SCHEME GRAPHICS REFERENCE MANUAL
Pee-Hong Chen, Wen-Ying Chi, Eric M. Ost
L. David Sabbagh and Geroge Springer

Computer Science Department
Indiana University
Bloomington, IN 47405

TECHNICAL REPORT NO. 145

SCHEME GRAPHICS REFERENCE MANUAL
by

Pee-Hong Chen, Wen-Ying Chi, Eric M. Ost
L. David Sabbagh and George Springer

August, 1983

SCHEME GRAPHICS REFERENCE MANUAL

Pee-Hong Chen
Wen-Ying Chi
Eric M. Ost
L. David Sabbagh

George Springer

Computer Science Department
Lindley Hall 101
Indiana University
Bloomington, IN 47405

2 2. Basic Graphics Primitives

§1 Preface

Traditionally, tools used in computer graphics have included the well-known
imperative style languages such as Basic, Fortran, and Pascal. An advantage in using
these languages to program graphics applications is certainly in their popularity; most
programmers use them. A disadvantage in using them, however, is that the functional
nature of graphics is generally not reflected in the programs. The implication is that
functional languages may be alternatives to such applications.

In this report, we present several sets of primitive functions essential to most
graphics applications. The programming language Scheme is chosen as our underlying
tool. Based upon this language, we develop a system of graphics primitives which will be
described below. The file containing the source functions is “/usiu/lds/Sgraphics/sgp.s”.

Scheme is an applicative order, block structured, tail recursive, lexically scoped
dialect of Lisp. It was developed during the mid-70’s at MIT. We use [[Scheme 311]([Fe83]),
the Indiana University implementation, to realize our system. We start by presenting some
basic and useful graphics primitives. A package of primitive linear algebra operators is
then introduced. Finally, we demonstrate a few functions of turtle graphics which are
applications of the first two sets.

§2 Basic Graphics Primitives

The basic graphics primitives can be categorized into five classes which specify,
respectively,

— Screen attributes,

— Foreground and background colors,

— Cursor moves,

— Line drawings, and

— Circle and arc drawings.

In general, two coordinate systems exist simultaneously. We maintain a cartesian
coordinate system and a polar coordinate system at the same time. The origin and the
current position (henceforth abbreviated CP) common to both coordinate systems are
of special importance to the primitives as well as most applications. Changes of cursor
position can be done in one of the three ways: (1) absolute mode, (2) relative mode, and
(3) offset mode. The last two are relative to the CP. The following graphics primitives are
based upon the features of the GIGI Regis commands ([GIGI]) but can be implemented
on other systems.

2.1 Screen Attributes

Screen attributes to be set up include graphics mode intitalization and termina-
tion, screen erase, writing features, efc. The following summarizes what is available,
» (initpl)

Initializes graphics mode. No arguments needed.

» (termpl)

2.1 Screen Attributes

[

Terminates graphics mode. No arguments needed.

(topdisplay)

Sets the screen attribute so that the command line will be displayed on
top of the screen in an interactive environment. No arguments needed.

(botdisplay)

Sets the screen attribute so that the command line will be displayed
on bottom of the screen in an interactive environment. No arguments
needed.

(nodisplay)

Sets the screen attribute so that the command line will not be displayed
on the screen in an interactive environment. No arguments needed.

(erase)

Erases the screen in graphics mode. No arguments needed.
(clear)

Erases the screen at Scheme top level. No arguments needed.
(pause sec)

Pauses the screen operation for sec seconds.

(invis)

Sets the screen attribute so that the cursor becomes invisible. This is
the opposite of vis. No arguments needed.

(vis)

Resets the screen attribute to mormal (cursor visible). This is the
opposite of invis. No arguments needed.

(blink)

Sets the screen attribute to yield a blinking cursor which is the opposite
of offblink. No arguments need.

(!blink)

Returns the screen attribute of cursor blinking. Unlike blink, 'blink
causes no global side effects on screen attributes. However, it can be
called by gprine and result in some local side effects.

(offblink)

Resets the cursor to normal (no blinking). No arguments needed.
(toffblink)

Returns the screen attribute of cursor normal.
(shade)

Initiates shading on the screen. The opposite is offshads.

(!shade)

Returns the screen attribute of shading. Causes no global side effects
unless intended by the invoker.

(offshade)

4 2. Basic Graphics Primitives

Resets the screen to normal (no shading). The opposite is shade.

> (loffshade)
Resets the screen attribute of shading off. Causes no global side effects
unless requested by the invoker.

> (dash)
Sets writing attribute to dashed lines. This is the opposite of offdash.
The default writing multiple for spacing is 8 pixels. No arguments
needed.

> (offdash)
Resets line drawing to normal (solid lines). This is the opposite of dash.
No arguments needed.

> (erasevrite)
Erases existing images. This is the opposite of overlaywrite. No
arguments needed.

> (overlaywrite)
Overlays new images on top of images already on the screen. No
arguments needed.

> (writemultiple n)

Sets writing offset multiple. The default offset multiple in GIGI is 1
which refers to 10 pixels.

2.2 Color Settings

» (foreground color)

Sets the screen foreground color. In GIGI, color must be one of the
digits between 0 and 7 which refer to black, blue, red, magenta, green,
cyan, yellow, and white, respectively.

» (background color)

Sets the screen background color. In GIGI, the options for color are the
same as described above.

2.3 Text Settings

Text can be printed on the screen in different sizes and directions. We present
the following text primitives.

> (textsize s)

Sets text character size to s. In GIGI, s must satisfy 0 < s < 16 and
its default value is 1. With the exception of size 0, GIGI generates the
character in an area of 9-3 X 10- s pixels.

> (textdir)

Sets the text character direction to 8 degrees. In GIGI, ¢ must satisfy
—360° < 8 < 360° relative to the horizontal axis; its default value is
90° (no tilt).

2.4 Cursor Moves 5

» (texthgt h)
Sets text height to k. In GIGI, h must satisfy 1 < k& < 16 which gives
the character height of 10 - i pixels.

> (text 8; 82 ... 8p)

Prints the text strings 81, 82, ..., 8o on the screen starting from the
CP. The CP is moved to the position of the last letter of the last string
written. The number of arguments text takes is arbritrary.

2.4 Cursor Moves

The cursor can be moved to (1) an absolute position, (2) a position relative to
the CP, or (3) a position whose distance and direction from the CP is designated by an
offset code known to the system. Two coordinate systems are available, namely, cartesian
coordinates and polar coordinates. We present the following primitives.

» (push)
Pushes the CP onto a system stack which can be recovered by pop. No
arguments needed.

> (pop)
Pops the last CP from a system stack. No arguments needed.

> (mid)
Moves the cursor to the center of the screen. No arguments needed.

» (hide)
Moves the cursor to infinity relative to screen boundaries.

> (moveabs2 z y)
Moves the cursor to the point [z, y] which becomes the new CP.

> (moverel2 Az Ay)
Moves the cursor to the point [z.u, + AZ, Yeur + Ay] which becomes
the new CP, where [Z.4r, Ycur] is the old CP.

> (Pmoveabs2 r §)
Moves the cursor to the point [r-cosf, r-sin#] which becomes the
new CP.

> (Pmoverel2 r 6)
Moves the cursor to the point [z.4» + 7 -c088, Yeur + r-sinf] which
becomes the new CP, where [Z.4p. Ycur] is the old CP.

> (moveabs P)
Moves the cursor to the point P which becomes the new CP, where P
is represented as a list [z, y].

» (moverel P)

Moves the cursor to the point [z.y, + =, Yeur + y] which becomes
the new CP, where [z.4r, Ycur] is the old CP and [z, y] are the
coordinates for P.

6 2. Basic Graphics Primitives

» (movedir D)

Moves the cursor to a point which has an offset of D relative to the CP.
This point becomes the new CP. In GIGI, D must be one of the digits 0
through 7 which refer to the direction. East is 0, northeast is 1, north
is 2, northwest is 3, west is 4, , southwest is 5, south is 6, and southeast
is 7. The default moving distance is 10 pixels (which can be changed
by writemultiple).

2.5 Line Drawing

Lines can be drawn either in the cartesian coordinate system or the polar
coordinate system. We present the following primitives.

> (lineabs2 z y)
Draws a line from the CP to the point [z, y] which becomes the new
CP.

» (linerel2 Az Ay)
Draws a line from, [Zcxs, Yeur), the CP, to the point [z.e, + Az,
Yeur + Ayl which becomes the new CP.

> (Plineabs2 r)
Draws a line from the CP to the point [r-cos#, r-sin#] which becomes
the new CP.

» (Plinerel2 r 6)
Draws a line from [Zcur, ¥eur], the CP, to the point [z.4, + r-cosé,
Yeur + r-sind] which becomes the new CP.

#» (lineabs P)

Draws a line from the CP to the point P which becomes the new CP,
where P is represented as a 2D list [z, y].

» (liperel P)

Draws a line from [Z.ur, ¥Ycur], the CP, to the point [Z.u;+ 2, Yewr+
y] which becomes the new CP, where [z, y] is the representation of
P.

» (linedir D)

Draws a line from the CP to a point which has an offset D relative to
the CP. This point becomes the new CP. In GIGI, the options of D are
described in movedir.

> (Sline2 E)

Draws a solid line between two endpoints designated by E which is a
list of two points (P; P,) and both points are a list of two coordinates.
The CP is moved to P, after the drawing.

> (Dlire2 E)

Draws a dashed line between two endpoints designated by E which is a
list of two points (P; P;) and both points are a list of two coordinates.
The CP is moved to P, after the drawing.

> (line2 £ F)

s. Linear Algebra Primitives 7

Draws a solid or dashed line accoring to the boolean value of F. If F is
true, (Sline2 E) is invoked otherwise (Dline2 E) is invoked. Refer
to Sline2 and Dline2 for other details.

2.6 Point Plotting

Point plotting is rarely used. However, two primitives are provided here.
» (pointabs2 z y)
Plots a point at [z, y] which becomes the new CP.

» (pointrel2 Az Ay)

Plots a point at [Z.ur+ AZ, Yeur + Ayl which becomes the new CP,
where [Toyr, Yeurl is the old CP.

2.7 Circle Drawing

Circles and arcs can be drawn in both coordinate systems. We have:

> (circabs2 z y r)
Draws a circle with center at [z, y] and radius r. The CP is moved
to [z, y].
> (circrel2 r)
Draws a circle with center at the CP and radius r. The CP remains the
same,
(Carc Az Ay ¢)

Draws an arc of length ¢. The arc’s center is at [z.ur, Ycur), the CP,
and its starting point is [z.4,+ AZ, Yeur+ Ay]. If ¢ > 0, the arc goes
counterclockwise, otherwise it goes clockwise. The CP is unchanged.

(PCarc r 0 ¢)

Draws an arc of length ¢. The arc’s center is at [Zcur, Ycurl, the CP,
and its starting point is [z.4, + 7 -c088, Yeu, + r-sinb]. If ¢ > 0,
the are goes counterclockwise, otherwise it goes clockwise. The CP is
unchanged.

v

§3 Linear Algebra Primitives

The basic data types in linear algebra are vectors and matrices. In Scheme, we
use the keywords vector and matrix to create data of these two types. They are both
aliases for the system macro list. So

(define V (vector 1 2 3 4))

binds the vector [1 2 3 4] to the identifier V. Note that the number of arguments that
vector takes is arbitrary. Similarly,

(define M (matrix (vector 1 2) (vector 3 4)))

§ 3. Linear Algebra Primitives

declares M as the 2 X 2 matrix (1 2). Notice that we declare a matrix by specifying its

row vectors. The fact that all row vectors must be of the same dimension is an implicit
protocol. Our system does not complain about inconsistent row vector dimensions in a
matrix declaration.

We now examine the primitives of linear algebra. As a convention, operators
dealing with vectors are prefixed with an asterisk (¢) and operators for matrices are
prefixed with an exclamation mark (!). Incidentally, the component accessing functions
are prefixed with an and sign (&).

3.1 Component Accessing Primitives

> (&comp OBJ i)

Returns the i** component of OBJ. For example, if OB/J is the vector
[z1 z2 ... =z,], then {(Bcomp OBJ i) returns z;if 1 < i < n.

> (Bext OBJ 1)

Returns a list containing the first : components of OBJ. For example,
if OBJ is the vector [z; z2 ... z,], then (8ext OBJ 1] returns
the vector [z; ... zdif1<i<n.

3.2 Vector Manipulation Operators

In this section, let U be the vector [u; uo ... u,] and let V be the vector
vy vo ... wv.].
» (3id+ n)

Returns the zero (additive identity) vector of dimension n. For example,
(sid+ 3) returns the 3D zero vector [0 0 0].

(*unth n)

Returns a unit vector of dimention n with 1 in the
example, (sunth 3 1) returns the unit vector [1 0 0].

(sdin U)

Returns the dimension of U. That is, (¢dim U) returns the scalar n.

v

i** place. For

> (slength U)
Returns the length of the vector U. So (#length U) gives
V2 + w2 + ...+ u,2.
> (stag U)
Returns a function of one argument that when given a value h returns
U zppended with the vector [h], i.e. ((stag U) k) returns the vector
[u; ug ... wuy, A).
» (sscp U)

Returns a function of one argument which when given a scalar s returns
a vector by multiplying each component of V' by a factor of s. In other
words, ((#scp U) 3) returns the vector [su; sux ... su,l.

3.3 Matrix Manipulation Primitives

> (zopp U)
Returns the opposite of U. That is, (¢opp U) returns the vector [— u,
— Uy ... —Up).

» (#unit U)

Returns a unit vector in the direction of U. More precisely, (sunit U)
returns the vector [T%'ll- ﬁ}r .]%,‘I], where

Ul = Vu12 + u2? + ...+ u,2, the length of U.

» (2add U V)
Returns the sum vector of U and V, U + V. That is, (#add U V)
returns the vector [u; + v1 ua 4+ v2 ... un+ v,].

> (sdift U V)
Returns the difference vector of U and V, U — V. In other words,
(#diff U V) returns the vector [u; — v; 22— vy ... u,— v,].

> (sedgev E)
Returns a vector from E’s starting point to its ending point, where E
is a list of two vectors (or points). Suppose E is bound to the list (U
V), then (sedgev E) returns the vector V— U, [v; — u; ve— us ...
Up — Ug).

» (sdot U V)
Returns the dot (inner) product of U and V, U-V. Thus (sdot U V)
returns the scalar uyvy + ugvo + ...+ u,v,.

» (2cross U V)

Returns the cross (outer) product of U and V, U X V (instead of V' X
U). In this implementation, it is restricted to 3D. Let W = U X V3
= [w; ws ws]. We have w; = the determinant of the 2 X 2 matrix

u i u
(1+tmod3 1+(i+1)mods)) - S 3.
Vi4imod3 Vi4(i+1)mod3 =

3.3 Matrix Manipulation Primitives

In this section, let

fa“ a12 ... a5
azy @22 ... Oz25
A=| . : . | be an § X j matrix and let
kau @iz ... Qi
rbu b2 ... by
b21 bep
B=] g be a k X [matrix.
\be: bkz ... bu
We present the following primitives.
» (lid+ D)

Returns the zero (additive identity) matrix of dimension D, where D is
a list of two values, (r ¢) which refer to the number of rows and the
number of columns, respectively.

10 3. Linear Algebra Primitives

> (tid* n)

Returns the n X n identity matrix.

» (!dim A)
Returns the dimension of A as a list, that is {!dim A) gives the list (5
7.
> (lopp A)
Returns the additive inverse of A. In other words, (lopp A) returns
the matrix
— a1 — 4212 ... —Glj
—az1 —0G22 ... = dQgj
— ai1 — dio T a.-_,-

> (!xpose A)
Returns the transpose of A. That is, (!xpose A) gives the matrix

ag1n 421 ... @i
ajz G2z ... @42
415 G257 ... G5

th

which is a § X ¢ matrix whose n** row is A’s n** column.

> (idet2 A)

Returns the determinant of A. In this implementation, it is restricted
to 2D. So the determinant of the As is a13a20 — @21012.

» (ladd A B)

Returns the matrix sum of A and B if i = k and 7 = [. That means
(tadd A B) yields the matrix

e+ by ez 4+ b2 ... a5+ by

a1 + bay ago+ bas ... @oj+ by
A+ B= . ; ;

ain+ by gt bz ... g+ by

ifi=~Fkand j=1
> (!mult2 A B)

Returns the matrix product of A and B (instead of B and A) if j = k.
More precisely, (!mult2 A B) yields the matrix C. We have:

‘i1 Gz ... Cn
€21 C22 ... O
C=A-B=| . .)
i1 Ci2 ... Cf
which is an § X [matrix if j = k, where ¢pnp = Efml Qmeben for

1< m<Lsand1<n<l
> (‘mult A; As ... Ap)

4. Turtle Graphics Primitives 1

Returns the matrix composite of Ay, A, ..., and A,. Let the dimension
of A; be (z; y;). The composite matrix exists only if y; = =44, for
1 < i < n. Note that 'mult is a generalized form of {rult2.

§4 Turtle Graphics Primitives

Turtle graphics is at the center of the programming language Logo. We imple-
ment some of its basic primitives in Scheme. In this section, let V be a 2D vector [z y]
and let ¢ be any angle specified in degrees instead of in radians. The drawing pen can
be up or down. We let A be a global identifier denoting the pen state. Also, two more
registers maintaining the turtle position (IT) and the turtle heading (©) are global to the
system. The position of system origin (II == [0, 0]) is at the center of the screen; the
heading 0 is horizontal (8 = [1, 0]).

» (rotate V 6)

Returns a vector which is the rotation of V' by # degrees. If (rotate
V' §) yields the vector U, then

_ cosd sind
U=Ilz4] (— sin@ cos 6)'

> {setheading ¢)
Sets 8 to [cosd, sind].
> (setposition V)
Sets I to V and moves the turtle to V' absolutely.
» (pendown) or (pd)
Sets A down.
» (penup) or (pu)
Sets A up.

> (initturtle)

Initializes turtle mode which yields A = down, ® = [1, 0], and [T =
[0, 0].

» (forward d) or (£fd d)

Moves the turtle to IT+ d© which becomes the new IT. If A is down, a
line will be drawn simultaneously from the old IT to the new II.

> (backward d) or (bk d)

Moves the turtle to II — 8 which becomes the pew I1. If A is down, a
line will be drawn simultaneously from the old II to the new II.

> (left 4) or (1t 8)
Rotates 8 by # degrees yielding a new ©.
> (right 6) or (rt 6)
Rotates 8 by — 8 degrees yielding a new 6.

12 5. References

§5 References

[Fe83] Carol Fessenden, W. D. Clinger, D. P. Friedman, and C. T. Haynes, “[Scheme
311]version 4 reference manual”, technical report #137, Department of Computer
Science, Indiana University, February 1983.

|GIGI] GIGI/ReGIS Handbook, Digital Equipment Corporation, June 1981.

[Ab82] Harold Abelson, LOGO feor the Apple I, BYTE/McGraw-Hill Book Company,
Inc., 1982.

[AbSe] Harold Abelson and Andrew di Sessa, Turtle Geometry, MIT Press, 1980

