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Abstract

The average time required by backtracking is analyzed over four models of
random conjunctive form formulas . Each model gives a result of exp(O[vﬁ)] , where v
is the number of variables from which literals may be formed , s is the number of literals
per clause , and v*, 1 < a < s , is the number of clauses . This indicates that the
analysis methods used are relatively insensitive to small changes in the random model.

1 Introduction

Searching among the values of a set of variables X = {z;,72,..., zy} for all
solutions to the problem instance:

P(z1,22,...,2y) = true (1)

can be done in time exp{O(v)) when exhaustive search is used. Suppose instead we
introduce the intermediate predicate P(Y) which is defined for all Y C X , such that P(T)
implies P(S) whenever S C T. Let Pi be the intermediate predicate defined over the set
{z1,%2,...,25} of variables, where each variable has a finite number of possible values.
The intermediate predicate P may be false over the sequence of values (V;,V, ..., Vi)
assigned to variables z,, z2, ..., Zx only if Pry, is false over (V}, ..., Viy,) for all possible
values Viyy of zx4y . Hence there is no extended sequence of values assigned to the rest
of the variables that would satisfy (1) . Intermediate predicates that are false for most
values of the variables reduce the search space significantly, thus making backtracking
attractive for hard problems [3,4]. (For a more detailed discussion of backtracking and
intermediate predicates see [1].)

In this paper we investigate the asymptotic behavior of the average running time
of a simple version of backtracking over several sets of NP complete problems [3]. Purdom
and Brown have shown that for a class of random problems with v variables, s literals
per clause and v® clauses, 1 < a < s, simple backtracking takes time exp(O(‘u%)) on
the average . Although the time is exponential, the improvements over exhaustive search
is substantial. Our analytic studies will show the asymptotic equivalence of a number
of exact formulas obtained by considering different schemes for forming the random
problems. Our results contribute to the study of the quality of the simple backtracking
algorithm and the previous average result by comparing the average performance of the
algorithm over various classes of random problems . In section 2 we outline a description
of the models used to derive the exact formulas . A detailed explanation of the asymptotic
results is given in section 3, and section 4 summarizes the significance of the results .

2 Model problems

Let X = {z1,%2,...,2y}, 80 that v is the number of variables in the set. Each
predicate P in the model is a formula in conjunctive normal form (CNF). A formula is
in CNF if it is a conjunction C; A C2 A ... A C¢ in which each clause C;,1 < ¢ < ¢,
is the disjunction of s literals, Ly, V ... V Ly,, and where each literal L;;,1 £ j < 3,
corresponds to a variable z; € X or its negation. We may think of CNF formulas as sets.
The members of the sets are the clauses of the formulas. The formula is true iff all its
clauses are true.
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For a predicate P in this class, the intermediate predicate Py is the conjunction
of those clauses of P that use only variables z;, ...,zx. For example, if P = {z; V
z1,%1 V 22 }, then Py = {Z; V z; } and P; is the same as the original P.

To analyze the average performance of simple backtracking we need a represen-
tative problem set. A problem set may be obtained by considering sets of random CNF
predicates. In our model a random predicate is one that is the conjunction of ¢ clauses
randomly selected from a set of random clauses. A random clause is the disjunction of
randomly selected s literals . To obtain the various sets of random problems, we consider
selection with and without replacement of the literals and clauses.

Consider the set of clauses that can be formed from the literals of the set X =
{z1,%2, ...,7y } of variables. Each variable can take on the truth value true or false.
Let N denote the total number of distinct predicates that are the conjunction of ¢ such
clauses. Let f(k) be the total number of clauses that are false when the first k& variables
have been set (this number is the same for all assignments of values to the variables.)
Table 1 gives the value of N and f under the different selection schemes considered.

selection N f(k) clauses with literals with
scheme replacement? replacements?
1 (2v)* k® Yes Yes
2 Q) @) Yes No
3 (227 K No Yes
[ ¢ CH @ No No |

Table 1. The values of N and f under four selection schemes

The exact formulas given below were devloped for the average number of binary
nodes in a backtrack tree produced by the simple backtracking algorithm given in [1]; the
derivation will not be repeated here. The formulas ( eq.(2) -eq.(5) ) assume the uniform
probability distribution on the predicates, and correspond to each of the four selection
schemes of table 1 in order.

Aq(v, :]_1+1‘§5021(1~( )) (2)
(1 (H ) (3)

1<.fSu
Y M ((2v) e 1)‘) /((2v) ) (4)
("0

1 {J'S v
OLENEY) ©

Be(v,t) =

Dy(v,t) =1+ 21
l<JSv

3 Asymptotic analysis

The total running time of the simple backtracking algorithm on any of the
models would be the number of nodes times a polynomial in v. The above formulas were
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obtained by combinatorial methods. Unfortunately, we cannot find closed expressions for
them. The summation expressions are difficult to evaluate even for reasonably small values
of v. Thus we find it necessary to turn to asymptotic methods in order to understand the
behavior of the summation formulas.

The asymptotic analysis of A, is given in [1]. The second selection scheme gives

Be(v,t) =1+ Z 2“""'1(1— 2?{1)) (6)

0<lj<v

Let t = v and s be fixed. Rewrite eq.(6) as

J
By(v,v*)=1+ »_ exp(+ J)ln2+ v*In(1~ 2['()) (7)
0<j<v

The first step in analyzing the asymptotic behavior is to locate the term making
the main contribution. Inspection of the terms of eq.(7) suggests that the summand has a
sharp peak. One way to get the value of j that maximizes eq.(7) is to take the derivative
with respect to j and set it to zero. Solving the resulting equation asymptotically as
v — oo shows that the term making the largest contribution occurs when

i=22B22E 1 o), 1<a<s, (8)

(Appendix Al has the details of the derivation of formula (8).)

We will find it more convenient to have the main contribution at the value 0, so
let k be the value of j that is given in eq.(8)

2In2

k=) ST+ 01)+ 2z, —k<z<v-k-1

Now we may study the behavior of (7) as a function of z. On substitution in eq.(7) we
obtain
(*+%)

exp((k+ z+ 1)In2+ v*In(— o ))) (9)

Next we break down the binomials using the fact that (':) = Wff!_-;j;, and using the
Stirling approximation to get rid of the factorials:

50 (ke 2= o
2¢(%) 2'v’(k+ z— 8!

+(s— k— z— —)!n(l— )+(v—-s+—)]n(1-—— —)+ O(v?+=))

k+

(10)
Expanding the last two logarithms in power series and collecting the individual terms,
¢q.(10) may be rewritten as:

“ Zyexp(Y Co+ 22 1) v + O(v?+T)), (11)
=0
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where

ntl

Cn = (_ 1)’!'!'1 i(-:s;-_]-)2_{“:'-1}(21:,[ 2)-__ {ﬂ'l'l}%ff-, 1 <ua <s.

Expanding the exponential in eq.(11) gives

H Y+ Y Caz 1] v+ O ). (12)

n=0

Now expanding the natural log in eq.(9) , using eq.(12) and multiplying out we get

1+ Z exp((k+ z+ 1)In2— »° ZZ ( )Qv p'—n( )

k< e <v—k—1 n pzlp
s(s—1) ¢ 83— 1\,2In2,__a
S 2 "H‘I)( ) 1-323 ".—1;
é} ; )=
(13)
- Z Q—n( )21]12)""‘ $=i(n—1)=1,n
n=20
+ O(v+1)).
Let
h(z) = az2® + asz 22+ .-,
g(..“‘_.) Z 3(3 1)2—(n+l]( )(21[[2)1_.‘_1.” ‘::1.?,
2 n 8
n2>0 (14)
sfs— 1) __ 2n 2 an wiep. g
r(z) = — Z =22 “( )( Z)eryei(nm)=lge
=5 2 n 3
where a; = — ¥ o, (¥%)(£)7*~*(2v)™* . We can remove the factor 2°+' exp(kIn2 +

v®In(1— (£)?)) from eq.(13) . This leaves us with the following formula to evaluate over
therangez=0=—k,...,z2=f=v— k— 1

Zexp(v“h[z))(l + g(z)+ r(z) + O(v*=r1)). (15)
The Euler summation formula [5] tells us that (see Appendix A2)
+ o0
Zexp (v*a(z)))a(z) = / exp (v*h(z))g(z)dz + exponentially small terms , (16)
— o0

for which DE Bruijn|[2] gives
+00
[ exp (v®h(z))g(z) dz = Z div( ==, v— o0, (17)
T i>0

where

2§
di = (- 32)—f—% z C’m.m,_m(_ 02)—m[\(m+ g %),

m=0
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and the Cp, »'s are defined in Appendix A2; recall that I'(3) = 7, and for j = 1,2,...
we have

rg+ H= - b

izl
Notice that the main term in eq.(17) is

= /= 27 /v>h"(0) X ¢(0). (18)

Applying eq. (16) and eq. (17) to eq. (15) we end up with

P ot 8 il 2In a=a e
[w (21[[2 “t- Hysten — 8(32 L 8(32ir 1)( & 2)_11_-91%1%-—1 14 O(vﬂlc—ﬂ)l;

hence

pe—1

2 _.__ a=m ]_ __.__ c—a
Be(v,v*) =1+ 2 = exp( (s— 1) Lk (2ln2 2o A (1-o)+8 )
1) 2!]]2 gn—a

[V )(21n2)ﬁ”_rr“— [3; s(s—l) s jren 8 4 O(vﬁfﬁﬂl

For example

Bs(v, v!%) = exp(0.62824v%/4)[9.451350%/% — 8.9066v'/% + O(v~3/%)]

Similarly we obtain an asymptotic power series for formula (4) given by

22, e e 1(21“2)*1’* Hi(1—a)+ %)

Ce(v,v*) =1+ exp((s— 1]( )T

27 3 ?1_—_?_ 1a—a {20)
i *‘-‘(_3““*—1](21112) e

And
Cs(v, v1*®) = exp(0.62824v%/4)[4.72560>/% + O(v~*/%)].

The derivation of formula 5 is in the appendix where we have shown its asymptotic
equivalence to formula 3. Finally we should note that the derived formulas were verified
using computer calculations by computing the values of the exact and the asymptotic
formulas and showing that the ratio is converging to one as v increases.

4 Conclusions

Simple backtracking was analyzed over the set of CNF predicates with s literals
per clause and v® clauses in the predicate, 1 < a < s, where v distinct variables and their
negations are available for selection. We showed that when all the schemes were considered
for forming the random predicates, and when searching for all possible solutions over the
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problem set, the the average number of nodes in a backtrack tree is

exp((s - 1)(2]Tn2)73_1v%3%] X polynomial in v.

Thus, we establish the asymptotic equivalence of eq.(2) through eq.(5) . Moreover,
formulas (2) and (4) have the same asymptotic polynomial expansion with slightly varying
coefficients, and formulas (3) and (5) have exactly the same asymptotic expansion. The
otherwise insignificant improvement of the latter pair over the former seems to depend
on the literals being distinct within the clauses.

Each of the selection schemes gives a different set of predicates. However, the
numbers of the nodes in the backtrack trees they produce differ at most polynomially
from one another, so it is the case that the exponential performance of the algorithm is
the same under all the schemes studied. We believe that these schemes are "reasonable”,
in the sense that it is not easy to think of reasonable selection processes that are not
polynomially related to them.

In summary, so long as we restrict ourselves to the standard model of CNF
formulas, the exponential behavior of the average time for simple backtracking will be
unaflected by the particular scheme used for forming the predicates. This suggests that
we can make our choice for the analysis of more complex backtracking algorithms based
on convenience without affecting the results in any significant way.

5 Appendix Al

Taking the derivative of formula (6) with respect to j and setting it to zero, we
get:

el = (3 1 In2
21n2(3)—[g){51 Z '—:'+ 8!

‘ogige—1
using the fact that

or=so= G- s+ 9= Te0], 2 J3))

and

d (J) _1 % ()"
- . “ .1
dj \ s 3!051'5:-—1-7—‘
where | | denotes Stirling numbers of the first kind [5]. Now, successive approximation

methods give :
e

i= 2(2]:2) veT 4 ___;{:: 3 4 O(v%—:f),

l1<a<<s v— 00,

using

> 1 mf.+j.—2,

0<i<o—1 Jj—t
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. a
!E—QF::H) and (v)%v_ as v — 00,
3 8!

6 APPENDIX A2
Let
Q(z) = U(z) exp(v*h(z}),
hz) < —d®? (0<z<pB) forsomed>0 (21)

where % is as defined in section 3, and U is the sum of a convergent power series.

One way to obtain an asymptotic power series for 3_ Q(z) is to consider exp(azv® z?)
as the main factor of @ . The remaining factor

U(z)exp(v®z(as + asz + ---)) (22)

can be expanded in a double power series in the two arguments z and v*z® . Therefore
we have :

E Q(z) = Z H(z,v*z%)exp(agv®z?).

Where
H(z,v*s%) = Y. Cmalo*z®)"z"
0tE<m<oo
0=<n<o0
and

Notice that

1 . .
cg = G?, Cp = }—a— Z (sm - k+ l)ﬂ.f+2¢;¢_f+2, kE>1.
Si<i<k

The Euler summation formula can be written

8
Y s)= [ r@)de— Lo

i<z LB

+ Rm+l ’

1 Jm)(z)
B = Is

1
F EBz‘f('](’»‘Ng"' e e

where Ry = (— 1)™ /m! ff Bun({y})/™(v) dy, (™) indicates the mth derivative,
{y} = y— [y}, and the B; are the Bernouli numbers and polynomials[5]. The error term
is O(v/{m)(z)), where z is the value of y that maximizes f{™) Let @ = a,v%, p and g be
pnonnegative integers. Then

Q(z) = Cp qz?(v*=® Jremaz’,
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The Euler summation formula gives an asymptotic power series for )_ @(z) as v — oo
since

mez fe e —z?
QUM =a, T v*g(ay), g(z)=eT 2"+

m—p—3
Now g(:c) is 2 well behaved function independent of a. So the error term is O(a, ; v2atl) =
g+8§ a—
o(v'+* (359)),1 < a < &. It is easy to see that Q™)(—c0) = Q(™)(+ 00 ) =0, we
thus have reduced the summation problem to one about integrals:

+00
Y o=/ awe+ o

8<z<h

Notice that f_k Q{z) dz differ from f_ Q(z)dz by an exponentially small amount.

7 APPENDIX A3

We derive the expression C, which is given by (20), as follows: Let t = v* , 3
fixed, 1 < @ < s and v increasing. We proceed as before by considering the value of j
that maximizes the ratio in (4). The maximum value of the summand is reached when

- 2(2'“2)~‘~ 21+ 0+ O(y0-e) (23)

If we shift the index in eq. (4) so that it is zero at the largest term, then

o= (BT B (0] ety

Where we let k denote eq. (23) and eq. (4) will be treated as a function of z. Using the
Stirling formula for the factorials, and after laborious calculations we obtain :

o=+ (- C52r) s w(1- )= w(a- E52- 55)
e e 2 2

+ 0 .m (1—— (k;vz)‘ - (;:),)“ '“(1' {‘;:)')]

+ O(v™°) as v — 00

e

(24)
Combining the natural logarithms in (24), expanding the resultant expression in a power
series, and using the binomial theorem as many times as needed we get:

Inro = ((2v)° + ] Z Z L 1]‘” : ( " )(3)(3(3: n)y‘ﬂ_l u’(“l)(;fv)" (25)

i>1 g,l

~ (20) ZZ l]q( )(E(G': 1))yl‘ue{q+l)—n[2iv)n (26)

izl gqn

D3> ()( ) rys( g (27)

izl q n

+ Z =) (28)
321
+ O(v™").
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Where y = v*/(2v)° , u = j/2v. Now eq. (25} through eq. (28) are in a convenient form.
To see why rewrite eq. (27) as

2 ¥ ()@ e T Sy

i>1gli=q n i=2lq<i n

=- L T i) ey )

i210<g<i n

—° Z (':) ar—n[zv ) (30)

i=1

-y Z —y (31)

i1

Notice that (31) cancels with (28), so we consider formula (30), and need only the most
important term in (29). Therefore (4) reduces to

Colv,v*) =1+ ) exp((k-l- s+ h2— Y Y ( )ﬂ—n(%]ﬂ)

i<z<§ izl n

- 1 o 3Y e—ng T n a—s 2y(1—a) —e
exp( Y yg(n)u (2*0] )(1+ O(v*~*)+ O(v )+ O(v™°))
Expanding the second exponential, where ¢7¢ = (1 — a + O(a?)) as @ — 0, we have

n
1 o gf— ni
+ E exp((k-i- z+ 1)ln2— v* EZ ( ) 5 )
d<z<p izl =n
1 3 - a—e 21— -
[l" ayv“g(n) w1+ 0(p)+ O (=) + O ')}
Taking the constant terms outside the sum, and cancelling out the term proporitonal to

z, the remaining expression to evaluate is of the following form :

Z eﬂ“h(z)(l - r{z) + O[f(”))), for some function f — 0, as v — 00. (32)

Using the Euler summation formula we find that (11) has the asymptotic expan-
sion shown in formula (20) :

8 Appendix A4 Derivation of formula (5)

Rewrite the expression in (5) using factorials , and changing the index in the
formula

. (@)= Ore) - 1
D=1+ 3 ¥ OO
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Let

. @0 = OreEE) - o
(2= ety

Expanding r; using the Stirling formula for the factorials , we get

lnr,-=(2'(s) )( (l_ é(?,j))"' l"(l"' 9-;;’))_ l"j(l“ 2%_ 2';2)))
X (i)('"(lﬂfg'(l) ~2) (- )
+ z(ln( QE()) 2,&])' [“(1_ 2.;:)))

+ O(v™°) as v — 00.

Combining the natural logarithms as appropriate and expanding, we obtain

Dy(v,t) =1+ Z exp(/ln2+ {2'( ) —)ZZ (- ]"ﬂ"l( ’)( )[2 C ))t’+q—!( (()J]!’+1

o<j<y i>1 gl

()§53 ol ) ()”(())’”'
-tZZ() T by

izl q

43 Y 2 o) ® D

121

In a similar technique to that of appendix A2, we get:

. _ =\ ,
Do(v,v*) =1+ Y 21(1-m) + O(1), as v — co.

1<j<y
Therefore D, is asymptotically equivelent to B,.
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