer. It takes two arguments: the number of #icks
and the interrupt service routine. Timer returns a cons cell. The car is the number of ticks
remaining from the previous call to fimer (or zero if timer was disabled). The cdr is the interrupt

service routine set by the last call to timer (or zil if the timer was disabled).

The timer may be disabled by passing 0 ticks and a null interrupt service routine, i.e.

(timer O nil). Also, any C-Scheme error causes the timer to be disabled.

It is possible to write functions to temporarily disable the timer or check how much tme

remains, using only rimer. These functions are left as an exercise for the reader.

(timer n closure) [primitive]
Returns: cons cell containing old timer and closure (ticks . closure)

The following example is a simple multitasking scheduler:
{letrec -
((pqa (queue))
(timer-handler
(lambda ()
(catch 1 (prezn (pg ‘put 1) (dispatch))})))
(dispatch
{lambda ()
(if (pg ‘eopty)
(error "dispatch: process gueue is empty® nil)
(progn (tinexr 10 ticer-handler)
(throw (pq ‘get) nil})))))
(define process
(lambda (thunir)
(test (ecatch 1 1)
(lambda (p)
(let ((t (timer 0 nil)))
{(pregn (pg ‘pui p)
(if (0? (car t})
{(dispatch)
{ticer (car t) (edr t))))))
(progn (thaw thunik) (timef 0 nil) (dispatch)))}))

This elementary scheduler allows multiple processes to be served in round-robin fashion.
A process, actually a continuation, is created from a #hunt by the function precess.
Inactive processes reside on a process queue, pg (an instance of the queue abstract

datatype from §3). The first process created is dispatched immediatcly. When a process
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is dispatched the timer is set. Subsequently, processes are dispatched only when the timer
expires or when the active process terminates. When a timer interrupt occurs the old
active process goes to the rear of the queue. New processes are also placed at the rear of

the queue; the code which spawned them remains active.

The trickiest part of the code is the fesr expression in process. The return value
from catch looks like it is always a continuation. Indeed, when process is called to create
the process, the catch does return the continuation; this continuation becomes the new
process. That is the non-nil branch of the test. The test is actually exccuted one other
time, when the process is first dispatched. In dispatch, the continuation is given nil, and
this becomes the return value of the carch, the nil branch of the test. In this manner, the

code determines whether the process is being created or executed.

Pq, timer-handler and dispaich are nidden within the letrec. The only way to access
the scheduler is with process, preventing unauthorized access to the scheduler. Also, all

accesses to pg happen with the timer disabled. Otherwise a lock-out would be needed to

p‘IEVBﬂ[ concurrent access. o

The following process spawns two processes, which in turn spawn two processes
each, which in turn ...

{(precess
((lambda rabbit (n)
(freeze
(let ((next {(rabbit {1+ n))))
(progn (princ n)

{rewline)

{process next)
(process mext)))))

0))



6.8 Macro Definition

(macro id exp) [macro]

Returns: id
Errors: exp does not evaluate to a closure

First exp is evaluated. Its value, which must be a closure, is placed on id’s property list
under the key **macro**. This effects preprocessing of any subsequent form which has id
as its first element. When such a form is encountered, the closure is applied to the entire
form, and the value of this application is used in place of the form. The result is sent
back to the preprocessor (and more macros may be expanded within it). For more
information and examples refer to §17.
{macro list
{lautda (@)
(if (nnll (cddr D))
nil
‘(eocas ,{cady m)

{list . ,{cddr m})}1))}) => list
(list 1 2 (+ 1 2)) => (1 2 3)
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7. Predicates

Predicates return nif for false and normaily return the atom ¢ for true, although some predicates

return useful non-nil values.

Numeric predicates are described in §9.

(eq objl obj2) [primitive]
Alias:  eq?
Returns: tif objl and obj2 are physically the same pointer
Eq compares the pointers objl and obj2, NOT the objects to which they point. Eg is
normally used to compare symbols. Since symbols are placed in a symbol table, two
symbols which are typed in the same will occupy the same address (and be eq). Irnums,
which are encoded as pointers, may be tested with eg. This is not good practice, since
other numbers which may have the same value may not be eq. Test for numeric equality

with the primitive function “="",

(eg ‘a ’b) => nil
(eq ‘a ‘a) -~ => t
(eq ’(a b ec) "(d e T)) => nil
{eq ‘(2 be) '(a be)) => nil
(let® ((x ’(a b c)) (¥ X))
(list (eq X ’(a b c))
(eq © x)
(eq x ¥)})) => (mil t t)
(equal obj! 0552) [library]

Alias:  equal?

Returns: ¢ if objl is eg to obj2, or if objl and obj2 are numbers and are =, or if
expl and exp2 are equivalent list objects, i.e. their cars and cdrs are
equal.

All non-numeric atoms which are not eq will always be non-egual. Equal really should test

for equivalent string and vector objects as well.

(equal ‘a ’a) l => t
(equal ‘a ’b) => nil
(egqual 4 4) => t
(equal *(a b) “{a c)) => nil

(egqual “(a (b)) ‘(a (b))) = t
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Alias:

(atom obyj)

Alias:

(consp obj)

Returns: zif objis a cons ceil, nil otherwise

Alias:  cons?
Logical spposite of atom.
{consp

(listp oby)

Alias:

Returns:  if obj is a cons cell or nil, nil otherwise

not, null?
Returns: 7 if obj is nil, nil otherwise

{nuzll
{null
{null
{null

atom?
Returns: nil if obj is a cons cell, t otherwise.

{atom
{aton
{aton
{aton
(aton
(aton

‘a)
{a b c))
nil)

{cdr ‘{2)))

:a)

nil)

3}

‘{a b r})
(lambda (x) =))
[abecdef])

g

‘{a b e))

(consp "abe?)
(consp nil)

list?

{(listp “(a b ec))
(listp ®abe?)
(listp nil)

It
v

1]
v

[primitive]

nil
nil

[primitive]

o o+ ot

il

[ |

[primitive]

nil
nil

[primitive]

nil
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(symbolp obj)

Alias:  symbol?
Returns: ¢ if obj is a symbol, nil otherwise

(symbolp ‘abc)
{symbolp ®"abc?)
{syabolp nil)
{symbolp ‘(a b €))

(numberp obj)

Alias:  number?

Returns: 7 if obj is a number, nil otherwise

{numberp
{numberp
{numberp
(nunberp

(stringp obj)

Alias:  string?

3)
"abe®)
nil)

‘{a b o))

Returns: 1 if obj is a string, nif otherwise

(stringp
{stringp
(stringp
(stringp

(vectorp obj)

Alias: vector?

3)

"abe?)

nil)

[a b e])

Returns: 1t if obj is a vector, nil otherwise

(vectorp 3)
(vectorp “abct®)
{vectorp nil)
{vectorp [2 b c])

[primitive]

nil
nil

[primitive]

nil
nil
nil

[primitive]

nil

nil
nil

[primitive]

nil
nil

nil
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(closurep obj) [primitive]

Alias:  closure? procp proc?
Returns: rif obj is a closure, nil otherwise

Both primitive functions and functions defined with lambda are closures, so closurep

returns ¢ for both.

{closurep {(lambda (x)} (+ x© 3))) => t
(closurep subl) => t
{clesurep ‘(2 b c)} => pil
{closurep ’'=x) => nil
(filep ob)) [primitive]
Alias:  file?
Returns: 7 if obj is a file pointer, nil otherwise
(filep (infile ® /1ibs/funs.s?))} => t
(filep stdin) => t
(filep “{(a b <)) => nil
(filep ‘x@) => nil
(constantp obj) - [library]

Returns: tif obj is a constant, nil otherwise
An object is constant if it is an atom and not a symbol, or if it is a list whose car is guote:

{define constantp
(lambda (x)
(if (atom x)
(not (symbolp x))
(eq (ecar x) ’'quoie))))

{constantp nil) => t
{constantp ‘a) => nil
{constantp ‘’a) => t
(constantp "hi there®) => t
{constantp (plus 3 4)) => t

(constantp “(a b c)) => nil
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8. List Monipulation
(cons objl objZ) [primitive]
LReturns: a cons cell vith car objl and cdr 02
Cons is the list constructor function. See the macro /ist for a more concise way of building

lists of several elements.

fceoms ‘a 'k => {a . )
{cons ‘a ‘milj => iaj
{cens ‘a (b e)} => {a 2 ¢}
fooms ‘{a b e) ‘{p Q) == {ftake) D g)
{eoms () ()} => {nil)
feons "hi? [t h e m 21) => {?hi® . [t her a])
e [primitive]
T.zmrns: the firet element of lisr (the car)
If lis: is siél, car rewurns #if. This is especialiy zandy in macro defiitions, often lezding to
more robust code with less error checking required.
(car ‘{a-. b}} => a
{car ‘{a b e}) => a
{car {coms ‘X '7H) => =
(car (ecar nil)) => nil
(cdr iist) [primitive]
Returns: all but the first element of Zisz (the cdr)
The car of nil is nii. See the note under car.
{edr “(a . B} => bs]
{edr {2 b e} => (b ¢}
(edr {(coms ‘= ‘7)) => 7
{edr mil) .= nil



(€en..r list)

[primitive]

Any combination of up to four as and ds may be substituted for the dots, e.g. cadr,

cdaddr, cddder. Working from right to leit in the string of as and ds, d specifies to take

the cdr and a specifies to take the car.
(car (cdr x)).

{eads “{a b 23}
(ecdér ‘(a2 b )}
{caddr *f{a O ©}}
{eaar *{{a L) {& d3})
(edor ‘{{a b} {c d)))
{edddr *{a b =2};

For example, (cadr x) is equivalent to

== o
=> (e}
== c
=> 2
== {by
=> nil

T e I S 41, - - Lo— VAT
Teturmns: Lt of the values of expl, 2xp2 ...

1 1
The expressions may be evaluated in any order.
{list 1 2 3)

(list ‘a ®hi®"_’(b))
(list) N

(vpiacal list obj)

Alias:  rpiaca
Returns: modified lis?

Replaces the car of list with obj.

{rpizecal! *(a b c) ’XE
(rplaca! ‘(= y) ‘(a b))

(rpiacg! list obj)

Alias:  rplacd
Returns: modified Jisz
Errors: list not a cons cell

Replaces the cdr of list with obj.

irnlaed! “fa h £} 7Y

i T, B g Y, P e TR,
£ X et T Il R Y
i AR AL R T i i ) B |

{macro]
=> {1 2 3)
== {a "hi® (b))
=> )
[primitive]
=> (X b c)
== ((a B) 7)
[primitive]



(length obj)

(append list 0bj)

Returns: the
Errors:

length of obj

obj is not a list, vector or string

[= R TRC =

[primitive]

[primitive]

Returns: a list consisting of all the elements of /isz followed by all of the elements
of obj.

A copy is made of list and its last cdr is made to be 0.

(nconc list obj)

{opoemnd ‘{a b ooy (L2 337
{(append ‘{a b e} 3}
{append ‘f{a b o . 4) 3]

{define
{append
=

Z ‘(a b c))
=z {1 2 38))

oo

g o

c 1
c .
c .

c 12 3)

c)

o
PR

3

2

[primitive]

Returns: a list consisting of all the elements of /st followed by all of the elements
of obj.

Neorc performs a destructive append, and is more efficient than append when [ist can be

clobbered.

(nconc
{(nconc

‘(a be) ‘(12 3))
‘{(a b c) 3)

(nconc ‘(a b c .

d) 3)

{(Adefin= © *{a h e))

(memq obj list)

(meone ©

-
in

‘(L 2

o

@y

{(a
(a
(a

ia
{(a

]
'

2 3)
3)
3)

[
[
S

Returns: the first sublist of fisz whose car is 2g to obj, or il

4

{oemz fa (X ¥ )

(cecg b ‘ia b e))

oemg ‘T ‘{ax b xc X))
{oemg ‘(a b) ‘{{a) (a b))

i U
v v

I
v

-t
AT

=]

b

o' on

[primitive]
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(member obj list) [library]

Returns; the first sublist of lisz whose car is equal to obj, or nil

(member ’‘a ‘(X ¥ Z)) => nil
{menber ‘b ‘(a b c)) => (b )
(member ‘(2 b) ‘({a) (a b))) => ((a b))
(remq obj list) [primitive]

Returns: a copy of /ist with all subexpressions eq to obj removed.

(remg ‘2 ‘(= ¥ =213 => {7 2)
(rema ‘b ‘(2 b e)} => (a ¢)
(remg 'X ‘{(a X DX € XI)) => (a b e)
(remg ‘(a b) *{(a) (a2 b)}) => ((a) (a b))
(remove obj list) [library]

Returns: a copy of fisr with ail subexpressions equal to obj removed.

(remove ‘a ‘(X ¥ Z)) => (x5 z)
{remove ‘b ‘(a b c)) ' => {a c)
(remove ‘(a b) ‘((a) (a b}))) => (a))
(reverse list) [primitive]

Returns: anew list with the elements of /isz in reverse order

(reverse ‘(a b c d e)) => (e dc b a)
(reverse ‘(x (Tr s) q)) => (g (r s) x)
{reverse nil) => nil
(mape closure list) _ [library]
Returns: #il

Closure is applied to the elements of /isz in sequence from left to right. Mapc is often used
to print out a list of items.

(rape
{lambda (x)
_ (progm (primne xX)
{(newilinel )
(ki there to wvou }} => nil
prints hi, there, to and you,
each on its cwva line.
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(mapcar closure list) [library]
Returns: list of the resuits of applying closure to each element of /st

(mapear -- ‘{1 2 3 4 35)) => {(-1 -2 -3 -4 -3)
(mapearxr cadr ‘({1 2} {3 4))) => {2 4)
(mapear (lambda (=) nil)

‘{ia bede) => {nil mnil nil nil nilj)



-42 -

9. Numeric Computations

(02 n) [primitive]
Alias:  zero?, zerop

Returns: 7 if 1 is 0, otherwise nil
Errors: n not a number

(= ni n2) [primitive]

Returps: tif nl equals n2, otherwise mii
Errors: sl or x2 not a number

This primitive is guaranteed to work for all numbers. The primitive eq works only for

g (widcn are escoded ay addreliss), o His 2 zood pracdee o use ="
= 4 {I- 5)) => =
(= 4 {1+ 533 => nil
(< nl n2) ~ [primitive]

Alias: less?, lessp
Returns: ¢ if n] is less than n2, otherwise nil
Errors: nl or n2 not a number

(< 23 98) => t
(< 98 23) => mil
{< -10 -10}) => nil
(> nl n2) % [primitive]

Alias:  greater?, greaterp
Returns: ¢if n/ is greater than n2, otherwise nil
Errors: #/ or n2 not a number

(> 51 -1G) => A
(> -16 51} => mil.
(> 12 12) => nil



(<= nl n2) [primitive]

Returns: ¢t if 52/ is less than or equal to 72, otherwise #il
Errors: nl or n2 not a number

{<= -1i2 ~135} => nil
(<= -15 -12) => t
(<= 8 9) => ot
>= nlal} [primitive;
Returns: 1 if ni is greater than or equal to n2, otherwise ail
TErrors: s or 72 not a numoer
{>= =13 31) => @il
{>= 00 =135} =2 1,
{>= © Q) == L
(i 7} [primitive]
Alias: subl
Returns: n-1
Zrrors:  n not a number
(1- 23) => 22
{1- &+ 2 33) => 2
(1+ n) [primitive]
Alias: addi
Returns: n + 1
Errors: # not a number
(1+ 23) => 24
(L+ -1} == O
(+ rl n2) [primitive]

Returns: sum of n/ and n2
Errors: nl or n2 not a number

See the macro plus, which can take more than two arguments.
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(plus nl n2 ...) [macro]

Returns: the sum of #7, 72 ...
Errors: non-numeric argument

The rs are evalvated in an unspecified order and the sum of the resuits is returned. At

least one argument is required.

(plas (= 2 4) 9 (/ 38 2)) => 25
{plus 3) => 2
(- 5 =2} [primitive]
Aldias: differsnce
heturns: 22 subuacies from af
Errors:  nf or nZ pot a numbsr
i = i == S
{- -0 = IRY
(== n) [primitive]
Alias: minus
Returns: 7z negated, samae as (- 0 n)
Errors: 7 not a number
(—— 203 = -320
(—— -10) => 10
(-— 0} => 0
(* nl n2) [primitive]

Returns: product of ni and n2
Errors: nl or n2 not 2 number

See the macro times, which can take more than 2 arguments.

(* 3 15) => 13
Ea)

(¢ 2 (-- 10)) = -30

4
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(times nl n2 ...) | [macro]

Returns: the product of ni, n2 ...
Errors: non-numeric argument

The rs are evaluated in an unspecified order and the product of the results is returned. At
least one argument is required.

(times 5 6 (plus 4 1)) => 150
{times 101) => 10L

(/ n1 n2) [primitive]
Alias:  quotient
Returns: nl divided by n2
Errors: nl or n2 not a number, n2 = 0

Integer division.

(/ 25 5) => 5
(r 17 3) => 5
(% nl n2) [primitive]
Alias:  mod, remainder
Returns: nl mod n2
Errors: nl or n2 not a number, n2 = 0
{(% 25 5) => 0
(% 17 3) => 2
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10. Property Lists and Aliases

There are several functions for manipulating the property list of a symbol. The format of a

property list is:
(global-value eyl valuel Ikey2 walue2 ...)

The value of any property may be asked for at any time with the function ger, new properties may
be added (or existing properties changed) with pur, or the entire property list may be obtained
with plisz. Pur and get use eq when searching for a property, so symbols are normally used as

keys.

There is no direct way to set the property iist of a symbol (puz only alters the contents).
However, the function alias will cause the property list of one symbol to point to the same
property list as another symbol. This has the effect of making the symbols act alike but print

dj_ffcrenﬂy.

Many identifiers are aliased already, as noted in some of the form descriptions in this and

other sections.

Since local bindings are not stored on the property list of symbols, alias does not affect

lexically scoped icentifiers in any way.

The preprocessor looks at the properties **prep*™® and **macro®™*, but pays no attention to
the name of a symboi. The only case where the symbols might act differently is during a cail
directly to eval, since the parser does look at the name to determine what are special forms.

Execute preprocesses its argument before evaluating it, which is normaily necessary anyway.

Note that once afiased, the symbois share a property list. Therefore, a change to one means
a change to the other. This insures that the symbols are truly alike; a macro defined for one will

work for the other, and any change of global binding will effect both.

(Plist symbef) [primitive]
Returns: the property list of symbol



- 47 -

(get symbol obj) [primitive]

Returns: the value corresponding to key obj in symbol’s property or nil if key obj
is not found

{(put symbol objl obj2) [primitive]
Returns: obj2

Places value 0bj2 under key objI on the property list of symbol.

(alias symboll symbol2) [primitive]
Returns: the property list of symbol2
Changes symboll so that it shares symbol2’s property list. Any properties symboll might

have had are lost, along with its global value.

{plist ‘=) => {*Tunpound¥+}
{plist ‘¥) => {**unbound**)
{define x 33 => 3

{plist ’'x) => 13)

{get ‘x ‘prop) - => nil

(put ‘x ’'prop ‘value) => value

(get ‘= ’‘prop) => value

(alias ‘x ‘¥) => (**unbound=*=*)
{define x (lagdbda () "hi®)) => big

(%) - => "hi®
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11. Vector Manipulation

(vec n obj) [primitive]

Returns: a new vector of length » (indexed from zero) filled with exp
Errors: n not a number

There is no restriction on the size of vectors, unless a vector allocation would cause C-

Scheme’s address space (as determined by the operating system) to be exceeded.
3 == [2il mii nil milj

3 => faaaaaaaaaal
;

B 11
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g

(putv vecter i 05j) [primitive]

v ey
i o o

215 the aih element of vector i g,
{define v {(vec 10 0O} => w

{puiv v O .1} => 1
v => 100320000030 0]

(getv vecror n) [primitive]

Returns: nth element of vecror
Errors: index n out of range

3]

(getv [a b c d )
(define v [1 2 41) v
{putwv v 0 0) => b ]
[t}
[

i

(¢ ]

{getvy v Q) =
v =>
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12. Input/Qutput Primitives

A few simple input/output primitives are provided in this version of C-Scheme. Read, princ and
newline require file pointers which are created by infile and outfile. Three file pointers, stdin,

stdout, and stderr, are created by the system and bound to the obvious identifiers.

The macros read, princ and newline ailow omiting the file arguments if input is to come from

s:Gin Or ouiput iC go to stdout.

(read file 0dj) [primitive]
(vead file) {macro]
(read) - [macro]

Tetorns: the pext exprescion zzad rem ffle. E an sof is cneountered, o is

returned.
If fiie is not specified, it defaults to sidin. II coj is not specified, it defauits to il
A read from sidin causes the stdout output tuffer to be flushed, in order to facilitate

interactive reading and printing. -

(princ odj file) [primitive]
(princ obj) [macro]
Returns: obj

Obj is printed on jile with no carriage control. If file is not specified, it defauits to stdouz.

{(princ (coms ‘a ‘b)) prints (a2 . b)

(newline file) [primitive]

(newline) ' ’ [macro]
Returns: nil

A newline character (or newline characters) is written to file. and the output buffer

associated with file is flushed. If file] is not specified it defauits to stdour.



(infile filename) [primitive]

Returns: a file pointer
Errors: file cannot be opened for reading

Filename must be a string. File filename is opened for reading.

{(irfile ®input.s®) => 2% file pointer ==
{infile *libsfoc0.z%) => ** 7ile pointer *=

(outfile filenare) [primitive]

Rewrns: 2 file pointer
Frrors: file cannot be opened for writing

Filename must be 2 string. File jilename is opened for writing.

foutfiie Yeunipmo.s9? => *% file nointer =3

{close jile; [orimitive]

Returns: il
Errors:  file not open, or cannot be closed

Closes file. pe



13. (C-Scheme System Interface

(load filename) [library]

Returns: mi!
Errors: {ile cannot be opened for reading
A% C-Zcheme code on file filenzie is executed as if entered from the terminal. Load may

be nsed for preproceszed code saved with save {below).

Pt L e

paodl LA A&

ey
e

(save fileramel filename? [library]

1ed for reading or file filzname2 cannct be

o - iogoad 1 »_" T 3 amrna -3 vy - TIOTOn sl reien o fia
Ly | 7y R, AT I S SO - WP
FUGHELIE: Qa0 S _;In..’,a.’.m-...’g. drTenilyy, COOLIIL <dDrvluCns arc notb cva:uaed py we

preprocessor during a save, so this function is of questionable use. Saved files may be

reloaded using lead.

(execute obj) [library]
Returns: the result of preprocessing and evaluating obj

{define crecutia
{lambda (x)
{eval {(prep =))))

(ezecuie “(plus 3 4)3} =>
(defipe T 3) =>
(define 7 '

F ==
{execute ) s>

3 =>

B HNY H
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(prep obj) [library]
Returns: the preprocessed form of 0bj

Preprocessing includes macro expansion and currying. Prep is often used to test out macro

definitions, although its resuits are sometimes hard to read since it expands all macros and

performs curryins.

8]

3 == a
Y{ezr al} w {eor )
‘{ilambda (= ¥i =)) =5 {laxbda = {iomkda 7 3))
‘feons T 7)) => {{ocons I} 7}
riist L E 23} = {{epms 1) {{coms 2) {cons 2 nilj))
(eval oby) [primitive]
Toemnrms: the resuit of parmng and svaisznng onf
Obj is not preprocessed Uy evel. Zxecure chould gormally be usod as it preprocesses obj
first.
{eval *{{(+ 33 4)) => 7
(eval (prep ‘(pilus 3 4))) => T
(apply closure list) [library]

Returns: the result of applying closure to the argument list /st
Apply takes closure and applies it to the first element of lisz, applies this result to the
second element, etc., taking account of currying. If list is nil, apply simply applies closure

to nil.

The definition of apply in C-Scheme does not use evall:

(define apply
(lambda (f args)
(if (null args)

(f nil)
{(iterate loop ((f f) {args args))
{if args
{loop (f {car args)) (edr args))
£330
{apply + (list 1 233 => 3

(apply (lambda (x) x) “(a)) => a



(Eeyboard-interrupl closure) [primitive]
" Returns: closure

Changes the keyboard interrupt service routine to closure. The next keyboard interrupt

(caused with the BREAK key) is handled by closure. That is, when an interrupt occurs

closure is invoked with nil. As with timer interrupts (see §6), if closure returns normally

the flow of control is not altered. This routine can be set up to provide a mechanism for

terminating loops, exiting the system, etc.

Note that the routine must be explicitly reset with a new call to keyboard-interrupt after

each interrupt.

(collect n closure) [primitive]
Returns: closure

Causes the garbage collector to be invoked after n segments have been allocated (segments

are currently 4096 words long). Closure is then invoked in the manner of timer or

keyboard interrupts. Collect m“;st be explicitly reinvoked each time interrupt occurs. No

garbage collection occurs if collect is not called. Collect is invoked initially by the system

sc user programs wili almost never nsed to use collect.

e evsiem periormc this call dering initalization:
(cefine ¥¥eolleci_segoenis®® 100)
(collecet =*colliccei_segomentss*
(lenbda £ ()
This allows the user to change the number of segyments allccated between collections by

changing the value of **collect-segments™*.

(segments) [primitive]

Returns: the number of segments currently in use

Useiul for customizing collection.
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(exit) [primitive]
Returns: doesn’t return

Exit closes all files and exits to the operating system.

(error string obj) [primitive]
Returns: does not return to cailer
Calls the internal C-Scheme error handler with string as the diagnostic message and obj as
the “offending expression.” The C—Scheme error handler prints string on the standard
error stderr and if obj is mot nil prints it as well. Control is returned to the C-Scheme
toplevel.

idefine Dax
{laoida {= 7}
{cond
{ {0t (nuober? =)
{error "maz: argument 1 mot a number® =x))
{{not (number? 7))
{error ®max: argument 2 not a number? y))
({>= x ¥) x)
)))) -



14. The C-Scheme Reader

This section describes the C-Scheme reader by giving the scanming algorithm. Currently, no

mechanism exists for changing or extending the reader.

The top level of the reader first skips all white space (blanks, tabs and newlines). The next

character it sees determines the structure it wiill build:

( (left paren) begins the reading of a list. The reader is called recursively until a right paren is
found; the expressions read become the elements of a list. If no expressions are read
before a right paren is found, the symbol nil is returned. I a dot (.) is read after one
or more expressions have been read, exactly cne expressicn must follow before a right
paren. This expressicn is taken as the last ¢dr in the list being built. I no dot is read.

1e last cdr is taken to be nil.

(double quote) begins the reading of a string. The sequence of characters following the

double quote and before the next double quote is made into a string.

[ (left bracket) begins the reading c;f a vector. The reader is called recursively until a right
bracket is found; the expressions read become the elements of a vector. If no

expressions are read before a right bracket is found, an empty vector is formed.

' (single forward quote) begins the reading of a quote special form. The reader is called
recursively to obtain one expression and a list of the symbol guore and the expression is

returned. For example, ’hithere is translated to (quote hithere).

(back quote) begins the reading of a back-quote expression. Back-quote expressions are
particularly helpful. Back-quote is used in concert with commas and at-signs to
facilitate the construction of complex but regular data structures from templates.
Back-quote expressions are especially useful in writing preprocessor macros (see the
examples in the preprocessor section). Rules for back-quote expressions follow, but the

examples at the end of this section will probably be easier to understand.

‘exp, where exp contains no subexpressions starting with a comma, is equivalent to

.

exp.
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‘,exp is equivalent to exp.
‘,(@exp is an error

‘exp, where exp contains subexpressions starting with commas, is equivalent to ’exp

except that when it is evaluated:
o each subexpression starting with a comma and no at-sign ((@) is evaluated

e each subexpression starting with a comma followed by an at-sign is

evaluated and spliced into the structure
If none of these special characters is seen, all characters up to the next white-space character, left
or right paren, or left or right bracket are collected in a buffer. Any of these special characters
may be forced into the buffer by preceding it wita a pack-siash (\), e.3. par\(\ens, ai\ there. Two

back-slashes () will enter one back-slash into the buffer.
J

If the collected characters can be parsed as a number, a number is returned, otherwise a

symbol is returned.

The syntax for numbers includes only integers consisting of the digits 0 through 9 optionally

preceded by a plus (+) or minus (-) sign.

Examples:
athis is a string”® => othis is a string®
this_is_a_syobol => this_is_a_syobol
this\ is\ also\ a\ symbol => this is also a symbol
this_is_tool23 => this_is_too0i23
g9this_is_too! => 89this_is_too!
nil => nii
+1 => i (a number)
i+ => 1+ (a svmbol)
-3872 => -8372 {a sy=bol)
(a b . ) - => (a b . e)
(2 b . (e)) => (a b ¢)
(a b . (c d)) => {a D c d)
(a b . nil) .~ => {(a b)
(a b e) : => {(abc)
(@] ~=> mil
((a b} (e d} 4) => {{2 D) (c d) 4)
[ab ed (abc) 31 => [abh ed {abc) 3] {vector)
] == 13 {ensty wector)

*(abecde) => {quote (2 D c d e})
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*“{fabede) => (gquote (a

bede))
‘{a b ,(+ 3 4) 4 e) => {guote (a b 7 d e))
‘(2 b ,(list 1 2} d e) o =2 (guote (a b (1 2) d e))
‘(a2 b ,e(list 1 2) d e) > (guote (a b 1 2 d e))

nu
v

‘.iplus 3 4) (pius 3 4)



15. Allocator

The allocator performs the dynamic creation of C-Scheme data objects. Since there is no way 10
delete objects explicitly, a garbage collector works with the allocator to remove unreachable objects -

from the system.

The zallocator usss a segmented heap layout, with each segment holding exactly one type of
datz, such as cons ceils or symbois. The type of the data in a particular segment is coded into a
segment table, one byte per segment. This allows for 256 different data types, more than enough

for now (there are currently about 10 types).

Niore than one segment may noid data oojects of tie same type. If the aliocator tries to
closaie an obissl which will not Gt in Tho cumIent 2gMEdL. it finds another. Chojzcts can CToss
segment boundaries if the segments are contiguous. n fact, the aliocator zllows obiects o occupy
more than one segment by finding enough contgucus egments o -nold the object. This means

there is no limit on the size of objects (vectors, for example) save the limits imposed by the

operating system on the maximum virtual memory size.

The garbage collector employs an iterative copying algorithm [Baker 1978]. When collection
begins, all existing (non-empty) segments are marked as part of the old space. All reachable
objects are reallocated by calling the allocator (which always marks segments it obtains as part of
the new space) and a forwarding address is left in the old object. Amny pointers to a copied object
are updated using the forwarding addresses. When collection is complete the segments marked as

part of the old space are marked empty, and thus become eligible for reallocation.

Tt is not a real-time collector, nor does it use any of the data compaction strategies such as
cdr-coding. The real-time strategies involve pushing the collection forward slightly every time an
object is allocated or accessed. For efficiency reasons this necessitates microcode support for many
of the most common primitives (such as cons, car, cdr, etc.). The target machine (a Vax 111786)

does not allow microcode to be changed dynamically so microcode support is not possible.



16. Interpreter Kernel

This section describes the implementation of the interpreter kernel. Familiarity with the host

language, C, is assumed and the code for the kernel is given at the end of this section.

The interpreter kernel consists of a parser and evaluator for a small subset of C-Scheme
(hereafter called the kerne! language). BNF for the kernel language is given in the table below.
Al features of C-Scheme not supported by the kernel language are provided by the preprocessor,

macros and functions.

<exp> == <constant>

| <identifier>

I <special form>

I <coobinations
<zConstani> Tig= <integer> | nil | <string> | <vector>
<igentifier> siée <symbol>

<specizl form> {quote <object>)

{(if <exp> <exp> <exXp>)
(lambda <symbol> <exp>)
(change! <symbol> <exp>)
(prog2 <exp> <exXp>)
<combination> 1= (<exp> <exp>)

The most significant difference from full C-Scheme is the kernel language’s lack of multiple-

argument functions. All function definitions and applications are curried by the preprocessor.

There are no syntactic extensions in the kernel language; macro expansion is done by the

preprocessor.

The parser transforms programs in the kernel language into machine instructions, called i-
codes, for a virtual machine which is supported on the real machine by evaluator functions and the

evaluator’s main loop.

16.1 Evzluator Functions

The evaluator consists of 2 main driver and a set of evaluator functions. These evaluator functions
are the implementation of machine instructions for a simple virtual computer (referred to as the

kerrel machine).

The kernel machine i$ controlled by the evaiuator’s main loop. The primary activity of the

main loop is to get the next machine instruction and call the evaluator function specified by the
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operator field of the instruction.

The evaluator functions operate on the kernel machine’s four registers. These are the
accumulator (accum), the current environment pointer (curenv), the control stack pointer (cstack)

and the current instruction (evaipc).

The evaluator functions support the run-time evaluation necessary for special forms and

function application. Primitives such as car and cdr are also evaluator functions.

The return value of an evaluator is either another instruction to execute or nil. Operands of
instructions normally specify the instruction to perform next. If mil is returned, the evaluator

“pops” the coatrol stack (ecstack) to obtain the next instruction.

The most trivial evaluator function, Equote, implements the guotre special form. It consists

of two lines of code:

Equote() {
accun = DATAl{evalpe):
return DATA2(evalpce)s
s

This places the first operand of the current instruction in the accumulator and returns the second

operand as the next instruction to execute (the second operand may of course be nil).

[ %]

6.2 I-codes

b

The machine instructions are clalled i-codes. Each i-code has three fields: an operator and two

erands. The operator is the physical address in memory of the evaluator function for the
instruction, and is extracted from the instruction with the function CODE. The operands are C-
Scheme pointers (represented by C ints). They are accessed with the functions DATAI and

DATA2. Here is the i-code structure in C and the access functions (C macros):

typedef struct {
int (®*code)({}:
int datal,dataZ2;
} icode_object;

Fdefine CODE(x) {(icode_cbject *){xz))->code
Fdefine DATAL(x} ((icode_object *)(x))->datal
#define DATA2(x) ((icode_object *)(x))->data2
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16.3 Parser

The goal of the parser is to reduce kernel language input to an i-code tree. The strategy loosely
follows Steele’s Scheme compiler [Steele 1977]. The parser uses recursive descent and generates its

output in a single pass.
The parser performs several tasks as it generates code. The most important are:
e resolve local idenﬁﬁer references
o build a threaded structure using continuations
© optimize environment saving

o optimize certain types of combinations
ecause of the lexical scoping of identifiers, the parser can determine exactly how far down in the
run-time environment an identifier’s vaiue will be. At run-time all that is done is to cdr down

curenv this distance to find the value.

For most C-Scheme expressions it is obvious what expression will be evaluated next (the
continuation). The parser threads the coc-ie, by placing within each instruction the instruction to be
evaluated next. For some expressions it is impossible to tell what will be next. For example, when
parsing a lambda expression, the parser cannot determine what the continuation of the function

g

body will be. In this case the mexi imstructicn is s2t to i/ {at run time thois will cause the next

instruction to be taken from the control staclk).

"By monitoring environment usage during the parsing of an expression, the parser avoids
saving tie environment unnecessarily at run tirae. The parser does this with two parameters, s and
z. §is a fleg to the parser to say wiether the environment must be saved if evaluation of the
expression destroys it. U is a read/write parameter (in C, a pointer to an int). It is set by the
parser if the expression being parsed uses the environment. Thus, if evaluation of an expression
requires that two subexpressions be evaluated, the second is parsed ﬁrst If the return value of u is

true, s is set in the parsing of the first.

The only way the current environment is destroyed is when a closure is applied to an
argument. Then, the current environment is changed to the closed environment. The parser

determines when this can happen and generates the appropriate code if the environment is needed.
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In general the function expfession of a combination may be quite complex. However, the
parser recognizes certain forms in the function position and generates optimized code for these
cases. If the function expression is a lambda form the parser does not force a closure to be made.
Instead of creating a closure it generates code which will merely add the argument to the

environment and execute the body of the lembda.

TCuring consiant propagation the preprocessor (s22 §17) may create combinations which have

a closure or primitive in the function position {as opposed to a symbol or another form). If so, the
parser uses the fvncion as tile continuaticn when it parses the argument. If the combination’s
continuaiion is non-zif it must either be saved on the contrel stack or within the function itself

(possible only with primitives).

LA AT Py A Tenbasammeanbars T g
Zanfr AU D0E 20T a2 L302E R SEDT Laerma.

The code for the parser is listed first, followed by the code for the evaluation functions and the
code for the evaluator’s main loop. The interrupt handling code is included as well. The

comments in the code should serve to claﬁfy some of the parsing and evaluation strategies.

16.4.1 Parser
Ve parse(p)

the extermal interface to the parsing routines. All it does is
call parsel with p, a nil environment, a nil ceontinuation, 0 for
the save flag, and the address of a cell which it ignores

=/
int parse{p) int p; {
int ignore;

return parsel{p,nil,nil,0,&ignore);

7 parsel{p,e,c,é,u)
p is the expression to parse
e is a list of identifiers lexically visible to p, starting
with the innermost visible.
the instructiom to execute next (continuation)
the save flag: if true, save the envircnnent
a retorn porapeter vhich oust be set if any identifiers from
the environmenti are accessed

s
tn

c
S
m

s
2]

[*H
4]

parsel does a case statement on type.
If the argument is anything but an identifier or a llst a
Zquote i-code is returned.



e

int persei(p,e,c,s,u2) register int p,e,cs
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If the argument is an identifier, parse calls the help function
Ioolup determine the- location of the identifier in the
environment. If lookup returns a negative number, the identifier

was not found, so an Eid i-code is produced. Otherwise an Eaccess
i-code is returned.

If the type is type_cons with a symbol in the car position, parsel
calls magic_loolzx to detertine if the symbol is the kevword for a
pzgie {(specizl) forn. .Uagic_look scans the magic keyword table
and returns the index of the symbol or -1 if the symbol is not a
keyword. Addresses of the functions Pguote, Plambda, Pif, Pprog
znd Psetg are in a pagic funs table, and if magic_look returns a
nen-negative value., this table is indexed by the magic_look value
anc¢ the function found there is invoked.

If the car of the list is not a symbol or magic_look returms a
negative value, parse czlls Pappl.

int s,*uz; {
register int ng;

if {ip) return icode({Eguote,p,c);
switch (TEPCE(p}) {

default: error{®parse: invalid argument
case type_icode: /* return p? */

type®,nil};

case
case
case
case
case

case

w
=

int
register int

stztic

while (ej {

if (CAR(e)

2 =
3

[N

¥

return -1j

iloolup({syo,ec} register imt

type_clos:
type_vect:
type_str:
type_file:
type_inum:

return icode(Eguste,p,c):
trpe_syo:

B o= LOoGUED{T.e}

5 -7

]

i ]
- S > .-
m o2 O ITWETR 1C0Uel syl

o

= - =

{n
i ol
returz icode{Caccess,inuz{mn),
tTpe_ccons:
if (!CAR{p)) error{"parse:
n = nagic_look(CAR(p)};:

return o >= 0 7

]

)

c}

-

an

invalid s¥ntax".p);

mpafamsin(CPE(RY @, 0.5 ,.02}

-

E]

Pappi{

1]

ym, e; {
i = 03

sT™T)
return 13

CDE{e):

WP, CADE{P) ,e,0.8,8);
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int magic_look(x) register int x; {
register int is;

if (SYHBOLP(xX))
for(i=0; i <= magic_max; iss)
if (magsyms[i] == x) Teturn i3

return -1;

i Pguote(p,e,C,S,u)
p is the edr of the quote form

Pguote just returms am Eguote i-code with the quoted expression in
datai and the continuation in data2.
=/

static int Pguote(p,e,c,s,u) register int p; int e,c,s,*uj {

return icode(Eguote,CAR{pP),C};

f* Plaohda(p,e.c,S,1)
p is the cdr of the laobda form

Plachda sets u to true (it will use the environment since it must
close it with the bod¥)

The body is parsed in the environment with the parameter added on,
a nil continuation since it is impossible to tell where it will
end up, the save flag off since no-one will need the new
environment, and u passed along for the ride, even though its fate
ic already determined.

An Elacbda i-code is returned with the parsed bedy in datal and
the econtipustion in datal.
e int Flockdn{p,e,c,S,t) register int p; im

*u = L3
return icode(Elambda,parsel[CADR(p),cons(C&R(p),e),nil,n,u),c};

e



Ve

s/

Pif(p.e,C,S,1)
p is the cdr of the if form

Pif parses the then and else expressicns with thé same environment,
continuzation and save flags, and the address of a local variable
used. '

pif sets u if used is set.

The test expression is parsed with the same environment, an Eif

;i _code (daotal = parsed then expression, data2 = parsed else

expression) for the contimuation, save flag if s or used, and Q.

pif returns the parsed test expression.

statie int Pif(p,e,c,S,u) register int p,e3 jnt c¢3; register int s,%u; i

=

recister int pi,p2; int used = 03

pL parsel{CﬂDﬁ(p),e,c,s,&used];

p2 = parsel(C&DDR(p),e,c,s,&used);

=y |= useds;

return parsel(caﬂlp),e,icode(Eif,pl,pz),slused,u);

L]

PPZOS{E,E,E,S,H)
p is the cdr of the preogz form

pprog parses the sccundtexpression first, passing the address of a
loezl variable used.

I{ psed is set, Ppreg sets u.

pprog returns ihe first ezpressicn parsed with the parsed second
eien oz the continuation and the save fiagz or'd with used.

it T b - e ey rnrm L = 3 1
rahe whot PEror CemerhueEs 1o i-CcSUssS.

Lise note thot the parsing is done ip reverse of the desired order
of exmecuiion.
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Psetg(p.e,c,s.12)
p is the cdr of the change! form

Psetoc returns value expression parsed with 2 continuation to
either change the global value or the leeal value of the symbol,
Gdepending upon the returm value of lcokup.

Pseto cust reguire that the value expression save the environment
vhen it will change the local value of the symbol.

tic int Psetg(p,e,e,s,u) regisier int p,e; int c,s; register int *ug

register int pil = CALR(p); register int mn = leckup(pl,e);

if (B >= 0} {
ﬁ""I."l=:§_;
return parsel{CADR(p),e,icode{Esetg,inuxn(n).c},l,a);

else

return parsel(C%DR{p),e,icode(Edefine,pl,c),s,u);

Pappl
¥ iz the funciion expression
v is the argument expression

e, ¢, S, u sape as in parsel

Pappl tries to be inteliigent about certain combinations which
cccuxr freguently. The first is when the function expression is a
ciesure, the second when it is an icode (these are generated by
the preprocessor viaen it is in **expand-constants®*® node.

The third comz—en form is ((lambda id body) arg).

f der=nds on wacther

reont

- L—iuatf o e o = I oo ="y L Ty Fa T e

ic nil ond chelher the environment must be saovwed.
If we are rezlly lueclty, the enviremcent needn’t be saved and the
continuction is mil, sc we use just the funcitien itself as the

coentinuation.

ppl finds = primitive {(represented as zn i-cede} in the car
ity i ve Is the crgvment’s continmucotien A1l
ripitives reserve the data? field for the cemtinpustiocn, so if
BEEis ntinuction is mot mnil, a2 copy ef the primitive vwith this

i
icn ip dataZ is oade.

g Bty S

For the third form, Pappi parses bedy in the envircnment with

id er the front, creates z2n i-code vhich will put the accum on
front of the curenv argument at rom-time and passes this along as
the contirnustion for the argucent exzpressicen. Of course it pust
vorsr abovt the envirenmeni ond the continuation being saved or
rct.

For any other zpplication, boith the function expression and
argucent exrpression are fully parsed, similarly te prog2 or if,
and the evaluaticon function again depends upon vhether the

continuzation is nil and whether the environoent need be saved.
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int Pappl{x,¥,e¢,c,s,u) register int z=,y:; int ec.,e,s,*u; {
int used = 0; register int (*Efun)();

suitel (TYPE(Z}} {
case type_clos:
Efun = c?(s?Eal2cg:Ea2c):(sTCa2s:NULL) 3
return parsel{v,ec,Efun?icode(Efun,z,c):x,sS,1};
case type_icode: .
return parsel({y,e,cficode{CODE(x),DATAI(X),c):X,S,U);
cose type_cons:
if (CABR(x=) == larcbda_id) {
x = COAE(=x):
if (e & 8) ¢ = icode(Erestore,c,NULL);
T = parsel(CADR(xX),cons(CAR(x),e),c,s,&used);
T = used;
return parsel(y.,e.,icode(s?Eals:Eal,x,NULL),usedis.z}:
}
default:
v = parsel{y,e,NULL,s,lusec);
tu = useds;
Efun = c?(s?ha3ecs:Ea3ec):{s?Ealds:Ea2):
return parsel(x,e,icode(Ciun,y,c),useals,u)s

16.4.2 Evaleator Functions

[*¥ Eguote

Eguote scts accur to the cuoted expressien and returns the

continuzction.
=/
static int Egrotef() {
cecun = DLTLAI(evalpeis
return DATAZ(evalpe):
¥
% Ezcecess
Gzcecss cnlls the help fumction zih Lo reirxieve the vaive of the
identifier in curenv.
Tf

static ipt CEzccess() {

register int p = nth{curenv, IKUKI({DATAL(evalpe)))s
accury = CLAE{B);

reture DATAZ(evalpe);

el

statie int pthi(l.n} register int i, m3 {
vhile (n} I = CDR(1}), n——3
reiurn i;
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Vs Esyn

Esyn sets accuo to the value of the symbol, and causes an error if
the symbol is unbound.
L

static int Esym() {
accum = VALUE(DATAl(evalpc));
if (accum == unbound)}
error{"undefined symbol®,DATAl(evalpc))s
return DATA2(evalpc)s

Ve Elanbda

Elambda makes a closure with curenv and retuns its continuation.
2y

static int Elambda() {
accun = cleosure{DATAl{evalpc),cursnv};
return DATAZ(evalpe)ls;

¥

e Eif
Eif tests the accum. If non nil returns the then-part as its the
next instruction, otherwise the eise-part

x/

statie int Eif() { =
return accum ? DATAl(evalpc) : DATA2(evalpc);
}

/= Esetg

Esetq changes the local bimnding of a variable, calling nth
for the cons cell where the vaiue lies.
7

static int Esetg() {
register int p = nth{curenv, INULI(DATAL(evalpc)))s;
CAR(p) = accum;
return DATAZ(evalpc);

}

Ve Edefine

Edefine changes the global wvalue of a symbol
= 5 )

static int Edefine() {
VALULR{DATAl{evalpe)) = accun;
return DATAZ(evalpe):
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¥ i Eal, Eals, Erestore

Eal and Eals place zccum on the front of curenv and return the body
of the lambda expression as the next instruction. Erestore is
needed to explicitly restore the environment since the evaluator loop
does not look at cstack as long as the evaluator functions return
non-nil instructions, which happens in this case.

Ea2s pushes the current environment before returning
o 4

int Eai() {
curenv = cons(accunm,Curenv)s;
return DATAL (evaipc);

¥

int Eals() {
pushec{curenv) ;
curenv = cons{accum,Curenv);
return DATAlL(evalpc); ’

1,
g

int Erestore() {
popc(curenv) ;
return DATAl(evalpe):

P& Ea2c, Ea2s, Eal2cs

Ea2c and Ea2cs push the continuatiom
Ea2s and Ea2cs push curenv

All return the closure to be evaluated
s/

int Ea2c() {
pushc {DATA2 (evalpc));
return DATAl(evalpc);
b4

int Ea2s() {
pushe (curenv) ;
return DATALl (evalpc);
s

int EaZ2es() {

pushc(DATA2 (evalpc));
pushe (curenv) 3

return DATAIl(evalpe);
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/= Ea3, Ea3s, Ea3c, Ea3cs

Ea3c and Ea3cs push the continuation
Ea3s and Ea3cs push curenv

The accunm must be an i-code or closure, and is pushed onto the
control stack

The argument expression is returned as the next instruction.
2/

int Ea3() {
register int tys;
if (laccum Il ((ty = TYPE(accum)) != type_clos &% ty != type_icode):}
error("apply: invalid function®,accum);
pushc(acecum) ;
return DATAl(evalpc);
¥

int Ea3s() {
register int tys

if (laccum |1 ((ty = TYPE(accum)) != type_clos && ty != type_icode))
error(%apply: invalid function®,accum); :
if (ty == type_clos) pushec(curenv);

pushc (accum) ;
return DATAlL (evalpe);
1

int Ea3e() {
register int ty;
if (laccum !l ((ty = TYPE(accum)) != type_clos && ty != type_icode))
error(®apply: invalid function®,accum);
pushec (DATA2 (evalpe) ) s
pushc(accum) ;
return DATAl (evalpe);
b4

int Ea3es() {
register int ty;
if (lacecum |1 ((ty = TYPE(accum)) != type_clos && ty != type_icode))
error(®apply: invalid functiomn®,accum);
pushc (DATA2(evalpc)) s
if (ty == type_clos) pushe(curenv);
pushec{accum) ;
rgturn DATAl (evalpc);

16.4.3 Evaluator Conirol Loop

/7% ewval(p)

evzl talies an instructiom as inpnt, sets evalpe to this
instruction and curenv to nil. cstack and curenv Day orf Ray not
have been set to hil, so eval can be called with a non empty
continuation (for error throws, eic)

‘Every 100 times through the loop eval checks such things as timer
and kevboard interrupts and invokes the collector if necessary.



B

-

Vhen evalpe and estack are eopty, eval guits.

Three types of things can be on the control stack: i-codes,
closures and lists. Anything else causes an error.
i-code:
call the evaluator function
closure:
tack the accum onto the front of the closed environment,
malking the new curenv. The next instruction is the body.
Iist:

cust be an environment saved earlier. Restore it to curenv.

eval{p) int p; {

register int tiecks = 1 7* sei to happen first time */3

evalpe = p3
curenv = NULL;
vhile (1) {
if (!t--tiecks) {
ticks = tichks_per_period;
if (timer && !--timer) timer_handler()s

if (gec_segnments && segments_allocated >= ge_segments’

gc_handler()s;
if (signal_flag) signal_handier({);

]

if (levalpc) {
if {('estack) returns;
pope(€valpe);
continue;
¥
sviteh(TYPE({evalpe)) {
case type_cons:
curenv =
avol

L
I
g
[
b ]
r]
we

Tom oy e, |
[T Gy ey

3
10w 0

case trpe_clos

garenT = consfoceuT,TEU{erzlnel ) s
evalpe = ECDY(evalpe);
T:

avalpe = CCOE{evalpe}{);

-t

defanlit: error(®invalid stack evalpec®.evalpe);
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Ve Einterrupt
an evaluztor function which restores the registers wvhich are saved
vhaen zn intgrrupt of amy sori oceurs

=/

static irnt Einterrupt{) {
a2ceun = DATAL (evalpe)s
curenv = DATAZ(evalpe):
reiturn NULL;

b

i interrupt{x)
szves the registers and involzes x. Einterrupt will clean up the
interrupt if conitrol ever gets back.

EEl

static imterrupt(xz) int =5 {
if (evalpe != NULL) pushc{evalpes);
pushe{icode(Einterrupt accum,curenv));
accul = NULL;
evelpe = =3
returns

/E timer_handler
interrupts with timer_closure (set up with a call teo
enable-interrupt)

=/

timer_hezndler{) { =
interrupt({tiper_closure);
tircer_closure = NULLS

TeLurn;

1

i

I Eo_bhinnslern
ccllects znd interrupic with ge_eclosure (et up by a ezll teo
cellceti ;

ce_haondle

H
-
e
i

interrupt{ge_closure}s;
ge_clozure = NULL:
Treturn;
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= sigint_handler
this is the routine passed the the unix sigset function. It sets
signal flag. If signal_flag was already set, an error is
generated with the assumption the interpreter wasn’t getting back
to the control loop. Note that since the flag ism’t reset in this

case the signal will still happen after the error is caused. This
part still bothers me.
=/

static void sigint_handler() {
if (signal_flag) error(?",NULL);
signal_flag = 1;
returng;

Vs signal_handler

The real handler, invoked from the evaluator’s control loop when
signal_flag is set

If signal_closure has not been set up (by a ecall to
kevboard-interrupt), an error is generated, otherwise
signal_closure is invoked as an interrupt routine.

s/

signal_handler() {
signal_flag = 03
if (signal_closure == NULL) error("Interrupted.® NULL);
interrupt(signal_closure);
signal_closure = NULL3

return;
h
£z schsig_init
cigset is docucented in the Derkeler versicn 4 prograrmer’s manual
w

L_flzg = 0

ICSeL(SIGINT,sigint_handier) s

e _sernents = €

11

Ll
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17. Preprocessor

The C-Scheme preprocessor controls macro expansion, prepares special forms for the parser,
curries ftgmction applications and definitions, and propagates constants. The output of the

preprocessor is a program in the kernel language (§ 16).

17.1 Currying

The C-Scheme kernel only supports functions of one argument. A function of more than one
argument is transformed by the preprocessor into a function which takes its arguments one at a
time. A two-argument function transforms into a one-argument function which returns a function
of one-argument. This transformation is called Currying [Church 1941], [Rosser 1982],

[Stoy 1977].

Not only must function definitions be curried, but the applications must be expanded as well.

Currying of function arguments associate to the left, that is (f a b) is equivalent to ((f a) b).

Currying is carried out as the last step of the preprocessor, so it is entirely transparent to the

user (that is, it is as if the parser or evaluator was performing the currying).

Examples:

{prep ‘{(Izobde (= ¥) body))
(prep "{(+ T T1}
(prer ‘((lachdz (x ¥) body) 2 4)3}

{lackda = (larbdz ¥ body))
((+ =) 7)
(({(lapbda x
(lapbda ¥ bedy))

3)

4)
(prep ‘((lzmbda (x 7)) {(+ = 7)) 2 4)}) => {((lambda =

{lapbda ¥ (+ 3 4}})

3)
1)

nonn
vV

v

The definition of a function of zero parameters is translated by the preprocessor into a form which
the parser accepts as a function of ‘one “invisibie” argument. Rather than place a symbol in the
argument position of the resulting lambda expression, the preprocessor places mil. Thus
(lambda () body) transiates to itself. The parser will accept the il as the identifier, but will never

find it as a local variable since nil’s value is constant.

The application of a function to zero arguments is translated to an application of the

function to nil.
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Examples:
{prep ‘(lzmbda ()} "hi there®)) => {lambda nil °"hi there®)
(prep '(f)) => (f nil)
(prep ‘((lambda () °*hi"})) => {(lambda nil °hi®) mil)

17.2 Constant Propagation

The C-Scheme preprocessor attempts to evaluate any time-independent computation at preprocess
time, rather than force it to be recomputed every single time the surrounding expression is

evaluated.

The user can declare that the global value of any symbol is constant, by placing any non-nil
value on the property list of the symbol under the property **constam**. Initially, most of the
primitive functions are declared constani. Together with any C-Scheme object which would

normally evaluate to itself (strings, numbers, vectors, etc.) these constant symbols seed constant
propagation.

In processing the if special form‘,_____ if the rest-parr is found to be conmstant, its value is
determined and the if reduces to either thé then-part or the else-part.

In processing a prog2 special form, if the first expression is constant, the prog2 reduces to the
second expression.

Change! special forms never propagate constants. The effect of a change! operation is

obvicusly time-dependent.

Lambda expressions currently do not propagate constants. It is certainly possibie to do for

certain cases but the exceptions are abundant.

Combinations afford the most opportunity for constant propagation. If both the function
expression and the argument expression are constant, the function is applied to the argument,
yielding a new constant value (this value is quoted if necessary before it is returned). In a curried
system this can happen quite often: {(+ 3 x) will be translated to ((+ 3) x) which will in turn be

transiated to (** ciosure ¥* x) where ** closure ** is the result of applying + to 3.

The global value of the symbol **expand-constants** controls constant propagation. If this

value is nil, the constants are not propagated (and the **constant** property of individual symbols
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is ignored). This can be useful for debugging.

Examples:
(prep ’'(+ 3 4)) => 7
(prep *(if (+ 3 4) ’ves ‘mno)) => ‘yes
(prep ’(prog2 ‘a x)) => x

(change! #*sexpand-constants** nil)
(prer “{+ 3 4))

{prep °(if (+ 3 4) ‘ves ‘no}}
{prep ’(prog2 ‘a x))

v

((+ 2) 4)
{(if {((+ 3) 4) ‘’‘7Fes ’‘mo)
{prog2 ‘a x)

0 onn
v

v

17.3 Macro Expansion
 Macros provide the only means of extending C-Scheme’s syntax. They are commonly used for:
o providing new control structures,
o abbreviating commonly used structures,
¢ writing “functions” with more than one argument,
o writing “functions” with optional arguments.
Macros improve the readability of code and serve an important part in the structuring C-Scheme
code. For example, the macros let, ler* and letrec are invaluable-shorthand for introducing local
identifiers and mutual recursion. They are even more invaluable because they essentially give C-

Scheme a block-structure, similar to Algol. Case and cond can drastically reduce the amount of

if-then-elses in a program.

Macros are favored over additions to C-Scheme’s set of special forms. Keeping the core of

the language small allows the interpreter to be simple and fast.

A syntactic extension, O macro invocation, is a list with a macro keyword as its first
element. A macro keyword is a symbol with a function closure on its property list under the
property **macro**, When the prepfocessor sees such an expression, it invokes the function
closure on the entire exl.aression (thus, the first element of the argument to the macro function is

always the function name itseif).

The result returned from the function is sent back to thie preprocessor for further processing.

However, if the same macro keyword appears in the resulting expression as in the invocation,



further macro expansion is disabled. This allows macros to be written with the same name as a

special form or funcion (the lambde and read macros, for example).

Macros functions must be a function of one argument. They may be defined using the macro

macro.

{ macro name junction)

This places function on name’s property list under the preperty **macro**. Examples:

Y{lambda nil ,{ecadr m3}3))

{prep 7 {freeze I}i => {lambda {3 X)
(freesze =hi®) => == glosure **
{thay (fresze %hi?)) => iR

(z=acro zmnd
{lambia {;)
(if (cddr m)
S {if ,{cadr =)
(and . ,(cddr m)) mnil)
(cadr =})))

(prep ‘(and a b e}) => (if a {(if b ¢ nil) nil)
(and t ¢t m1l) => nil
(and 1 2 Z) => 3

{2acro let=
(lambda (m)
{(let ((x (cadr m)}))
(if =

s{({lambda (,(caaxr xI))

{let®* ,{cdr xX)
- pl{eddr m) )3

; {ecadar =)}

(caddr m)))))

(prep ‘(let® ((xz a) (¥ b) =)) . => {(lambda =

({lambda ¥ z) b)
. Py _ a)
(let® ((x 1) (¥ (2+ x))) (plus X 7)) = 3 i

17.4 Preprocessing Special Forms »

There is a preprocess function for each of the C-Scheme special forms. When the preprocessor is
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loaded, it places the appropriate function on the p:oiaerty list of each special-form keyword under
the property **prep**. When a form is seen (after macro expansion) whose first element is a
symbol with this property, the function is invoked with the entire form as its argument. The -
invocation of these **prep** functions is similar to macro expansion, except that these functions |

are invoked after the regular macro expansion and their result is never re-preprocessed.
The action of the **prep** functions for each of the keywords is straightforward:

guote: The form is returned unchanged. Quote is used to introduce data into the system so

any interpretation by the preprocessor would be inappropriate.

lombda:  First, prep is called on the body. If the argument list is initially empty, this is the
definition of a zero argument function, and the argument list is changed to (list mil).
The nil acts as a dummy argument which will not be seen by the parser as a local

identifier, since the value of nil is always itself.

The argument list and the preprocessed body are passed to a help function, prep-

lambda. =

Prep-lambda simply returns the body when the argument list is empty, otherwise
it recursively calls itself with the cdr of the argument list and the body. It returns a
new lambda expression with the car of the argument list as the identifier and the resuit

of the recursive call as the body.

if: For if, each of the subexpressions is preprocessed. If the test expression turns out to be
constant, it is evaluated and one of the preprocessed then-part or else-part is returned.
Otherwise a new if expression with the preprocessed expressions is constructed and

returned.

prog2: Both of the subexpressions are preprocessed. If the first turns out to be 2 constant, the

second is returned. Otherwise, a prog?2 is built out of the resulting expressions.

change!: Change! checks its first argument to make sure it is a symbol. Also, if the global value
of **expand-constants** is true, the symbol is checked to make sure it does not have
the **constanr** property. In either case an error message is printed. Otherwise, the

second expression is preprocessed and a nmew change! expression is formed from the



<SRG

symbol and the result.

Examples:
{prep ‘(guote anything}) = (gquote anything)
(prep ‘{(lambda () (change! x 3))) => (lambda () (chamnge! x 3))
Aprep ‘(lambda (x y) (+ x ¥))) => (lambda x (lambda y ((+ X) ¥)))
(prep ‘(if a b e)) => (if a b ¢) :
{(prep ‘(if (+ T ¥) ‘yes ‘mo)) => (if ((+ x) ¥) ‘¥ves ’'no)
(prep ’‘(prog2 x ¥)) => (prog2 x ¥)
(prep ‘({(progf (change! x 3)

(+ ™ x))) => {(prog2 (change! x 3) ((+ X) X))

17.5 Preprocessor Definition in C-Scheme

(change! constantp
(Lanbda (x)
(if (atom xX)
{not (symbolp x))
{eg (car x) ‘quote))}))

{put ‘quote ‘**prep®** (lambda (1) *(quote ,(cadr 1}))))

(put ’lambda ‘*®*prep**
(lambda (1) .
(let ((e (prep (caddr 1))))
(iterate loop ((¥V (caadr 1)) (vs (edadr 1)))
*(lambda ,v ,(if vs (loop (car vs) (cdr vs)) €))))))

(put *if ‘esprep®*
{lambda (1)
(let {(= (prep (cadr 1})))
(if (and *®*expand-constants®** (constantp x))
(if x© {(prep (caddr 1}) (prep (cadddr 1))})
‘(if ,x ,(prep (caddr 1)) ,(prep (cadddr 1)))))))

(put ‘progZ ‘**prep®*
(lambda (1)
(let ({x (prep (cadr 1}))}}
{if (and **expand-constants#* (constantp x))
{prep (caddr 1))
‘(prog2 ,x ,(prep (caddr 1)))))))

({put ‘change! ’‘®*prep**
(lambda (1)
(let ((id (cadr 1)))
(cond
{{(not (symbolp id))
(error °prep: cannot change! mon-symbol® id))
{ (and **expand-constants** (get id ‘**constant==2))
{errer Uprep: cannot change! id with **constant** property® id))
{*({change! ,{(cadr 1) ,(prep (caddr 13}))))))



-80 -

(change! prep

{lets
((constant (lambda (x) (if (comnstantp x) x© */,x))) e
(build
{(lambdz (= ¥)
(if (and **erxpand-constants*®* (constantp x) (comnstantp ¥))

{constant {(eval x) (eval ¥)))
‘(X ,¥))))

(prep_appl

{(lambda (1)
(iterate loop ((x (build (ecar 1) (cadr 1))) (1 (ecddr 1}))
{(if 1 (loop (build x (car 1)) (ecdr 1)) x}))))
((Iambda prep (ok-macro? e)
. (cond
((and (syzmbolp e) **expand-constants** (get e ’‘**constant#®s-
(constant (eval e)))
((atom e) e)
((not (symbelp (car e))) (prep_appl (mapcar (prep ‘t) e)))
{{let ({(x (2nd ok-macro? (get (car e) ’**macro**))))

(if =
(let {(after (x e)))
(prep
{or (atom after)
{(not (eq (car e) (car after))))
after))
(let ((x (get (car e) ‘**prep®*=*)))
(if x
(x e)

- (prep_appl (mapear (prep ‘t) e))))))))}
‘t))) »
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