
ON THE COMPLEXITY OF PARTITIONING

SPARSE MATRIX REPRESENTATIONS

Jóhann P. Malmquist
Ministry of Finance

Arnarhvoli
101 Reykjavik, Iceland

Edward L. Robertson†

Computer Science Department
Indiana University

Bloomington, In. 47405

†
Supported by NSF Grant MCS - 8004337



ON THE COMPLEXITY OF PARTITIONING
SPARSE MATRIX REPRESENTATIONS

J.P. MALMQUIST and E.L. ROBERTSON†

Abstract

A standard representation of a sparse matrix is a structure where non-zero elements are
linked in rows and columns. A general graph structure corresponding to this representation is
defined. The problem of partitioning such a graph into fixed size blocks, so that the number
of inter-block links is minimized, is shown to beNP-complete.

Ke ywords:sparse matricies, graph partitioning, NP-completeness, data structures

1. Introduction

When a large matrix is sparse, with a high proportion of its entries zero (or some other
fixed value), it is convenient to store only the non-zero entries of the matrix. The representa-
tion of such a sparse matrix is a doubly-linked structure [3, 7]. In this representation, each
non-zero element belongs to two lists: a list of the non-zero elements of its column and of its
row. Each list is ordered according to the appearance of the elements in the left-to-right or
top-to-bottom traversal of the row or, respectively, column.

Figures 1 and 2 illustrate a sparse matrix (although it is not very sparse due to obvious
space limitations) and its doubly linked representation.

27 12 0 39 0  0  0

0 71 46 0 43 0  0

10 0 0 95 0  0 47

0 47 0  0  0 11 0

0 0 13 0 0 0 38

Figure 1. A sparse matrix.

†
Supported by NSF Grant MCS - 8004337



Partitioning Sparse Matrix Representations 2

Links directed down and to the right; dashed lines represent row and column headers.

Figure 2. Doubly-linked representation of a sparse matrix.

This paper addresses the problem of partitioning the list representation of a sparse
matrix in order to place the structure on secondary storage. Such partitioning arises only
with extremely large matrices, often with matrices not directly derived from numerical prob-
lems. Indeed, the current research originated with the realization that a common data-base
situation could be represented as a sparse matrix [6].

When any large data structure is placed on secondary storage, it must be partitioned into
blocks, whose size is determined by the physical or logical constraints of the system. In most
operating systems, blocks are determined by uniform partitions of the users address space
and are “invisible” to the user, or at least largely beyond the users control. Our notion of
blocking, however, includes the possibility of a more deliberate allocation of objects to
blocks in order to meet various efficiency criteria. A primary consideration in evaluating the
efficiency of a partition of a large data structure is the ways in which the structure is to be tra-
versed. Thus a linear file is partitioned sequentially while a tree is partitioned attempting to
keep each subtree on a block [5, 8]. (The only links between the objects in secondary storage
are those explicitly present in the data structure, thus we are not concerned with such prob-
lems as building indices to files.) Since obtaining a block from secondary storage is rela-
tively expensive, traversing an off-block link (a link from one block to another) is likely to be
expensive and should therefore be minimized. This is facilitated by minimizing the number
of off-block links.

Considering the data structure as a graph, the goal is to partition the nodes into fixed-
size classes (blocks) so that the partition classes may be separated by cutting the minimal
number of edges. The minimization of off-block links is of course conditioned by the proba-
bilities that the various links be traversed. Thus, if it is known that a matrix will only be tra-
versed row-wise, the column links can be ignored and the rows partitioned according to an
efficient algorithm [1]. If row and column traversal are considered equally important, how-
ev er, the problem of partitioning the sparse matrix representation is difficult, in a sense which
has rapidly become a classic categorization for a difficult problem: the problem isNP-com-
plete [2].



Partitioning Sparse Matrix Representations 3

2. Formal Definition

Before analyzing the complexity of the partition problem, we give a formal definition of
a sparse matrix graph and show that this corresponds to or intuitive notion of the doubly-
linked representation of a sparse matrix. The goal of this brief digression is to clearly specify
the problem we are considering and to allow more precise comparison with a large number of
graph problems already known to beNP-complete.

DEFINITION. A sparse matrix graphis a connected directed acyclic graph in which the edges
are labeled with two labels (we will use “R” and “C” , with edges called “R-edges” or “C-
edges”). Each node has at most one in-arc and at most one out-arc of each label. Moreover,
consider the partition such that two nodes are in the same R-class iff they are joined by a
chain of R-edges (theR-partition ). Then the R-classes must be strictly partially ordered by
the C-edges. Correspondingly defined C-classes must also be strictly partially ordered by R-
edges.

A doubly-linked representation of a sparse matrix clearly corresponds to a sparse matrix
graph when the links are directed right or down across rows or, respectively, columns. To see
that any graph satisfying the above abstract definition indeed corresponds to the doubly-
linked list representation of some sparse matrix, consider an arbitrary sparse matrix graph
and apply the following procedure:

Refine each partial order into a linear order and use the R- and C-classes as
indices for an appropriately dimensioned matrix. Each node is then placed in
the position indexed by its R- and C-classes.

It is necessary to show that there is at most one entry in each R, C position. Because of
the labelling restrictions, each C-class is linearly ordered by the C-edges. Thus, if two ele-
ments of some C-class also belonged to the same R-class, that R-class would be greater than
itself in the C-ordering.

It is easy to see that the doubly-linked representation of the resulting matrix, with links
directed toward increasing indices, is exactly the original graph.

The example in Figure 3 shows that the requirement that the R- and C-classes be
ordered by C- and R-edges, respectively, cannot be omitted. Note that the row and column
headers (shown dashed in Figure 2) are omitted from Figure 3 and all subsequent examples.

Having formally defined the special form of graph with which we are dealing, we now
formally define the problem as well.

DEFINITION. An instance of the problemsparse matrix graph partitioningis a sparse matrix
graph G = <V, E> (V = vertices, E = edges) and two positive integers p and k. Denote this
instance by S<G, p, k>. The actual problem is to partition V into some number of disjoint
subsets (blocks) such that each subset has at most p members and that at most k edges have
endpoints in two distinct subsets.



Partitioning Sparse Matrix Representations 4

Figure 3. An example of directed acyclic graph following label constraints
which is not a sparse matrix graph.

3. Partition Complexity

The following proof will use a reduction tograph partitioning, a problem which is
known to beNP-complete and which is in fact a generalization of the current problem [4, 2
problem ND14]. An instance of graph partitioning consists of G = <V, E>, p and k, denoted
P<G, p, k> without any restriction on G. The problem is again to be solved by partitioning V
into disjoint subsets with the same constraints.

THEOREM. Sparse matrix graph partitioning isNP-complete.

PROOF. It is easy to show the problem is inNP. Giv en a sparse matrix graph G = <V, E> and
integers p and k, simply guess a partition of V. This partition is easily checked in polynomial
time for the required conditions.

To show the problem is indeed complete isNP, consider an instance G = <V, E>, p, and
k of the graph partition problem and construct an instance of the sparse matrix graph partition
problem. Let G hav e maximum degree of d. Let q denote (p + 1)/2. For each node vi in V =

{v 1, ..., vn} construct a grid of q(d + l) horizontal by (d + 1) vertical elements. This is made a

graph by adding edges directed rightward across rows and down columns. These edges are
obviously labelled R and C respectively. We will refer to this matrix as the “node matrix” for
vi and to its nodes as “elements”.

We now link the node matrices using the following procedure:

Index the edges incident with node vi from 1 to d (or less), such that if the

index of edge (vi, vr) is less than the index of (vi, vs), then r<s. Let e be an

edge in E connecting node i and node j together, where i<j. Assume e has
index i′ for vi and j′ for vj. Connect the rightmost element in row i′ of the

node matrix i to the leftmost element in row j′ of the node matrix i. Repeat the
above process for every edge in the graph G. The resultant graph is denoted
MG.

This procedure produces a sparse matrix graph, as can be seen by the following: The interior
elements of a node matrix obviously satisfy the degree and ordering constraints for a sparse
matrix graph. The exterior elements of a node matrix are incident with two or three edges



Partitioning Sparse Matrix Representations 5

within the node matrix and at most one is added, corresponding to some unique edge incident
with the original vertex vi. Since the edge matrices are linked in an order agreeing with the

original ordering of V, each R-class is ordered properly.

Figures 4 and 5 illustrated the transformation for a simple graph. We use p = 1 and
hence q = 1 to simplify the example. In Figure 5, distinct R-classes have been allocated dis-
tinct rows as in a conventional sparse matrix, but row and column headers are still omitted.

Figure 4. Graph example (d = 2).

Edges are directed right or down; headers are omitted.

Figure 5. Transformed example from Figure 4 (p = q = 1).

If P<G, p, k> is an instance of graph partition where G has the maximum degree of d,

then P<MG, pq(d + 1)2, k> is an instance of the sparse matrix graph partitioning problem. We

now claim that there is a suitable partition for P<MG, pq(d + 1)2, k> if and only if there is a

partition for P<G, p, k>.

Suppose there is a partition of cost k for MG with block size pq(d + 1)2. By Lemma 6,

which appears below, we know that there is a partition of cost at most k such that no node
matrix is split between blocks. Moreover the maximum number of node matrices in a block



Partitioning Sparse Matrix Representations 6

is p. But from the construction of MG we know that node matrices are connected by an edge

if and only if the corresponding nodes in G are connected by an edge. Therefore, there exists
a valid partition for G, with block size p and cost k.

Now suppose that there is a partition of cost k for G, with block size p. Since each node

of G corresponds to a q(d + 1)2 node matrix of MG, the p or fewer node matrices correspond-

ing to the nodes in a block in the partition of G will fit into a block of size pq(d + 1)2. Since
no edges internal to a node matrix are cut by this process, the only cost is the k (or fewer)
edges cut in the original partition of G.

The following lemmas are required to verify that partitioning of MG directly corre-

sponds to a partitioning of G. They all are done in the context of partitioning MG with block

size pq(d + 1)2, where the graph G has degree d.

LEMMA 1. If a node matrix is split between blocks, with more than d internal node matrix
edges crossing a block boundary, then a partition of lower cost is obtainable by moving the
entire node matrix to a free block.

PROOF. There are at most d external edges connected to the node matrix.

LEMMA 2. If a node matrix is split over a block boundary for an optimal partition, then more
than p/(p + 1) of the node matrix elements must be in the same block. Call this block the
home block for the node matrix.

PROOF. Since it is not possible to divide a node matrix horizontally or vertically with d cuts,

the best separation is to cut off a corner with perimeter d. This will separate (d/2)2 out of

q(d + 1)2 elements, or fewer than 1/(p + 1) the total number.

LEMMA 3. In an optimal partition, no block is the home block for more than p + 1  node matri-
ces.

PROOF. Say some block is home for r node matrices. Then rq(d + 1)2p/(p + 1) is the least
number of nodes occupied by these node matrices and this quantity may not exceed the block

size, pq(d + 1)2.

LEMMA 4. If a node matrix is split over a block boundary for some partition and if the home
block of the node matrix has sufficient space, then “bringing home” the remainder of the split
node matrix would result in a partition of lower cost.

PROOF. In order to split a node matrix, at least one more internal edge must be cut than the
number of external edges saved.

LEMMA 5. In an optimal partition, no block is the home block for more than p node matrices.

PROOF. Because only p complete node matrices can fit onto a single block, space for an extra
node matrix would have to be made available by omitting small portions of node matrices



Partitioning Sparse Matrix Representations 7

from the block. Say m node matrices have portions placed on other blocks. We refer each of
these as node matrix i, for some unique i between 1 and m. Since this is essentially a prob-
lem of maximizing area for a given perimeter, the best way to do this within the given con-
straints is to omit a rectangular portion from a corner each of the m node matrices. Say the
corner omitted from node matrix i has height yi and width xi. Then the following constraints

hold

1. xi + yi ≤ d

2. Σ xiyi ≥ q(d + 1)2

3. Σ xi ≤ d

Constraint 1 is simply Lemma 1 and constraint 2 is the requirement that the total area
saved is the size of a node matrix. Constraint 3 follows because the total extra cost of the
omissions cannot exceed d, since otherwise it would be more economical to move one node
matrix to a free block and “bring home” the rest of the omitted portions (by Lemma 3, only
one node matrix need be so displaced and moving one node matrix will allow the others to be
“brought home”). Although the yi costs could be balanced by savings in links between node

matrices, the xi costs can never by made up.

However, these three constraints cannot all be satisfiable, since

Σ xiyi ≤ Σ xi(d - xi) = d Σ xi + Σxi
2 ≤ d2 < (d + 1)2 ≤ q(d + 1)2

follows from 1 and 3, contradicting 2.

LEMMA 6. Given any partition of MG , there is one of equal or lower cost with every node

matrix on a single block. Hence, in an optimal partition no node matrix is split over a block
boundary.

PROOF. If no node matrix is split, we are done. Hence, assume that one or more node matri-
ces are split over a block boundary. From Lemmas 2 and 3, we can find a partition of lower
cost where each node matrix has a home block, and each block is home for at most p node
matrices, if this situation does not already hold. Finally, the cost may be reduced by “bring-
ing home” all remaining portions of node matrices not on their home blocks, as in Lemma 4.
Since this lowers the cost of each node matrix involved, it obviously reduces the cost of the
entire partition.

This completes the proof of the theorem.



Partitioning Sparse Matrix Representations 8

4. Extensions and Conclusion

The above construction was done with several restrictions, but these were mainly to
simplify the proof and can be removed by a more elaborate construction.

The first elaboration is to add row and column headers to the sparse matrix graph. The
implementation of headers which requires their inclusion in the partitioning scheme forms
linear lists of row and column headers. This corresponds to adding an additional row and
column at the top and left of the matrix, with no zero entries in either. If single node headers
were added to the above construction, the partitioning arguments would no longer hold.
However, a broad “band” of nodes, both headers and regular entries, can be added to the top
and left of the above construction. These new nodes would occupy many more rows and
columns than the original construction, and hence there would be low relative density of links
external to the new nodes versus internal links. Thus, the partition of the added nodes is
essentially forced in an optimal partition.

The above remarks, if implemented, could greatly decrease the sparsity of the associated
matrix. However, matrices may be made arbitrary sparse (measured as non-zero elements
over total elements) by adding new rows and columns which are zero except on the diagonal.

A final variation for which partitioning is stillNP-complete is when row links have a
different cost than column links, but both are non-zero (as opposed to the case when one cost
is zero as discussed above). When the difference of costs is large (a factor of six or greater
remarks), the whole construction becomes simple. When the costs are close together,
“rotate” the entire construction if necessary, so that the links of higher cost correspond to the
columns in the construction. This has the effect, in particular, of strengthening condition (3)
of Lemma 5.

Now we must at last address the significance of a proof ofNP-completeness. All that
has been shown is the worst-case behavior of the general problem. There is no implication
about how often the worst cases occur, about average behavior or about a host of other practi-
cal concerns. What provingNP-completeness does do is direct our attention to heuristics and
approximation algorithms for the problem on hand. Indeed, the authors have been investigat-
ing linear-time heuristics for partitioning sparse matrix representations [6], but it is not neces-
sary to limit investigations with so strong a constraint.



Partitioning Sparse Matrix Representations 9

REFERENCES

(1) B.W. Kernighan,Optimal Sequential Partitions of Graphs,Journal of ACM, 18. 1.
(January 1979). pp. 34-40.

(2) M.R. Garey and D.S. Johnson,Computers, Complexity and Intractability: A Guide to
the Theory of NP-completeness,(1979), H.P. Freeman and Sons, San Francisco, Cali-
fornia.

(3) E. Horowitz and S. Sahni,Fundamentals of Data Structures,(1976), Computer Sci-
ence Press, Potomac, Maryland.

(4) L. Hyafil and R.L. Rivest,Graph Partitioning and Constructing Optimal Decision-
Tr ees are Polynomial Complete Problems,IRIA report 33, (October 1973).

(5) J.A. Lukes, Efficient Algorithm for the Partitioning of Trees,IBM Journal of
Research and Development, 18, 3, (May 1974), pp. 217-224.

(6) J.P. Malmquist,Storage Allocation for Access Path Minimization in Network-Struc-
tured Data Bases,Ph.D. Thesis, The Pennsylvania State University, (May 1979),
University Park, Pennsylvania.

(7) D.E. Knuth,The Art of Computer Programming, Volume 1: Fundamental Algorithms,
Addison-Wesley, Reading, Massachusetts.

(8) M. Schkolnick,A Clustering Algorithm for Hierarchical Structures,ACM Transac-
tions on Database Systems, 2, 1, (March 1977), pp. 27-44.

BUREAU OF THE BUDGET COMPUTER SCIENCE DEPARTMENT
ARNARHVOLI INDIANA UNIVERSITY
101 REYKJAVIK 101 LINDLEY HALL
ICELAND BLOOMINGTON, INDIANA 47405

USA
AND

IBM T.J. WATSON RESEARCH CENTER
YORKTOWN HEIGHTS, NEW YORK 10598
USA


