A SEMENTIC ALGEBRA FOR LOGIC PROGRAMMING

Mitchell Wand

Computer Science Department
Indiana University
Lindley Hall 101
Bloomington, IN 47405 USA

TECHNICAL REPORT NO. 148
A SEMANTIC ALGEBRA FOR LOGIC PROGRAMMING

by

Mitchell Wand

August, 1983

Research reported herein was supported in part by the National Science Foundation under
grant number MCS 79-04183.

A Semantic Algebra for Logic Programming

Mitchell Wand

Computer Science Department
Indiana University
Lindley Hall 101
Bloomington, IN 47405 USA

August, 1983

Abstract

We use the tools of denotational semantics to analyze and give a semantics
for some common operations in logic programming. We then consider the direct
execution of the semantics, using the programming language Scheme.

This Material is based on work supported by the National Science Foundation
under grant MCS79-04183.

1 Introduction

A denotational semantics provides a syntax-directed transduction from the
phrases of a programming language to the elements of some domain of meanings.
Because the transduction is syntax-directed, the meaning of any phrase in the
language may be calculated as a combination of the meanings of its immediate

constituents.

Thus the domain of meanings becomes an algebra, with these combinations
as 1ts operations. We refer to this kind of algebra as a semantic algebra. Semantic
algebras may be used to describe languages [Mosses 82; Clinger, Friedman, and

Wand 82], or they can be used for compiler generation [Wand 82a,b].

We create a semantic algebra for a language by analyzing the operations
induced by the way in which the language combines phrases to produce new
meanings. It may be, for example, that a typical source-language combination
is really composed of several smaller combinations, which deserve study in their
own right. We may then make the smaller combinations independent operations
in the algebra. In this way, we can consider modifications to the original language

which are suggested by the semantics.

In this paper, we shall turn this machinery to the study of Logic Programming.
We shall create a semantic algebra suitable for logic programming. (Throughout
this paper, we shall use the word Prolog to mean a “vanilla” language for logic

programming, rather than for any particular implementation).

By combining the atomic operations in new ways, we will find some useful
extensions to conventional logic programming. In particular, we introduce a
technique for local procedures (predicates) in order to conserve global name space,

and we introduce a method for explicitly handling control-flow operations which
~ B =

subsumes and extends the “cut” operation.

The resulting semantics can be executed by embedding it in the programming
language Scheme. In this way, Prolog becomes a subset of Scheme. Scheme
programs can call Prolog programs, and vice versa, in a fairly convenient way.
Our embedding is an alternative to that of LOGLISP [Robinson & Sibert 81].
LOGLISP emphasizes the'conception of Prolog as an engine for logical deduction,

whereas we choose to emphasize the “computing machine” model of Prolog.

Furthermore, our embedding, unlike many Lisp implementations of Prolog, is
not an interpreter. Rather than having an interpreter which parses and inteprets
some representation of Prolog code, the embedding produces Scheme functions
which directly manipulate the objects of the Prolog semantics. This eliminates

the overhead in interpretation due to parsing.

The remainder of the paper is organized as follows: in the next section, we
present a short example to give a flavor of the embedding. In Section 3, we
define the domains used by the semantics. Section 4 defines the operations of the
algebra. Sections 5 and 6 illustrate how the embedding may be used to augment

the power of logic programming, and Section 7 gives some conclusions.

2 Example: Append

In Prolog, the predicate for concatenating two lists is written as follows:

Append ([1,7,Y).
Append ([AID],U, [AIV]) :- Append(D,U,V).

We would write this procedure as follows:
=8

(define-checked Append
procedure
(Alt
(match *(nil y y) succeed)
(match '((a . d) u (@ . v))
(c21l (lambda () Append) *(d u v)))))

Here we are defining an identifier Append to denote an object of type procedure.
This type corresponds to Prolog clauses or procedures. This procedure is built
by combining two elementary procedures, each built by the operation match, us-
ing the combinator Alt. match builds an elementary procedure using a pattern
and a command, which is executed if the pattern matches the actual parameter to
which it is applied. In the first clause, if the pattern matches, the elementary
command succeed is executed, corresponding to the empty body in the first clause
of the Prolog version. In the second clause, a call command is to be executed,

recursively invoking the procedure Append.

Except for the details of concrete syntax, we hope that this code looks
sufficiently like Prolog to be comprehensible to a Prolog programmer. (The quote
marks and the lambdas will be explained in section 5). One could easily write a

macro processor to translate from conventional Prolog syntax to this target.

The next two sections will be devoted to explaining the plan of this embed-
ding. We first define the domains over which the operations of the algebra are
defined. Then we define and explain each of these operations in some detail. We
then go on to show how this embedding allows for easy extension of the Prolog

language.

3 Domains

3.1 Data

The first key domain to be considered is the domain Subst of substitutions.

Substitutions are the real “values” manipulated by Prolog programs.

We regard a substitution as a map from a finite set of variable symbols to finite
trees. If ¢ is a tree and o is a substitution, we write {o for the effect of performing
the substitution on the tree . It is useful to think of the variables which appear in
trees as registers, and of substitutions as register files or assignments to be made
to such registers. This assignment is performed by the composition operator,

which is given by:

comp = \c0y.\v.v € domo — (va)o,, undefined

Note that the domain of the substitution is significant: the substitution o, =
{X = Z,Y — Y} is distinct from o, = {X — Z}, since compoyr 7# composr,

where 7 = {Y ~ h(U)}.

3.2 Control

We next consider control structure. The standard way of describing control
structure in denotational semantics is by the use of continuations, which are
functions which abstract the idea of “the rest of the program.” A program phrase
which returns a value of type X will have a semantics involving a continuation of
type X — Ans. In this case the continuation is a function which, given the value
of the phrase (an element of X), gives the final answer for the entire program (an

element of Ans).

In Prolog one has two possible continuations for a phrase, corresponding to

success and failure. One might say that nothing is returned on failure. The Prolog
B

store, however, is not undone on failure, so, following the standard technique of
denotational semantics, we regard a failure as returning the (possibly modified)
store. Hence a failure continuation is modelled as a function from states to

answers:

Ky =58 — Ans

A succeeding computation may be regarded as passing to its continuation
a substitution (its result), a failure continuation (a resumption in case a failure

backs into it), and the modified store:

K, =Ky — Subst = § — Ans = Ky — Subst — K

(Here we have used the standard trick of “Currying” a function: that is, we
replace a 2-argument function f : A X B — C by a function g : A — (B — C),
which, given an element of A, returns a function from B to C. — associates to
the right, so the parentheses are optional. In making this transformation, we can
choose the order in which arguments are supplied. Here we have chosen to make
K the first argument; this simplifies the definition of the domain of commands

below).

3.3 Embedding the metalanguage

In this paper, we shall be discussing two enterprises simultaneously. The first
is the development of a denotational, continuation-oriented semantics for Logic
Programming. The second is the study of how that semantics can be executed

by embedding it in the programming language Scheme [Stecle & Sussman 78].

Scheme is a dialect of Lisp with lexical binding, functions as first-class citizens,

and applicative-order reduction. In this way our semantics will become execut-
-6 -

able. One can think of Scheme as a syntacticzlly sugared lambda-calculus. Most
of the examples in this paper are actually written using a type-checking preproces-

sor for Scheme [Wand 83].

Since Scheme functions are first-class citizens, we will model most functions
as functions. Thus, for example, a success continuation is modelled as a function
which takes a failure continuation and returns a function which takes a substitu-
tion and returns an answer. The one exception to this convention is that we shall
use Scheme’s global store to represent the Prolog store, rather than passing the
Prolog store as a parameter. Thus a failure continuation is modelled not as a
function of one argument (the store), but rather as a function of no arguments.

Changes to the store will be modelled by using the store operations in Scheme.

3.4 Meanings of Program Phrases

We can now consider the meanings of program phrases in Prolog. There are

two basic kinds of phrases in Prolog: commands and procedures.

A command is typified by a procedure call. It takes a success continuation,
a failure continuation, a substitution (the current values of the local variables),
and the current store. From this it can compute the final answer for the whole
program, since the control context is embedded in the continuations. Thus the

meaning of a command is a function in the domain

Cmd = K, =+ Ky — Subst = S — Ans
= K' — K'
Commands merely transform substitutions. To initialize substitutions for
use by commands, we need procedure phrases. A procedure is typified by a

Prolog clause. It takes a success continuation, a failure continuation, a term (the

s B

actual parameter), and the current store. From this information it completes the

computation. Thus we introduce the domain

Proc =K, = K; — Term — S — Ans

In the next section we will see examples of commands and procedures.

4 Operations

4.1 Simple commands and combinations

We shall begin by describing some simple commands. As suggested earlier,
we will write down their semantics in Scheme: in fact, all the code segments are

taken from a running implementation.

The simplest command merely succeeds. Given a success continuation, a
failure continuation, and a substitution, it passes the failure continuation and the
substitution unchanged to its success continuation. In the lambda-calculus, this

could be written as:

ANKsKp0 KoK O

which is equivalent to

AKg.Kq

In the Scheme version, this could be written as follows:
-8 -

(define-checked succeed
command
(lambda (ks) ks))

Failure is almost as simple. fail absorbs its two continuations and its sub-

stitutions, and then returns its failure continuation:
fail = Akgkp0.6p

The Scheme version is similar, except that it then applies the failure continuation

to a tuple of no arguments to produce an answer:

(define-checked fail
command
(lambda (ks)
(lambda (kf)
(lambda (8) (k£)))))

Local variables may be introduced by the command (local I), which always

succeeds, passing on an extended substitution:

(define-checked local
(-> (seq literal) command)
(lambda (var)
(lambda (ks)
(l1ambda (kf)
(lambda (s)
((ks kf) (ext s var)))))))

We can combine commands with the function Seq, which takes two commands
and produces their sequential combination. Sege;c, executes ¢; in a success

continuation which then executes ¢;:
Segeica = Ak,.c1(c2k,)

In the Scheme version, Seq may be defined as follows!.

In the second line of the definition, 8@q is used to declare the type of argument lists in Scheme. Thus
this definition declares Seq to be a function of two arguments, both commands, producing a command.

e B

(define-checked Seq
(-> (seq command command) command)
(lambda (cmdl cmd2)
(lambda (ks)
(cmd1l (cmd2 ks)))))

Corresponding to the way in which Seq builds up success continuations, Alt
builds up failure continuations: Alt c;c, executes c,; if it or its successors fail, then

co 1s executed.

Alt ey co = Nkokp0.c1Ks(C2KeK0)0

One typically applies Al to procedures (clauses) to build up sets of alternative
clauses, but it could just as well be applied to commands, in place of the semicolon

in Prolog. We shall see later how this facility can be useful.

4.2 Procedures

We have seen simple commands and methods for combining them. We next
turn to the commands that actually get some work done: procedure calls. In the
conventional picture of Prolog, when one tries to instantiate an atomic formula
p(ti ... tmn) one attempts to unify it with each of the clauses in the database
associated with the predicate symbol p. In our picture, the clauses for p have
been combined by Alt into a single procedure that can be called by supplying it
with a success continuation, a failure continuation, and the values of the actual

parameters.

Thus, associated with a procedure call is an operation c2ll in the semantic

algebra which takes a procedure and a term and produces a command:

call = Apt\kokyp0.p(2?)ky(t0)
- 10 -

If the procedure fails, then the call should fail to its failure continuation ;. The

actual parameter is evaluated by instantiating it in the current substitution o.

The success continuation ?? for the procedure is more subtle, since it involves
the protocol between a procedure and its caller. To see how this should be done,
consider the procedure call p(£(X),Y) in the substitution {X = g¢(Z),Y ~ Y}.
The evaluated actual parameters to the procedure are (f(g(Z)),Y). It is the job
of the procedure to figure out an instantiation for Z and Y. We therefore make
the procedure return a substitution for Z and Y; it becomes the caller’s job to use
this information to update X and Y appropriately. Luckily, comp is just what is

needed here. Hence the semantics of call can be given by:
call = \pt.Akorpo.p(A&}y0’ koK (comp ad’))ks(to)

When the procedure succeeds, the updated substitution comp oo’ is passed to the
success continuation x,, along with the failure continuation «/, supplied by the

procedure body, so that later failure will back into the procedure body.

In order to give the Scheme version of this, we need to make one more small
change. It will turn out to be convenient to make the first argument to call not
a procedure, but a function of no arguments returning a procedure. With this

change, we get:

(defire-checked call
(-> (seq
(-> (seq) procedure) ; a function of mo arguments
term)
command)
(lambda (proc term)
(lambda (ks)
(lambda (kf)
(lambda (s)
((((proc)
(lambda (kf1) (lambda (s1)
((ks kf1) (ccmp s s81)))))
kf)

_1¥ —

(subst term 8)))))))

With call done, we can now turn to building primitive procedures. The
operation for building primitive procedures is called match. Given a term (the
pattern) and a command, match builds a clause, much as in conventional Prolog.
The clause accepts a success continuation, a failure continuation, and an evaluated
actual parameter. If the parameter unifies with the pattern, then the command

is executed with an appropriate substitution. If not, the clause fails.

Thus, a first version of match might be:

match = Aty a.\kgksto.unifiablet ty; — arxekp(mgutyts), Ky

This picture is considerably complicated by the necessity to rename variables.
It is necessary not omly to rename the variables before the match but also to
keep track of that renaming during command execution. The second step is
necessary so that the procedure can report a substitution to its caller in terms
of the variables which actually appeared in the parameter. The situation is still
more complicated, because the returned trees may contain variables which may

clash with variables appearing in the caller’s substitution.

To take care of standardizing-apart, we introduce a function rename-vbles
which takes three parameters: two trees t; and ¢z, and a function f of 2 arguments.
The variables in ¢, are renamed to be different from those in ¢,, resulting in a
new term t,. The renaming is recorded in a substitution o3 such that tp0, = t),.
The value of rename-vbles t,tof is then ftho.. The use of such functions f is a

convenient mechanism for procedures which return multiple results.

To avoid variable clashes between procedure and caller, we assume that

mgut t; reports a substitution whose domain is the union of the free variables
_12 _

in t; and t,, and in which all variables are bound to new variables which appear
nowhere else in the program. (This can easily be done using gensym, of course).
This corresponds to allocating local registers for each procedure invocation. We

also assume that local, as defined above, is similarly modified.

We can now write the definition of match, which is probably the most com-

plicated definition in this paper:

match = Ny . \EKpts.
rename-vblest, o
Athoh.unifiablet bty —
a(Meyo’ koKl (comp o0’)k s (mgutyis),
Ky

This definition differs from the previous one in two ways. First, it does the
renaming, as discussed above. Secondly, on successful completion of the command
@, it uses the result of « to instantiate the renaming o; and hence to report a

substitution whose domain is the set of free variables of the actual parameter ¢;.

Again, an example will help. Let us consider again the procedure call p(f (X),Y)
in the substitution {X ~ g(Z),Y ~ Y}. The evaluated actual parameters to the
procedure are (f(g(2)),Y). Assume that p is bound to the procedure match(f(Z), A(U))e

for some command a. When this procedure is applied,

» rename-vbles renames the variables in (f(g(Z)),Y), passing to its third argument
the renamed term (f(g(Z1)),Y1) and the substitution {Z — Z1,Y + Y1} as t;

and o), respectively.

» The unifier then produces the substitution {Z ~ 22,21 — Z2,U — U2,Y1 —

r(U2)}-

» Now, let us imagine that « succeeds, producing the substitution {Z ~ j(k(V)), Z1 —
' - 18 -

J(k(V),U = k(V),Y1 ~ h(k(V))}. (Note that the nature of composition forces
the relationships between Z and Z1 and between U and Y1 to be maintained,

thus getting some of the nature of call-by-reference).

» This result ¢’ will then be composed onto o}, producing the substitution {Z
§(k(V)),Y ~ h(k(V))}, which is passed to the success continuation «, along with

the failure continuation x’, for backtracking.

> The operation call then composes this returned substitution with the substitu-
tion in the caller, yielding {X ~ g(j(k(V))),Y + k(k(V))} which is passed, along

with the failure continuation, to the caller’s success continuation.

This completes the procedure call and return. Note that the mechanism is

essentially that of call-by-value-result.

5 Examples: Scoping

To illustrate how one might write programs using these operations, we recall

the example of append:

(define-checked Append
procedure
(Alt
(match *(nil y y) succeed)
(match *({a . d) u (a . ¥))
(c21l (lambda () Append) ’*(d u v)))))

We now look at this code in more detail. Append is a procedure, produced
by the alternation of two atomic procedures (clauses). The first is the standard
termination clause. The first argument to match is quoted, since Scheme evaluates
its arguments. The second argument is not quoted: what should be passed to

match is not the atom succeed but its value, the command which we defined

o A

earlier. The second alternative is the usual recursion clause, in which we invoke
Append recursively. Since call needs not a procedure, but a function producing
a procedure, we make the second argument (lambda () Append) instead of just

Append.
One would execute this code by writing something like:

((((call (lambda () Append) '(x y (a 'b ’c))) init-succeed) init-fail) irnit-subst)

where the last three identifiers denote appropriate initial continuations and an
initial substitution. Note that there is no interpreter in the traditional Lisp
sense of a piece of code which parses a piece of syntax (or list structure) and
takes appropriate actions to some global registers. Instead, each procedure and
command is a function which itself performs an action on the semantics objects
which are supplied to it as parameters. The combinators, such as A1t combine
these functional objects into larger functional objects. Thus the parsing overhead

of interpreters is eliminated.

Digression: Why didn’t we let the first argument to call be just a procedure?
Then, after all, we could have written, more simply:

(define-checked Append
procedure
(A1t
(match *(nil y y) succeed)
(match *((a . d) u (a . v))
(call Append ’(d u v)))))

Unfortunately, the fact the Scheme evaluates its arguments, which serves us
well elsewhere, betrays us here: When this form is evaluated, it tries to look up
Append and fails (essentially because no lambda intervenes), rather than getting a
recursive definition as desired.

In some Schemes [Fessenden et. al. 83|, we could have successfully written
the recursion successfully as:

(define-checked Append
procedure

R =

(letrec ({(Append
(Alt
(match (il y y) succeed)
(match *((a . d) u (a . v))
(c2ll Append *(d u v))))))
Append))

but this would have defeated our goal of making the Scheme code look as much
like Prolog as possible. End of Digression.

The fact that procedures are first-class citizens enables us to decouple predi-
cates from the store. This allows the use of local predicates instead of help func-
tions which are globally scoped but only locally useful. As an example, consider

the problem of reversing a list. One common way of doing this is as follows:

Rev(X,Y) :- Revi(X,[1,Y).
Revi([].Y,Y).
Revi ([AID],X,Y) :- Revi(D, [AlX], V).

This has the unfortunate property of using an extra name, Revi, for a procedure

that is useful only inside Rev. We can avoid this by binding Rev1 lexically:

(define-checked Rev
procedure
(letrec
((Revi
(A1t
(match '(nil z z) succeed)
(match *((a . d) y 2)
(call (lambda nil Revl) °*(d (a . y) 2))))))
(match ’(x y) (call (lambda nil Revi) °(x nil y)))))

Here we have used the local binding facility letrec of Scheme to create a local
recursive (hence letrec rather than let) procedure Revi, which is then called by

Rev.

The convention in Scheme, as in Algol or Pascal, is that identifiers are first

searched for in the lexical or static chain; if an identifier is not lexically bound
- 16 -

then it is looked up in the global store. This would seem to be a painless extension

to Prolog.

One may wonder if we can retain the useful idea of adding clauses to the data

base. This can also be done easily. We state it as a Scheme macro:

(add-clause procname proc) =>
(if (globally-defined? procname)
(change! procname (Alt procname proc))
(change! procmame proc))

The process of adding a clause is essentially that of changing the old procedure

to the alternation of the old procedure and the new clause.

6 Controlling Control Structure

By embedding Prolog in the executable metalanguage Scheme, we can con-
tinue to write in Prolog, but at the same time, we can conveniently extend the

language by writing new command- or procedure-valued functions.

As an example of this idea, let us consider the problem of seizing of the control
structure of a Prolog program. This is the job of the cut operator; more elaborate
mechanisms have been proposed [Clark & T#rnlund 1982]. In the metalanguage,

we can do this easily. Let us define a procedure-valued function bind-failure:

bind-failure = NfKokp. fRyRaK Y

or, in the Scheme embedding:

(define-checked bind-failure
(-> (seq (-> (seq kf) procedure))
procedure)
(lambda (£)
(lambda (ks)
(lambda (kf)

=

(((£ kf) ks) k£)))))

A typical use of bind-failure would be in code of the form (bind-failure
(lambda (failpt) proc)). (lambda (failpt) proc) produces afunction from failure
continuations to procedures, and the entire form produces a procedure. When this
procedure is called, the function is applied to the current failure continuation,

and hence proc will be executed with failpt bound to the failure continuation at
procedure entry.

How might this value of failpt be used? To use it, we introduce the function

fail-to:

(define-checked fail-to
(-> (seq kf) command)
(lambda (kf)
(lambda (ks)
(lambda (kf1)
(lambda (s) (k£))))))

This function absorbs a failure continuation and produces a command which,

when executed, fails not to the current failure continuation but to the failure

continuation which was originally supplied to it.

As an example, let us consider a one-shot version of append:

(define-checked Appendl
procedure
(bind-failure
(lambda (exit)
(a1t
(match ’(nil y y) (Alt succeed (fail-to exit)))

(match *({(a . d) uw (a . v))
(call (lambda () Appendi) °(d u ¥)))))))

Here exit is bound to the failure continuation on entry to the procedure. If

backtracking fails back to the point where Append1 succeeded, the Alt (like “;”)
o] B

calls the fail-to, which causes the entire call to Append1 to fail. Hence, Append1

will only give one answer; if it is backed into, it will fail.
This is an idiom for cut. In general, one would write

(define-checked Foo
procedure
(bind-failure
(lambda (cutpt)
..... (Alt cmd (fail-to cutpt)))))

Like Alt, bind-failure can be used for commands as well as procedures. We

can use this property to write negation:

(define-checked not
(-> (seq cmd) cmd)
(bind-failure
(lambda (exit)
(a1t
(Seq cmd (fail-to exit))
succeed))))

This is a function from commands to commands. (not cmd) tries to execute
emd. If it succeeds, it fails to the failure continuation exit, thus causing (not

emd) to fail. If cmd fails, then Alt tries the succeed causing the entire command

to succeed.

7 Conclusions

We have given a semantic analysis of some common features of Logic Pro-
gramming. By doing so, we have created a framework in which to discuss
problematical features of logic programming languages, such as negation, asser-
tion, and the cut operator. The framework also suggests some possible extensions.

The resulting semantics can be embedded into the executable meta-language
_ 19 —

Scheme. By doing so, one retains the clarity of traditional logic programming,
while gaining the additional power of the metalanguage for better control over

binding and over the run-time mechanisms of the language.

This embedding allows one to write Prolog in Scheme. Prolog programs be-
come a special case of Scheme programs, and can be called by other Scheme
programs. Similarly, Prolog programs can call Scheme programs to do portions
of their computation whenever that is convenient. All this is done not by the
traditional embedding technique of interpretation, but by building Scheme ob-
jects which directly manipulate the underlying semantic objects, thus eliminating

interpreter overhead due to parsing.

References

[Clark & Tarnlund 82]
Clark, K.L., and Térnlund, S.-A. Logic Programming, Academic Press, New

York, 1982.

[Clinger, Friedman, and Wand 82]
Clinger, W., Friedman, D.P., and Wand, M. “A Scheme for a Higher-Level
Semantic Algebra,” presentation at US-French Seminar on the Application
of Algebra to Language Definition and Compilation, Fontainebleau, France,

1982; proceedings to appear.

[Fessenden et. al. 83]
Fessenden, C., Clinger, W., Friedman, D.P., and Haynes, C. “Scheme 311
Version 4 Reference Manual,” Indiana University Computer Science Department
Technical Report No. 137, February 1983.

[Mosses 82]
- o0 —

Mosses, P. “Abstract Semantic Algebras!” Proc. TC-2 Working Conference:
Formal Description of Programming Concepts II (D. Bjorner, ed.) (Garmisch-
Partenkirchen, 1982), preliminary proceedings, pp. 63-88.

[Robinson & Sibert 81]
Robinson, J.A., and Sibert, E.E. “LOGLISP: an Alternative to PROLOG,” in
Machine Intelligence 10 (J.E. Hayes, D. Michie, & Y-H Pao, eds), Ellis Horwood

Limited, Chichester, and John Wiley, New York, (1981), 399-419.
[Steele & Sussman 78]
Steele, G.L. and Sussman, G.J. “The Revised Report on SCHEME,” Mass.

Inst. of Tech. Artif. Intell. Memo No. 452, Cambridge, MA (January, 1978).

[Wand 82a)
Wand, M. “Semantics-Directed Machine Architecture” Conf. Rec. 9th ACM

Symp. on Principles of Prog. Lang. (1982), 234-241.

[Wand 82b]

Wand, M. “Deriving Target Code as a Representation of Continuation Semantics”

ACM Trans. on Prog. Lang. and Systems 4, 3 (July, 1982) 496-517.

[Wand 83]

Wand, M. “A Semantic Prototyping System,” June, 1983.

] e

