A FUNCTIONAL APPROACH TO GEOMETRIC APPLICATIONS
IN COMPUTER GRAPHICS

Pee-Hong Chen
L. David Sabbagh

Computer Science Department
Lindley Hall 101
Indiana University
Bloomington, IN 47405

TECHNICAL REPORT NO. 146

A FUNCTIONAL APPROACH TO GEOMETRIC APPLICATIONS
IN COMPUTER GRAPHICS
by

Pee-Hong Chen
L. David Sabbagh

August, 1983

A FUNCTIONAL APPROACH TO GEOMETRIC APPLICATIONS
IN COMPUTER GRAPHICS

Pee-Hong Chen
L. David Sabbagh

Computer Science Department
Lindley Hall 101
Indiana University
Bloomington, IN 47405

Abstract

In this paper, we discuss the suitability of applying functional programming
techniques to computer graphics. We show, using the programming language
Scheme, how to implement a linear algebra package which is used in an
interactive 3D projection system. The main idea we wish to present is
that functional programming, together with Scheme, is a proper method for
attacking graphics problems where operations of linear algebra play a major
role. In addition, we want to show the power of Scheme in such applications
and its utility for other types of numerical problems.

Key words and phrases: computer graphics, linear algebra, Scheme, vector,
matrix, perspective projection, parallel projection, and clipping.

2 2. Functional Programming

§1 Introduction

Graphics is an area in computer science which deals with the simulation of our
visual world on a two-dimensional screen. The basis for computer graphics is in linear
algebra and geometry. Most researchers’ work in this field has been concentrated on more
effective simulation or transformation algorithms and better video devices. There has not
been much attention to the underlying programming language in which the algorithms
are implemented. People may argue that programs written in Ada can always be written
in assembly code, so why bother to worry about any underlying language?

From the point of view of classical computation foundations, that statement is
valid. But judging from our modern technology, it makes sense to use a better tool if
the system efficiency can be improved. Moreover, with the advent of VLSI, we are able
to build high performance hardware that realizes the compatibility between the tool and
the application in a reasonable cost. The traditional tools for computer graphics are
languages such as Basic, Fortran, and Pascal. These languages, however, do not reflect
the geometric nature of graphics applications. We claim that applicative languages beat
imperative languages in reflecting such a nature because linear algebra computations are
in essence functional.

We will investigate the suitability of functional programming techniques for
geometric applications in computer graphics. To support our claim, the programming
language Scheme is used to implement a linear algebra package and an interactive 3D
projection system. Through these examples, we demonstrate the implicit relation between
the basic graphics applications and an applicative language. We start with a description of
the basic concepts of functional programming. A brief review of Scheme then follows. We
continue by introducing the way primitive linear algebra operators are implemented. In
the section following we develop a system for 3D projections based upon these primitives.
Finally, some anticipated results and research problems are mentioned in the conclusions.

§2 Functional Programming

A functional language makes use of the properties of mathematical functions. A
mathematical function is a relation that maps a set (the domain) to a set (the range) in
a way that for each member in the domain, there is a unique image in the range. Thus a
function can be defined by specifying the following: (1) the domain, (2) the range, and (3)
the rules of mappings between the two. To invoke a function, we apply specific elements
in the domain to yicld a value in the range. For instance, the lambda expression ([Ch41])

Az \y.zy

defines a curried two-argument function of multiplication such that the application (i.e.
invocation)

((AzMy.zy)2)3)
yields the result 6.

Let F be the set of all functions. A functional formis a function defined from 7"
to 7. An important functional form is the function composition which takes two functions
F; and F, as its arguments and yields another function F' such that F' produces the same
result as first applying F) then applying F5.

So a functional language can be defined axiomatically by specifying:

3. A Small Subset of Scheme 2

— Basic data types (the domain and the range).
— Primitive functions,

— Functional forms.

— Application rules.

Due to the fact that languages are implemented in computers which have certain physical
constraints, not all properties of mathematical functions can be reflected in functional
languages. For example, parameters are names for memory cells where their values are
stored in programming languages instead of just the representations of values like in
mathematical functions. However, functional languages have comparatively more freedom
from side effects and thus more potential for parallel processing than most imperative
style languages because the former is based on expressions which yield values whereas the
latter is based on sequences of assignments of values to variables. More analyses on these
topics can be found in [GhJa] and [He80].

Geometry is the core of computer graphics. Using a functional approach to
applications in that category is a natural reflection of their properties. The best examples
of pure functional languages are perhaps Lisp defined by McCarthy ([Mc60]) and FP
proposed by Backus ([Ba78]). But the purity may somehow confine their power as
programming languages. The next section will review a dialect of Lisp which we consider
as a better tool.

§3 A Small Subset of Scheme

The programming language Scheme was designed and first implemented at MIT
in 1975 by Gerald J. Sussman and Guy L. Steele, Jr. as part of an effort to understand
the actor model of computation. It is based on the lambda calculus described by Alonzo
Church ([Ch41]) and serves as “a simple concrete experimental domain for certain issues
of programming semantics and style”. The revised report on Scheme was published by
Steele and Sussman in 1978 ([St78]). In 1980 they had their first Scheme VLSI chip
implemented and at the same time a full report on their work was also released ([St80]).

Scheme may be characterized as an applicative order, block structured, lexically
scoped, tail recursive dialect of Lisp. Though it has many powerful features, only 2 small
subset common to most Lisp family languages is used in our work. In particular, the
language’s functional nature turns out to be the dominant factor that influences the way
our examples are implemented.

The syntax of the Scheme kernel is as follows :

<expression> ::= <constant>
| <identifier>
| (if <expression> <expression> <expression>)
| (lambda (<identifiers>) <expression>)
| (change! <identifier> <expression>)
| <application®
| <syntactic-extension>

<identifiers> ::= <empty> | <identifier> <identifiers>
<application> ::= (<expressions>)
<expressions> := <empty> | <expression> <expressions>

<syntactic-extensicn> ::= (<keyword> <objects>)

4 4. Linear Algebra Primitives

To access a list, the most fundamental data structure in Lisp family languages,
we have car and cdr. These primitives work as follows: (car /) returns the first
element of [; (edr [) returns a list containing everything in [excluding the first element.
Thus (eadr [), which is equivalent to (car (edr [}), returns the second element of L.
Similarly, caddr gives the third element of a list. To enhance the program readability, we
use the alinses &1, &2, &3, &4, and so forth to represent, respectively, car, cadr, caddr,
cadddr, efc. Also, we use &rest to denote cdr, and use &last to refer to the last element
in a list.

The function mapcar takes a function (i.e. a lambda expression) f and a list
I, invokes f on each element in /, and returns a list containing the results. A number of
traditional syntactic extensions (macros) such as list, cond, case, block, let, and letrec
([La65]) are provided to extend the core system. Users may also define new syntactic
extensions by using a macro facility.

The Scheme used in our work is [Scheme 311]([Fe83]). It is built on top of
Franz Lisp ([Fo80]) which is written in language C. Due to this multi-layer structure, the
execution efficiency of our Scheme is reduced significantly especially when nested function
invocations are performed (which is indeed our case). But that should not be regarded
as a key issue because our purpose is to demonstrate functional programming techniques
for graphics applications and Scheme is well suited for that goal. In fact, the Scheme
efficiency may be promoted if it is implemented in some lower level languages or even as
a machine itself.

If functionality is the only consideration, why not use the faster Franz Lisp in-
stead of Scheme? We choose Scheme for several reasons including data abstraction and
parallel processing (which can be added to our work quite smoothly when necessary).
First, data abstraction is an important modern programming technique which hides un-
necessary information of data from the system. Scheme — unlike most Lisp dialects —
treats functions and continuations as first class objects. Thus data types can be abstracted
as functions in Scheme. Second, it is clear that there is a close tie between function com-
position and program concurrency. [Scheme 311]supports a parallel processing feature
which may eventually be the key element in speeding up the bottleneck of our system
(e.g. matrix multiplication).

84 Linear Algebra Primitives

The basic data types in linear algebra are vectors and matrices. In Scheme, we
use the keywords vector and matrix to create data of these two types. They are both
aliases for the system macro list. So

(define V (vector 1 2 3 4))

binds the vector [1 2 3 4] to the identifier V. Note that the number of arguments that
vector takes is arbitrary. Similarly,

(define M (matrix (vector 1 2) (vector 3 4)))

declares M as the 2X2 matrix (1 2). Notice that we declare 2 matrix by specifying its

row vectors. The fact that all row vectors must be of the same dimension is an implicit
protocol. Our system does not complain about inconsistent row vector dimensions in a
matrix declaration.

To access an individual component of a vector or a row vector of a matrix, we
have the following primitive:

4.1 Primitive Vector Operators 5

(define &comp
(lambda (obj index)
(letrec ([work (lambda (obj index)
(if (= index 1)
(21 obj)

(work (&rest obj) (1- index))))])
(if (and (> index 0) (<= index (length obj)))

(vork cbj index)))))

which takes an object (a vector or a matrix) and an index, and returns the designated
element if the index is between 1 and the dimension of the object. Continuing our
previous examples, (&comp V 3) returns 3 and (&comp M 2) returns the vector [3
4]. Furthermore, (Ecomp (&comp M 2) 2) returns the component 4. The last example
introduces the convenience of programming linear algebra computations in a functional
way.

The function &ext takes an object B and a non-negative integer n and returns
the first n elements of B as an ordered list:

(define Bext
(lambda (0BJ n)
(letrec ([work (lambda (obj i)
(it (=1 1)
(list (21 obj))
(cons (&1 obj) (work (&rest obj) (1- i)))))1)
(if (> n (length OBJ))
0BJ
(vork OBJ 1n)))))

In our examples, (#ext V 2) returns the vector [1 2] and (&ext M 1) returns the
1X2 matrix (1 2).

We now examine the primitives of linear algebra. Things not related to our 3D
projection system such as matrix inverse, eigenvalue, Gaussian elimination, efc. are not
included. As a convention, operators dealing with vectors are prefixed with an asterisk
(#) and operators for matrices are prefixed with an exclamation mark (!). Incidentally,
the component accessing functions are prefixed with an and sign (&). Also we use square
brackets ([1) to denote points, vertices, or vectors, and use round brackets (()) to denote
edges, polygons, objects, or matrices.

4.1 Primitive Vector Operators

I. Constant Vectors

Some constant vectors used throughout the rest of our examples are:

(define VCONST
(block

(define +ID2 (vector 0 0))
(define +ID3 (vector 0 0 0))
(define +ID4 (vecter 0 0 0 0))
(define +UX3 (vector 1 0 0))
(define +UX4 (vector 1 0 0 0))
(define -UX3 (vector -1 0 0))

6 4. Linear Algebra Primitives

(define -UX4 (vector -1 0 0 0))
(define +UY3 (vector 0 1 0))
(define +UY4 (vector 0 1 0 0))
(define -UY3 (vector 0 -1 0))
(define -UY4 (vector 0 1 0 0))
(define +UZ3 (vector 0 0 1))
(define +UZ4 (vector 0 0 1 0))
(define -UZ3 (vector 0 0 -1))
(define -UZ4 (vector 0 0 -1 0))
(define +UH4 (vector 0 0 0 1))))

where the IDs are vector additive identities, the UXs are unit vectors in either the positive
or negative x-axis, similarly for the y and z axes, and finally +UH4 is the unit vector in
homogeneous coordinates from 3D.

II. Identity and Unit Vectors

In addition to the constant vectors listed above, we often need to have identities
of an arbitrary dimension or a unit vector in an arbitrary n-dimensional space. The
following code satisfies our need.

(define #id+

(lambda (D)
(letrec ([work (lambda (D)
(if =D 1)
(vector 0)

(cons 0 (work (i- D)))))1)
(iz (> D 0) (work D)))))

(define #unth
(lambda (D n)
(letrec ([work (lambda (D)
(if G D 0)
(cons (if (=D n) 1 0) (work C(1- D)VIV1)
(if (> D 0) (reverse (work D))))))

Given a dimension, *id+ returns a zero vector of that dimension. Given a dimension and
a specified coordinate, #unth returns a vector which has a 1 in the designated position
and zeros in all others.

I1I. Unary Operators

A unary operator takes a vector as its operand and returns either a scalar or a
vector. The function #dim returns the dimension of a vector. It is just an alias of the
Scheme primitive length. However, #1length returns the length of a vector. Suppose V'
is a vector, then its length is the square root of the inner product of V and itself, i.e.
[V I= +V - V. The function *tag takes a vector and returns a function that when given
an element (the tag) appends the vector with a singleton vector containing the tag. The
scalar product of a vector is realized by a curried two argument routine #scp. Again, let
V be [1 2 3 4], then ((#s8cp V) 2) returns the vector [2 4 6 8]. The opposite vector
is given by #opp. And given a vector, the unit vector in that direction can be obtained
by calling #unit. The last three functions we present are all good examples of applying
mapcar mentioned in the previous section. The following code summarizes what we just
discussed.

(define #dim length)

4.1 Primitive Vector Operators 7

(define #length (lambda (v) (if v (sqrt (=dot v v)))))
(define #tag (lambda (v) (lambda (TAG) (2ppend v (vector TAG)))))
(define #scp (lambda (v) (lambda (s) (mapcar (lambda (e) (* e s)) v))))
(define 2opp (lambda (v) (mapcar -- v)))
(define *unit

(1ambda (v)

(let ([1 (2lengthk ¥)1)
(mapcar (lambda (x) (/ x 1)) ¥))))

IV. Binary Operators

A binary operator takes two vectors as its arguments and returns either a scalar
or a vector. The vector addition operator is defined as follows:

(define #add
(l1ambda (vi v2)
(letrec ([work (lambda (v1 v2)
(let ([vis (&rest vi)]
[v2s (&rest v2)1)
(if vis
(cons (+ (81 v1) (&1 v2))
(vork vis v2%))
(vector (+ (21 vi) (&1 v2))))N1)
(if (and v1 v2)
(let ([d1 (#dim v1)]
[d2 (sdim v2)])
(if (= d1 d2)
(let ([I (*id+ d1)])
(if (equal? vi I)
va
(if (equal? v2 I)
vl
(work vi v2))))))))).

#add takes two vectors v1 and v2, first checks if they are of the same dimension.
If so, then checks if either one is the zero vector and simply returns the other one, if true.
Otherwise it adds each component and returns the sum vector. The component addition
is performed by the local recursive routine work.

For vector difference, we have *diff:
(define #diff (lambda (vi v2) (#add vl (sopp v2))))

which is a simple application of #add described above. Suppose V; and V» are vectors,
then (2diff V; V,) returns V; — V5 instead of the opposite. As it will be clear later,
a 3D object can be represented as a collection of edges in which each edge is a list of
two vertices. So given an edge, the edge vector between the two vertices can obtained by
calling *diff with the end point as the first argument and the start point as the second.
The following simple routine illustrates this.

(define tedgev (lambda (E) (#diff (22 E) (a1 E))))

8 4. Linear Algebra Primitives

Now to vector products. We have a routine which computes the inner (dot)
product of two vectors as shown above in $length.

(define =dot
(lzmbda (vi v2)
(letrec ([wvork (lambda (vi v2)
(let ([vis (Zrest vi)]
[v2* (Brest v2)])
(if vis
(+ (= (&1 vi) (&1 v2))
(vork vis v2s))
(+ (81 v1) (&1 v2))))D)
(if (and vi v2)
(let ([d1 (#dim v1)] [d2 (#dim v2)])
(if (= d1 d2)
(let ([I (#id+ d1)])
(if (or (equal? vi I) (equal? v2 I))
0
(work v1 v2))))))))).

Note the similarity between #dct and #add. Their major difference is that #dot
returns a scalar rather than a vector. Notice also that if either of the two vectors is the
zero vector, zero is returned immediately.

The outer {cross) product is cleaner but is restricted to 3D only. We have:

(define =cross
(lambdz (v1 v2)
(let ([det (lambda (k)
(- (¢ (&comp vi (1+ (mod k 3)))
(&comp v2 (1+ (mod (1+ k) 3))))
(*+ (&comp vi (1+ (mod (1+ k) 3)))
(2comp v2 (1+ (mod k3INND
(if (and v1 v2)
(let ([d1 (*dim v1)] [d2 (=dim v2)])
(if (= d1 d2)
(if (= d1 3)
(vector (det 1) (det 2) (det 3)))))))))

in which a local routine det for computing determinants is defined. Suppose V; is [1 2
3] and V5 is [4 5 6], (det 1) returns the determinant of (g 2)’ (det 2) returns that

of (3 1), and {det 3) returns that of (i g) Note that (#cross Vi V) returns V3 X V2

instead of the reverse. The ad hoc rule that the right thumb points to the direction of
the cross product of two vectors is implied by a right-handed system. In a left-handed
system, however, the same routine holds, but the tool that determines the direction must

be replaced by the left hand correspondingly.

4.2 Primitive Matrix Operators

L. Constant Matrices

Two constant matrices are of special importance to our application, namely, the
434 matrix additive identity and the 4 X 4 matrix multiplicative identity.

4.2 Primitive Matrix Operators g

(define MCONST
(block
(define MI4+ (matrix +ID4 +ID4 +ID4 +ID4))
(define MI4* (matrix +UX4 +UT4 +UZ4 +UH4))))

II. Identity Matrices

Given any dimension, we can compute the matrix additive and multiplicative
identities. Here the dimension is a list of two integers rather than a single one. The
routine !id+ returns an iXj zero matrix if the dimension (i) is specified. On the other
hand, !id# returns the iXj matrix multiplicative identity whose n*® row has an 1 in its
n*® position and zeros elsewhere. The following routines shows this.

(define !id-+
(lambda (D)
(let ([i (21 D)]
[j (22 D)1)
(et ([I (+id+ j)1)
(letrec ([work (lambda (n)
(if (=1 1)
(matrix I)
(cons I (work (1- n)))})1)
(work 1))))))

(define !id=»
(1ambda (D)
(let ([i (&1 D)]
[ij (82 D)])
(letrec ([work (lambda (n)
(if (=1 1)
(matrix (#unth j n))
(cons (3unth j n) (work (1- m)))IN)1)
(reverse (work i))))))

where #id+ and #unth are the operators mentioned earlier which return a zero vector and
a unit vector, respectively.

I11, Unary Operators

We now define a few basic unary operators on matrices. The dimension of a
matrix is given by invoking !dim. The additive inverse of a matrix can be obtained by
calling !opp. A most useful operator is the matrix transpose operator which returns a
matrix whose column vectors are identical to the row vectors of the original one. Finally,
!det2 gives the determinant of a 2X 2 matrix.

(define !dim (lambda (m) (list (length m) (*dim (&1 m)))))
(define lopp (lambda (m) (mapcar *opp m)))
(define !xpose

(lanbda (m)

(if (81 m)
(cons (mapcar &1 m) (!xpose (mapcar &rest m))))))

(define !det2

10 | 4. Linear Algebra Primitives

(l1ambda (=m)
(et ([vi (21 m)]
[v2 (&2 m)1)
(- (= (81 v1) (&2 v2))
(* (21 v2) (22 v1)))))).

So ('dim M) returns the list (¢ 7) if M is an 7Xj matrix. !opp takes the
opposite of each of the row vectors in the original matrix and returns a new one. The
routine !xpose gives the transpose of its operand. It takes full advantages of mapecar in
a way that the first column vector can be extracted and the routine itself can recurse on
the rest of the column vectors. Finally, !'det2 does a standard computation to get the
determinant of a 2 by 2 matrix.

IV. Binary Operators

Based on binary vector operators, we can further define binary operators on
matrices. First is matrix addition.

(define !add
(lambda (m1 m2)
(letrec ([work (lambda (mi m2)

(let ([v1 (&1 m1)]
[v2 (&1 m2)]1)
(if vi

(cons (#add vi v2)
(work (Zrest mi) (&rest m2))))))1)
(if (and m1 m2)
(let ([d1 (!dim m1)]
[d2 (‘dim m2)])
(if (equal? di d2) (work mi m2))))))).

In adding vectors, the real add operation will not occur unless the operands are
of the same dimension and neither of them is the identity. Unlike its counterpart in
vectors, 'add checks only if its two operands are of the same dimension. The purpose
of identity verification is to avoid the time consuming addition process. Since a similar
testing is performed by #add at a lower level, the procedure is eliminated here.

Now to matrix multiplication. The operation is realized in a brute force fashion;
a row vector is multiplied by a column vector to yield an entry. We have:

(define 'mult2
(lambda (ml m2)
(letrec ([work (lambda (ml m2)
(let ([v (21 m1)])
(if v
(cons (mapcar (lambda (x) (=dot v x)) m2)
(work (cdr m1) m2)))))1)
(if (and m1 m2)
(let ([d1 ('dim m1)]
[d2 ('dim m2)])
(if (equal? (22 di) (&1 d2))
(work m1 (!xpose m2))))))))

which takes the dot product of each row vector in ml1 and each row vector in B2 transpose
and forms the product matrix. Recall that since our emphasis is to demonstrate graphics
programming in a functional style, matrix multiplication in our system is implemented in

5.1 Representations of Entities 11

2 naive way although some algorithms have been proposed to speed up such an operation.
Clearly matrix multiplication is the bottleneck of all systems built upon our linear algebra
primitives. We believe, however, that this efficiency problem can be solved if the device
architecture reflects the underlying functionality.

V. N-ary Operators

N-ary operators can be implemented using the macro facility which expands
the source into a series of binary operations. The most useful n-ary operator in matrix
manipulation is the generalized multiplication operator which takes an arbitrary number
of matrices as operands and returns their composite, if possible. We define the following
macro 'multb:

(nacro !'mult
(lambda (1)
(let ([mat-list (&rest 1)])
(case (length mat-list)

[0 nil]

[1 (21 mat-list)]

[2 (cons ’!mult2 mat-list)]

[othervise (list *!mult2
(&1 mat-list)
(cons ''mult (&rest mat-list))}])))).

§5 3D Projections

Projections transform points in an n-dimensional coordinate system into points
in 2 coordinate system of dimension less than n. Here we concern only with the class
of planar projections in which points are projected onto a plane rather than a curved
surface using straight projectors. Specifically, in this case, a projection of a line segment
is still a line, hence only its endpoints have to be projected. In particular, the projections
in our computer context are the ones that transform objects from 3D (the visual world)
into 2D (the computer graphics display). These projections can be categorized into two
subclasses: perspective projections and parallel projections.

The basics of 3D or 2D geometric manipulations are the linear algebra primitives
presented previously. Other major issues include representations of entities, coordinate
systems, transformations, hidden face elimination, efc. The art of functional program-
ming and the concepts in linear algebra will be the center of the code we present.

5.1 Representations of Entities

For convenience, the geometric entities of interest are restricted to straight lines
which only include, as a hierarchy, poinis (vertices), edges, polygons (faces), and objects.
The first order entity is denoted as a vector, the rest, matrices. Figure 1 shows a tent
(let it be called T) in a right-handed 3D coordinate system. Note that the highest order
geometric entity given in T is the tent itself which is a collection of faces; each face is
a collection of edges; each edge is a pair of vertices. Once again, we let point, edge,
polygon, and object all be aliases of list.

From the user’s point of view, the simplest way to reprcsent 3D straight line
objects is to denote the second order entities (the polygons) as a list of vertices directly.

12 5. 3D Projections

[0,0,40]

£20,0,40)

Figure 1. A tent in a right-handed system

As a result, the third order entities (edges) become implicit. Let R, L, B, and F be the

right, left, back, and front faces of T, respectively (bottom face need not be considered).
We can define:

(define R (polygon *[10 20 40] *[10 20 0] *[20 0 0] *[20 0 40])))
(define L (polygon *[10 20 0] °[10 20 40] [0 0 40] *[0 0 01)))
(define B (polygon *[10 20 0] *[0 0 0] *[20 0 0]))

(defire F' (polygon *[10 20 40] *[20 0 40] [0 0 40])).

In the examples the vertices in a face are sequenced clockwise. This ordering is
essential to our simple hidden face algorithm (see Section 5.5). Thus T is just

(define T (object R L BF))

The vertex representation of a polygon can easily be transformed into its cor-
responding edge representation. For example, F' can be redefined as a collection of three
edges I¥;, Ey, and Ej, where F;, =(edge *[10 20 40] *[0 0 40]), E; =(edge "[0 ©
40] °[20 0 40]), and E3 =(edge *[20 0 40] *[10 20 40]). The following routine
does the transformation.

(define xrep
(lambda ()
(Qetrec

([xf (lambda (msg)

(case msg

[poly (lambda (P)
(letrec ([work (lambda (E)
(it (&rest E)
(cons (edge (&1 E) (&2 E))

(wvork (&rest E)))
(polygon
(edge (21 E) (21 P)))ND)

(if (> (idim POLYCOE) 2)
(work P)
P)))]
[obj (lambda (OBJECT) (mapcar (xf ’poly) OBJECT))1))I1)
x£))).

5.2 Homogeneous Coordinates 18

The above routine can transform an object represented in vertex-oriented faces into a
representation of edge-oriented faces.

5.2 Homogeneous Coordinates

The concepts of homogeneous coordinates in geometry were applied to computer
graphics in the 1970's. If a point or a vector in an n-dimensional space is [z; %2
z,], it can be represented in 2 homogeneous coordinate system as [hz; hzs ...

hz, h], where h is any non-zero scalar. Thus if [z; z» ... 2z, h] is a point in its
homogeneous system, its original coordinates are [+ 32 ... Z»]. Without loss of

generality, we let & = 1 so that to obtain the non-homogeneous coordinates requires only
the elimination of the homogeneous coordinate instead of a series of divisions.

The significance of homogeneous coordinates is that transformations can be
performed “homogeneously” via a matrix multiplication model. This idea will be clear
when we introduce transformation matrices in Section 5.3. Let us now first investigate
how to get the homogeneous coordinates for points in Scheme. We have the following
routine:

(define hom

(lambda ()
(letrec
([kf (lambda (msg)
(case msg
[point (lambda (POINT) ((stag POINT) 1))]
[edge (lambda (EDGE) (mapcar (hf ’point) EDGE))]
[poly (lambda (POLYGON) (mapcar (hf *poly) POLYGOH))]
[obj (lambda (DBJECT) (mapcar (hf ’obj) OBJECT))1))1)
hf)))

which returns the homogeneous coordinates for a geometric entity (point, edge, polygon,
or object) according to the message specified. For instance, if E is an edge denoted by the
pair of vertices ([1 2 3] [4 5 6]), ther (((hom) ’edge) E) yields ([1 2 3 1] [4 &
8 1]). Note that to get the homogeneous coordinates of a point, we simply append the
original coordinates with the vector [1]. The homogenization of higher order entities is
just a series of mapcar down to the lowest level (homogenization of a point).

To dehomogenize points is less trivial. Intuitively, since the homogeneous coor-
dinate is always 1, we can just discard that coordinate and return the rest. However,
since the points usually are involved in a series of transformations, there is no guarantee
that the value can be preserved. Consequently, we must divide each non-homogeneous
coordinate by the value of the homogeneous coordinate if it is neither 0 nor 1. The
following code shows what we want.

(define deh

(1ambda (D)
(letrec

([df (lambda (msg)

(case msg

[point (lambda (POIET)
(et ([h (float (&last POIET))]
[1 (8ext POINT
(if (> (sdim POIET) D) D (1- D)))1)

3 5. 3D Projections

(if (or (=2 0) (= b 1))
1
(mapcar (lambda (p) (/ p b)) 1))))]
[edge (lambda (EDGE) (mapcar (df ’point) EDGE))]
[poly (lambda (POLYGOE) (mapcar (df *edge) POLYGON))]
[obj (lambda (OBJECI) (mapcar (df ‘poly) OBJECT))1))1)
af))).

The structure of deh is symmetric to that of hom. Unlike hom, however, the
dimension of the dehomogenized coordinate system must be specified. Let P be the point
[2 2 2 2], then ({(deh 2) ’point) P) yields the 2-dimensional point [1.0 1.0]. Note
that the dehomogenization will make sense only if the resulting dimension is less than its
operand’s current dimension.

5.3 Transformation Matrices

Based upon the homogeneous system, all 3D transformations can be represented
by matrices.

L_Translation

In a fixed coordinate system, translating a point to the origin is equivalent to
translating the world to the new position in an opposite direction. Thus, this translation
can be viewed as creating a new coordinate system with origin at that point. Consider
a point P= [zo 3o 20] in 3D. An arbitrary point @ in the world relative to P can be
obtained by

1 0 0 0

0 1 0 0

[z y 2z 1] 0 0 1 0

—%9 —% —z 1
where [z y z 1] is the homogeneous point of @ in the old world.
In Scheme, this translation matrix can be represented by:

(define xlate
(l1ambda (P)
(matrix +0X4 +UY4 +UZ4 (((hom) °point) (®opp P)))))

where P is the new origin after translation.

II. Scaling

The transformation of a point @ = [z y z] with ascale S = [s; 85 s3], which
gives an x-direction scale of s, a y-direction scale of 82, and a z-direction scale of 25, can
be represented as:

&2 0 0 O
[0 s 0 0

zyz101 4 5 & of
0 0 0 1

In Scheme, the scaling matrix is defined as:

5.3 Transformation Matrices 15

(define scale

(1ambda (S)
{matrix (vector (&1 S) 0 0 0)
(vector 0 (&2 %) o 0)
(vector 0 0 (&38)0)
+UH4)))

where S is the scaling factor.

III. Translation and Scaling Combined

It is not unusual that a transformation is sometimes a combination of a trans-
lation and a scaling. Considering the P and S as before, in matrix representation we
have:

1 0 0 O\fs; 0 0 O 3 0 0 0

o 1 o olfo s, 0o of [o 82 0 o

0 0 1 oflo o s 0f { O 0 ss Of
—% —Y% —2 /X0 0 0 1 —81%0 — 38290 —33z0 1

Note that matrix multiplication is not commutative, so translation and scaling combined
differs from scaling and translation combined.

A typical example in 3D projection process that belongs to this category is the
view port to physical device coordinates transformation. It takes a transformed view
reference point (not necessarily in the origin) and a view window (a list of four corner
coordinates) and yields a system with origin at the bottom left corner of the video display
and scaled from the window sizes to the screen sizes. The routine xcale gives such a
matrix:

(define xcale
(1ambda (VRP W)
(let ([VRPx (&1 VRP)] [VRPy (&2 VRP)]

[umin (&1 W)] [umax (&2 W)]

[vmin (23 W)] [vmax (24 ¥)])

(let ([Px (+ umin VRPx)]
[Py (+ vmin VRPy)]
[Sx (/ #xres (- umax umin))]
[Sy (/ #yres (- wvmax vmin))])

(matrix (vector Sx 0 0 0)
(vector 0 Sy 0 0)
(vector 0 0 0 0)

(vector (-- (* Sx Px)) (-- (*+ Sy Py)) 0 1))))))

where #xres and #yres are the resolutions of the video screen global to the whole system.
Notice that in this particular example, the combined transformation works on 2D only,
hence the third row vector as well as the third column are both zero vectors.

IV, Rotation

An othogonal matrix satisfies (1) row vectors are unit vectors, and (2) row vectors
are mutually perpendicular. A rotation around any of the three principle axes is an
othogonal transformation. The implication is that the composition of any number of
rotations is still othogonal. Also, rotations preserve lengths and angles while translations
and scalings don’t.

Consider a typical case where we have three points in a right-handed system,
say Fy, P1, and P,. Our goal is to get a rotation matrix that when applied to the three

16 5. 3D Projections

points yields the new P, P, parallel to the negative z-axis, the new PP, parallel to the
positive y-axis, and the normal to the plane of Py, P, and P, parallel to the positive
x-axis. Since the composite rotation matrix is othogonal, it can be realized by taking unit
vectors in the various directions mentioned above. If M is the upper left 3X3 matrix
of our rotation submatrix, then M’s 3™ column is the unit vector in the negative P, P,
direction, its 224 column is the unit vector normal to the plane determined by those three
points, and its 1* column is just the cross product of the other two unit vectors. A more
detailed discussion on this topic is given in [FoVa).

To be more precise, the following Scheme code returns such a rotation matrix:

(define rotate
(1ambda (VPE VUP)
(let ([rz (*opp (*unit VPH))]
[rx (#unit (#cross VPE VUP))1)
(let ([ry (#cross rz rx)])
(!xpose (matrix ((stag rx) 0)
((stag ry) 0)
((stag rz) 0)
+UH4))))))

where VPH and VUP are analogous to the vectors PoP; and PyP,, respectively. Their
geometric meanings will be clear when projections are introduced in Section 5.4.

V. RHS to LHS

The right-handed system is familiar to most people. However, in 3D computer
graphics, the left-handed coordinate system is more realistic because having the positive
z-axis pointing into the screen rather than out of the screen reflects the correct relationship
between an object’s viewing size and its distance from the viewer. As a result, the
transformation from a right-handed system to a left-handed one is useful. We have the
matrix:

0
0

OO e

0
1
0 —1

00 O
or equivalently:

(define r-1 (lambda () (matrix +UX4 +UY4 -UZ4 +UH4))).

0
0
0
1

5.4 Projection Matrices

There are basically two subclasses in planar geometric projections: perspective
and parallel. If the distance from the center of projection to the projection plane is finite,
the projection is perspective, otherwise it is parallel. So for perspective projections, we
specify the center of projection (COP); for parallel projections, we specify the direction
of projection (DOP).

The perspective projection creates a more realistic view. In perspective projec-
tions, an object’s projected size is inversely proportional to its distance from the center
of projection, hence a realistic view is reflected. This effect is known as the perspective
foreshortening. In parallel projections, the foreshortening phenomenon is less obvious.
However, parallelism among lines is preserved in parallel projections but is generally lost
in perspective projections.

5.4 Projection Matrices 17

\

T
-~ .
”

— X

Figure 2. A projected unit cube in the xy-plane

I. Perspective Projections

The family of lines not parallel to the projection plane will converge to a point
called the vanishing point in perspective projections. If the family is parallel to one of
the three principle axes, the vanishing point is further described as principle. Perspective
projections are categorized by the number of principle vanishing points in the system. In
other words, they are characterized by the number of principle axes cut by the projection
plane. A simple calculation (see, for example, [FoVa]) shows the one-point perspective
projection can be given by:

(define per
(lambda (d)
(matrix +UX4
+UT4
(vector 0 01 (/ 1.0 d))
+ID4)))

where d is the distance from the projection plane to the COP.

II. Parallel Projections

Parallel projections are characterized by the relation between their DOP and
corresponding projection planes. A parallel projection can be categorized as othographic
if its DOP is normal to the projection plane, otherwise it is obligue. Consider a unit cube
in the left-handed system projected onto the xy-plane as illustrated in figure 2. The DOP
of the parallel projection is, in general, given by [lcosa Isine 1]. If [= 0, we have an
othographic parallel projection, otherwise (! > 0) it is an oblique parallel projection. In
particular, if [= 1, the projection is named cabinet, and if I = 1, it is called cavalier.
Thus if [and « are specified, we can use the following code to get the DOP:

(define mkDOP
(lambda (1 alfa) ; alfa in degrees
(iz (0? 1)
+UZ3
(let ([aifa-prime (de-rad alfa)])
(vector (# 1 (cos alfa-prime))
(#* 1 (sin alfa-prime))
DNN.

Note that if [= 0, the DOP is just the positive z-axis.

The parallel projection matrix returned by par maps the world onto the projec-

18 5. 3D Projections

tion plane (xy-plane):

(define par
(l1ambda (DOP)
(matrix +UX4
+UY4
(vector (&1 DOP) (&2 DOP) 0 0)
+UH4)))

where DOP is the direction of projection produced by mkDOP.

Incidently, the othographic projection does not have to go through the process
of mkDOP and its corresponding matrix can be generated more efficiently by:

(define oth (lambda () (matrix <UX4 <UY4 +ID4 +UH4)))

whose 3 row is a zero vector and the other rows are the unit vectors identical to those
given in par.

5.5 Mappings of 3D Entities

So far we have constructed a unified model of 3D transformations (including
projections) in terms of homogeneous 4X4 matrices. Our motivation is to make the
mappings of 3D geometric entities work as a continuous procedure. This procedure can
easily be established based upon the functional nature of matrix multiplication in linear
algebra and in our underlying language. Hence given an arbitrary geometric entity G and
a transformation matrix M, the result of M applied to G can be summarized by:

(define map

(lambda (M)
(letrec
([uf (lambda (msg)
(case msg
[point (lambda (POIRT) (!mult2 (matrix POIET) M))]
[edge (lambda (EDGE) (tmult2 EDGE M))]
[poly (lambda (POLYGON) (mapcar (mf ‘*edge) POLYGON))]
[obj (lambda (OBJECT) (mapcar (mf *poly) OBJECT))1))I)
nf)))

which is in fact a series of matrix multiplications. Recall that the first order entities
(points) are represented as vectors and the higher order entities are represented as matrices.
Therefore, if the entity is first order (a point), it must be converted into a matrix before
the multiplication can be performed.

5.8 3D Views

To get an arbitrary 3D view, a number of parameters must be specified. First,
we need a view plane (or projection plane) which is determined by a point called the view
reference point (VRP) on the plane, a vector called the view plane normal perpendicular
to the plane, and another vector called the view up vector (VUP). Second, a view window
relative to the VRP must be given. This is a list of the four corner vertices of a rectangular
region in the view plane. The window also determines a 2D coordinate system with origin
at the VRP and the y-axis parallel the projection of the VUP along the direction of VNP

5.8 8D Views 16

to the view plane. Collectively, these planar coordinates and the VPN (as the z-axis)
form a left-handed system (so that the x-axis can also be uniquely determined). Finally,
we need to specify a view volume in order to get a 3D view. This volume is defined by the
window and the COP (in perspective projections) or the DOP (in parallel projections).
In the case of perspective projections, the view volume will be a pyramid with apex at
the COP and sides passing through the window and expanding to infinity. For parallel
projections, it is an infinite rectangular pipe with direction parallel to the DOP and sides
passing through the window. The importance of the view volume is that the world is
confined in this region against which the projected objects can be clipped.

The view volume may become finite if front and back faces are specified. Given
a closed view volume, six-face clipping on a projected object can be applied (see Section
5.7). In our system, a plane az + by + ¢z + d = 0 can be represented as a homogeneous
vector [a b ¢ d]. A volume, as a direct result, may then be represented as a 6X 4 matrix in
which each row vector is a plane. Suppose ¥ is the window, FB is the list of the distances
of the front and back faces from the view plane, and VRP and DOP are as defined, then
a view volume in either projection can be given by vvol:

{(define vvol
(lambda (¥ FB)
(let ([umin (21 ¥)] [umax (22 W)]
[vein (23 W)] [vmax (24 W)]
[F (21 FB)] [B (a2 FB)1)
(lzrzbda (msg)
(case msg
[perspective
(lambda (VRP)
(let ([vx (&1 VRP)] [vy (22 VRP)] [Vz (23 VEP)])
(let ([xmin (+ ¥x umin)] [xmax (+ Vx umax)]
[ymin (+ Vy vmin)] ([ymax (+ Vy wvmax)])
(let ([vi (vector xmax ymin Vz)]
[v2 (vector xmax ymax Vz)]
[v3 (vector xmin ymax ¥z)]
[v4 (vector xmin ymin Vz)])

(matrix
((+tag (#opp (Vx3 v1 v2))) 0) ; right
((stag (sopp (Vx3 v3 v4))) 0) ; left
((2tag (*opp (Vx3 v2 v3))) 0) ; top
((stag (*opp (Vx3 v4 v1))) 0) ; bottom
(vector 0 0 1 (-- (+ Vz B))) ; back

(vector 0 0 1 (-- (+ Vz F)))))))] ; front
[parallel
(lambda (DOP)
(let ([H (sopp (scross V -UX3))])

(matrix
(vector 1 0 0 (-- umax)) ; right
(vector 1 0 0 {-- umin)) ; left

((stag H) (-- (sdot E (vector umax vmax 0)))) ;top
((2tag H) (-- (#dot n (vector umim wvmin 0)))) ;bot
(vector 0 0 1 (-- B)) ; back
(vector 00 1 (== F)INDDNM ; fromt

Each row vector in the returned matrix (volume) is an equation denoting one

20 5. 3D Projections

of the volume’s side planes. The ordering of the side planes in the volume is arbitrary.
However, for the purpose that will not clear until clipping is introduced, the order of (1)
right, (2) left, (3) top, (4) bottom, {5) back, and (6) front is adopted.

5.7 3D Clipping

We now present a 3D version of the Cohen-Sutherland clipping algorithm. A
detailed description of its 2D version can be found in [FoV3].

Let L: az + by + cz+ d = 0 be a plane. Then L can be represented by the
vector [a b ¢ d]. We claim that a point P = [z yo 2z, 1] is in the positive side of the
space relative to L if azg + byo + ¢20 + d > 0. This is equivalent to saying that the
inner product P-L > 0. Conversely, P is in the non-positive side of L if P-L <= 0.
Thus we can represent the outcode of a point relative to a volume as a 6D vector of 1's
and 0's where a 1 corresponds to the fact that the point is outside the volume relative to
a specific side plane and a 0 corresponds to reverse case. Using the ordering mentioned
earlier, the outcode referring to the point is, in order, (1) right of, (2) left of, (3) above,
(4) beneath, (5) behind, or (6) in front of the view volume if its corresponding position
has an 1. The routine outcodes gives such a vector.

(define outcodes
(lambda (p VV)
(letrec
([work (lambda (volume even?)
(if volume
(cons (if ((if even? > <) (#dot p (&1 volume)) 0) 1
(werk (&rest volume) (mot even?)))))1)
(work VV t))))

where p is the point to be examined and VV is the target view volume. Note that the
outcode has a bit 1 in its #** position only if the point is outside the volume relative to
its i** side plane. The outside refers to, for even numbered side planes (right, top, and
back), the positive half-space, or for odd numbered side planes (left, bottom, and front),
the negative half-space. This explains why the adopted ordering is essential to specifying
the view volume. Furthermore, the following constant vectors play special roles in our
clipping procedure:

(define #2allzero (vector 0 0 0 0 0 0))

(define #allone (vector 1 111 1 1)).

As far as the six-face clipping against a view volume is concerned, an edge is
trivially rejected (i.e. both endpoints are outside the volume) if the outcodes of its two
endpoints have an inner product greater than zero. Similarly, an edge is trivially accepted
(i.e. neither of the endpoints is outside the volume) if their outcodes are both zero vectors.
That is:

(define reject (lambda (0C1 0C2) (> (=dot OCi 0C2) 0)))

(define accept
(lambda (0C1 0C2)
(2nd (equal? 0C1 sallzero)
(equal? 0C2 #allzero)))).

o)

5.7 3D Clipping 21

The intersection of an edge and a plane can be computed in vector form as
follows. Let E = P, P, be an edge and H be a plare. The intersection point P of E and
H is

P=pP +-8HE
which can also be given by:

(define intersect
(lambda (E PL)
(let ([pi (&1 E)])
(let ([ve (sedgev E)])
(((homo) ’point)
(Zext (sadd pi
((sscp ve) (/ (float (-- (*dot pi PL)))
(#dot ve PL))))
3)))N.

The following routine clips a geometric entity of the 274 order or higher against
a view volume,

(define clip
(lambda (VV)
(letrec
([*mapcar (lambda {f 1)
(letrec ([work (lambda (1)
(if 1
(let ([ans (£ (81 1))D)
(if ans
(cons ans (work (&rest 1)))
(vork (&rest 1))))))1)
(work 1)))]
[cf (lambda (msg)
(case msg
[edge (lambda (EDGE)
(letrec
([wvork (lambda (E oc2 order)
(let ([ocl (outcodes (&1 E) Y¥)1)
(if (accept ocl oc2)
(if order E (reverse E))
(if (> (#dot ocl #allone) 0)
(vork (edge (intersect E
(vhich? ocl VV))

(22 E))
ec2
order)
(work (edge (intersect (reverse E)
(which? oc2 VV))

(&1 E))
ocl
(not order))))IN1)
(let ([oci (outcodes (&1 EDGE) VV)]

22 5. 3D Projections

[oc2 (ontcodes (&2 EDGE) YV)1)
(if (reject oci oc2) nil (work EDGE oc2 t)))))]
[poly (lambda (POLYGOE) (e¢mapcar (cf ’edge) POLYGOE))]
[obj (lambda (OBJECT) (»*mapcar (cf ’poly) OBJECT))I1))I)
cf)))

where #mapcar is a special case of mapear in the sense that only non-nil results are
returned in a list. The recursive local routine cf is a function of one argument which clips
an edge, a polygon, or an object depending on the message specified. As before, operations
on higher order entities are built on top of lower ones via the mapcar technique. Here,
smapcar is used instead because the trivially rejected lower order entities need not to be
involved in further transformations.

The Cohen-Sutherland algorithm is implemented as a function bound to the
message designator edge in the cf body. The local routine work takes a line segment (E),
its second endpoint’s outcode (0c2), and a Boolean value (order) which keeps track of
the endpoint switching, and tries to compute the intersections of E and the view volume,
if possible. It will halt only if the edge is either trivially rejected, trivially accepted,
or non-trivially accepted when the intersections are found. In our algorithm the edge’s
first endpoint is always the one that is closer to the view volume. This ordering is not
necessarily consistent with what's in the object’s original representation which must be
preserved for hidden face elimination analysis. Finally, we define:

{(define which?
(l1ambda (0C VV)

(cond [(= (&1 0C) 1) (&1 VV)]
{(= (22 0C) 1) (&2 WV)]
[(= (&3 0C) 1) (&3 WV)]
[(= (&4 0C) 1) (&4 VW)]
[(= (85 0C) 1) (a5 VV)]
[(= (&6 0C) 1) (&8 ¥YV)1)))

that returns the first side plane for which a point is outside the view volume.

In summary, by Cohen-Sutherland’s algorithm, a 3D object can be clipped
against a 3D view volume before the projected picture is plotted. This is parallel to the
case that a 2D object can be clipped against a 2D closed region. [FoVa] suggests an addi-
tional process called shearing that transforms the view volume into a canonical form (the
unit pyramid in perspective projections or the unit cube in parallel projections). Clearly,
its purpose is to simplify the intersection calculation in clipping. In our implementation,
however, such a step is omitted and the object is clipped directly against the “raw”
volume. This is due to the following facts: (1) to obtain the canonical volume is no faster
than to obtain the raw volume, and (2) to compute the intersections between the object
and either volume requires the same procedure, and finally, (3) shearing introduces yet
another scaling transformation in addition to itself (see [FoVa]). It is obvious that, to our
system, shearing is nothing but overhead.

5.8 Hidden Face Elimination

The visual effect of a projected object can be further improved if its hidden
faces are eliminated. Earlier, we defined a face by its vertices in a clockwise order. This
ordering is essential to the hidden face eliminatior of a 3D object. [Ha83] proposes the
following simple analysis.

5.8 Hidden Face Elimination 23

Let F be a face with the vertex representation of (P, P, P, ...). The order
of Py, P, Py, ..., etc. is clockwise. F' can also be represented by its corresponding edge
form (B, E, ...), where £, = (Py P;), and E; = (P; P,). Let N be normal to F'
and N = E| XE,.

Consider first the case of perspective projections. Let V' be the vector from the
COP to any point in F', typically, the vector from the COP to P;. We claim that F is
visible if the angle from IV to V is greater than 90 degrees. More specifically, if N-V < 0,
then F' is a light face, else it is a dark face. Since V is the direction that light propagates
from the viewer's eyeball and IV is the direction of light reflected by F, then if the two
directions are opposite relative to the projection plane, the reflected light can be sensed
by the viewer. Therefore the face is visible.

The case of parallel projections is even simpler. The same argument holds with
the vector V' replaced by the DOP. Note, however, that NV is obtained by a cross product
in a left-handed system. As mentioned previously, #*cross works as well in a LHS, but
the conventional “direction of thumb” is given by the left hand rather than the right.

For an arbitrary object whose composing faces are in edge representation, the
following routine hfe returns a list of Boolean values in which a t corresponds to a light
face and a mil corresponds to a dark face. This list will then be sent, together with the
object, to the plotting routine which draws appropriate lines (solid vs. dashed, or solid
vs. blank) based upon its individual components. We show hfe below.

(define hfe
(1ambda (0BJ)
(lambda (msg)
(case msg
[yes (lambda (R)
(letrec
{[work (lambda (0BJ)
(let ([POLY (21 OBJ)]
[0BJ#+ (&rest OBJ)])
(let ([e1 (((deh 3) ’edge) (&1 POLY))]
[e2 (({deh 3) ’edge) (&2 POLY))])
(let ([c (sdot (if R R (&1 el))
(scross (sedgev el) (sedgev e2)))1)
(let ([visibility (< c 0)])
(if 0BJs
(cons visibility (work 0BJ3))
(1ist visibility)))))))1)
(if 0BJ (work OBJ))))]
[no (mapcar (lambda (e) t) 0BJ)1)))).

We implement the algorithm described above as a function of one argument
bound to the message designator yes. The argument R is nil for perspective projections
because the vector V is just P, (because the COP is at the origin) while it is the DOP in
parallel projections for the reason argued before. Note that if the designator no is specified
when invoking hfe, a list of t’s will be returned implying no hidden face elimination is
requested.

It must be emphasized that the algorithm presented here does not work for the
projections of overlapped objects.

24 5. 3D Projections

5.9 Plotting

The plotting of an object is the last step in a complete 3D projection process. If
there is no hidden face elimination involved, the plotting is straightforward: grab an edge
and draw a line between the endpoints. Our system supports a simple case of hidden face
elimination and the plotting routine becomes less trivial.

An important property is that a boundary line between adjoining faces can be
both visible and invisible due to the fact that one face is light while the other is dark.
For this kind of dual attribute edge, our decision is to favor its visible attribute. The
strategy is:

1. If an edge belongs to a light face, we simply draw a light line if it hasn’t
been drawn as a light line, or we redraw a light line if it has been drawn as
a dark line, otherwise we draw nothing.

2. If it belongs to a dark face, we draw nothing if it hasn’t been drawn as
a light line, or we draw a dark line if it hasn’t been drawn as a dark line,
otherwise we draw nothing.

Don't be confused by the terms used: light lines here refer to solid lines whereas dark
lines refer to dashed or blank lines.

To realize the above idea, two queues corresponding to the light and dark
families of faces are needed. Each time a line is drawn, it is enqueued into one of the
two queues depending on the drawing attribute. Furthermore, due to the restriction of
clockwise ordering, the two vertices in the same edge may be represented in opposite
orders in adjoining faces. Consequently, the reverse representation of an edge must also
be enqueued whenever the edge is to be enqueued. This is illustrated by the following
routine:

(define plot
(lambda Q)
(let ([1q (*#2queune)]
[dg (3*queue)]
[enq (lambda (q e) ((((q ’enqueue) e) ’enqueue) (reverse e)))])
(letrec
([pf (lambda (msg)
(case msg
[poly (lambda (POLY FLAG)
(let ((E (&1 POLY)))
(it E
(if (member E 1q)
((pf ’poly) (&rest POLY) FLAG)
(if (member E dq)
(block (if FLAG
(line2 E FLAG))

((pf ’poly) (&rest POLY) FLAG))

{block
(if FLAG (enq 1q E) (enq dq E))
(line2 E FLAG)
((pf 'poly) (&rest POLY) FLAG)))))))]
[obj (lambda (OBJ HFL)
(let ([POLY (21 OBJ)]

5.10 Integration 25

[0BJ* (&rest CBJ)]

[FLAG (&1 HFL)]]

[HFLs (&rest HFL)])

(if 0BJs
(block ((pf ’poly) POLY FLAG)

((pf “obj) O0BJ* HFL#))
((pf ’poly) POLY FLAG))))INI)
pf))))

where the invocation of #*queue returns an abstract queue object. The routine creates
two queues (1q and dq) when called. In fact, the queues can also be stacks, arrays,
sets,or any list-type data structures because the only purpose here is to do membership
testing. The routine bound to poly is the implementation of the general plotting strategy
described above. It takes a polygon (i.e. a face) and a light/dark flag, scans edge by edge
and draws lines if necessary. Note that the function line2 is the actual routine which
causes line drawing side effects. It takes an edge and the flag and draws a light or dark line
depending on the flag. The father routine obj takes an object and the list of light/dark
flags and recursively invokes poly.

5.10 Integration

Let us now integrate our system together from the pieces described in the
previous sections. In Section 5.1, we defined a 3D tent T whose composing faces are
represented as vertices. We develop the following procedures for perspective and parallel
projections of T.

I. Perspective Projections

Assume that the initial view parameters VRP, VPN, VUP, COP, W, and FB
are given and that the COP, W, and FB are all specified relative to VRP. We have the
following procedure:

1. Get the composite transformation matrix My, by: (1) translate the COP to the
origin, then (2) rotate so that the VPN becomes parallel to the negative z-axis and
the projection of the VUP onto the view plane is parallel to the positive y-axis, and
finally (3) combine it with the matrix that transforms the world from RHS to LHS.
That is:

(define M, ('mult (xlate (sadd VRP COP)) (rotate VPH VUP) (1-r)))

2. Get the projection matrix M, by specifying the absolute value of COP’s z-coordinate
which is:

(define M,., (per (abs (&3 COP))))

3. Get the view port to physical device coordinates transformation matrix M, by:
(define M, (xcale VRP ¥))

4. Get the perspective view volume V'V, by specifying W, FB, and VRP. We have:
(define VVp., (((vvol ¥ FB) ’perspective) VRFP))

5. Transform T into its homogeneous edge-based representation Ty, that is:
(define T; (((xrep) ’'obj) (((aom) ’'obj) T)))

6. Apply the transformation M;,; to the new object T; to retura To:

26 5. 3D Projections
(defire T, (((map M;,) ’obj) T1))

7. Clip Tz against V'V, to yield Ty:
(define T3 (((clip VV,.,) ’obj) T))

8. Apply hidden face analysis on Ty and get the Boolean list H:
(define H (((hfe T:) ’yes) nil))

9. Apply the composite M,,,-M,, to Tz and return T:
(define Ty (((map (!mult2 M., M,)) ‘'obj) T))

10. Dehomogenize Ty to the 2D object Tj:
(define T; ((deh 2) T3))

11. Plot T; with the help of light/dark face information given by H:

(((plot) ’obj) Tz H)

II. Parallel Projections

Assume that the basic parameters of the parallel projection, namely, the VRP,

VPN, VUP, DOP, W, and FB are given and that the W and FB are specified relative to
the VRP. The following summarizes the parallel projection process:

1.

2.

al

4-

8‘

g.

Get the composite matrix My, by translating the VRP (instead of the COP) to
the origin and by rotating such that VNP is parallel to the negative zaxis and the
projection of VUP on the projection plane is parallel to the positive y-axis. The
last thing to be dene in this step is again the transformation from the right-handed
system to the left. So:

(define My (imult (xlate VRP) (rotate VPE VUP) (r-1)))

Get the parallel projection matrix Mp,, by specifying the DOP:
(define M,,, (par DOP))

Get the view port to physical device coordinates transformation matrix M, as before.
(define M, (xcale VRP ¥))

Get the parallel view volume V'Vy,, by specifying W, FB, and DOP:
(define V'V, (({vvol W FB) ’parallel) DOP))

Transform T into its homogeneous edge-based representation T; as before:
(define T; (((xrep) ’obj) (((kom) ®obj) T)))

Apply the transformation M;,; to the new object T; to return To, that is:
(define T; (((map M) °obj) T1))

Clip T; against V'Vp,, to yield Ty:
(define T3 (((clip VVp,) ’obi) T))

Apply hidden face analysis on T; and get the Boolean list H:
(define H (((hfe T3) ’yes) nil))

Apply the composite M,.-M,, to Ty and return Tj:

7. References 27

(define Ty (((map ('mult2 M., My)) 'obj) T3))

10. Dehomogenize Ty to the 2D object Tp:
(define T; (((deh 2) ’obj) Ty))

11. Plot T; with the help of light/dark face information given by H:
(((plot) ’obj) T; H)

In fact, most steps listed above are common to both projection types and can
therefore be combined as one.

86 Conclusions

We have demonstrated the close relation between functional style programming
and geometric applications in graphics through the linear algebra primitives and a com-
plete package of 3D projections. What's important here is the fact that this programming
style reflects our thinking in terms of algebra and geometry directly. For instance, the
matrix notation in Scheme is almost identical to what it traditionally looks like and
applying transformations is as natural as writing down equations in mathematics.

Functional programming is grounded largely on recursions and applications
(function invocations) which may bring down the execution efficiency in the conventional
imperative machines. There has been calls for non-von Neumann computer architectures
for years among which Lisp machines are of high potential. We foresee that graphics
devices of the future will echo the compatibility between the geometric nature in computer
graphics and its underlying programming language.

In addition, we feel that the time has come to do other types of numerical
calculations in functional languages. As we have seen, in many cases it is easier to
implement algorithms in these languages. Also the parallel processing mechanism of
Scheme opens many doors to more efficient implementations of numerical algorithms. We
are investigating these ideas presently.

As a final note, we mention that the above package is implemented at the
Computer Science Department, Indiana University on a VAX 11/780 running under
Berkeley Unix using a DEC GIGI terminal as the graphics device.

87 References

[Ba78] John Backus, “Can programming be librated from the von Neumann style? a
functional style and its algebra of programs,” Comm. ACM, Vol. 21, No. 8
(August 1978), pp. 613-641.

[Ch41] Alonzo Church, “The Calculi of Lambda Conversion,” Annals of Mathematics
Studies, Number 6, Princeton University Press, 1941.

[Fe83] Carcl Fessenden, W. D. Clinger, D. P. Friedman, and C. T. Haynes, “[Scheme
311] version 4 reference manual,” technical report #137, Department of Computer
Science, Indiana University, February 1983.

|[Fo80] John K. Foderaro, The FRANZ LISP Manual, University of California, Berkeley,
1980.

28

7. References

[FoVa]
[GhJa]
[Has83]
[He80]
[La65]
[Mc60]

[5t78)

[St80]

J. D. Foley and A. Van Dam, “Fundamentals of Interactive Computer Graphics”,
Addison-Wesley Publishing Company, Inc., 1982.

Carlo Ghezzi and Mehdi Jazayeri, “Programming Lenguage Concepts”, John Wiley
and Sons, Inc., 1982,

Steven Harrington, Computer Graphics: A Programming Approach”, McGraw Hill
Book Company, Inc., 1983.

Peter Henderson, Functional Programming, Prentice-Hall International, 1980.

P. J. Landin, “A correspondence between Algol 60 and Church’s lambda nota-
tion,” Comm. ACM, Vol 8, No. 2-3 (February and March 1965), pp. 82-101 and
158-165.

John McCarthy, “Recursive functions of symbolic expressions and their computa-
tion by machine,” Comm. ACM, Vol. 3, No. 4 (April 1960), pp. 185-195.

G. L. Steele and G. J. Sussman, “The revised report on SCHEME, a dialect
of LISP,” MIT Artificial Intelligence Laboratory Memo #452. Cambridge, MA
(January 1978).

G. L. Steele and G. J. Sussman, “Design of a LISP-based microprocessor,” Comm.
ACM, Vol 23, No. 11 (Nov. 1980), pp. 628-645.

