PROTOTYPING DATA FLOW BY TRANSLATION INTO SCHEME

Pee-Hong Chen
Daniel P. Friedman
Computer Science Department
Lindley Hall 101
Indiana University
Bloomington, IN 47405

TECHNICAL REPORT NO. 147

PROTOTYPING DATA FLOW BY TRANSLATION INTO SCHEME

by

Pee-Hong Chen
Daniel P. Friedman

August, 1983

Research reported herein was supported in part by the National Science Foundation under
grant numbers MCS 79-04183, MCS 82-03978, and MCS 83-04567.

PROTOTYPING DATA FLOW BY TRANSLATION INTO SCHEME

Pee-Hong Chen

Daniel P. Friedman

Computer Science Department
Lindley Hall 101
Indiana University
Bloomington, IN 47405

Abstract

We consider language modeling using Scheme, an applicative order, lexically
scoped dialect of Lisp. In Lisp, programs are represented by list structures.
By representing programs of other languages as list structures with carefully
placed keywords it is possible to define the keywords as either functions or
syntactic extensions. Proper consideration of the lexical scoping yields even
more control than would be expected. As an example of this approach we
prototype Data Flow, a concurrent computation system, by expanding each
actor or arc into a function invocation and by expanding a network into a
Scheme function that is compiled and executed. This approach avoids the
familiar interpretation step used in most prototyping approaches, yielding
improved performance.

Research reported herein was supported in part by the National Science Foundation under grant
pnumbers MCS 79-04183, MCS 82-03978, and MCS 83-04567.

2 : 2. Scheme ; An Overview

§1 Introduction

The central idea of Data Flow is to express computations through successive
transformations of the token values that mark a graph structure. It is due to the inherent
nature of the graph structure that highly parallel computations can be achieved. Various
node types are available for the system. Synchronization inside the system is realized
by protocols {or firing policies, in Data Flow jargon) that decide the passing (flowing) of
tokens (data) between any two nodes. In a Data Flow network all nodes fire concurrently.

To simulate Data Flow, we use Scheme! as the base language upon which a Data
Flow program translator is defined. Scheme has the power to expand syntactic expressions
into executable code. In addition, it supports some parallel processing primitives. Taking
advantage of these features, our mechanism is able to convert Data Flow networks into
stand-alone Scheme object programs. When an object program is executed, it spawns
several processes running concurrently, each simulating a Data Flow node.

The metaphor derived from our work is that, given a suitable language syn-
tax, Scheme processes programs of that language in a direct and natural way |C183].
Conventionally, to model a system is to write a language simulator for it so that the data
(programs written in the target language) must be interpreted step by step during execu-
tion. In our mechanism, however, the data become executable programs. Our facility is
more like a naive compiler (preprocessor) than like an interpreter. Consequently, we start
with a brief review of Scheme in the next section. The basic concepts of Data Flow and
its architecture under our base language are then introduced. In the section following we
develop the implementation for our target system. Finally, some anticipated results of
this work and research problems are mentioned in the conclusion.

§2 Scheme : An Overview

The programming language Scheme was designed and first implemented at MIT
in 1975 by Gerald J. Sussman and Guy L. Steele, Jr. It is based upon the lambda calculus
described by Alonzo Church [Ch41] and serves as “a simple concrete experimental domain
for certain issues of programming semantics and style”. The revised report on Scheme
was published by Steele and Sussman in 1978 [St78]. In 1980 they implemented their first
Scheme VLSI chip and at the same time a full report on their work was released [St80].

Scheme is a dialect of Lisp with features including applicative order, lexical
scoping, proper tail recursion, and block structure. Most important of all, Scheme —
unlike most Lisp dialects — treats functions and continuations as first class objects. The
Scheme used in our work is Scheme 84 [Fr84] which is written in Franz Lisp [Fr84].

The syntax of the kernel of Scheme follows,

lon a VAX 11/780 running under Berkeley Unix. Unix is a trademark of Bell Laboratories.

2. Scheme : An Overview P

expression ::= constant

identifier

{ if expression expression expression)
(lambda ({identifier}) expression)
(set! identifier expressiom)

application
syntactic-extension
application ::= ({expression} |}

syntactic-extension ::= (keyword {object})

A number of traditional syntactic extensions such as list, cond, case, begin,
let, and letrec [La 65] are provided to enhance the Scheme system. User definition of
syntactic extensions is possible. For example, while is defined by the following syntactic
extension

(vhile bool body) =

(letrec ([sloop (lambda ()
(if bool
(begin body (¢loop))
1)
(sloop))

The effect of normal order evaluation can be obtained when necessary by using
thunks, functions of no arguments. We use the syntactic extensions

(freeze exp) = (lambda () exp) , this creates a function of 0 arguments
and
(thaw th) = (th) ; this applies the function th to a list of 0 arguments.

To control parallelism, we use the functions fork and block. These functions
are not primitives, but are defined in terms of a more primitive process-control mechanism
[Fr84]. The function fork is used to initiate parallelism. It takes a thunk, starts it running
(thaws it) as a parallel process P. The function block is a thunk that kills any process
that invokes it, leaving its subprocesses uneffected.

The idea of test-and-set is implemented via a box, a cons-cell initialized as (pil).
To manipulate a box, we have test-and-set-box! and clear-box!. The test-and-set-
box! tests a box and returns t if the box is set, otherwise it sets the box (changes the
box to (t)) and returns nil. The function clear-box! is used to reset a box.

The concept of data abstraction is fundamental to the way we write code in
Scheme. For example, the basic operations regarding the use of a box can be abstracted
by the following object:

4 3. Data Flow and Scheme

{define bi-sem
(lambda ()
(let ([b (coms mil mil)])
(rec
self (lambda (msg)
(case msg
[vait (vhile (test-and-set-box! b) (no-op))]
[signal (begin (clear-box! b) self)]
[othervise (vriteln msg °Unknown box operation!®)]))))))

where a box here is implemented as a binary semaphore and the pair of vait and signal
forms a region by busy waiting. The object bi-sem is a thunk. It creates an environment
local to the object only when it is thawed. Internal data structures as well as the related
manipulation operations are hidden. When an identifier is declared as a box (the thawing
of bi-sem), it gets bound to a one argument function that when given the message *wait
tests and sets the box, or when given the message *signal resets the box. Since b is
local to the function it can only be accessed by sending the function *wait or "signal
messages [Mo73].

We now present another example of an abstract data type in Scheme. It is an
abstraction for the construction and manipulation of a unit buffer, which will be the basic
data structure in our Data Flow System (Sec. 3.4).

(define unit-buffer

(lambda ()
(let ([c ’no-contents])
(rec
self (lambda (msg)
(case msg
[send (lambda (x)
(begin
(vhile (not (eq? ’no-contents c)) (no-op))
(set! ¢ x)
self))]

[receive (beginm
(vhile (eq? 'no-contents c) (no-op))
(begin0 c (set! c °mo-contents)))]
[othervise (writeln msg °"Unknown buffer operation!®)])))))

where begin0 takes two arguments, executes them in order, and returns the first.

When an identifier, say x, is bound to (unit-buffer), a register containing the
string no-contents (the initial buffer content) is created and self is returned. This data
structure is accessible only to the set of local operations defined in the self body. For
example, x takes its argument using send Curried, so ((x °send) 3) sends the value 3
to buffer x.

The operations send and receive are similar to write and read on a register.
However, there are conditions. Send must wait until the register’s content has been read.
Receive must wait until the register has content to read and after reading, receive is
obliged to erase the content making a future send possible.

53 Data Flow and Scheme

3.2 Data Flow Actors 5

3.1 What Is Data Flow?

The essence of Data Flow was first introduced in the IBM 360/91 system in the
1960's [IB67]. Early work on Data Flow models can also be traced back to R. Karp and
R. Miller’s research in 1966 [Ka66]. Since then Data Flow has been extensively studied
by many researchers as an alternative to von Neumann architecture. Today, there are
several versions of Data Flow systems, all somewhat similar, and all unified by graph
structured computation.

A Data Flow language is any functional language based entirely upon the notion
of data flowing from one functional unit to another. It is this concept of flow that provides
Data Flow languages with the power to represent program definitions as graphs. The
implicit advantages of applicative programs, such as modularity and concurrency, can be
seen even more transparently from the corresponding program graphs.

Data in Data Flow program graphs is always viewed as flowing on arcs from
one node to another in a stream of discrete fokens. Hence tokens are the instantaneous
descriptions of data objects. Each node in the system repeatedly takes tokens arriving at
its input arcs (if any) and produces tokens at its output arcs. The transformation of the
values of tokens for a node is decided by a firing policy. The nodes in a graph are called
actors. Collectively, an actor and its input/output arcs form a node in a more generalized
sense. Different types of actors are associated with different firing policies.

Dennis proposed a Data Flow model [De74] upon which we base our system. In
his model, a link has an in-degree of exactly one while it must have an out-degree of
at least one.- That is, a link can have many output arcs, but only one input arc. The
capacity of any arc is restricted to one. Synchronization among all tokens of the same
data set is achieved as a natural consequence of this restriction.

Most Data Flow nodes cannot fire unless their input arcs have tokens, but there
are some exceptions (e.g. selectors). In addition, since only a single token can rest on any
arc at any time, a Data Flow node cannot fire until its output arcs are free of tokens. So
when firing a Data Flow node, the input tokens are, in general, consumed by the node
and if any of its output arcs is occupied by the previous token, the node puts the current
output token on that arc as soon as it becomes free. There is extensive literature on Data
Flow. (See for example [Da82, Tr82].)

3.2 Data Flow Actors

There are five elementary actors: constants, operators, gates, conditional con-
structors, and [/0’s. Operators can be further categorized into arithmetic operators,
boolean operators, and general predicates (deciders). For gates, we have the True gates (T-
gates) and the False gates (F-gates). For conditional constructors, we have selectors and
distributors. Together, gates and conditional constructors are sometimes called regulators.
In addition, there are writers and readers for IfO actors.

To see how to use a language like this in defining programs, a conditional
expression in Data Flow is depicted by Figure 1. Let us now focus on one execution
cycle of that expression. Upon receiving input data given by the user, the link (node 7)
broadcasts b to each of its output arcs. Depending on the Boolean value of this control
token, either node 3 or node 4, the two gates, will be able to pass either x or y to one of
the entries of the selector (node 5). The gate bearing an attribute that does not match the
control token value simply consumes the user input and passes nothing over. The selector

3. Data Flow and Scheme

z

Figure 1. A conditional expression: z = if b then x else y

then propagates the token from the matching entry to its exit. Finally, the writer grabs
that token and prints it on the screen.

3.3 Firing Pollcles

Without loss of generality, we assume the 1ink as an additional actor type. Data

Flow actors’ firing policies are stated below.

1°

3.

4.

sﬂ

Links : Firing a link is simple. It consumes its input token and then sends a copy
of that token to each of its output arcs.

Constants : Constant actors have no input arcs. A constant generates its value as
output and is firable whenever its output arc is empty.

Operators : An arithmetic operator computes primitive functions, such as 4+ and
. A decider is the actor for primitive predicates, such as = and >. Boolean

operators are the boolean functions of their control-valued inputs, such as A, V and

- . An operator fires when its input arcs have tokens and its output arc is empty.

Gates : There are two types of gates: T-gates and F-gates. A gate has two inputs,
the control entry and the data entry. A T-gate can propagate its input data token
to its output arc if its input control token is true, otherwise the gate consumes the
data token and produces no output. A similar situation applies to F-gates.

Conditional Constructors : Like gates, conditional constructors allow control
tokens to regulate the flow of data tokens. A selector has three inputs, a control
entry and two data entries, true and false. In firing, it consumes the data token
from the data entry with type matching the value of control token and leaves the
other data entry unaffected. This is the only case an actor can fire in the absence
of some of its input tokens. A distributor looks almost identical to a selector except
the directions of the flow of data are reversed. In the case of firing a distributor, a
token is absorbed from the data input and passed to one of the outputs whose type
matches the value of the control token.

3.4 A Data Flow Language 7

8. I/O’s : I/O actors act like links except that readers receive tokens (input data)
from the user and writers send tokens (results of computation) to the user.

3.4 A Data Flow Language

Key issues for simulating Data Flow metworks include:

— All active actors fire concurrently.

— All actors are active as soon as the program is activated and will stay
active until the user decides to abort the program execution.

— Different actors have different firing rules.

To model the system, we want to create a mechanism that transforms the data
(a Data Flow program graph) into an executable (compiled) Scheme function instead of
some intermediate form that needs to be interpreted. The first step is to define a language
describing Data Flow networks. We present the following extended BNF syntax:

’e
]

program (define-network pgm-name ({arc}) ({nede}))

name-of-arc | [name-of-arc any-Scheme-constant]
any-Scheme-atom

arc
name-of-arc

....
wn

[link in (list {out})]
| [constant any-Scheme-constant out]
| [operator any-Scheme-function (list {in}) out]
} [T-gate C-in D-inm out]
| [F-gate C-in D-in out]
|
[
|
I

node

[selector C-in T-im F-in out]

[distributor C-in D-in T-out F-out]
[reader any-Scheme-string out]

[writer any-Scheme-string in]

in | C-in | D-in | T-in | F-in | out | T-out | F-out ::= pame-of-arc

Given the syntax above, we can use the Scheme syntactic extension facility to
generate a Scheme function definition which can be directly executed. In particular,
define-network is the following syntactic extension:

8 4. Prototyping Data Flow

(define-network pgm-name {arci arc2 ... arcm) (nodei mode2 ... noden)) =

(define pgm-name
(lambda (killall delay-time)
(let ([arci #sprocessed-form-for-arciss]
{arc2 ssprocessed-form-for-arc2+s]

[arca ssprocessed-form-for-arcmss])
(begin (define MUTEX (bi-sem))
nodel
node2
noden
(supervisor killall delay-time))))
The notion ssprocessed-forn-for-arci## represents the initial state for arci.

It can be the thawing of unit-buffer if arci is just a name, or it can be the thawing of
unit-buffer followed by a send operation if the arc is a name-value pair.

A direct wrapping with no preprocessing of the nodes into the program'’s object
code is shown in the above expansion. This follows because the concrete syntax for nodes
has been arranged to be executable Scheme code. This code, when executed will initialize
a Scheme process which simulates the node. Thus, when the function pgm-name is applied
to its arguments, each of these processes is started. They will then execute in parallel,
sharing the semaphore MUTEX, thus simulating the entire Data Flow network.

Any node is a list headed by one of the keywords 1ink, operator, constant,
selector, distributor, T-gate, F-gate, reader, and writer. These words are plain
syntax from the programmer’s point of view. But they become the functions used to
initiate parallel actor processes when pgm-name is executed.

§4 Prototyping Data Flow

4.1 Program Execution

To execute a Data Flow program, we first initiate its corresponding Scheme
function with a killing routine and a delay time as arguments. The following code
illustrates this.

(define rum
(lambda (pgm time)
(letrec ([kill (fork (freeze (pgm killall time)))]
[killall (freeze
{begin

(vriteln °Program aborted upon user request.®)
(kill ¢)))])

(vanish)}))

Recall that the object function of a Data Flow program is a lambda expression of two
arguments. When run is invoked, we initiate the program with the arguments killall
and time by the fork facility which in turn gives back an object bound to the identifier

4.2 Firing Actors ¢

kill. The routine killall is a frozem object that when thawed {by the supervisor) invokes
ki1l with the parameter t aborting all processes. It is important that run vanishes after
kill and killall are defined.

When a program starts execution, the killing routine killall and a delay
time specified by the user at Data Flow top level are passed to the supervisor process
generated by define-network which runs in parallel with all actor processes. The
supervisor is the only process other than I/O actors that interacts with the user during
program execution. Like readers, it prompts the user periodically asking just one question:
“Aborting execution?”. The frequency of this inquiry is determined by the delay time. If
user response is negative, it does nothing. However, if the response is positive, it thaws
killall and thus terminates the program.

4.2 Firing Actors

In our implementation, each node is realized as a Scheme function that when
called initiates (forks) an infinite process in the background. In general, an actor looks
like:

(define some-actor
(lambda (...)

(letrec ([fire (freeze (begin ... (thaw fire)))])
(fork fire))))

where the first ellipsis refers to the actor’s required arguments and the second ellipsis
refers to the realization of its firing policy.

We provide an actor creator with the syntactic extension
(actor formal-parameters firing-policy) =

(lambda formal-parameters
(letrec ([fire (freeze (begin firimg-policy (thaw fire)))])
{(fork fire)))

We create an actor by invoking actor with a parameter list and a firing policy.
The identifiers defined in actor are nonlocal to the policy. Thus, the code in a firing-policy
can access its formal parameters.

The following are implementations of the actor types.

10 4. Prototyping Data Flow

1. Links: A link has only one input arc. In firing, it receives an input token from that
arc and broadcasts the token to each of its ouput arcs. We have*

(define link
(actor (in out-arcs)
(let ([token (in °receive)])
(mapc (lambda (arc) ((arc °send) token)) out-arcs))))

2. Constants : A constant has no input arcs. It fires (sends out its constant value)
whenever its output arc is free. That means we can define a constant as

(define constant
(actor (val out)
((out °send) wval)))

3. Operators : The number of input arcs for an operator depends on the arity of
its underlying Scheme function. For uniformity, we assume that the actor takes a list of
input arcs. In firing, it receives all input tokens from the arcs, applies the function to the
resulting list of tokens, and sends a copy of the result to its output arc.*

(define operator
(actor (function in-arcs out)
((out ’send) (apply fuamction
(mapcar (lambda (arc) (arc °'receive)) im-arcs)))))

4. Qates : There are two types of gates, T-gates and F-gates. In firing, the data
input will be propagated to the output only if the control token value agrees with the
gate attribute. We have

(define T-gate
(actor (C-in D-im out)
(let ([data (D-in ‘*receive)])
(if (C-in °receive) ((out °send) data)))))

(define F-gate
(actor (C-im D-in out)
(let ([data (D-in °receive)])
(if (C-in °receive) (no-op) ((out °send) data)))))

5. Conditional Constructors :

(1) Selectors : A selector takes three input arcs: control, T, and F. If the control
entry has a value of true , then it propagates the T-entry token to its output arc, else it
propagates the F-entry value to the output arc.

4mape in link and mapcar in operator could be parallel operations. For clarity, we have chosen the
two to be sequential.

4.2 Firing Actors i3

(define selector
{actor (C-in T-im F-in out)
((out °send) ((if (C-im °receive) T-im F-in) ’receive))))

(2) Distributors : A distributor takes two input arcs: control and data entries, and
two cutput arcs: T- and F-exits. If the control token is true, the data token is sent to
the T-exit, otherwise it is sent to the F-exit. We can define the distributor as:

(define distributor
(actor (C-in D-in T-out F-out)
(((if (C-in °receive) T-out F-out) °send) (D-im ’receive))))

6. I/O’s : The original Data Flow model does not have any 1/O actors. To do software
simulation, however, such an actor type is an inevitable extension. The system, through
these I/O actors, is able to prompt the user asking for input data or responding with
computed results. The user, also through these actors, is able to type in input data, to
decide when to quit (using the keyword eof at any input prompt), or to monitor the
results.

1/O actors are special: they become active as soon as the system is initiated like
all other actors, but, exclusively, they also are involved in competition for the unique
I/O device (the terminal). To mutually exclude the usage of this device, a semaphore is
needed. We call this semaphore MUTEX, and it must be declared globally. In short, any
operation related to the user interface (reader, writer, or supervisor) must be included
within a MUTEX region. We have:

(1) Readers : A reader can be defined as follows.

(define reader
(actor (prompt out)
((out °send)
(begin (MUTEY 'wait)
(princ prompt)
(let ([data (read)])
(begin (MUTEX °signal)
(if (eq data 'eof) (vanish) data)))))))

A reader asks for input data from the user, and upon receiving the keyword eof, it
vanishes, thereby bringing the reader out of the MUTEX competition.

(2) Writers : A writer simply receives the answer from its input arc and prints it on
the screen. We can define:

(define writer
(actor (prompt in)
(let ([2ne (in °receive)])
(begin (MUTEX "wait) (writeln prompt ans) (MUTEX °signal)))))

(3) Supervisors The supervisor is a competitor for the terminal because it interacts
with the user. We mentioned before that there can be deliberate bias against it in the
MUTEX competition. The reason for creating bias is that frequent supervisor inquiries are
irritating. As a solution, the user specifies a desired inquiry frequency when his program
is initiated.

12 4. Prototyping Data Flow

(define supervisor
(actor (killall delay-time)
(begin (delay delay-time)
(MUTEX ‘'wait)
(princ °Aborting execution? (y/n} °)
(let {[abort (eq (read) "y)1)
(begin (MUTEX °signal)
(if abort (thaw killall)))J))))

The supervisor is a pesudo actor (because it does mot fire). The unfairness is
realized by a simple delay mechanism. It aborts the whole system by invoking killall
if the user’s response to its inquiry is positive.

4.3 Two Sample Programs

We now introduce two examples which demonstrate our approach.

1. IF expression : We can program the conditional expression if-network (Figure
1) as follows.

(define-network if-network
(A-1-3 A-2-4 A-3-5t A-4-5f A-5-8 A-7-3r A-7-4r A-7-5r A-8-7)
([reader °x = ° A-1-3]
[reader °y = ° A-2-4]
[T-gate A-7-3r A-1-3 A-3-5t]
[F-gate A-7-4r A-2-4 A-4-5f]
[selector A-7-5r A-3-5t A-4-5f A-5-B8]
[writer ©®z = ® A-5-8]
[1ink A-8-7 (list A-7-3r A-7-4r A-7-5r1)]
[reader ®b = ® A-8-7]))

which expands to the following Scheme code

(define if-network
(lambda (killall delay-time)
(let ([A-1-3 (unit-buffer)] [A-2-4 (unit-buffer)] [A-3-5t (unit-buffer)]
[A-4-5f (unit-buffer)] [A-5-68 (unit-buffer)] [A-7-3r (unit-buffer)]
[A-7-4r (unit-buffer)] [A-7-5r (unit-buffer)] [A-8-7 (unit-buffer)])
(begin (define MUTEX (bi-sem))
[reader *x = ® A-1-3]
[reader °y = ° A-2-4]
[T-gate A-7-3r A-1-3 A-3-5t]
[F-gate A-7-4r A-2-4 A-4-5f]
[selector A-7-5r A-3-5t A-4-5f A-5-8]
[eriter %z = © A-5-6]
[link A-8-7 (list A-7-3r A~7-4r A-7-Br)]
[reader b = ¥ A-8-7]
(supervisor killall delay-time)))))

The user invokes {run if-network n) where n is a delay constant.

2. Exponentiation : Figure 2 illustrates an exponentiation function in Data Flow.
Simple analysis shows that the graph can roughly be divided into three functional
units: the left which keeps the value of x iterating, the center which keeps the current

5. Conclusions 18

value of z updated, and the right which counts down the value of n. The importance
of data feedback technique in Data Flow programming can be summarized by this
example. Our network description is

{(define-network exp-network
([A-17-1ir nil] [A~17-2r nil] [A-17-3r ail]
A-4-27 A-8-5 A-18-8 A-17-18r A-12-8 A-13-18 A-17-12r
A-17-13r A-14-7 A-17-14r A-15-17 4-10-12 A-10-13 A-11-14
A-11-15 A-1-i6 A-2-10 A-3-11 A-8-3f A-7-3t A-5-2%
A-8-1¢ A-9-if)
([selector A-17-ir A-6-1t A-9-1f A-1-16]
[selector A-17-2r A-5-2t A-4-2f A-2-10]
[selector A-17-3r A-7-3t A-8-3f A-3-11]
[constant 1 A-4-2f]
[operator ¢ (list A-6-5 A-12-5) A-5-2t]
[1ink A-16-6 (list A-6-5 A-8-it)]
[operator 1- (list A-14-7) A-7-3t]
[reader °n = ° A-8-3f]
[reader °x = ® A-9-1f]
{1ink A-2-10 (list A-10-12 A-10-13)]
[1ink A-3-11 (list A-11-14 A-11-15)]
[T-gate A-17-12r A-10-12 A-12-5]
[F-gate A-17-13r A-10-13 A-13-18]
[T-gate A-17-14r A-11-14 A-14-7]
[operator (lambda (n) (> n 0)) (list A-11-15) A-15-17]
[T-gate A-17-16r A-1-18 A-16-6]
[link A-15-17 (list A-17-16r A-17-ir A-17-12r A-17-13r
A-17-2r A-17-14r A-17-3r)]
[eriter oz = ® 4-13-18]))

The expansion of this network is similar to that of if-network. However, as
shown in Figure 2, the major difference between the two expansions is that exp-network
has three arcs initialized to false (i.e. nil). The body of the object function of exp-
network is

(let ([A-17-ir (((unit-buffer) °send) nil)]
[a-17-2r (((unit-buffer) °send) nil)]
[4-17-3r (((unit-buffer) °send) mnil)]

)

(begin (define MUTEX (bi-sem))
(supervisor killall delay-time)))

where the first ellipsis refers to the rest of the arcs to be declared and the second one
refers to the sequence of wrapped nodes corresponding to the nodes declared above.

§5 Conclusions

We have seen how a highly paraliel system like Data Flow can be easily prototyped
by translation into Scheme. In fact, separate projects on modeling languages for coor-
dinated computing [Fi83] such as Modula II [Wi82], Cell [Si83, Fr83], Ada, Exchange

3

6. Acknowledgements

T nil

% |5 4

H ,
*———
10

i

nil

1
| ° ‘ nil

Eakd

1

Figure 2. A program for computing z = z"

Functions |[Fi77], and Edison [Br81] have all shown similar compactness. The implication
is that Scheme is well suited to the operational semantic modeling of languages involv-
ing parallel computation. This is not surprising because Scheme has the full power of
classical denotational semantics: normal order can be obtained by using thunks and con-
tinuations can be accessed directly. However, a formal specification of the semantics of

the parallelism supported by Scheme is still under development.

The prototyping mechanism we introduced is grounded largely on Scheme's
syntactic extension facility and its basic parallel processing primitives. What is important
here is that we transform data into programs instead of introducing an interpreting
mechanism especially for the Data Flow model. A system that does not need a run-time
interpreter has many positive performance advantages. This technique may not be unique
to Scheme, but the naturalness of the prototyping technique is well exemplified through

Scheme.

§6 Acknowledgements

We would like to thank Mitchell Wand, Christopher T. Haynes, Robert E.
Filman, Eugene Kohlbecker, and Richard Salter for their valuable suggestions during
the development of this paper.

