4

INFORMATION TO USERS :

This reproduction was made from a copy of a document sent to us for microfilming. .
While the most advanced technology has been used to photograph and reproduce
this document, the quality of the reproduction is lmwly dependent upon the
quality of the material submitted.

The following explanation.of techniques is provided to help clurlfy markings or

. notations which may appear on this reproduction.

1. The sign or ‘‘target” for pages apparently lacking from the document
photographed is *Missing Page(s)”. If it was possible to obtain the missing*
page(s) or section, they are spliced into the film along with adjacent pages. This
may have necessitated cutting through an imoge and duplicalmg adjacent pages
to assure complete continuity.

2. When an image on the film is obliterated with a round black mark, it is an
indication of cither blurred copy because of movement during exposure,
duplicate copy, or copyrighted materials that should not have been filmed. For
blurred pages, a good image of the page can be found in the adjacent frame, IF
copyrighted materials were deleted, a target note will appear listing the pages’in
the adjacent frame.

3. When a map, drawing or chart, etc,, is part of the materjal being photographed,
a definite method of *“‘sectioning™ the material has been followed. It is
customary to begin filming at the upper left liand corner of a large sheet and to
contintic from left to right in equal sections with small overlaps, If necessary,
sectioning is continued again—beginning below the first row and continuing on
until complete.

4, For illustrations that cannot be satisfactorily reproduced by xerographic
means, photographic prints can be purchased at additional cost and inserted
into your xerographic copy. These prints are available upon request from the .
Dissertations Customer Services Departiment, :

5. Some pages in any dociinent may have indistinet print. In all cases the best
available copy has been filmed.

Uni

| M Ims
nternational
300 M. Zeob Road
AnnAlbDr.Ml48!08

8321375

Johnson, Steven Dexter

SYNTHESIS OF DIGITAL DESIGNS FROM RECURSION EQUATIONS

indlana Unlversity Pu.D. 1983

University
Microfilms
International aon.zeeb road, Ann Arbor, M1 48106

Copyright 1983
by
Johnson, Steven Dexter
All Rights Reserved

Synthests of Digital Designs from Recurston Equations

BY

Steven Dexter Johnson

Submitted to the facully of the Graduate School
in partial fulfiliment of the requirements for the degree Doclor of Philosophy

in the Department of Computer Science, Indiana Universily

May, 1988

© 1983
Steven Dexter Johnson
ALL RIGHTS RESERVED

it

Accepted by the faculty of the Computer Science Department, Indiana University,
in partial fulfillment of the requirements for the Doctor of Philosophy Degree. -

- 5__./ -~
Doctoral Committee: [&ﬂ/‘/ 5/ 7// L2l , Chairman

David 8, Win

@dnu;/ ﬂ ':1 ’M.C/nm...,

Deniel P, Frisdman

me O'Vpvne]

John g'Damuh'

Franklin P, Prosaar

Mﬂ((1gud

Mitchell Wand

Georpe 4, Minty (2.‘....- %s‘ur} d 0

May 13, 1983

it

Abstract

Synthesis of Digilal Designs from Recursion Equations, by Steven Dexter Johnson

The discipline of applicative program design style is adapted to the design of digital
(sometimes called aynchronous) systems, The result is a powerful and natural methodol-
ogy for engincering correct hardware implementations. This dissertation presents a
method to develop digital/synchronous system descriptions from recursive specifications;
offers a prototype general purpose modeling language that supports this design task; and
mokes a formal connection between functional recursion and compenent comnectivity
that is pleasantly direct, suggesting that applicative notation is the appropriate basis for
digital design.

Design is a translation of notation from an abstractly descriptive specificalion to o
concretely descriptive realizalion, Recursion equations are used as a specification
language. The realization language is another form of recursion in which varinbles
denote sequences {rather than functions) that represent digital component behavior.

Sell-reference in vealizations corresponds to feedback in a physical implementation.

Synthesss is a method for constructing realizations that are guaranteed to meet
their specifications. It is a synonym of ‘‘engineering' peculiar to computer science,
where the concern is not only with methods but also with their automation. This term
suggests a factor of human guidance, as opposed to comprlation which does not. Realiza-
tions can, however, be compiled from ficrative specifications. Even for the case of pon-
iterative specifications, synthesis of an iterative version is the primary tactic here. This
tactic formalizes the conventional digital design technique of decomposing a circuit into

an architecture and a finite state controller.

The formal setting for a discussion of this topic is the calculus of Scott and Stra-
chey. A specification denotes the fixed point of a lunctional; a realization denotes a
fixed point in a domain of sequences. This approach to synthesis, then, is yet another
application of modeling “function recursion" with '‘data recursion”, or reflexivity. An
interpreter has been implemented for Daisy, a dialect of the Scott-Strachey notation.
Any description expressed in Daisy can be directly executed at successive steps in its

evolution, Thus, the notation that serves as the medium of engineering serves also as a

iv

vehicle lor experimentation. This is important to the practice of design because the
engineer can explore some aspects of performance without expensive constructions of

hardware prototypes, or risky recodings in a simulation language.

Two examples follow. A non-trivial exercise in language-driven design, derivation
of a controller for an applicative language interpreter, reveals that powerful global struc-
turing techniques, such as hierarchical decomposition and data abstraction, are inherited
immediately from the functional style of description. Executability of the current
description at each stage of the derivation provides a model for testing representation
decisions and trivial modifications, Next, a specialized algebra is developed to address a
typical local refinement problem: reducing external connections by means of serialization,
Thus, local as well as global design problems yield to the applicative method.

Applicative notation is especially suitable for digital circuit description because the
basic algebra is the same in both realms. Even though the underlying symbols are inter-
preted differently (i.e. operations vs. components; values vs. signals) the manner of com-
bining them {e.g composition/construction va. serial/parallel wiring) is identical. Hence,
recursion equations, McCarthy's mathematical basis for the science of camputation, is
fitting for hardware design because it so well reflects the physical basis of computation:

digital electronics,

Acknowledgements

I would like to thaank Daniel Friedman and David Wise for their guidance and sup-
port throughout a most interesting course of study. They have shared both knowledge

and learning with me, which is to say they are good teachers, 1 am grateful.

In the past year, David’s infcctious enthusiosm and ability to nurture emerging
themes have been crucial to the progress of this investigation. He has skillfully worn all
the hats of a research director, but 1 value beyond that his friendship and patient

encouragement,

Joha O'Donnell, Franklin Prosser, and Mitchell Wand coutributed a diversity of
perspectives on the subject I chose to investigate. I hope that each is reflected here in a
fair light. | thank my committee for their attentive reading of the drafts of this work

and apologize to them for any remaining errors,

The programming Janguage presented herein was implemented by Anne [Kohlstaedt
and myself, between September 1980 and June 1982, [ts development continucs. We
goined much from earlier implementations to which Cynthia Brown and Casper Martin
contributed. This project was funded in part by the National Science Foundation,
under grant numbered MCS-77-22325.

] am indebted to my parents, Anne and Dexter, for bequeathing to me a taste for
knowledge and providing for me the opportunity to pursue it.

It is somehow saddening to write that Jennifer Deam, who devoted the same por-
tion of life as 1 did to this endeavor, must now make do with a brief acknowledgement.
If her contributions to this work, and presence in it, are intangible to its readers, jt is
comforting to know that she shares the joy of its completion. And so, to Jennifer, with

love, I thank you.

—sdj—

vi

Table of Contents

Chapler Page
L. Introduction.cmemnmmiansimsssssssessssassasassas " |

1.1. Summary ..coeem P tevnesrinasnsaesierarientantrnernensantate erreEa e ettt ans 4

1.2. Related Research ..iiiiimemiemssmnermisissssisesisases raessest e sesabtesesanns ot

1.2.1. Sequential Formal Models c...cuuiniinisniesieanisnnens.8

1.2.2. Operational Aspects of Modeling.....ccocrcrerarnarase vressassnsansassassaranass] 0

1.2.3. Other Motivations...i.eeeeeesensienirosssssssosoressan seressensreransssensosranasts 11

103. Out’line or the Present’ntion....l.‘lﬂ‘.“.‘.I.l‘.l“.l.l...ICOIDl’I!!!!l!l!l.lll!l!".l!l!’.l12

2, The Specification Language.....ccuiiisnnmnisissimsmisesssssstiserenn 1 8

2.1. Typed Recursion EQUAtionsccuusmiiissisnnmisiiisnsssosinssssossrosssssass 16
2.2. Solutions to Specifeations....cccuiiiiiiinimsmmsrssoenmeressesnererers 20
2.3. Reasoning about Recursion Equationscoveserervese rereneeessetseenterabaseas 23
2.3.1. Structural Inductionceeense vasessase csnesssasussaaniarssrrssrarersasnessaressen 24
2.3.2. Subgoal Induction ..oesreserissnresnsinninrnesssssnes iresaisbessasnrsranrararreres 25
2.4. Transformations on Recursion Equations............. bererserrresssrarasseseereres 27
2.4.1. Grammatical Transformations.. ... 20
2.4.2. Distributivity of the Conditional and Multiplexors....cciiiiieesi20
2.4.3. Combined Operationseeeiiieseieinnesnisersisisssesssissasisass renesesrainenere 31
2.4.4. Universal Schemes.....oieiisesnnrsinsinans retsneres raesarararresvasaeeresesratraness 33
2.4.5. Synthesis of Iterative Form ..umuinnimneiine ert e sesssassertsassan 30
2.5. The Scott-Strachey Notation ... s 40
2.5.1. Flot DOMOIDS.cirneararmnrrasiianneinossminmmiiesiimostsennieatecanmerteotsasons 41
2.5.2. Non-flat Domaing ...cseienaniiominisnmmninimismmisioasasmnmasonss 12
2,5.3. Domain Operations ...c.iamariviarananonane revernesevaenesarsstesensee 13
2.5.4, FUBCLIONBIS.cirerisssrereesirerisnrsimmrisarsnessniscosinieisssassionsesesssor sossasea 44
2,5.5, RECUTSION 1uviverrarrscssnnmsaistneramnrnesrsrississnisssarssessnese sosnsssssnssossssastossans 44
2.5.8. ReflexXivity e 45
2.0, Other ISsUeS ciiiniiiimniiiisismeesmemninnimisasmissseiimmes s snsatsssasssns 15
2.6.1. Specifying the Specification Language.....c.useessnmmnnmisinnmniis 45
2,0.2. Specifying Control ..ueisisiseasisasasnarsessises rsesassnisaribabtsssnasr b sants 46
2.8,3. Distributivity of the Conditional, Revisited......oconnnsiscriniisinnn e
2,0.4, Multiple Valued Functions ... 40

vii

Chapter
3.

4.

Page

The Realization LARGUAREccverrererernersesasesressrerssssessesssrerense erabarassansane 50
3.1. Digital Circuit Descriptions......ccorrveeereessnerars detsasemeasasasnesissbsarasussabres 51
3.2, Translation to Circuit-Description Formuieaireesesrimmensonanasiaiine 53
3.3. Decomposition of Combined Componentsccumeceriersrsnisraeraraenirsesas 56
3.4. Circuit Synthesisccrrivrecissierninnreseens cvaenenttssaseenass reststsassssasssessinates b9
3.5. A Domain Model of Behavior.. . 62
Dalsy e P PRI SRRSO 65
4.1. Operational Semantics = & SUMMATY covseeinreassorinsresssrsessrsrreesersrssssane 05
4.2, The Language....icuiiimismiimimiimmmmsmmimsiesiemssisrasnsn 67
4.3. Formal Semantics of a Subset of Daisy ..o 69
4ot Circuit EMulation i 78
4.4.1. Non-finite Data Structures ..o, 78
4.4.2, Qutput Driven Computation .cccscseevesssrisssasrirsrassasssassssearesssrsssasses 79
4.4.3. Experimentation with Realizations .aeicaninnnoniiisanos. 81
Design Examples ...iimimmeessiesisnessesereseonirssssasasn 87
5.1. Higher Level Componentseiceeeneressnesssssresiseniisnosarasmanes 88
5.1.1. Packaged Combinations....ccmmimirssennns sivaserarvasase petssasutnasasnnioas 80
5.1.2. Abstract COmPONENtS cuiinisiiinninsmniisntesssitessrarisenerren s 1 |
5.2, Laanguage Driven Design = [ntroductionceeeieinemrersseerescneones 89
5.3. Application to Language Driven Design .. ocuinnreionnomenononn 100
5.3.1. The Language L .. miosnsesioasssesses 101
5.3.2, AD L-iDterPreter.uirimmmreimrmseinirimsiroisireiisisaiisoisssorses 103
5.3.3. Definition of IM i R 105
5.3.4. Stacking Version of IM...icienieninimnsinmanimoansomanimsmma. 110
5.3.5. Simple Loop for the L-interpreter v meerirossnresssasansnionarosseses 112
5.3.0. Some Refinements in the Loop Version.....veeeemenenniann 112
5.3.7. Realization of IM i 114
5.3.8. Refined Realization of IM ...cccviiininnnmiiniiimsmeimmis 114
5.3.9. Remarks .o 119

viil

Chapter
8.

Page

Circuit Refinement Sresstee e e s s ea s s s asa e srasesrisransaraise R 121
0.1. Transformation AXIOIS wiiererescsressosaraosnassoronarseses reresarnresassessanaberee 124
0.2. General Transformations and their Behavioral Interpretation......... 126
8.3. Scheduling Derivations......ceeisecisisissnsesisaseisans asseessassasassineranasane 129
8.3.1. Circuit F.oovivvnes Vinsrsissesenarsesrusbans versvasss . ereraesanressaseressaratare 130
0.3.2. Circtit G ..oivrevmmininirssnsnene st ereseseareeseereasatonssans 131
0.3.3. Circuit H ...cvimiimninnmesserisnaneninissesons reserseasseasanaseisenennins 134

054» R emﬂrks L L ey L Ly e N L r R R L T e L TR L Y] l 30

7. Conclusion .miiniisisimimensesssisseinesssetecseessceres 138

7.1, Review v IR 138

T 11, Berabion ccvvivsrcrsirsssacisarsnntsnossarinnsecissssansscsnanesnensssansessensass sesssnsnns 138

7.1.2, Circuit Synthesis .o 139

7.1.3. Circuit Refinement......ouvmiracsssirarmsnranisinsissessssssioscsiserease eonsans 140

7.2. Limitations of the APProach .. eeccrererrerererereneresimsimsmsmississ 1.0

7.2.1. Bidirectionality ..ccuiissisissns sreisestranne errntnaneserresasbeserasanes caereerssreness 1.41

7.2.2, Digital Asynchrony, Communication, and [ntegration.......ccecues 141

7.3. Prospects for Research......... rererteeirinerane ceremurers ererererssarsserararasroreaen 144

7.3.1. Multiphase ClocKing ...c.cvrvesresrsnasssresstosssnnossasssssassnsorossssesessasoes 144

7.3.2. The Realization Language as a Formal System ..uiiniiniiiia 145

7.3.3. Other Topics ccccverrmenmramimiimimmmmesms s sassssssass 145

Tedo Final Remarks cuiceccmeeonnimnseanismiisniimissnssmssmmsmssossoasssassaronsasess 140

Selected BiblIOBraphy wiieiisiemiriesris ssssnssss s ssrsssssnssossaststissssasssns 147
Appendix

A. True SyntaxX of Daisy cvosmmminmmmsiiinimiaimisiimsminnissrssssresssssssonssare] 84

B. Source for EXPEriNenls ...iicuusinisrersressessssrorssressroresasnssssarsrsrassonssntossasessasasoss 157

C. Proafs s s srssersersentorsssasassasasnas 184

D. Table of Symbolsccccmnminiiismnimminiimssiesisanisssin rrersereranns 193

Index ..o seseseesissassaseressrseEeressanane SN EeLEsEe N EesaE RN Re s ARt Base bt seub P 190

List of Figures

Figure Puage
2.1 A Standard Semantics for Terminal Terms ...ociivvirimniseicsnrscenvecereroreereraned 7
4.1 Daisy EXpressioft SYRLAX crueerisenmisasisisnissasssssntesrsrsrorssesarasssnaisssosorsssassases 08
4.2 Daisy's INernel SYNLAX vcovevemerimiimimsinnisnisisemninmiis e seiosisireae 72
4.3 Conversions to the Kernel Language ..ovcinimisisnimirrmesessomasrisorees 73

4.4 Daisy's Standard Semantics

1. DOIIAINS t1icniiiiiniiniinsininnisesnssisnersnssessessnserssesns sesssessassssasesontortasasorserosass 74
by Valuation cecamaemisiissemimsismsisiisrinnsiossoresarisisiraseissraissoissisases 75
€0 AUXIILIES ruvverrerrrarrarsrssarrernressarssrasesarssasssssasssatsssass ssrnosranensrnassasssnansvornavas 76
4.5 Some Daisy Operations.iceremerrresiriressesisesasmarsisssarossossssssosssoresessrasvorons i
‘4.0 Daisy Component Implementations ..c.ieeserssreesnererarsassasronssasseasasesssaassnaes 80
4.7 Experiment with the FAC Realization ..o, 84
4.8 Experiment with the FIB Realization.....cuiimiinisiisenemnss 85
4.9 Experiment with the GCD Realization ..o 80
5.1 A Schematic for Circuit C..uviiininiaesesssnsssnnessrasns oraneran reserernesrresssanasarensase 04
5.2 Experiment with Cp;p
a. Source for the Realization i o7
b, Record of an EXPeriment .emiciimiioensmmiosioirerimmomaeeros 08
5.3 Standard Semantics of the Language L vevrmimmaimnnnmanesnsisae 102
5.1 Non-linear Specification for an L-interpreter uimmmermsnoroscasssorersressas 109
5.5 Stacking Version of the L-interpreter cnnninmiisissnine. 111
5.0 Simple Loop for the L-InterpPreter s 113
5.7 Refined Loop for the L-interpreteroumrivirsnrenimsmmmsnensmsisissssarssassseass L 18
5.8 Higher Level Components for the L-realization....ccuunmimininimisinin, 118
5.9 Realization of the L-interpreter ..o, eeEe et assesbesene bt bbb e resa b sabeseans 117
5.10 Refined L-realization ... 118
5.11 Continuation SEMADBCS TOF L wemeeercesrssnersssssssssesssesssrsssssssssssssssassssesses 120
A.l Present Daisy Syntaxeessesinsenssisene BT TR ORROPR PSR 154
A.2 Examples of Conversions to Present Daisy Syntaxc.ccccvnisiscnsnenenne ..163

1. Introduction

Advacates of applicative “programming” style claim that it is somehow closer to the
intuitive process of conceiving an algorithm, and is, therefore, the proper notation for
the development of computations. Since few deny the need for better programming
methods, this “applicative premise™ has received a good deal of scrutiny over the past
twenty years. Much of this research demonstrates that the approach is viable; that is, it
shows that the discipline can be used successfully to attack problem classes that at frst

glance appear to be beyond its capabilities,

The research reported here began as a test of the applicative premise in a funda.
mental and dillicult problem area: the design of hardware. The original approach was to
make an earnest attempt at denial of the premise by showing that it was not an
appropriate basis for addressing the problem of cirenit deseription. The attempt failed,
for [found that a purely functional notation is quite viable for digital circutit design, and
is in some ways preferable to conventional engineering. The substance of this investiga-
tion lies in the design method that evolves from strict adherence to applicative style.

The main conclusion here is that hardware designers can be comfortable with this
method because they have been thinking applicatively all along, By adopting a digital
implementation technology the designer orients a circuit in time and thinks of it as a
function (on state) rather than as a feedback system in equilibrium. This temporal con-
straint on product behsvior refllects an abstraction from, and a simplification of, the phy-
sical elements of electronics, The abstraction is made in order to attain a tractable intel-
lectual basis for organizing behavior. Of course, ahstraction is a quality of any design
discipline; but the correlation between the motives of digital design and applicative style

is not merely superficial; the means of abstraction—~functionality~is the same,

Automation of circuit design—and automation is an eventual goal of this work—
entails finding a representation [or circuits, This appears to be a profound obstacle to
applicative style, for it necessitates building a data structure that describes feedback, a
manifestly circular physical quality. It is not immediately obvious how to construct cir-
cular data in a notation that prohibits expressed side effects. The solution is to use
recursion (f.e. veflexivity through fixed point constructions) to describe connectivity. In
doing so, one simultaneously obtains a description of the product and a model of its

behavior,

Design is viewed as a translation of notation, starting with a specification and end-
ing with a realization. The specification language should be abstractly descriptive; its
main purpose is to convey thought. The realization language should be concretely
descriptive in the sense that it portrays an implementation accurately enough to serve as
a starting point for fabrication. Specifications will be systems of fyped recursion equa-
tions expressed in the style of McCarthy (1963). The realization language is a linear
form of circuit schematic in which the connectivity of the circuit's components is

expressed by equation rather than a drawing of boxes and lines.

Manna defines synthesis to be “'the theory for constructing programs [read: realiza-
tions] that are guaranteed to be correct [with respect to their specifications] and there-
fore do not require debugging or verification" (1974, p. 218). It is a synonym for
engincering that is peculiar to Computer Science, which is concerned not only with
methods but also their nutomation. It is used here to suggest a system that employs
human guidance to produce realizations (as opposed to compilation, which does not).
However, | do not present a mechanized system here; synthesis is carried out by kand,
althottgh some of the steps clenrly can be asutomated. An essential feature of synthesis is
that the menning of the specification is preserved, or at worst, altered in a perceptible
way. For example, realizations may be acceptable even though they are only pertially
correct; that is, they produce tlie correct answer whenever they “halt” but sometimes
diverge when the specification does not. The designer may prefer to strengthen the
specification, rather than reject the realization, according to some ulterior motive {such
as a presupposed architecture). The process of synthesis gives a context for this kind of
decision making.

The method of synthesis used here is transformation. A collection of correctness

preserving rewriting rules is used to derive realizations. Burstall and Darlington (1977,

p. 48) characterize this method as “an inferénce system in which the sentences are recur-
sion equations.’” Transformation is a relatively direct form of synthesis, a formalization
of step-wise refinement. Other forms generate realizations as a byproduct of some other

activity, such as the proof of a theorem! (Manna and Waldinger, 1971, 1079).

The conventional approach to digital design centers on the development of a
sequential algorithm to control the architecture of the circuit. The controller is usually
presented as o finite state machine, flowchart, or imperative (f.e. statement-oriented)
program. Various methods exist to translate this abstraction of control into hardware.
The control algorithm serves as a basis for making representation decisions about the
architecture. The approach presented here is fundamentally similar although it is car-
ried out in a Minctional notation. The initial objective of transformation is to find a ver-
sion of the specification that is in iterative form. From there, construction of a circuit
description is straightforward. Since iterative form characterizes *‘flowchartability,” its
synthesis has been studied as o means to derive programs. The fruits of this research

are directly applicable to circuit synthesis.

Use of a functional specification style must be justified partly as a matter of prefer-
ence. It is an attempt to cast design in a clean mathematical setting. If, as is the case
liere, the principal goal is correctuess, then an unambiguous meaning for source and tar-
get notations is a necessary starting point, Functional style has additional advantages
as a basis for digital bardware design. The “functional programmer" and the digital
designer have similar vocabularies. The ubiquitousness of the word “fuaction” in their
discourse is testimony to that similarity. To the programmer however, “function’ is
more a noun; to the circuit designer it is more a verb. The programmer deals with
operations and values; the designer deals with components and signals. In the latter case
a notion of orderly activity over time is implicit: a component &echaves. That is, the pro-
grammer and the designer think in the same sentences but with a different semantics,
Nevertheless, they use the same algebra, manipulating basic symbols by such rules as
composition {wiring in series}, structural combination (wiring in parallel), and the use of
selection (multiplexing) to achieve a function (functioning). I exploit this commonality

to achieve a basis for design.

"\WVhat constitutes a specification or realization is relative. In the synthesis syatem cited here,
recursion equations serve as the realization language.

Specification and realizotion meaninags are unified in the functional stylist’s
metalanguage: the calculus of Scott and Strachey. This language has a computable
semauntics, and an interpreter is presented for a erude dialect called Dassy. Daisy could
scrve a5 o medium for transformation, but its role in this investigation is only as a vehi-
cle for experimentation. Direct executability of the descriptive notation has three practi-
cal benefits, The evolving design can be demonstrated without prototyping or transla-
tion to a simulation ianguage, Gaps in the automation of synthesis can be bridged
empirically (Here the gap is quite large since none of the synthesis is yet automated),
Most important, emulation of target behavior can reveal properties of performaunce that
are not addressed formally, either because they are not deseribable in the specification

language or beeause they are not worth establishing through formal means.

The early chapters that follow mnke the formal coanection between specifications
and realizations. Later, this foundation is applied to two pon-trivial design tasks: » con-
troller for a programming language interpreter is synthesized, and a specialized transfor-
mation system is defined to address a problem in local civcuit refinement. It is shown
that various standard structured design techniques are reflected naturally in this metho-

dology (Secction 1.3 expands this prospectus),

1.1. Summary

The lollowing ex pressions are substantially equivalent:

F(a) where F(z} <= pfz) — [{z), F(g(z)). (S}
1= aj
while =pfz) do x 1= yfz);] (P}
x:=[{z)

X=al ¢g{X)
READY = piX) } {C)
VALUE= [(X)

Specification S dcfines its value as the output of a recursive function F, whose defining
equation has the structure generally associated with the program P. The system Cis a

linear description of the schematic? for the register transfer circuit

g : ! X
P READY
f VALUE

The component [T] is a clocked storage element that for brevity 1 shall call a register. A
synchronizing signal is common to all registers and, like the power supply, is suppressed
in the schematic. The token (*) indicates that the register has been initinlized with the
value a, or more generally that the circuit is now in a state in which its register contains
a. In Sand P the ground symbols p, f, and g are primitive operations, part of the voca-
bulary of a fixed (but often not otherwise specified) underlying type for making
specifications. The circuit components [g], [#], and [/] are counterparts of operations,
but it is understood that they operate over time, continually producing a value that is a
function of their present input. The register synchronizes the system and makes it possi-

ble to assume that component behaviors are discrete,

Each of S, P, and C is a canonical representative of its realm. If the underlying
type is powerful enough, any partial recursive function can be transformed to a single
repetition, and it follows that any program can be expressed as a loop®. A schematic
similar to € often accompanies an introduction to digital/synchronous systems (e.g.
Mead and Conway, 1080, pg. 221; Hill and Peterson, 1008, pg. 250). It exhibits the

characteristic property that all closed signal paths pass through a register,

The correspondence between P and C is the basis for conventional structured
hardware design. A standard formalism for describing a flowchart schema is to define
the *value listory™ of its state (e.g. Manna, 1974; Greibach, 1975). The history is the

*Left-right flow is used in schematics wherever possible, so that a component's inputs are on
the left. Schemalica are informal notation, and will always be accompanied by systems like €
that state the input-output relationship explicitly.

3The heredity of this “folk theorem™ is explored by Heral (1080). Sis essentially Kleene nor-
mal form {Kleene, 1050, pg. 288), although the use of repetition eather than minimization suggests
(Brainerd and Landweber, 1974, Corollary 5.7).

sequence of values the state will acquire, expressed as a first order linear recurrence rela-
tion depending on the currcnt state and the current label (which can be given as part of
the history). If the monolithic state history is decomposed into individual variable his-
tories the result is a simultaneous first order recurrence relation. It is also a register
transfer description, describing how each stored value in the circuit will change as a

function the present register content,

My approach is to derive individual histories from (systems of) recursion equations
rather than from flowcharts, Since an essential step in the process is to place the equa-
tions into iterative form, the passage from specification to realization will cnly sublimi-
nally construct a flowchurt. In the circuit description C above, the notation suppresses
the recurrence. This is valid because the dependency is fixed by the nature of com-
poncats, and worthwhile because a concise description of connectivity emerges. Thus,
the crucial trapsition between specification and realization notations changes the

interpretation of the primitive symbols. I refer to this transition in meaning as lifting.

The formal connection between source and target languages is made on the basis of
the forms § and C above. Consequently, synthesis decomposes into a subtask of
transforming an initial specification to an instance of S, followed by n sequence of
relinements to the corresponding instance of C. I shall show that much of the transfor-
mationa) algebra used to obtain § is transparent to (J.e. distributes over) lifting. Hence,
a less succinet class of specifications, ealled aimple loops, are immediately realizable and

yield more informative schematics.

In theory any system of recursion equations can be expressed as a simple loop, but
to obtain it one must assume that the underlying operations are powerful enough to
implement recursion. For example, il arithmetic is available, an encoding can be used to
represent. a control stack. [f such computational power is not assumed—as may well be
the case in digital design—then not all specifications can be directly realized. Varying
the "‘ground rules” about what is admissible as an operation induces a complex hierar-
chy of transformability on the class of all specifications. Uunder a minimal set of assump-
tions simple loops can be constructed from amy fincar specification (i.e. one without
nested recursive calls). Recursive linearity characterizes flowchartability, and translation
of recursion equations into flowcharts has been widely studied, The results are all appli-

cable to our principal strategy of circuit design.

Separation of contral and representation is a common theme in algorithmic desiga,
independent of the implementation realm, Compare Hoare's remark on structured pro-
gramming (1972)

In the development of programs by stepwise relinement .., the programmer is en-
couraged to postpone the decision on the representation of his data until after he has
designed his algorithm, and has expressed it as an ‘abstract’ program operating on his
‘abstract’ data. He then chooses for the abstract data some convenlent and efficient con-
crete representation in the store of a computer; and finally programs the primitive opera-
tion required by his abstract program in terms of this concrete representation,

to that of Winkel and Prosser concerning structured digital design (1980, p. 131).

One of the first steps of a top-down design is to pactition the design into (a) a control al-
gorithm and {b} an architeciure that will be controlled by this algorithm, The top-down
analysis will suggest a rough preliminary version ol the system architecture, involving
abstract building blocks such a registers, memories, and data paths...

Next, we work out the details of the control a!gorithm at an abairael level, The
control algorithm is in many cases surprisingly independent of the hardware...

In the functional specification style, this separation of aspect entails postulating a type
on which the specification will operate. To proceed in this way it is clearly desirable to
start in a fully abstract setting, but with the knowledge that once a type emerges it is
certain to have a computable representation. A fully abstract functional language exists
in the notation of the Scott-Strachey calculus (Stoy, 1977). In addition to serving as a
most-abstract starting point for design, the Scott-Strachey calculus is also used as a
metalanguage through which the meanings for specifications and realizations are unified.
The metalanguage has a computable semantics, and through interpretation can also

serve as a vehicle for experimentation.

1.2. Related Research

The fact that the formal language used for mathematical models also has a comput-
able meaning leads to some difficulty in classifying the bearing of other research on this
presentation. It makes the useful distinction between formal and operational models
somewhat hazy, since there is that sense in which a mathematical formulation can be
considered a program. The confusion is nowhere better illustrated than in the vanguard
work of McCarthy, a founder of the functional specification style, who proposed using

recursion cquntions as a bosis for the specification of computations (1963) and

simultanecously provided an interpreted language, Lisp (McCarthy, et.al. 1985), for
experimentation. Both of McCarthy's contributions are influential to this investigation.
The problem is that Lisp’s interpreter is often confused with the underlying mathemat-
ics! Thus, the division of the review below into formal models and operational aspects of
modeling is for the most part artificial. Most of the researchers cited are involved in

both areas.

1.2.1. Sequential Formal Models. [n Chapter 3 a notation is defined for the
description of digital behavior, Two equivalent delinitions are given for the meaning of
the notation: the first associates each ground symbol with a function on the natural
numbers; in the second definition each symbol denotes a sequence. The first definition
should be familiar to hardware designers, for it corresponds to the usual interpretation of
a circuit's state as a first order linear recurrence relation, The restatement of the mode!
in terms of “value histories’ gives a domain formulation of the same model. It is essen-
tially the same formulation as Kahn's (1973) and was foreseen as early as 1965 by Lan-
dia, It is introduced as a prelude to the implementation of the model in Chapter 4,

As noted in the summary above, any characterization of computation in terms of
discrete value histories can be construed as an approach to digital design. Extraction of
histories is frequently used to formalize or analyze programming constructs, Texts by
Manna {1974) and lecture notes by Greibach (1078) employ this approach to describe
flowchart schema. Each goes on to develop formally the relationship, first noted by
McCarthy (1903), between flowchart and recursion schema. They therefore establish,
albeit indirectly, the basis of our approach to digital design.

The symbolic evaluator of Cheatham, Holloway, and Towaley (1979) derives ‘‘the

' as a means for the

recurrence relations that deseribe the behavior of loop varinbles,’'
analysis and verification of imperative programs; but they have at the same time pro-

duced a digital circuit assembler and optimizer according to our model.

The notion that functicnal style employs same algebraic fromework as digital
designer is perhaps best illustrated in the FP programming movement (Backus, 1978,
1981a, 1081b). An algorithm cnn be expressed in a purely combinatorial form that
corresponds to how circuits are physically wired, The FP style goes beyond my .gonl

Stoy (1077, p. 182) glves a very clear discussion of this point,

however, by promoting variable-free programming®, and thereby suppressing a quality
that 1 shall eventually emphnsize: state. By suppressing state, one rids one's self of a
mathematically clumsy concept. However, FP languages invariably have a construct for
iteration (e.g. Backus's fnsert operator) and therefore retain the computationally neces-
sary concept of an accumulator (read: register). The description a digital system that
implements an algorithm eventually centers on register behavior; hence, to construct
such a description this behavior must be identified. The identifiers correspond exactly to

the program variables of the recursive specification,

In his dissertation, Cohen (1980) also uses an iteration construct as a basis for
transforming recursion equations into programs. He also gives a fairly thorough review -
of research in the comptlation of recursion equations. The circuit synthesis techniques

presented here extend many of these results to a dillerent implementation realm.

Iterators often carry an implicit termination condition, reflecting the programmer's
preoccupation with that property. However, termination is not a quality enjoyed by cir-
cuits if they are modeled in terms of their temporal behavior, The more natural abstrac-
tion is that of infinite behavior which occasionally notifies the outside world that mean-
ingful events arc taking place. Ashcroft and Wadge (1977) present a formal system
called Lucid in which non-finite histories are implicit. Lucid is also suggested as a pro-
gramming language that incorporates iteration in a “mathematically respectable way.”
The cireuit description C, above, is easily recognizable as a simple Lucid program, and in
fact has the appropriate semantics. The use of circuit description text as a formal sys-
tem to support infercnce is briefly discussed in Chapter 7. In his dissertation, Meyers
(1980) also investigates the use of non-finite structures in programming., While the pro-
perties of non-finite, especially sequentinl, objects are central to the development below,
their use as a programming construct is not, Rather, they are used to model the proper-
ties of clectronic components and serve as a target language for synthesis,

The preferred formal setting is the functional ecalculus of Scott and Strachey. A
domain formulation of behavior, presented here in Section 3.5, here was propased by
IKahn (1973, Kahn and MacQueen, 1977). The set of signals over a set of primitive

values is defined by the domain isomorphism

*Backus does not prohibit the use of variables in expressing algorithms, but seeks to reduce
their influence on conceiving algorithms. Sce (Backus, 1081).

10

Signal = Value X Signal

(KKabn uses the domain of sequences, Value™, whicl is the essentially the same domain).
That is, a signal is an infinite sequence of values. Components are {(simple) processes

that produce and consume signals.

Milaer has developed a robust mathematical foundation for describing process
semaonties (Milner, 1973, 1980a; Milne and Miluer, 1979; Gordon, 1980}, in which my
model can easily be embedded., He characterizes process behavior as a point in the

domain .
Behavior = Input = {Oulput X Behavior)

A component gives rise to a function from signals to signals. Given a process behavior
and an input signal it is a trivial coercion to construct the right output signal. The
basic difference here is that components are defined as higher order signals; that is, as
sequences of operations. Application is generalized to deliver the induced signal-to-signal
function, This is merely a technieal adjustment in light of the fact that the only com-
ponents I wiil allow are constant sequences. This constraint is lemporarily relaxed in

Chapter 5 to introduce communication,

Gordon (1081a, 1981b), Cardelli (1980, 1082}, and Milaer (1980b) use process
semantics in microcosm to address circuit behavior. Their goal is descriptive; they
develop a mathematically attractive notation for circuit analysis and verification. For
this purpose their notation is clearly superior to the applicative notation used here
because it can describe a wider class of circuits, However, the purpose here is synthetic,
and a purely applicative target langunge is suflicient to realize purely functional

specifications, We return to this point in the conclusion.

1.2.2. Operational Aspects of Modeling. My approach to synthesis maps
(fixed points in) a domain of functionals to (fixed points in) a domain of signals; it takes
self-reference in the guise of recursion to self-reference in the guise of feedback. lmple-
menting recursion with ‘‘reflexivity” is commonplace in programming., Compilers use
program pointers to maunage control; reduction interpreters use shared text to optimize

substitution,

More overt forms of “data recursion’ are often presented as advanced lunctional
programming techniques (e.g. Friedman, Wise, and Wand, 1976; Burge 1975; Henderson,

1080). The carliest example is Landin’s use of alreams in conjunction with his effort to

11

give an applicative operational description of ALGOL 80 (Landin, 1985). It is worth not-
ing that he intreduced streams as a modeling construct to factor (index) variable his-
toriecs out of loop statements, but immediately observed that the same mechanism
“would be used to model input-output il ALGOL 60 included such'. He elected to
represent histories as lists, and had to confront the possibility that non-terminating
loops would produce infinite histories. He could not directly express infinite data struc-
tures in his “call-by-value"” modeling language, and used function closures as a delay

mechanism to defer the possibly divergent, and anyway untimely, construction,

In 1970, Friedman and Wise proposed that this closure trick be incorporated into
the primitive data space operations so that all computation is deferred until it becomes
timely. A similar mechanism was independently presented by Hendcrson and Morris
(1976), and suggested earlier by Vuillimen (1974) and Wadsworth (1971). The effect on a
conventional reduction interpreter is profound, for a suspending constructor induces an
outermost reduction rule. Under reasonable sssumptions about the underlying opera-
tions, outermost reduction is consistent with the formal meaning of an expression as a
least fixed point. Morcover, non-finite data structures can be built and manipulated as a
matter of course; constructs like Landin’s streams become transparent. The interpreter
for Daisy is implemented on a virtual list multiprocessor that uses suspending construe-
tion. [t is therefore possible to express specifications and realizations without fear that

they will be compromised by an overly strict interpreter.

1.2.3. Other Motivations. Between 1976 and 1980 Friecdman and Wise published
several articles (1970¢, 1977, 1078a, 1978L, 1079) promoting a purely applicative
specification style and showing that it could be applied to *systems programming" prob-
lems. Since a circuit is a system, it seemed evident that the approaches they were sug-

gesting would be a promising basis for hardware design,

| owe much te Wand's work in compiler generation (1080a, 1980b, 1982a), as might
be inferred from the choice of example in Chapter 5, aud the style in which it is
developed. He gives a decidedly small set of generalized combinators that captures the
code-structure of conventional programming languages, and develops a formidable stra-
tegy to decompose a semantic definition into a compiler/machine pair. The machine
“factor" is in iterative form, and it follows from this investigation that it can be used to
construct special purpose hardware for the direct execution of compiled coede. In the

example just mentioned, however, Wand's clegant factorization is omitted since its goal

12

is not really at issue here; a direct interpreter is derived instead. The reader who is
uncomfortable with the resulting machine is urged consult Wand's work for insights into

how I might have arrived at a more conventional implementation.

1.3. Outline of the Presentation

Chapter 2 reviews the language of typed recursion equations that I refer to as
specifications, Basic methods for reasoning in and about this language are summarized,
The chapter serves not only to state preliminary results, but also to give an introduction
to readers who are unfamiliar with the description style, Three examples, representing
iterative, linear, and non-linear specifications, are presented and subsequently used to
follow the development through Chapters 3, 4, and 5. A series of extensions to the
specification language are made, starting with the incorporation of structural zombinn-
tion and n selection primitive, and ending with the admission of stacks to the underlying
type as a means to implement recursion. The extensions make it. possible to transform
various structural classes of specifications into simple foops. The final sections of the
chapter review the notation of the Scott-Strachey calculus, which is used to address
issnes that arise later in the presentation. Among the issucs discussed are the
specification of semantics, which will be the starting point for a lengthy synthesis exer-

cise in Clhiapter 5; and the use of continuations to specify control.

Chapter 3 defines a realization language for describing the logical behavior of digi-
tal circuits, and makes the fundnmental connection to the specification language. It is
then established that the functionals used to combine operators may also he used to
combine components. As a result, simple loops are shown to be essentially realizations,
Iacking only a lifting of the interpretation of ground symbols. The digital model is res-
tated in the terms of the Scott-Strachey calculus, as a prelude to an implementation of

the tnodel in Daisy.

A direct semauntics for Daisy is defined in Chapter 4, along with a brief summary of
its implementation, Basic programming techniques for circuit experimentation are
defined. The chapter concludes with a series of experiments on the example
specifications. In one case, observation of the derived circuit’s behavior reveals an

intercsting property of performance that is not addressed in the specification,

Most of Chapter 5 is devated to a non-trivial design exercise: the synthesis of an

interpreter-circuit for an applicative programming language called L. To attack larger

13

design tasks, we must of course adopt structured design techniques. The transparency
of structural combination to lifting makes possible the hierarchical decomposition of real-
tzations into packaged components, the behavioral analog to the programmer’s *

The technique of information hiding also lifts, resulting in a factorization of abstract

macro".

components, This decomposition leaves a residue signal of snstructions, and forces us to

conlront the issue of overt communication for the first time.

The L-interpreter's derivation begins with a formal definition of the language,
which is a non-linear, fully abstract specification. Of the six major steps in the transfor-
mation, two require substantinl designer creativity. The first step is to propose a more
concrete specification of L and hence is mainly concerned with finding an underlying
type for interpretation. Once a type has been found, construction of a simple loop ver-
sion of L is straightforward, although to reach a linear version some control decisions
must be made. | pause to do some register optimization, presented as a creative task.
An improved loop is transcribed to a circuit description, from which abstract com-
poneats uarc then extracted. In Appendix B, the successive descriptions are given in
Daisy and executed to show the logical behavior of the evolving design.

Chupter 0 suggests an approach to circuit refinement. A specianlized set of transfor-
mation rules is tailored to address a complexity problem in large scale design., The task
is to “fold" a combinatorial system with many external connections into a synchronous
system in which computation is serialized. The derived circuit is a data-flow element in
which some of the connective storage is realized. The transformation process produces
as a byproduct a computation schedule that can be used to coordinate the refined circuit

with the surrounding computation.

Chapter 7 reviews the presentation, discusses some of its shortcomings, and sug-

gests areas for (urther investigation.

The language Daisy is presented in a somewhat idealized form in Chapter 4.
Appendix A gives the present syntax. Appendix B shows the Daisy source for running
examples throughout the presentation. Appendix C contains proofs of some of the pro-
positions in the body of the dissertation. Appendix D is a table of symbols used in the
bnd:v of the dissertation.

The primary motive of this study was to extend McCarthy's “mathematical basis
for ‘the science of computation™ (1963a, 1963b) in the direction of its physical basis,
This arca is an excellent test bed for the discipline of applicative style, but its goal

14

should not be taken as the description of all hardware. In electing digital implementa-
tion techinologies hardware designers have already adopted functionality as their funda-
mental abstraction and can profit further from a design methodology that stems from
the same foundation. It is my hope that those familiar with conventional digital design
methods will see in this presentation a Btting basis for their craft. However, the pro-
found formal foundation aud rich notation that have evelved from MeCarthy's basis can
be a bindrance. It is hardly reasonable to expect the “uninitiated" reader to absorb all
the principles without first perceiving o payofl. The reader who is unacquainted with
functional style should consider reading this material in two passes, first to see its direc-
tion and then to fill in the details. On first reading, one might do well to skip Sections
2.5, 2.8, 3.4, 4.3, 5.3.2, and 5.3.3, for it is in these sections that [formally address issues
that are either on the fringe of the subject at hand or are intuitive to anyone alrendy

familiar with the design of computations.

2. TheSpecification Language

A recursion equalion is an cquation whose variables range over functioms. A
specification is a system of recursion equations. Any specification bas a canonical solu-

*

tion; it is the set of minimally defined functions that simultaneously satisfy the
definitions. Hence, the specification language is unambiguous. This chapter reviews
basic fucts about recursion cquations and ways to reason about and mauipulate them. A
thread of facts is established that leads to a connection with the realization language to
be defined in Chapter 3. The thread unwinds through a sequence of extensions to the
notation, making it possible to transform larger and larger classes of specifications into
iflerative form. lterative form is a characterization of “‘sequential control”, and thus
coincides with the class of specifications that, under a minimal set of assumptions, can
be associnted with a flowchart description of a computation, Just as flowcharts are a

frequently used basis for digital design, iterative specifications are so used here.

Specifications are made in terms of au underlying type, a callection of ground sym-
bols that denote values and operations from which more complicated things are built. It
is the designer's “implementation realm”. If the realm is TTL logic, for example, the
underlying type would have two voltage levels and a parts catalog of components. In
practice, specifications will always be typed. However, some transformations on
specifications are valid no matter what the underlying type is. Hence, we shall often be
dealing with recursion schemes or recursion cquations over uninterpreted ground sym-
bols. Finding generally valid transformations is obviously desirable, since they are appli-

cable in any realm.

There exists o ‘‘universal type"” in which all others can be embedded. A rather

sophisticated notation has evolved around its use. We shall refer to this notation as the

16

18

Scolt-Strachey langunge. It represents one limit to which our specificution language
might be extended. The language allows for the description of highly abstract entities,
such as function-valued functions, and is in a sense too abstract for our purpose of syn-
thesis. In using Scott-Strachey notation as a starting point for a design, the first step
will always be to propose a rcpresentation—that is, a suitable uaderlying type—for a
more coacrete specification,

McCarthy is generally acknowledged as a founder of the functional specification
style. The basic syntax of the specification language is similar to the Janguage he uses in
early articles (McCarthy, 1963a, 1963b), Much of the our basic vocabulary comes from
an introductory text by Wand (1980). Manna's text (1974) ond Griebach's lecture notes
(1975) are good introductions to the rclationship between recursion equations and

flowchart schema. Both cite the landmnark works in this area.

2.1. Typed Recursion Equations
A design will be implemented from basic components, and in making a
specification, this vocabulary is usually fixed in advance. This set of “*building blocks” is

called the underlying type of the specification.

DEFINITION 2.1-1, A type D conaials of
. A carrier scl, D, of values.

. A asel of constants, C € D.

iir. A finite set of total operations, f: D"~ D for various n.

v, A finile set of tolal predicates, p: D" — {true, false}, for various n,

An operation f: D" — D is said to be an n-place operation. C and D are often equal,
but when containment is proper, D will nlways be inductively defined from C. That is,
D will be the smallest sct containing € and closed under the operations of D. An
indeterminate constant m is sometimes appended to C, and the set of truth values may
likewise be extended. Depending on the context, m is either unknown (don't-know) or its

value doesn't matter (don't-care).

An cxample of a type is Dig, for digital logic, with carrier Dig = { high, low)}, 2-

place operation

17

lowifz = y = high
nand(z, y} =[

high otherwise

and 2-place predicate high? = { fhigh, true}, {low, false)}. Dig can be extended by intro-
ducingm to its carrier's nend(m, y} = nand(z,u} =w; and highf{a)=wu.

Most of the examples in this chapter are arithmetic; they have underlying type Int
of integers, with carrier fnt = {..—~2, =1, 0, 1, 8,..}; constants /n#; 1-place operations
ine and der (increment and decrement); 2-place operations add, sub, mpy, and div (add,
subtract, multiply and divide); l-place predicate zero? and 2-place predicates P and
eqf (test for zero, less-than, and equal). Int is more primitively defined as having con-
stant set { 0 }, operations inc and der, and predicate serof. Intis inductively defined as

the smallest set containing { 0 } that is also closed under fnc aud der.

A set of symbols is associated with the underlying type and serves to represent it in
the specification language, When it is necessary to make a distinction between symbols
and their abstract counterparts, symbols are either underlined or enclosed in the quota-
tion delimiters ‘[’ and 'J'. For Int the symbol set includes inc, der, eqf, ®, elc.; and a

numeral for cach integer.

The letters u, v, w, z, y, and = are identifiers; they serve as formal parameters in

function definitions.

Strings of upper case letters, such as 'FAC’ and ‘GCD’, are funclion variable aym-
bols, which are defined by equation. The letters F, G and H are the function variable

symbols usually used. The rank of F is the number of formal parameters it requires.

In discussions where the underlying type is not explicitly mentioned, the
metalinguistic variables f, g, and A will range over operations; p and q will range over
predicates; a, b, and ¢ will range over constaunts; F, @, and H will serve as function vari-

able symbols; and 2, 2, Zy oo will stand for identifiers.

s
Specilications are built from applieative expressions involving ground symbols and

the special character set {{,),., =).

IDepending on the implementation technology, it may be more appropriate to define
nandflow, m} = nendfw, low} = high (Mead and Conway, 1980, p. 15},

18

DEFINITION 2.1-2. The language L . of terminal terms is defined inductively by:
i CcE eror conatant ¢,
it. 2 € Ly for identifier z.
fi. If [ia an n-place operation and t;, L, ..., I are terrminal terms, then
FUt s tgs v s 8, YE L.
The language L, of recurrent terms is defined tnductively by:
. L.CLg
it. If F {s a funclion variable symbol of rank n and t, ¢, ..., ¢ are recurrent
terma, then F{ ¢, , by, ooy 4)€ Lp.
The language L of expressions is defined inductively by:
. LpoGlL,.
it. If [is an n-place operator symbol and € €410y €, OFC ezpressions, then
flescpeun e)E L
i, If F is a function variable symbol of rank n and e, ¢, ,..., ¢, are ezpressions,
then (e, . eps o€,) € L.
iv. If pis an n-place predicate symbol and |, r, ¢, ¢, ,..., ¢, are eapressions, then

the couditional expression p (e, , ¢,: ... €,)= 1. r€ L,

The substring to the left of the — in a conditional expression is called a proposi-
tional expresaion, Unqualified, the word *'term’ means “recurrent term’. Our interests
center on the function variable symbols and what they denote. Hence, they are called
scrious symbels; all other symbols are trivial, Terms and expressions inherit the quali-

ties of their components.

DEFINITION 2,1-3.
A term fezpression) is called serious if it contains a function variable symbol. Other-
wise, it 18 trivial,
A term (ezpression} over identifiers z ,..,, 2, 18 one that conlaina no identifiers other

than Ty vvey By

19

A ground term fexpression) is one that contains no identifiers.

We can now define a specification to be a system of function-defining equations,
The left-hand sides of these equations are “calling patterns' consisting of a function
name and a formal parameter list. The right-hand sides are defining expressions, stating
what the functions do when called, Two additional special symbols, <= and . are
needed.

DEFINITION 2.4-§. A recursion equation haas the form
Flz,,2,,00,3) =c_.
where F is a function variable saymbol of rank n, and ¢ is a capreasion over z, 7, ,..., 7.

This equation i3 said lo be F''s defining equation. A specification s a finite set of recur-

sion equations, cach defining o unique function variable symbol,

Note that the definition prohibits “global” identifiers. That is, a function’s defining
expression involves only identifiers ia the function’s parameter list. The following exam-

ples of specifications in Int will be used to illustrate the ideas of this chapter and the
next?.

GCDfz, y} <= cg?{’: y) - I (S’)
“?(3: yl— GGD(": "Ub{y: Z}), GOD{U: 'ﬂlﬁ(z: y”-

FAC(z} <= zerof(z} — 1, mpyfz, FAC{dcr(z))). (s.)

FiBfz) <= Wf(z, 2) — 1,add{ FIB{decr({der(z)}), FIB{dcr{z)}). {S,)
Intuitively, specification S, defines a grealest common divisor function, S, defines a fac-

terfal function, and the function defined by §, returns the 2** clement of the Fibonacci
sequence: 1, 1, £, 9, 5, 8.... Two of these specifications are ambiguous; neither S, nor 5,

states what the function it is describing should return on a negative argument. This

*It is standard practice to switch to the more familiar infx notation for opetations in Int, [
will occasionally make the switch when doing so clarilys the presentation (in Section 2.3 for exam-
ple). However, when making “official” specifications, I shall continue to use prefix. notation, and

20

ambiguity will be resolved in the next section.

The three specifications differ in their structure. In §, the function variable sym-
bols are outermost in all serious terms. In §,tl +is at most one function variable sym-

bol in any recurrent term. S, has neither of thes. Jualities.

DEFINITION 2.1-5. A recurrent lerm 1o
linear = if it contains a aingle function variable symbol.

iterative — if £t ta lincar and its function variable symbol is left-moat in the term.
A conditional ezpression [[p(t,, t,, ..., 8) = r, 2] is linear {iterative} if cach t, is a ter-
minal term and both of ita branches, r and s, are either terminal or linear fiterative}), A
recursion equation is linear fiterative} if its defining ezpression is. A specificalion is

linear {iterative) if each of its defining equationa ta,

The recursive structure of a specification is of interest in itself, and will sometimes
be considered independently of the underlying type. A recurason scheme is a recursion
equation in which the ground symbols are left uninterpreted. A recursion scheme §’is
called an instance of recursion scheme § if some or all of the uninterpreted symbols of §
have been consistently replaced by specific symbols to get S°. For example, specification

S_, above is an instance of the nonlinear recursion scheme

F(z) <= plz) — <, k{ F(9la(z)}), Flg(z))).

2.2, Solutions to Specifications

The ground symbols in an expression denote the entities that they represent in the
underlying type. Thus, the value assigned to any trivial term is simply the value of its
abstract counterpart. Function voriable symbols denote functions that satisfly, or are
consistent with, their defining equations. To make the notion of consistency precise, we
shall define a relation called valuation between specification text and meanings, Applica-

tion of a serjous function is interpreted as a textual replacement, called a subatitution.

beg the reader’s indulgence, since in later chapters | would have to revert to preflx anyway.

21

DEFINITION 2.2-1. Let ¢ be an ezpression over identifiers 2, ,..., z,. andlett,,.., t, be

[by sons fﬂ]
4
z

1 Jreey zn

arbitrary expressions.

denoles the expreasion oblained by substituting t, for cach occurrence of 2, in e.

A specification gives a context for substitution in a valuation.

DEFINITION 2.,2-2, Let S be a specification over a type with carrier D. Let ¢ be a con-
stant, [an n-place operator symbol, and p an m-place predicate symbol, Let F be a func-
tion variable symbol defined in S by the equation [F(z, ..., 2.} <= éF.]|, where §F is an

ezpression. The funcltion val maps ground ezpressions to values in D as follows:

val[e] = ¢

val[{f(fu - .f“)]] =f(val|I!,]], ey vl [l',.ll)
val [[p(t,y .. 42,) = 1, 5] =[val [r]l, if pfval [,], ..., val [t]} is true

val [s]), if pfval [8,1, ..., val [2])] is false

“’ h." ‘n
val [F (1 i s?,)] = val IIJFI] I
z" lll’ :

» The function val can be extended to a function over srbitrary expressions by pro-
viding an envirenmen! that gives values for free identifiers, That is, given a function
p ! Ide — D, where Ide is the set of identifiers, add the clause “val[[z] = pfz)" to val's

definition.

Given o specification, the value of a ground term can be derived by reduction; that
is, through symbolic manipulation of the expression according to the rules of Delinition
2,2-2. If a step in a reduction is justified by known properties of the underlying type, we
shall call it a simplification. A step justified by the substitution rule is called an unfeld.
ing if the rule is applied from left to right. The inverse of unfolding is folding. We shall

write “AF" to mean by substitution according to F''s defining equation” (unfolding),

and ‘‘¢F" to mean ‘‘the abstraction of common subexpressions by identification,

according to F's defining equation.” (folding).
Recall the recursion equation
FAC(z) <= zeroffz) — 1, mpy{ z, FA C(der(z))).

which we claimed earlier to specify a factoria! function, Using Definition 2.2-2 and some
simplification we can readily show that the expression FA C{2} reduces to £

FAC(2) = zerof(8} — 1, mpy(8, FAC{der(2}} AFAC
= mpyf8, FAC{derf{2]}) _ conditional {—)}
= mpy(8, FAC[1)) aimplification
= mpy(2, [zero?f1) — 1. mpy(l, FAC{der(1)}]} AFAC
= mpy(2, mpy(1, FAC(0)) —, aimplification

mpy(8, mpy(l, serof{0) — 1, mpy{0, FAC{der{0})}} AFAC

mpy(8, mpy(1, 1}} -

=g simplification

Numerous mechanical steps have been omitted, as has any explicit mention of the valua-
tion function. We simply allude to val by uaderscoring text. The coercions between

trivial text and its meaning will be omitted henceforth.

By the reduction above, any function that satisfies #AC's defining equation must
map 2 to 2L On the other hand, the expression [FAC{1}] cannot be reduced to a
value using the rules of Definition 2.2.2; val[FAC{~1)]] is undefined. The solution to a
specification is taken to be the set of minimally defined functions that satisfy their
definitions. Minimality insures uniquencss and makes the specification language unam bi-
guous. A formal development of this subject can be found in Manna's text (1974}, The

solution to Fa C’s defining equation is the function factorial:int — Int

23

' nlifn> 0

Jactorialfn}) =
undefined otherwise
Since solutions are unique we need mot distinguish function variable symbols from the
functions they represent., The name FAC rather than the name factorial can serve to
identily FAC’s solution,

Although we have now made subliminal any distinction between symbols and their
denotations, we did not institute a formal connection between notation and its meaning
merely to discard it in the next paragraph. We shall return to the definition of val when

we discuss the mechanical reduction of expressions in Chapters 4 and 5.

There is ample temptation to be clever when performing reductions. The third step
of the reduction nbove produces the subterm mpyft, FACfder{1}}). 1t is intuitively rea-
sonable to replace this term by FAC(0}, since [is a multiplicative identity. However,
reducing mpy(0, FA C/—1}} to 0 is suspect, since one of the subterms is undefined. While
such *optimizing” simplifications moke sense in computer arithmetic, we shall prohibit
them by requiring that simplification only be applied to convergent terms, that is, to

terms that are guaranteed to reduce to values.

DEFINITION 2,2-3. An operation {or predicale) [is strict if it is undefined whenever
any of ils arguments is undefined. Strict operalions that also respect m, 20 that

Jl, w ,..) = & as lony as no arguments are undefined, arc said to be completely strict.

It is always assumed that the operations and predicates are strictbut not always com-
pletely strict. The assumption implies that text cannot be “thrown away" through
simplification in a reduction. The conditional reduction rule is therefore crucisl, since by

it alone may divergent subex pressions be discarded.

2.3. Reasoning about Recursion Equations

We shall mainly use induction to reason about specifications. The methods used
most are structural induction and subgoal induction, illustrated below. The examples in
this section are based on recursion schemes or on recursion equations over Int. Infix
notation for the arithmetic operations and predicates is used in order to make the exam-

ples easier to follow. Later, we shall revert to prefix notation.

24

2.3.1. Structural Induction Structural Induction is the familiar technique for
proving a proposition over an inductively defined set. To show a proposition P is true
for all elements of a set S, one gives a proof ‘‘template” for a parameterized version of P,
Pfs). In a base step, Pfa) is proven directly for a subset of minimal elements in S. In an
induction step, the assumption of Pfs} is shown to imply Pfs’) where ¢’ is any ‘‘next”

element of S. For example,

PROPOSITION 2.3-1. Let G be defined as follows over Int:
Gfz, 4, 3] <= (2 =0) — y, Gfz=1, 5, y +:2).
Then for all a >0 and for all b and ¢, Gfa + 8, b, c) = G{a, b, ¢} +-Gfa + 1, b, c).

PROOF: By induction on Inf. Let P{k)} be
“For all b andc, Gfk + 2, b, ¢c) = Gk, b, e} + Gfk + 1, b, c).”

Baae step (P{0)).

G{2, b,¢c) = Gf1, ¢, b +c} AG
= Gfo, b +¢, b+ 2) AG
=}b+e AG
= Gf0, b, c)+ Gf0,¢, b +¢) v G, twice
= Gf0, b, ¢c)+ G(1, b, c} vG

Induction atep (P(k) D P{k + 1}). Assume Gk +8,b,¢c)= Gfk, b, ¢c)+Gfk+1,8,¢c)

Gk +8,b,¢) = Gl +2,¢,b+c) AG, k+8#0
=Gfk,e,b+e}+ Gk +1,¢c b +c) | Induction Hypothesis, Pfk}
=Gfk+1,bc)+ Gk +2b,c) TG k+ik0

The following corollary to Proposition 2.3-1 is used later.

COROLLARY 2.9-2. Let FIB and G be defined by

26

FIB(z) <= (z <1)— 1, FIB(z—2) + FIB(z—1)

Glz, y,) <= {2 =0} — y, G{z_‘ll 5yt
Then for all @ 2> 0, FIBfa} = Gfs, !, 1).

PROOF: The proof is by induction on /nt using induction hypothesis “Ifa < &k + 1 then
FiBfa} = Gfa, 1, 1)". The details are given in Appendix C.
a

2.3.2. Subgoal Induction. Subgoal induction is an induction over the “depth” of
vecursion, The proof style, introduced by Morris and Wegbreit {1977), is natural because
it uses the specification text as a proof generator. Hence, it emphasizes the notion that
in writing a specification, the designer is in fact formulating a proof. Assume that all

defining expressions are in branched condstional format:

Flz) sy 2} S=py= 1 Py=* Py B, = T,
where the propositional expressions p,are mutually exclusive and exhaustive, and each r;
is a recurrent term. An inpul-oulput assertion Ve (z‘ poeey &, 7 3) is nssociated with each
function variable symbol, relating its arguments z; to its result =z Each branch of F's

defining cquation generates o verification condition of the form® P € 1 D R. Pis the
premise that the predicate for the branch is true, [is the inductive assumption that all
serious functions used in the branch satisfy their input-output assertions. The conclu-

sion R states that the input-output assertion is true on this branch.
PROPOSITION £2,8-8. Let E be defined by

Efz} <= (z =0} — 2,
{z #0) — Lfz—1) + 221,

Then for all 2, Efz) = 2°,

PROOF: by subgoal induction on £, E’s input-output assertion is

A third premise is sometimes needed, stating that F produces equal outputs on equal inputs,
This condition is not used in any of our proofs.

26

Velz;z)= Hp= gt n
£'s defining equation generates two verification conditions
. (2=0]D V¥ (z;1)
it. fz#0) 8 Vfz—L;2)f DV fr;s+22-1)

For verification condition {i),

z2=0 premise P
0= 0 arithmelic fact
z=1° subsiitution of equals

For verification condition {i¥),

r#0 premise P

: = (z-1F premise I, that is W o (z—1 ; 2)
:=2-2r+1 arithmetic

=482 ;1 more arithmelic

The last line is ¥ fz ; s + 2z —1) with : = Efz —1). That is, il z # 0 then Efz) =
Efz~1) + 8z—1 = 2° Since the predicates are exhaustive, the two cases establish the

desired result.
(|

Note that by subgoal induction the undefined function [[Gfz)<= true— Gfz).]
satisfies any input-output assertion. The function £ in the example above does not meet
its input-out put assertion il it is given a negative argument, since it diverges. Subgoal
induction is a partial correctness method; the functions involved satisfy their input-
ouput assertions whenever they are defined, To show total correctness a separate termi-
nation proof may be given, or a well-founded measure may be included in the input-
output assertion.

Subgoal induction is often used when not enough is known about the underlying
type to support a structural induction. Hence, it useful for reasoning about recursion

schemes, as the following proposition illustrates,

27

PROPOSITION 2.8-4. Let g be a commutalive, associative, -place operation fi.e. for all
z and y, g{z, y) = gly, =} and gz, gfy, z)) = g{o(z, y), :})). Let G be defined by

Glz, y) <= p(z) — y, ~p(z) — G(h{z}, 9(z, y}).
Then for all a, b, and ¢, G {a, gfb, ¢c}) = g{b, G (s, c}).

PROOF: by subgoal induction on G.
Case 1. If pfa}is true, then by G's defining equation,

Gfa, gfb, c)} = glb, c} = g{b ,G(a, c)).
Case 2. Assume that pfa}is lalse, and by induction that for all 6’ and ¢,
Glh{a), 9(b’, ¢})) = g(b’ ,G(hfa), c’})
Gfa, gib, c)} = G(h(a), gfa, gfb, c}}) AG, =pfa)

= G{h{a), g{b, gfa, c}}} g 13 commutative and associative
= g{b, Glb(a), ga, c)f) | LH.;6"= b, and ¢ = gfa, c)
= g(b, Gfa, c)) v G, ~pfa}
a
Proposition 2.3-4 also has a useful corollary.
COROLLARY £.8-5. Let FAC and (be defined by
FAC[z) <= [z =0} — 1, 2+ FAC(z~1).
. G(:r y} ¢ (z =0) - G(:_IJ T4 y)'
Then for all a 20, FAC(a)}) = G, 1).
PR OOF: by structural induction on /nt. See Appendix C,
8

2.4. Transformations on Recursion Equations

This section presents the central issue of this chapter: the translation of
specifications from one form to another, For our purposes, the goal is to find a target
specification that is in iterative form, Iterative form is of interest in general because of

its correspondence to sequential control algorithms (f.e. programs) (McCarthy, 1963a;

28

Patterson and Hewitt, 1970; Manna, 1974; Greibach, 1975). Since digital circuits are
also sequential in nature, many of the results of research in compilation of recursion
equations are also ol use in the synthesis of circuits. The compilation problem has been
studied widely; Colien gives a survey of relevant papers in his dissertation (1980).

We embark on a series of extensions to the specification language that make it pos-
sible to find iterative “‘versions' of certain recursion structures. The first extensions are
utterly reasonable; they express ways that basic components might be physically com-
bined. Later extensions force us to make assumptions about the computational power of
the underlying type; they yield iterative versions through constructions that implement

recursion.

With modest extensions to our notation we demonstrate that any iterative

specification can be transformed to an instance of the *‘universal iterative scheme"
F(z) <= plz} — I{z), F(o(z)). (U

The initial connection between specifications and circuit descriptions is made on the
basis of U,.

A collection of results is reviewed below, showing that any linear specification has

an iterative version, although it may not compute in the same way as the original®.

The simple extensions are not enough for more complex cases, Non-linear
specifications exist for which no iterative version can be found, unless further assump-
tions are mande about the underlying type. Corollary 2.3-5 is an example. It gives an
efficient iterative version of the factorial specification, but the transformation depends on
the algebraic properties of multiplication, As stronger assumptions are made about what
can be computed by the underlying type, larger classes of specifications become
transformable. It is not the purpose here to explore these relationships in detail. We
shall simply stipulate that transformation is a creative design task that is partly
automatable, Obtaining a speciication with o particular structure is a heuristic by

which engineering proceeds.

‘This is a lTuzzy qualification at best, since no measure of performance has been assigned to
the specification langunge. Strong (1971) develops a formalization of operalional translatabilily to
address this issue,

28

2.4.1. Grammatical Transformations. We shall refer to atiy “preprocessing”
translation of a specification as a grammatical transformation, Such trounsformations are
used to place specifications into a normal form in order to apply a general construction.
Such translations exploit Definition 2.2-2 by symbolically folding or unfolding defining
expressions, New definitions may be introduced into the system so that existing
definitions can be folded into a simpler form. We shall see examples of this process in

later derivations (e.g. in Section 2.4.4),

Branched Conditional Format. In Section 2.3, recursion equations were assumed

to have the form
Flz, 00y 2) P, — 1y Py Ty ooy Py =
Translation to this form would intreduce additional function calls to replace r, if it were

a not a term, and modify the propositional cxpressions to make them mutuslly

exclusive.

Balanced Format. A specification is balanced if each defining expression in the sys-
tem is a recurrent term, or a conditional whose alternatives are either both trivial or
both serious. Extraneous function definitions ¢can be used to balance alternatives. If the
initial system is linear (iterative), o linear (iterative) balanced version can always be
found {Greibach, 1975, pp 7-12).

Argument Padding. In coastructions that follow it will be necessary to alter
specifications so that each defining equation uses the same formal paramecter list. The
translation involves changing identifier names in a consistent fashion, and possibly
adding unused formal parameters. By convention, the don't-care value is supplied as an

argument when the corresponding formal parameter is padding.

2.4.2. Distributivity of the Conditional and Multiplexors. The conditional

construct distributes through application. For instance, the expressions
Qp—tr,8), f(t, u)] and [ff [p — r, Y, [p — o uf }]] are equivalent, even if [is
replaced by a function variable symbol®.

Sprovided the function depends on one of its parameters, Consider [Ffz) <= c¢.]. If
[p— Ffa}, F{5})] = {F([p = o, &/)], then it reduces to ¢, whether p is defined or not,
Definition 2.2-2 suggests that conditionals should be undefined if their propositional expressions

30

While the non-strictness of the conditional is crucial to expression valuation, it is
tlesivable to introduce a selective operation to replace conditional expressions when

strictness isn't an issue. A mulliplezor is a strict version of the conditional expression,

DEFINITION 2.4-1. Let p be o propositional ezpression. The operation mux is defined
as follows
bifpistrue
muzfp, b, ¢} =4 undefined if p, b, or c ia undefined
c of p is falae,

Giving muzx the status of an operation rajses several technical problems, One of its
operands is a propositional expression, which must now be admitted as a possible term.
This forces truth values into the underlying type, and the remaining operations must be
extencded to handle them., We may assume either that the underlying type “admits
sclection”, perhaps thirough an encoding of truth values in the carrier, or that the valua-
tion function has been patched with a special case for multiplexors. In any event, the

issue is not crucial because multiplexors are only used here to replace conditionals.

Transforming f[p — r, 8] to [muzfp, r, s)]] is tantamount to an assertion that r
and s both converge. For example, replacing
F(z} <= pfz) = f(z), (F(z)).
by
F(z) <= [(muz(p(z), 2, F(z}).
is invalid because in the second form, the defining expression always diverges, whereas
the lirst does not. The following criterin are sullicient to guarantee that replacement by
muitiplexors is harmless:
1. r and s are trivinl expressions.
2. The surrounding specification is linear.
The conditions insure that r and s will be ground terms in any reduction, and will there-

fore always converge. If the surrounding specification is linear, p must be trivial by

Definition 2.1-3. By condition (1) r and s contain no serious subexpressions, and

are.

31

divergence cannot be introduced through unfolding the recursion equation in which they
accur. Condition (2) implies that no prior substitution has introduced a serious expres-

sion.

2.4.3. Combined Operations. The notation is now extended to permit groups of

operations to be expressed as a single combined operation.
Constants.. For each constant ¢ introduce a constant-operation with symbol K¢,
K¢fz) = c.
Identifiers, For each coordinate of the state, introduce a projector, x,.
rr‘.(z,, 2,0 2) = z
Serial combination. Operator composition is expressed by juxtaposition.
fo(z) = f{slz)).

Parallel combination. A sequence of operations enclosed in angle brackets denotes

“brondeast’ of the argument.
<[y s [,20) = (Ji5) ey [(2)).

These extensions make sense in terms of circuitry. As their names indicate, parallel and
serial combination suggest ways that components are physically wired together. Projec-

tion is o *tic into a bus". A constant-operation corresponds to a fixed source.
The goal is to rewrite any terminal term over the identifiers z, ,..., z_ as something
of the form ~fz, ,..., z,/, where 7 is a combined operation. In the process, individual

identifiers are replaced by their coordinate addresses in an argument vector. The com-
bined term may be written simply as 4z}, where the identifier z stands for the state of

the computation.

32

PROPOSITION 2.4-2. Define a translator T, taking terminal terms to combined opera-

lians, as follows
Tlce]l = K¢
Tlz]l ==,

TU/, e) = ST Q] e, TIH]D>

For any terminal term t over the identifiers z ..., 2,

_ 8) yes @,
val 7 [](a, ooy 0] = valIIl[] I.

2, e 2,

PROOF: The proof is a straightforward structural induction on L, but requires a for-
mal definition of substitution. Several similar proofs may. be found in Wand's text
(1080).
(m]

Combined operations will be introduced exclusively by the translator . The under-
Iying type is not neccssorily closed under arbitrary combinations, for if it were, they
could be used to build data structures. As with multiplexors, the use of combinations is
limited to cases where they can be dealt with syntactically by an enbanced valuation

function. They serve simply as “maeros”,

Notice that the term [f{c}] translates to [f<K*>]. But by the definitions above
of serial and parallel combinatien,
ISIKE >z} = [(K°(z)) = JK*(:)
Although the translator encloses all argument lists, even those of length one, in a parallel
combination, we shall suppress the brackets in the case of 1-place function combinations

for the sake of legibility®. Thus [f<K*> [is written [/K°].

8A quite elegant approach to programming results from the algebra of combinations in which
this transformation is an elementary rule (See Backus, 1078, 1081). The use of combined opera-
tions is transitory in this presentation; it lasts until Section 3.4,

33

2.4.4. Universal Schemes. Specifications can be classified by a collection of
representative schemes to which they can be transformed. Using grammatical transfor-
mations, multiplexors, and combined operations, there is a construction by which any

iterative specification can be transformed to an instance of the scheme
F(z) <= p(z) = f(z), F(9(z}). (U,)

The construction is straightforward, and is roughly the same as Cooper's version (1967)
of the folk theorem: “Every looping structure can be transformed to a single while=loop"
(Harel, 1080), However, it is carried out in a functional notation. We will make do with
a small example, itseif a generalization that shows how to construct iterative versions of

certain linear specifications, Consider the recursion scheme:
L(z} <= p(z) — f(z), h{L(3(z))

and the iterative system

Gfz, y) <= p(z) — Hfy, I{z)), Glg(z}, y).
o | Hfz, y) <= pfz) = 2, Hfg(z), h(y)).

L returns h"fg"{z), where the superscript denotes n-fold composition, and n is the
number of times g must be applied to z in order to make p true. Intuitively, & computes

fg%(z) and passes it to H, along with the initial value of z. # uses p to recompute n, and
applies & that many times, It is not difficult to show that

PROPOSITION £2.4-8. For all o, L{a} = Gfa, a}.

. PROOF: {Appendiz C).
We shall now construct an instance of U, from specification #,. The construction

requires the initinl system to be in balanced form (See. 2.4.1). To balance our example,
we need only replace the z in H’s defining equation with a dummy function call, [’

defining equation is padded to make its formal parameter list conform to the others.

34

Glz, y) <= plz) = H{y, [(2)), Glo(z}, y).
R, |Hfz, y] < p(z) — Iz, w), Hig(z}, h{y)).
Iz, y) <= =.

The next step introduces a new parameter to record which function is “in control”,
and rewrites the system as a single recursion equation. It must be assumed that the
encoding can be represented in the underlying type. Let conirol token w range over the
values { G, H, I} and let the predicate at? be a test for one of these values, Transform

R, into a single defining equation for function F:

Flw, z, y) <= atffw, 1) = z,
R, atffw, G) — [?(3) — F(u, y, f{z}), F(G, g(z), y)],
[p{z}—- F(1, z,m), F(H, g(z), h(y)}]'

The propositions distribute. We first push p inside the call to F; since the scheme is

linear, multiplexors can be used for selcction.

Flw, 1, y} <=

al?fw, 1} — 1z,
R, alffw, G} — Flmuzrfp(z), B, G}, muz{p(z}, y, gfz})}, muz{p{z}, fz), y}),
Fimuz{p{z), 1, U}, muz{p{z}, z, g{z}), muz{p{z}, &, hiy)}).

Distribution of &7 yields

Flw, 1, y} < al?{w, i} — 2,
F{muzfat?{w, G}, murfp{z), B, G}, muzfp(r), 1, 11}),

muzfatf{w, G}, muzfpfz), y, y(z}), muz{p(z), 2, glz}}},
muzfatf{w, G}, muzfpfz), f{z), y), mux{pfz), m, h{y})}).

The operations of R; arc structurally combined to get the desired instance of U;. Let

36

p'= atf <m, KI>

I=n,

g'= < muz<atf<m, K% muz<pn, K" K> muz<pn, K K7>>
nu:z<1r|ﬁ’<:1"r K% mur<pm, Ty §,> MUT PR, T, R, > >
muz <alf<m, KS> mur<pnm, fr,m,> muz<pnm, K® hr,>>>

Using these combined operator symbols we arrive at the desired instance of U;:

Ry | Fls) <= p'fs) = I'(z), Flo'(z)).

The construction preserves the meaning of the initial specification. It can be shown by
subgoal induction on F that for all a and b

F{qg, a, b) = Gfa, b),

F(H, a, b) = Hfa, b), and

F(1,a,b) = Ilfa, b).
Hence by Proposition 2.4-3, F{Q, a, 6} = L{a), where L is defined by the linear equation
we began with,

The construction can clearly be generalized to arbitrary iterative systems, and a

generalized construction yields a umiversal linear scheme.

THEOREM 2.4-4. If multiplezars and combined operationa are allowed then

i. Any iterative specification can be transformed to an instance of the scheme U,:
F(z) <= piz) — f{z), F(g(z)).
#i. Any linear apecification can be transformed to an inslance of the scheme U, :

F(z} <= plz} — iz}, hiz, Flg(z))).

PROOF: Each scheme is a special case of a construction presented by Cohen (1980, pp.

830-643), who cites Chandra as the originator of (i} (Chandra, 1972).
a

Patterson and Hewitt (1972) also note the universality of U, when they present a

368

flowchart schema equivalent to any linear specification. The following theorem restates

their result as an assertion about transformability to iterative form.

THEOREM 2.4-5. Let F be defined by U,, and conatder the apecification.

G{": v, 24 <= P(z) - L(": a,ua, fl},
G(“: 8, gz, W, .)'

L{u, v, 2, y, 2} <= pfz} — 2, M{y, gz, gz, u, z}.

M{u, v, 2, ¥, 2} <= p{z}) — L{u, m, v, u, hiy, :}},
A{{“: v, 9%, gy, 2).

For all o, Ffa) = Gfa,u, a,u,m)

PROOF: (Appendiz C).
The extensions allowed so far are not powerful enough to yield iterative versions of

arbitrary specifications. The following well known example is due to Patterson and
Hewitt (1972):

THEOREM 2.4-8. If multiplezors and structural combination are all that is allowed, there

ts no general transformation that yrelds an sterative version of

F(z}) <= p(z) — flz), b{ Flg{z), Flgfz)]).

DISCUSSION: The usual statement of the theorem is that the scheme is not “flowchart-
able”. Its prool depends on formalizations we have not introduced and so it is omitted.
The strategy is to show that the iterative version would need an unbounded number of
identiflers to produce the right value in an arbitrary underlying type. For details sece

(Patterson and Hewitt, 1972}, {Manna, 1974), or (Greibach, 1975).
O

2.4.5. Synthesis of Iterative Form Specifications in iterative form correspond
with the notion of sequential control associated with flowcharts; a program statement is
a function on the program’s state, We have assembled enough notation to permit any

linear specification to be translated to iterative form and hence to an instance of the

37

scheme U,. So far, we have made simple stipulations about the computational qualities
of the underlying type. It must admit selection and certain forms of combination. It
must be robust enough to represent a finite number of control tokens and have a test for
equality. The review included the negative result that not all specifications have itera-

tive versions.

On the basis of recursive structure alone, it is not decidable whether a non-linear
specification has an iterative equivalent (see for instance Greibach, 1975, Theorem 7.9).
However, in the course of our discussions we have managed to find iterative versions of
all of our example specifications, Corollary 2.3-56 shows that by introducing an “accumu-

lator", the factorial specification

FAC(z) <= zerof(z} — 1, mpy(z, FAC{der(z})).
has iterative version

Gfz, y] <= zeroffz) — y, Gfder(z), mpy(z, y)).

This version is intuitively better than the construction of Theorem 2.4-5 because it is
faster; but its validity depends on the algebraic properties of multiplication.

Corollary 2.3-3 shows that the Fibonaces specification:
FiIB(z} <= WPz, 2) — 1, add{ FIB{dcr{dcrz}), FIB{der(z})).
Has iterative version
Gfz, y, 2} <= zeroffz) — y, Gfder(z), z, addfy, z}}.

Hence, not all instances of the troublesome non-linear scheme of Theorem 2.4-6 resist

translation.

Cohen (1080) reviews efforts to address the translation problem, The work gen-
erally follows two lines, both of which are forms of synthesis. Darlington and Burstall
(1977) describe “an infcrence system in which the sentences are recursion equations”
where human guidance adds information that makes transformation succeed. A
specification is transformed algebraically by folding, unfolding, and the application of
previously established transformation rules, until an improved specification emerges.
The other approach is to assume that explicit operations exist or can be implemented in
the underlying type, in effect supposing it can be used to implement certain recursion

patterns., More powerful operations permit wider specification classes to be linearized.

38

Having looked at the transformation-system approach let us now consider the
recursion-implementing strategy. Suppose that the underlying type contains operations
that are powerful enough to implement with sfacks. That is, assume that a value ¢;
completely strict combinations called push, pop, and top; snd propositional combination

emplyf; all exist that satisfy

emptyfle) = true emply{push{u, v}) = falsc
topfe) =m popfe) = m
top(pushfu, v)) = u pop(push(y, v)) = v

If these powerful operations are available, then general methods exist to linearize arbi-
trary specifications. The construction below, due to Wand and Friedman (1978), is used
in Chapter 5. It introduces a “run time stack” and a new serious function to handle

“return jumps', The specification is then repeatedly refined so that control is linearized.
CONSTRUCTION 2.4-1. (Wand and Fricdman, 1978)

For simplicity, assume that in the initial specification all functions are defined over

the some set of identifiers.

Fyfz, s 3,] <= e,

F (2,002} <= ¢
Designate a sct of action values, [a‘ sessy @, } where k will be determined by the time the
transformation is complete, and rewrite each equation as
Fifz, e 2,,0) <= Rle;, o).
The new parameter ¢ names the recursion stack. Add a new function variable symbol

R, for “return", whose defining equation is constructed as we go along. Its general form

will be

39

’ Rfv, 0} <= empiyflo) — v,
' eqf(topfo), a,) — do-something-with-v-and-restore-o,
eqf(top(o), a,) — do-something-with-v-and-restore.o,

+*

eqfftop(e}, a,) — do-something-with-v-and-restore-o.

Arbitrarily select n serious expression of the form Rfe, o} and transform the system as

follows

1. (Tail-recursive call) If e is of the form F,ft, ,..., t”'), and each 4 is trivial,

change fRfe, o) to
Fift,) b, o).

2. (Decision) |l ¢ is of the form pft, ,..., ¢ q) — r, 3, ond each Lis trivial, change
Rfe, a)to
p(‘; peeey tq) — R{r, 0}, R(s, o).

3. If ¢is not in any of the forms above, then find an expression e’ over unused
identifiers ¥, ,..., y,,; a serious expression r; and trivial expressions ¢, ,..., ¢ _;

such that
r, f_. goeny &

m
ce=¢’

y" y’ Fubry ym

Il ¢ is a conditional, choose r from its propositional expression if possible,

Obtain an unused action value @, and replace Rfe, o) by
R(r, pushfa, push(t, ,..., pushft,, a}...})
and wld to R’ defining equation the clause

eqfftop(o), a) = R{ c'[v’ fe s a"'] , pop"fo})

Up Ygyeeer U,y
where s, stands for the term the term [top(popite}}].

In words, step (3) says to pick a serious term to call recursively. Any trivial values

needed on the return may be computed now and saved on the stack. By the time the

transformation is complete the stack parameter will have been introduced to all serious

coils, and the specification will be in iterative form.

40

EXAMPLE £.4-8, If the Wand-Friedman construction is applied to the specification
F(z) <= p(z) — ¢, h{ Flg,(z)), Flg,(z}]).

one possible target specilication is

F(z, 0) <= p{z) = R(c, o), F(g,{z), push(0, push(g,(z}, c})).

Rfv, o} <= emptyffo) — v,
at?(top(o), 0} — F(top(pop(o}), push(1, push{v, pop(pop(o}))}),
atfftop(z), 1) — R(hftep(pop(o)), v), pop(pop(c))).

The derivation is shown in Appendix C.

This consiruction does not state how to choose which serious term to call. In the
example, the strategy was to evaluate arguments left-to-right. The obvious criterion is
to choose an expression that is known to be needed. Mycroft (1980} gives an algorithm
that makes this determination under certain conditions. If the choice is wrong, the tar-
get specification may errantly diverge. Since partially correct target specifications are

sometimes acceptable, we shall leave this choice to the designer's discretion.

2.5. The Scott-Strachey Notation

This section is a brief review of the “type free’” notation of Scott and Strachey. [t
is a Innguage defined over a universal type in which any “reasonable’” (i.c. computable)
type can be embedded. It is therefore the limit to which we might extend our
specification language. What the language does not do is say anything concrete about
represcntation. Any use of the Scott-Strachey notation as a starting point for design
synthesis entails an initial subgoal of choosing an appropriate type over which a more
concrete specification can be made. The Scott-Strachey style has been used with partic-
tlar success to deseribe the semantics of progromming languages. The rather rich nota-
tion that has evolved out of this area is used throughout this dissertation. Tennent
(1978), Gordon (1979}, and Scott (1977, 1982) each give o casual introduction to the
notation and its use. The stondard text on the subject is by Stoy (1977). The two
volume work of Milne and Strachey (1978) is a comprehensive example of the use of the
theory to describe a programming language.

41

For our purposes Scott’s is a theory of data types, which he calls domains. One
may think of a domain as a set of descriptions, or answers that might be printed by a
program. Some descriptions are better than others, in the sense that they are more com-

plete; some arc incomparable because they are not intended to describe the same thing.

A domain then, is a set D with a reflexive, transitive relation called approzimation
and expressed by the symbol ‘[Z'. Membership in D is expressed by the symbol ‘E’, D
must satisfy certain axioms with respect to 5. [t must contain a minimal’ (or empty, or
divergent) description ‘Lp’ that approximates every other description. That is,

Jorald E D, 1 £ d.

Intuitively, any sequence of successively better elements in D must converge to a limit

that is also in D. Operations on domains are required to be centinuous, that is, to

preserve limits®,

2.5.1. Flat Domains. A basic, or flat, domain meets the minimal requirements:

st yifzs=Lorz=y

Examples:
Truth values Bool = {tt, ff, 1}.
Integera mt=1{.-2-012..}u{L}.

Numerals Nml = [strings over {*0', *1',..., ‘9'}] U {1).

Identifiers Ide={Luvwxyt.}
The conventional ordering on these sets (e.g. < on the set of integers) is not the domain
ordering: a program that is supposed to print ‘5’ may diverge and produce no descrip-
tion, or it may print *5', but if it prints ‘4’ then it is not an approximation. Bool and

Int are semantic domains corresponding to the carriers of our underlying types. Nml and

?A maximal (or overdeflned, or contradictory) description, denoted 'T,’, may also be as-

sumed. It does not enter into any of the discuasions in later chapters, so I shall ignore it in this
review,

Continuous functions preserve limits over a wider class of sets than those that are mono-
tone, Monotonicity can be generalized to “'directedness’ (Stoy, 1977), The real concern is not
with individual descriptions, but with neighborkoods: collections of approximations to the same
ideal, Scott has recently rephrased his formal presentation in these terms {Scott, 1982).

42

Ide are syntactic domains wherein we have defined our specification languages. We shall

sce later that the distinction is subjective,

2.5.2. Non-flat Domains Complex domains are built by combining domains in
various standard ways. Given domains A and B, we will have need for the following
domain constructors:

A X B The (coalesced) product domain is the set {{a,)| sEA and bE B} with

ordering
{a, b) C.xs {a’,6°)iffaC a" and bC b".
Lip= {L " L) serves consistently as the minimal element.

A + B The (separated) sum domain is the set AUBU{L,,} with approxima-

tion ordering
2L pyiffz=L, gorzl, yorzCpoy.

A — B The funclion domain is the set of continuous functions from A to B, with

approXimation ordering
JE,..p 91Tz E A implics f(z) C, g(z).

A® The n-ary product domain is a gencralization of the product domain con-

struction to n-tuples, for a given n,

Let e be an ca'cpression, possibly including the identifier 2, and suppose that when-
ever some element aEA is substituted for z in ¢, the result is a unique element of B.
Hence, substitution induces a function from A to B. The abstraction of ¢ by z, written
[N\ z.e[l, denotes the function just described. If e is suitably expressed, then this Munc-
tion is continuous; that is (A z.¢JEA—B, Applicative expressions like {[f{z}], abstrac-
tions themselves, and conditional expressions

aifp=1tt

p—abibifp=Ff

Lifp=1
are all suitable for abstraction. The nesting of A-expressions gives rise to identifier
conflicts, and so the substitution rules must be refined to replace only free identificrs—

those that are not in the scope of an interior A-expression,

43

There are several conventions for abbreviating this simple but verbose language.
Since porentheses serve only to state the scope of an expression, they are often
suppressed, One may write [fa] rather than [f{a}]. Application associates to the left,
so that [[fga]] means [{fg}a]l. (Note that this differs from our convention for serial
combination.}) The function-domain constructor associates to the right to be consistent
with this convention, That is, [A — B — C] means [A — (B — C)]. When the con-
text allows it, membership in a function-domain is expressed with a colon rather than
the membership symbol ‘E’, Thus, [|f:A— B] mimics the mathematical notation for
saying “/is a partial function from A to B."

The scope of a A-expression extends as far to the right as possible, generally to the
end of a line, or to the first unbalanced ‘). [[A\ uv.e] abbreviates [l ud v.e]. We will
sometimes write [[F(z} <= e.] instead of {F = \z.e]); and [[e where z = t] instead of

[{Nz.e)f)].

2.5.3. Domain Operations. For flat domains, continuous versions of basic opera-
tions may be assumed. There are standard operations to go with complex domain con- -

structions. These operations are expressed with special notation.

Products. Let D = AXB, aEA, and VEB. There is a pairing function (t, t) E
A—B— D, and there are projectors |0 E D—A and +|1 E D—A that satisfy’
(a, 80 =a (o, Y11= b

This notation may be extended to n-ary preducts,

Sums. .Let D= A +Bandlet a’ E D and b’ E D be clements that came from a E A
and & E B respectively, Operations +i2sAED — Bool (inspeclion), *inDE A — D
(injection), and vasd E D — A (restriction) exist that satisfy

a'tsA =t ainD = o’ 2’asA = a
b'isA= g b'asd = L,

The corresponding operations 188, 28, and inB exist for the summand B.

Usually, *[1 and *|2 are used instead.

44

2.6.4, Functionals. Functions qualify as data types, and there are a number of
higher level functions-on-functions, or functionals, that are useful. Among these are the
structural combinators (cf. Sec, 2.4.3):

K=M\z.¢

m,=(Nz.:|0), m, = (N 2.2)L), ete.

sericl = Xfg.(XNz.f(g:))

parallel = N[, f (N 2{f2 e],)
The following standard lunctionals are used [ater,
apply : (A—B) —~A — B takes a function and an argument and returns the correct answer
for that function on that argument,

apply = X fa. fa

curry : ({AX B)— C) — (A~B—C} takes a 2-place function and returns a t-place func-
tion that must be applied twice to get the desired value.
curry = A f. A u.) v.f(u , v).
For example, if add: {Int X Int} = Int is the 2-place addition function, then
{curryadd}{2) returns the function that adds two to its argument, and {eurryadd}{2}(2)
= add(e, 9) There is an inverse to curry that ‘‘unwraps" argument tuples.
uncurry = Af.{(Az.[f(z|0}(z]1})
Uncurry is expressed implicitly by enclosing formal parameters in square brackets,

[[y v].e].

2.5.6. Recursion. If f/:D— D, then dE D is called a fized point of [if d = f{d).
The function fiz:;{ D— D) — D returns the minimal fixed point. That is, {fiz [} = f{fiz [}
and for all fixed points d of f, fiz{f) C d. Fiz is continuous and expressible in A-

notation!?,

If D is itself a function domain, then fiz yields the solution prescribed by Definition
2.2-2. For example, let D = Int — Int and take fto be

1°0Ope version is the Y combinator: Y = MN.{ Mz.f{zz}}{ X z.f{zz]}. For a discussion, sce
(Stoy, 1977}

45

AMe.(An.(n=0}— 1, n+fEfm-1))) .
Note that f has the required functionality, D — D. If FAC = fiz{f} then FAC = j{FA'C).
That is,
FAC = (N€.[An.(n=0)— 1, n+(E(n—1})} (FAC)

=An.fn=0)— 1,0+ (FAC(n—1))
by substitution. Since fiz gives the minimal solution we are justified in writing the equa-
tion above as

FAC)<= (n=0}) — 1, n3(FAC[n —1}}.
On the other liand, this discussion shows that we can avoid sell-reference in our
specifications by using fiz in writing

FAC= fiz(NE.[An.[n=0) — 1, n*+(E(n—1))])

2.6.6. Reflexivity. Fixed points can be defined over any domain, and fiz is also
used to define self-referential, or reflezsve data types. For example, the domain of *'s-

expressions’:
Sexp = Atom + (Sezp X Sezp)

describes Lisp's data space (McCarthy, 1900); an s-ex pression is either atomic or consists

of a pair of s-expressions.

2.6. Other Issues

The additional power of the Scott-Strachey notation, the facilities to describe data
structires and to manipulate functions, make it possible to attack aspects that are
diflicult to address in the more concrete typed language. [ssues such as the specification
of meaning {the original motive of Scott's and Strachey's work) and the formalization of
“eontrol" yield quite gracefully to the calculus, These topics and a few others are
reviewed in this section, partly to exercise the rather extensive notation that has been

introduced so far. Each of the issues discussed here arises later in the investigation.

2.8.1. Specifying the Specification Language., We give a briel example to
demonstrate the use of Scott-Strachey notation to describe semantics. Consider the
language of terminal terms defined in Section 2.2 (Definition 2.1-2). Suppose for simpli-

city that all operations take exactly two operands, The syntax of L can be defined as a

reflexive datn type

48

Terms = Nml + Ide + Apl
Apl = Opr X Term X Term

Terms are built from atoms in the flat domains of numerals and identifiers and a collec-
tion of operation symbols. A domain Ap! of applicative terms is recursively constructed
by pairing an operation symbol with two operand-terms. Numerals denote integers and
operators denote 2-place functions on integers. These meanings are also domains,
namely Int and Opn = {int X int) — Int; let them be given by semantic functions
N:Nwl — [nt and K:Opr — Opn. A mapping from identifiers to their meanings is also

- needed, snd will be in the domain of environments Env = Ide — Nnil,

We are now ready to define a semantic ‘function : Term — Env — Int that
specifies the meaning of a term:
T = Ntp. {tisNml) — Nft asNmi),
{tialde) — IN{p {t aslde)), help {t asApl}p.

help = X ap . (iC{al0}) (T (a)2)p , T(al2)p).
The auxiliary function help simply makes the definition easier to read. Help could be
eliminated by expanding its definition in the equation for II; and so it serves as a
“macro”, Expressions like Aelp, which have no free variables and can therefore always

be eliminated by substitution, are called combinators.

Additional abbreviations make these definitions easier to read. A Backus-Naur
style is used to deseribe syntactic domains and to document concrete syntax. Valuation
functions are written as a set of identities in the style of Delinition 2.2-2, Elementary
coercions nre suppressed through the use of naming conventions, The revised dcfinition
is given in Figure 2.1, The figure gives a atandard semantics for Term; it says nothing,
for example, about the order of argument evaluation or error recovery. Stoy (1077) gives
methods for addressing such issues, one of which is intraduced in the lollowing section.

Language specifications in this style will be made in Chapters 4 and 5.

2.6.2. Specifying Control. A continuation is o formalization of control in the
domain Vel — Ans. A function in this domain takes a value produced in the present
and states what is to be done with that value to produce an answer. One can linearize a

non-linear specification by using continuations to describe a calling order. For example,

Syntactic Domains

Ide
Nmi
Opr

Term = Nmi | Ide | Opr(Term , Term)

Semantic Domains

Opn = (Int X Int) — Int
Eny = fde — Nml

Valuations

K : Opr — Opn
N : Nml— Int
I: Term — Env— [nt

T (n]p = Nin)
I {ile = Npi)

(i) identifiers
{n) numerals

{e) operators

{t} terminal terms

operations

{p) environments

Tof t, ‘g)]]P = {H([["]]}(ﬂ'llf,llﬂ ’ Fﬂtg"p)

Figure 2.1. A Standard Semantics for Terminal Terms.

consider the following proposition:

PROPOSITION 2.¢-1. Let F and G be defined as follows

Fiz} <= p(s) — ¢, h{ F(g,()), Flg,(z)]).

Gz, &} <= p(z}— N(c): G{UJ’): {k u. G(ﬂ,(’)} IA v.& hfu, v) ”j}-

Then for all a and ~, Gfa, v} = 4 F{a).

47

PROOF: by subgoal induction on 7. If pfa)is true then both sides reduce to v {c). Oth-

erwise,

418

Gfa, v} = Glg,fa), [N u.Glgfa), [Nv.vh{u, v)]} [) aAG
= [Au.Ggfa), [N v.vh{u, v)]}]){F(g,(a))} LH.
=Gfg,fa) [v.7h{F(g,fe}), v}f) subatitution
= [Av.vh{ Flaga)), v)JiFlg (a))) LH.
= 1 hf Flgysl), Flg,(0)}) substitution
= v F(a) vF

A more palatable version of G results if we introduce pames for its continuations,

Gz, &} <= pfz} — &(c), Glg,(z), DoG(y (z) &})
where

DoG(z, k) <= hv.Gfz, DoR(v, &}).

DoR{z,) <= Mv.x iz, v).
In words, G “sends™ ¢ to its continuation, &, if pfz}is true. Otherwise it computes g (r}
with a modified continutation, DoG. The new future of G is to save the result of the
present computation while G computes g,{z). DoR applies 4 to the two results hefore
resuming the original continuation.

These continuations inherit values [rom the present and record obligations for the
future. They express the qualities of a control stack in a form suitable for reasoning.
\Wand (1980a) suggests that when seeking ways to implement recursion it is preferable to
laak for ways to represent continuations rather than to search a catalog of stack optimi-

zalions,

2.68.3. Distributivity of the Conditional, Revisited. [n Section 2.4.2 condi-
tional sclection was allowed to distribute over operands. By the {ollowing sleight-of-

hand, we can conclude that distributivity applies to operations as well:

48

p — f{z), 9fy) = p — applyl}, z), applyly, v} "1 A opply
=apply([p— 1, 9/, o~ 2,) distributivity
=fp=fgllp— 2y | A apply

It is by no means clear that apply has a concrete counterpart in the typed specification
language, for this would imply that operations exist that produce operations as values.
The assumption of *“functional operations', strains intuitive correlation between the
underlying type and the designer's component catalog, much more so than the admission
of structural combination. However, we shall see in Chapter 5§ that this factorization

can be meaningfully interpreted as a metaphor for communication.

2.8.4. Multiple Valued Functions. To describe circuits, we must eventually deal
with aobjects that have several “‘output leads’. Our development extends routinely to
permit multiple valued operations, as we have already done by introducing parallel com-
bination. However, the presence of multiple valued operations can lead to considerable
confusion in detail. Whereas before we might appeal to the rigidity of the term transla-
tor T (Prop. 2.4-1) to guarantee that all the arities match correctly, it now becomes
necessary to keep track of arities explicitly, For example, of only one coordinate of a
many valued operation is used, a projector must be introduced to access it. This matter

of “typiag' arises in several gunises in the course of this presentation.

3. TheRealization Language

A digital circuit description has two principal properties to specify: what com-
ponents are in the circuit and how they are connected to each other. A number of
assumptions are made concerning the nature of components, They are perceived as hav-
ing physically distinet inputs and outputs, As a direct consequence, the model defined
below cannot address such issues as the relational {as opposed to functional) qualities of
fundamental elcctrm.lic elements!, and the bidirectional use of signal paths often found in
physical implementations, The model is expressed in a [anguage that describes logical
behavior and physical connectivity, but not physical requirements such as power supply.
Most important, the notation does not refer directly to timing. Component behavior is
coordinated by storage elements called registers, whose behavior in turn is governed by

an external synchronizing agent, or clock.

Since a component's inputs and outputs are distinet, its connectivity can be
described by an applicative expression. The realization language is built from signal
expressfona, which are terminal terms that are sometimes annotated with an initinliza-
tion clause. A signal expression denotes a signal, or history of values acquired over
discrete time. That is, a signal is a non-terminating sequence of “instantaneous” values,

and is modeled by the reflexive domain Sig) = D X Sig,. The semantics of a circuit

description will eventually be given as a fixed point in this domain. However, the first

concern is not so much with signals as with the values that accur on them. In particular

1A resistor is a constraint, such as 502 = OHM QO {{v, i, r) | r =5} where OHM = {{v, i, r])
v = i * r}. To introduce a resistor 21 a component, one would have to choose between 50 =
{Av.5*i) and 50 = {Ni.v =5}, That is, either current or voltage would have to be free in a
description involving resistors,

50

51

we .would like to know whether a signal produces a specified value at some time. “Hence,
it is appropriate at the outset to invoke the ordinary interpretation of a sequence as a
function from integers (i.c. time) to values. In Sections 3.1 through 3.4 a signal expres-
sion is defined to denote such a function; ia Section 3.5 the meaning of the realization
language is restated in terms of sequences, where the obvious coercion,

behavior : Sigyy — (Int — D}, relates the alternate semantics,

Under the functional interpretation, a realization defines a first order linear
recurrence, a conventjonal formalism for digital behavior (Sce for example Hill and
Peterson, 1908, Sce, 9.7). Ve shall later settle on the sequential interpretation because it
leads to an experimental basis for design synthesis. Section 5.5 is a prelude to the imple-

mentation of realizations in the modeling language presented in Chapter 4,

3.1 Digital Circuit Descriptions

The eomputational aspects of a circuit are denoted by a set of components whose

instantaneous behavior is that of an operator in some type.

DEFINITION 8.1-1. A combinatorial component is an operator or predicate symbol in
an underlying type.

The symbol | is reserved to denote storage in a manner described below. Storage
components are informully called regiaters, although this term should not be taken
literally. We shall build realizations from a langeage of signals, which express the

behavior of components or groups of components.

DEFINITION 8.1-2. The language L ¢ of signal expressions contains terminal terms and

terma of the form [[e 1 S|, where ¢ is a conslant and S is a signal czpression.

For the next two sections, components are enclosed in boxes to distinguish them
from ordinary operators. Thus @I is a component and lzl is a primitive signal
expression over the integers. Behavior, defined just below, is a mapping from signal

expessions and imtegers to values, That is, given a signal expression and a *time",

52

behavior is the value on the expressed signal at that tir_;le. the symbol '@’ is abbreviates

this relation.

DEFINITION 8.1-3. Let L be the language of aignal ezpressions over a lype with carrier
D; and let w denote the non-negalive integers. The funclion *@"'Lc: X w— D defines
the behavior of ground term s € L at any time n as

f. El@" = ¢, for all n, where c € D.

it. lfe€Dands€ Lg

fet 4/ =¢, and
fe 1 JIO{nf-J} = 49

i, If [is an m-place operation and 8 oy 8, OTE in L, then for all n,

[[Zl{a,,..., am)]o“ =f{a?",..., ag")

Definition 3.1-4 accounts only for ground expressions. The behavior associated
with an identifier behavior is defined by equation, and a circuit description is a system of

equations.

DEFINITION 3.1-4. A sigaal equation has the form X = §'' where X i2 an identifier
and S iz a aignal, X satisfics ils defining equation if and only if X = g fop glin, A

circuit deseription fa a ayatem of signal equations, each defining a unigque signal name.

Identifiers are capitalized in circuit descriptions since they have become the serious
symbols. The equality symbol denotes beliavioral equivalence, or equality of value at all

times, which is obviously an equivalence relation. Consider the circuit description

X= 1 t[mpyl(y, X)
y= 1 t[add)({1], v)

It can easily be shown by induction that for all n, Y9 = +1and X9 = g/,

53

A circuit description is a linear form of circuit schematic. The identifiers name
component outputs, and the equations specify connectivity, The description above is

expressed graphically as

® X
1 m
d p
¥

. | Y
1 a
d
1 d

Schematics such as the one above serve as an informnl notation and will always be
accompanied by a equational circuit description. The component [T] is a generic clocked
register, but reference to the clock is omitted, The tokens (o) assert that at *time zero”

the circuit is in a state where the registers contain the indicated values.

3.2 Translation to Circuit-Description Form

The central result of this chapter is that the correspondence between operations
and components extends in a natural way to a correlation between the terms of an itera-
tive specification and the signals of its realization, We shall refer to the change in
interpretation of a term from its “instantaneous™ value to itz bebavioral counterpart as
lifting. It is of course no accident that circuit deseriptions are generated by the same
language of terms used to develop recursion schemes. Our first goal is to establish a

relationship between the uriversal iterative scheme U, and its register transfer counter-

part. Let us establish some preliminary facts.

LEMMA 38.2.1. For constant a, signal S, and 1-place operation f,

[Lfa 1 $)=1ta) 1 [11(5).

PROOF: By definition 3.1-3,
. [Flfa t S} = ffa) = {Ha} 1 [{1(S}]®°

54

and

[D1fa b s)0n*il = ffa y spofn*t) = fs®) = [[T1S) " = [ffa) ¥ (L] (s}®I"

a

LEMMA 38.2-2, Let f be a t-place operation and let

X=a! [[l{x)
U=al V

v= [[w
Then X is behaviorally equivalent to U.

PROOF: [(by induction on n): Definition 3.1-3 shows X9 =4=y? Suppose that
X9 = U9, Then by Definition 3.1-3 and induction,

X@{n 1 = f{xﬁn) - f{Uo") = Y = ya+1i}
(]

The connection between the specification and realization languages is made on the

basis of the universal iterative scheme U,.

THEOREM 8.2.8. Let IV be defined by the recursion scheme
F(z}) <= p(z) — J(z), Flalz)).
and let X be defined by the signal equation
X=al [g](x)

Then if F converges on a, there is an n for which the following three statements hold:
i, p(X9%%) ia true.
ii. p(X%)is false for all 0 < k < n.
iii. f(X°"} = F(a).

PROOF: by subgoal induction on F. If pfa}is true then (s-i#i) hold for n = 0, Other-
wise, F{a) = F(g{a)). By inductive hypothesis, there is an A such that (¢-ii¥) hold for

ba

v=gfa) t (V)
By Lemma 3.2-1 V ={g]fa ! V). If pfa)is false, statements (i-¢7i) hold for the signal
o U=al V
when n = N + 1. By Lemma 3.2-2, X = U and therefore statements (i-1i7) also hold for

in
(W

Theorem 3.2-3 affirms the assertion made in Chapter 1 that the universal iterative

scheme U, is related directly to the universal register transfer schematic.

. X
g 20 !

Here z° stands for the appropriate initinl value on the signal X, We shall not address
the question of how registers are initialized. To the basic leedback loop we may add two
additioral components, one to compute the terminal call, and one to represent the predi-
cate, The component [Z] eventually produces a value equal to the specified function's

result; the component p produces a signal that indicates when a result is available.

. X
g o !
p READY
I VALUE

Expressed as a circuit description, this schematic translates to

X=2z21 [u]l{x)
VALUE = Ax)

READY = [el(x)

Since circuits do not converge to values, but rather “arrive at'* them, we shall require a
circuit that meets its specification to contain a signal that indicates when the specified

value is present,

b8

DEFINITION 8.2-4. A circuit deacription realizes o specification if and only if it has a
signal READY, that states when the specified value is present, and VALUE, thal contains

the specified value,

3.3 Decomposition of Combined Components

Since any lincar specification can be transformed to an instance of U, the circuit
description above is a realization for all iterative specifications so long as combined
operations are allowed in the underlying type. However, it does oot have a very infor-
mative schematic: we should like to know what is going on inside those boxes. When
structural combination was introduced in Section 2.4.3 it was claimed that it “made
scnse” in terms of circuit connectivity. We shall now justify that claim by showing that
the packaging of operations in combined form is transparent to (i.e. distributes over)
liftiug. A given instance of the universal circuit description can always be decom posed
into a more deteiled schematic by reversing the transformation steps that combined

operations,

To expose more details about the inner workings of a circuit, we must extract sig-
nals corresponding to individual registers within the state. If a combined operation is
decomposed according to the propositions that follow, it is reduced to base terms that
are cither constants or projections. If projectioas are replaced by the identifiers from
which they originated, they name signals tracing state-coordinate behavior. Consider a
specification with formal parameter list {u, v), that has been translated to an instance of

Uf_. and is therefore defined over o “monolithic’ state identiier Z. Intuitively, if the

behavior of Z is a sequence of pairs:

((52) {83) « 2 2]
Z is decomposed by applying a lifted projector.
U= [mi(x)
v=[z](x)
The lollowing propositions establish the “local™ transparency of structural combination

to lifting. For serial combination (composition), by Definition 3.1-3, for all n,

57

[Tad(z))®" = (ro)(2°") = fe(2°)) = f{[8)(2)1°") = (L] ([ed(z))1®" -

Hence

PROPOSITION 8.9-1. [Jgl(2) =[11{[g](z)}).

a

Since signal-tuples have not been directly defined, there is no immediate correspon-

dence between the forms like [</g> (2} and ([f1(2), [z](Z)). However, when serial and

parallel combination are used in conjunction, as is always the case when generating com-

binations, the result is transparent.

PROPOSITION 8.9-2. [[<gt..gn>1(2) = 1([2:](2) ..., [am}(Z)).

PROOF: By Proposition 3.3-1,
T=imias](2)= [((Feam=1(2)-

By Definition 3.1-3, the meaning of parallel combination, and for all n,

Iy =0 Ea=g==1(2)"

= f(<g, w 8,>(2%")

= f(g,(2°%) ..., 9,(2°"))
= ff{lgd(z)/°,..., {[g=1(2}]®")
= [[f1([g:1(2),... (g=](2)}]®"

By similar arguments,

68

PROPOSITION 8.9-8. [mi<pt...gm> |(Z) = [gi](2).

PROPOSITION 8.8-4. For any constant ¢, [K*](Z) =[c].

()
To deal with identifiers, we must look at lifting in the context of a defining equa-
tion. Consider the recursion scheme
Ffz, 4y 2) <p —r1, Ft, ., t).
where propositional expression p, expression r, and all ¢, are triviol. Under trauslator 7,
F’s transformation to an instance of U, yields
Gfz) <= Thplfz) — Tlri(z), GIKTRHL ... TEL)>(:))

The identifier ¢ is now understood to name the state descriptor {z‘ yorey). Our goal is
to conclude that for any trivial term ¢,

([glz) = (*)
where the interpretation of ¢ on the right is, of course, lifted. By Proposition 3,3-4, this
equation holds if ¢ is a constant; by Propositions 3.3-2 and 3.3-3, and structural induc-

tion over the language of terms, behavioral equivalence holds if ¢ is a trivial application.
The only remaining question is whether (+) holds for identifiers. Since T[z] = m,, we

must have [#i]{Z} = z, to support the induction. Let us therefore introduce a signal
equation

X, =[=dz)
for each identifier in #'s defining equation. Now by Theorem 3.2-2 the circuit realization
for G defines

2= T U] . T In]>) (2}

If Z is replaced by its defining equation in each X's signal definition, we get

658

X;= [=:°) [<TLH]. TUW]>] (2))

=, () BRI TR Y EX 7)) Lemma 3.2-1

7, (%)) [Tii]rz) Praps. 8,8-1 10 3.9-4

=2l by the argument above

This establishes the following:

THEOREM 8.8-5, Let p be a Irivial propositional ezpression. Let r, U, ..., t be trivial
capressiona, The iteralive recuraion scheme
Ffz,yuyz) <= p—r, Flt, ., 2)
18 realized by the circuit equation
= ,0
X, =41
- 0
JY" _— zﬂ l ‘ﬂ
READY = P
VALUE = r
That is, if the registers that produce signals X, ,..., X are initialized with z‘: yeves :‘;

respectively, VALUE will contain F(z? porep z?) the first time READY is true.

3.4 Circuit Synthesis

We shall call instances of the scheme in Theorem 3.3-5 simple loops. A realization
is obtained immediately from any simple loop by a transcription to circuit description
form, The transcription indicates a change in the interpretation of the terms in the
specification; they have been lifted. Because its realization is immediate, a pi'.incipal

method of circuit synthesis will be to find o simple loop version of a specification.

80

Let us bring our examples up to date, For concrete underlying types, the com-
ponent counterpart of an operator or predicate will henceforth be written in upper case.
Thus, ADD denotes [add].

Factorial. The initial specification for the facterial function was
FAC(z) <= zerof(z) — 1, mpyf(z, FAC(der(z))).
By Corollary 2.3-4 the simple loop
Gfz, y) <= zeroffz) — y, G{der(z), mpyfz, y}).
gives the same answer when y is initialized to 1, That is, FAC(z%) = G(2% 1) for all
non-negative z°. G’s defining equation translates to the circuit description
X=31 DCR(X]
Y= 11 MPY(X, Y)
READY = ZERO?(X)
VALUE = Y

By Theorem 3.3-5 the first time {ruc appears on the READY signal, VALUE will contain
(%)L

Fibonacel. The initial specification was
FIB(z) <= lt?(z, &) — 1, add(FIB(dcr{dcr(z)), FIB{der(z})} }.
By Corollary 2.3-2 an equivalent simple loop is
Gfz, y, =) <= Uf(z, 2} — y, Gf der(z), =, addfy, s}).
That is, for all 2%, FIBfz’} = G(1° 1, 1). Hence, a circuit that computes the Fibonacci
function is described by
X=2"t DCR(X)
Y=112
Z= 11 ADD(Y, 2}
READY = ZEROP(X)
VALUE = Y

When .Y arrives at zero, Y will contain FIBfz%).

61

Greatest Common Divisor. We began with
GCD(z, y) <= eqifz, y) =3,
ltf(z, y) = GCD(z, subly, z}), GCD(y, subfz, y)}.
The {tf-test must be distributed to get a simple loop. Since the specification is linear,
the test can be implemented with a multiplexor:
Gz, y) <= eqf(z, y} — 2, G(muz(Us(z, y), 2, y),
muz(itf(z, y), subfly, z}, subfz, y)))
Arbitrarily push the conditional once more, inside the call to sub, We notice below a
common subexpression that results.
Gz, y) <= eqffz, y) — 3, G(m"zﬂ‘ flz, y), 2, y)
aubfmuz(lif(z, y), v, z),
muz(lt¥(z, y), z, y))).

This leads to the realization
X=11 MUXILT?(X, Y), X, V)
Y= | SUBMUX(LTS?(X, Y), X, Y), MUX(LT?(X, Y}, Y, X))}
READY = EQF(X, Y)
VALUE = X
VAL UE contains GCD{z°, y°} as soon as READY arrives at true. Of course, common

subex pressions can be identified:

X=L1vU

Y=yt SUB(U, W)

U= MUX(V,X, Y)

W= MUX(V,Y, X)

V= LTX,Y)
READY = EQP(X, Y)
VALUE= X

A schematic for the GCD realization can be drafted from its signal equations:

v
m
. T LX VALUE
z

!

y v

P s e |_READY
m t ! Y 4
u | b
X

3.5 A Domain Model of Behavior

In this section the behavior model is restated in the Scott-Strachey notation, The
motive for the translation will become apparent in Chapter 4 where an interpreter is
presented for a version of the metalanguage. The restatement not orly unifies the
semantics of specifications and realizations, but will be uscd later as an interpretable

basis for experimentation.

Signals have already been described informally as ‘'value sequences', and it is
clearly appropriate to model them as such. Let D be a flat domain of values that a sig-

nal can hold. A signal is in the domain of infinite sequences
Sig, = D X Sig,
For dED, the constant signal [d] is modeled as
d> = ﬁz)u.(d, 8
Given s E Sig, and dED, the register [d !] is expressed simply as the pair (d R a).
Behavior is given by a function behavior:Sig, — Int — D, where Int is the domain
of integers (Sec. 2.5.1).
behavior = X sn. (n =0) — (s 0), behavior(s|1}fn —1)

By the fixed point property, behavior(d™, n}) = d for all n; behavior((d, a), 0} = d; and
beham’or{(d) a), {n + 1)} = behavior(s, n). Hence, cases (i) and (i¢) of Definition 3.1-3

are satisfied in the model.

83

A l-place component must give rise to a function in Sig, — Sig,. However, we
shall not take components themselves to be those functions, but rather define a com-

pounent to be an operation-valued signal. That is,

Com, = Sl'gD_D
For tustance, [[] = /. Until Chapter § ozly these constants in Com,, will be needed.

Application is generalized to deal with signals. Component application becomes
coorcdinnte-wise application of instantaneous operations to instantaneous values, For I-

place operations an apply-lilting functional like,

maplist = J\fa.(applyﬂlﬂ){alﬂ) , maplial(ﬂ!){all}}.
sullices. If the goal were to be a formal study in this model, it would be best to assume
that all aperations are unary, or perhaps curry’d. However, since our purpose remains to
provide a notation that depicts implementations, we shall introduce a mechanism that
admits p-ary {and n-valued) operations. There is a problem with structures: application
of an n-placed component to n signals cannot be achieved by a simple mapping func-
tional like maplist, for at each instant the operation expects its argument to be a tuple.

An additional combinator is needed that, in effect, transposes a tuple-of-signals into a
signal-of-tuples, If ;D" — D, the combinator needed to apply /™ is
transpose, = Na,...0,.(((s,10) ..., (3,10}, (trampoacn(a‘lj)... (8,,11)))-
A generalized combinator, tranapoase, can be written to handle all dimensionalities, We
arrive at the following definition of component application which we will denote with an
infix colon, If fE Sigpn_, pond ¢ E Sigpn then
1/ 2] = maplist [{transpoase 3).

In the domains of signals and components, the meaning of a circuit description can
now expressed as the lxed point. That is, a circuit deseription {X; = §;} has meaning

§= 2N X, s X, (S; 00 5,)

This model of behavior is esseatially that of Kahn (1973) who also uses and equa-
tional signal-definition style. It is easily related to Milner's simple process behavior
model (1973) as presented by Gordon (1980). Minor varistions are due to differences in
emphasis, Milner's model is more generally descriptive. He defines the domain of

processcs as follows:

B84

Process = Input — (Output X Process)

That we have modeled components instead as higher order signals is a technical point,
since only constants in Com,, are permitted. This restriction is relaxed slightly and only
temporarily in Section 5.1, a3 a means to introduce communication. Milne and Milner
(1979) present an algebra of connectivity that covers a wider class of concurrent

behavior than we attempt here. We shall return to this point in the conclusion.

, | - 4. Daisy

Daisy is an interpreted language in which both specifications and realizations can
be implemented, It is a descendant of Pure Lisp (McCarthy, et.al, 1985) and to a lesser
extent of Scheme {Sussman and Steele, 1978). Its interpreter executes in a data space of
binary list cells and uses graph reduction to solve recursive equations. Daisy’s syntax is
similar to many contemporary applicative languages (Burge, 1975) (Henderson, 1980); it
is a language of expressions with no explicit sequential control constructs, Computation
is demand driven, making interpretation yield “call-by-name’ semantics, Consequently,
specifications in Daisy are entirely consistent with the valuation function of Definition
2.2.2, Moreover, circuit descriptions can also be computed even though representation of
behavior involves infinite data structures. We will take a briel look at Daisy’s imple-
mentation and then give a formal definition of a subset of the language. The remainder
of this chapter is devoted to demonstrating how Daisy might be used to support cirenit

synthesis.

4.1. Operational Semantics — a Summary

Functional Janguage interpreters can be classified in terms of string reduction,
although few actually work that way. Instead, they use graph reduction to reduce dupli-
cation of substituted text. The necessary bookkeeping is implemented by a hidden data
structure called an environment, which represents a mapping from identifiers to values
(see Sec. 2.2). Substitution steps arc emulated by addieg new bindings for formal

parametcrs in this data structure,

Recall from Definition 2.2-2 that the value of an expression depends in part on the
substitution of actual arguments for formal parameters according to fenction definitions.
In reasoning about reduction we could arbitrarily unfold serious terms. However,

85

mechanical evaluators must have a computation rule by which they deterministically
select which terms to unfold. A leftmost-innermost rule is most often used: the interpre-
tation algorithm unfolds the first iterative term it encounters reading left to right, makes
a substitution, then simplifies. This reduction strategy is referred to ns call-by-value
interpretation, since it mimics that operational argument evaluation protocol as defined
in ALGOL 00 (Backus, ef. al,, 1963). |

Daisy's computation rule is leftmost-outermost, meaning that the corresponding
string reduction interpreter expands the first function variable symbol it encounters,
This is unalogous to passing text rather than values to subprograms and so is called a

call-by-name computation rule,

The advantage of call-by-value is its relative efficiency on conventional architec-
tures. However, call-by-name is a stronger rule: it produces results more often. The

difference is illustrated by a simple example. Consider the system

Fiz, y} <= .

G(z) <= F(z, G{z)).
and suppose that the ground term Gfa)is to be evaluated., Let E and & indicate
reduction according to the definitions of F and G respectively. The reduction sequences

under the two computation rules are

Gla) & Ffa, Gla)) L a (call-by-name)

Gfa} & Ffa, Gfa)) S F(a, Ffs, Gla})} % ... (call-by-value}

This reduction clearly diverges under the cail-by-value computation rule. If underlying
operations are assumed to be strict, then call-by-name interpretation converges whenever
a value is defined (Manna 1974, p. 388).

Dnisy inlerits its computation rule from the mechanisms it uses to manijpulate its
data space. When a new record is built, each of its fields is flled with a suspension, or
expression closure, which contains the information needed to compute the value of that
field. Tle computation does not take place unless and until the field is accessed. Once
access occurs, and if the suspension converges, the referent field is updated with the
result, so that subsequent access need not recompute it. This basic model of computa-
tion has many names including lazy evaluation (Henderson and Morris, 1976), delay rule
(Vuillemin, 1974), and demand driven {Asheroft and Wadge, 1977; Kahn and MacQueen,

87

1977). The last of these will be used here. Two consequences of demand driven compu-

tation are of consequence here:

1. Since environments are suspended, argument evaluation is deferred until identifier
bindings are sought. In the absence of other side eflects, the deferral yields the
call-by-name characterization of interpretation, with some improvement in efficiency
because redundant reductions are shared (Friedman and Wise, 1978a),

!, Only those por-

2, Non-finite data structures can be built from finite descriptions
tions of such structures that are needed are actually brought into being. (Friedman
and Wise, 1970b, 1976¢; Friedman, Wise, and Wand, 19768), In particular, the sig-
nals that are modelled as infinite sequences in Section 3.4 can be readily expressed

and manipulated in Daisy.

Daisy is a vehicle to state specifications and realizations in executable form.
Specifieations are not compromised by the interpreter’s evaluation strategy because the
call-by-name semantics are consistent with their formal meanings. The facility to mani-
pulate infinite objects implies that the logical description of circuits can be explored
through direct emulation. If it is granted that the realization language is on adequate
starting point to fabricate an implementation, its direct interpretation is a way to

observe logical behavior without physical prototy pes.

4.2. The Language

Figure 4.1 gives an idealized definition of Daisy's syntax. (The parser for thia
grammar has not been fully implemented; Appendix A gives n description of the current
syntax,) The stylized syntax is used from this point on in examples, since it more
closcly reflects the notation we have developed so far. Actual source for the running
examples is shown in Appendix B. The alternate forms of conditional and body have the
same meanings; which to use is a matter of preference or style, For example, if p, ¢, and
a arc lexically small, it is probably better to write [p — ¢, a]] rather than [[if p then ¢
else a]) since the keywords in the second version visually dominate the text.

Function definitions are similar to the notation of Chapter 2, except for the explicit

application operator and the use of a list specifier to construct arguments. The three

“This is a simplification since descriptions are themselves data, It is only required that the
description be finitely describable, and so on.

H

capreasion = (capression) | @ eapression

alom | Jern | application | abatraction ! conditional | ayatem

atom = identifier | numeral | operator

i

Jern u= [list] | < list > | { list)
list o

|

A | ezpression w | eapresaion ! ezpression | ezpression list

application 1= ezpression : ezpression

abstraction = X ezpreasion . expression

conditional 1= if ezpresaion then ezpression else ezpreasion

czIpression — ezpression , ezpression

aystem u= body | rec body
body = let specificalion in ezpresaion | expression where specification
specification = A | definition specification

definition 1= capresaion = ezpresaion | sdentifier 1 expressfon <& ezpression .

Figure 4.1. Dalsy Expression Syntax.

example functions might be defined as follows in Daisy:

rec O where
FAC:x < zerol:x — 1, FAC:der:x.

FiIB:x < iflt?: <x 2> then |
else add: < FiIBtdersder:x FIBidersx >.

GCD:i:x <= letfuv] =x
in
if eq?:x then u
else if [t?:x then GCD i1 <usub: <v u> >
else GCDi:<vsubi<<uv> >,

The box (O) would contain some ground expression to be evaluated according to this

specification. We shall usually display specifications in the context of some “experi-

ment"” like this®. The somewhat contrived version of GCD illustrates Daisy's lack of
emphasis on argument structure. Although GCD takes two arguments, its formal
parameter does not name them. It is the inner specification, [let [uv] =x ..] that
identifics z's coordinates. The "“2-place’ operations eg? and /f can be applied directly

to z, since it will bave the required structure.

4.3. Formal Semantics of a Subset of Daisy

The language definition in this section omits some features of Daisy that are not
used in this investigation. There is a construct for indeterminacy (ferns of the form
[{..}]) which has cnly recently been formalized (Wise, 1083). Operational discus-
sions of this construct have been published by Friedman and Wise {1070, 1080, 1081}
and Filman and Friedman (1983). As in Lisp, expression text is indistinguishable from
ordinnry data in Daisy’s data space, and programs can be written to produce other pro-
grams. However, Daisy's program .representation is rather involved; discussion of it is

omitted since program builders are not presented here.

The fgures referred to in this discussion appear at the end of the section. Figure
4.2 is a simplifled language that will be used for Daisy's formal definition. With the
exceptions already mentioned, expressions in the full language can easily by converted to
this “*kernel” language., Some examples of the conversion are shown in Figure 4.3. Fig-

ure 4.4 gives a standard semantics for the kernel language.

Domains (Figure 4.4a). Opr is a set of identiflers reserved to denote primitive opera-
tions on Daisy’s underlying type, Val. Some of Daisy’s operators are summarized in Fig-
ure 4.5. The structure of formal.arguments, given by the domain equation lor Arg,
comes into play in defiring environment extension. I[ncluded in Val are the primitive
syntactic types and a set of messages that are returned when expressions are found by
the interpreter to be erroncous or meaningless. Operations also produce messages; for
example, an arithmetic operation returns an error message on nomr-numetic operands.
The non-flat summands of Val are Cls, a domain of function closures, and Let, the
domain of value pairs. Env is the usual domain of environments, that map identifiers to

their bindings. The primitive valuations for numerals and operators are left unspecified.

’Iu the implementation, functions may be directly deflned at top level as though the
operator’s programming environment had been initiated in a “rec O where...".

70

Semantics (Figure 4.4b). The interpreter is specified by the valuation function D,
with auxiliary combinators as defined in Figure 4.4c, Numerals, operators, and quoted
identifiers evaluate to themselves; the empty fern cvaluates to Ail. Unquoted identifiers
evaluate to their bindings in the current environment, Value pairs are expressed by list
concatenation. Abstractions are closed in the environment in which they are evaluated
(making Daisy a lexically scoped language), Conditional expressions and recursive
definitions have standard meauings, The interpretation of application is discussed below

when the auxiliary combinator d-apply is introduced.

Auxiliaries (Figure 4.4c). The environment extension combinator binds structures to
values, The formnl argument is used as a patterm by which the value is accessed;
identifiers are bound to their corresponding locations. If the formal argument is a simple
list, the effect is the same as a call-by-name parameter passing protocol. As the GCD
_example above indicates, the formal argument may be used to name arbitrary pieces of
the actual argument. The implied principle is that all functions are monadic, and that
formal arguments serve as a kind of record declaration. However, the interpreter does

not check for a pattern match at binding time, ns to do so would introduce strictness. A

list membership operation Member? might be defined?®:

Member? s x <= let [allst] =«
let [e!lst’]) =lst
in
if null? :Ist then <>,
else if same? :x then @true,
else Member?t < a ! lst*>.

The let-definition gives names to the components of the formal argument, x. The
“binnry'* operation samef is applied to x because it happens that its first two elements
are the ones that need to be compared. As is the case with all such operators in Daisy,
samef does not require that its argument be of length two, The head and tail of the
list lst are pamed a and lst’, even though Ist might be empty. Again, this is valid in

Daisy because there is an intervening nullf-test before Ist’ is used.

3This example, like the GCD definition, is meant to illustrate a point about binding in Daisy,
and is not put forward as an example of good programming style!

71

Application is orthogonal, meaning that the evaluator renders an interpretation for
any value that appears in the function position. This is shown in the definition of auxi-
liary function d-apply. Numerals, for example, are taken to denote list probes returning
the element at the appropriate coordinate of the argument. If the function-part is a list,
its elements are applied coordinate-wise on the transposed argument. This choice of
interpretation for list application comes out of the investigations by Friedman and Wise
(1976c, 1978a) of systems programming, but it i3 also consistent with the circuit
behavior model of Section 3.4,

The function predicate assigns an interpretation of truth to every value; as in Lisp,
Nil is the only instance of falsity. The Boolean intepretation of a message is erroneous.
On valid values predicate’s result is a branch-like operation that selects an alternative,
by coercing one of the values in n pair. The reader can check that the conditional is

non-strict in its alternatives.

We shall say no more about the implementation of Daisy except to note the impor-
tant fact since the list construction primitive is suspending that list concotenation is not

a strict operation. By the definition of D, it is straightforward to show

PROPOSITION 4.2-1. For all enviranments p, and all ezpressions ¢ and ¢,
DI (M[hit].h): < ele> Jp=D[e]p
and

DI (M[h!t].t)s<ele> Jp=D[e]p

PROOF: {Appendiz C).
a

These equivalences hold even if ¢ or ¢’ diverges, and are maintained by Daisy’s imple-
mentation. Hence, the pairing and projection functions of the Scott-Strachey languge

can be implemented by

pairsfzyl =<z ! y>.
heads[h1t) <k,

tasis[b1t} <=1t.

72

The required axioms:
headspairi1 < c e'>m=¢ lailspari < e e'>=¢'

are satisfied in the implementation.

ezpression = @ identifier | { ezpression)

atom | fesn | application | abstraction | conditional | aystem

atom = identifier | numeral | operator
Jern u= <> | < eapreasion | expression >
applicalion 1= ezpression : czpression
abstraction = \ argument . ezpression
argument =[] | identifier | { argument ! argument]
conditional 1:= if ezpresaion then ezpression else ezpression

aystem 3= rec argument = ezpression in ezpression

Figure 4.2, Dalsy’s Kernel Syntax.

73

Let ¢ be any expression, # any identifier, and z any argument.

Qc

Ae.O

<ece>

fz2]

<c*>

{1 d]

Fiz=c.

¢ where z = ¢’
letz=¢ z’=¢'InD
e—eye’

rec let O

not permitied unless ¢ i3 an sdentifier

not permitted

not permitted unleas e 1a an argument

<e!l <’ <>D>

[z![="t[]]]

(Ai.recj=<ilj>inj):se

<051 0>
F=(Az.e)

(Az.c)se’

{N.B. As o value, only)

A[z z2’].0)s <ee>

if ¢ then e’ elne e’

rec O

Figure 4.3. Conversions to the Kernel Language.

74

Syntactic Domains

Ide
Nml
Opr
Arg = Nil + Ide + fArg X Arg)

Ezp

Semantic Domains

Int
Nil

Opn = Val — Val

Val = Nil + Ide + Nml + Opr + Msg + Cls + Lat
Mag = {“Invalid function’), ...}

Cls = (Val — Val)

Lst = (Val X Val)

Eny = [de — Val

Valuations (see Figure 4.4b)
N:Nml— nt

IC: Opr — Opn

D: Ezp — Val

(¥
(n)
(o)
(=)

fe)

Numeral meanings — unapecified

Operater meanings = unspecified

rdentificra
numerals
eperator symbols

Jormal arguments

ezpressions

tnlegers
nullary value

operations

values

messages
Junction closures
liats

environments

Ezpression evaluation

Figure 4.4a. Dalsy's Standard Semantics — Domains.

75

D : Ezp — Env— Val

Dinllp=n
DlOi]lp=7
Dioellp=-o

D <> o= Ni
D[ile= pfi)
D] <cte> lp=(Dlele, Dle,]o)
D[e,se,p = deapply (D e[p) (D e,le)
D[Mz.e]p=rv.D[e]p[v/ 2] |
D if ¢, then e, else ¢, [p = (predicate(D[e, 1)) (D e,lp, Dle,]s)

Drecz=c/ine, p= Dfe,] (fzre’. p[ﬂ)ﬂc‘ﬂp'/z]}

Figure 4.4b. Dalsy’s Standard Semantics ~ Valuation.

Environment Extension, (] */+]): Env — Val — Arg — Env
plv/ z] = Ni.(zisNit) — p(i),
(z ialde) — [{z = i) — v, pfi)}, o[v/ 2 11][hd v [z O]

d-apply: Val — Val — Val
d-apply = X Ja.{f isMsg) — "Invalid Function”,
{f islde) — ‘‘Undefined Function Symbol — [,
{ 20pr) = (K f){a),
(f iaNil} — Nil,
{f iaNml) — probe (IN [} a,
{f isCls) — [a,

{f isLat) — (d-apply (hd [} (hds a), d-apply(il f) (lls a))

predicate: Val — (Lat = Val)
predicate = Mv. [fvisMag) —(\!. "Bad proposition’!),
foiaNil) —(N1.111), (M 1.100).

probe: Int — Val — Val
probe = Anl.[n = 0)— (hd)}, probe{n —1) {11},

hd, tl, hds, tls: Val — Val
hd = Av.fvisLat) — v10, “Invalid hd-access .
tl= Av. fvisLot}) — vl1, “Invalid tl-access”’,
hds = v. fv iaNil) — Nil, (hdfhdv}, hds (t u))

th = v. (v isNil} — Nil, (#{hdy), ts (tlv))

Figure 4.4c. Daisy’s Standard Semantics — Auxiliaries.

76

77

Reference comparison

same? — reference equality
Type Predicates
null? —~ teat for nil not — not null list? —~ non-null list
ambr? ~ numeralf Itel? — literal atom? atom? — numeral or literal

Numeric Comparisons

zero? — lest for zero
1t? = less than eq? — equal gt? — greater than
le? — at moat ne? = not equal ge? — at leaat

Unary Numeric Operators {Numbers are represented in Rational form)

sgn — sign (—1, 0, 1} inc = increment der — decrement
neg — ncgale num — numecralor den = denominator
inv — invert quo — gquotient mod — remarnder

Binary Numeric Operalars

add = addition sub — aubtraction
mpy — multipliction div = division
Constructors and Probes

cons ~ (A [k t]. <hlt>) frons— (A [ht].{h!t})

first = (M [h!t].h) rest— (A[hlt].t)
List Operalors

if ~ catended conditiondl, as in {p,— v, p, — V4,0, p,— v,)
In? = list membership
sigma — numeral summalion pl = numeral product
and — ail true or — not all null
Inputf Output
console = prompt-character — character-stream-from-keyboard
screen — character-stream — lerminal display
dski — hKoat-file — characler siream
dako — character-stream — host-file
parase — characler-slream — czpression-slream
evist — czpresafon-slream — value-siream

issue — value-stream — character-atream

Figure 4.5. Some Dalsy Operations.

78

4.4. Circuit Emulatioq

It has already been noted that specifications can readily be transcribed into Daisy
to get exccutable versions. Realizations are just as easily transcribed, as is demonstrated
later in this section. The formal model of components and signals as infinite sequences
may be implemented by constructing infinite lists to represent them. Since dependencies
among signals are well behaved, there is no difficuity in building and manipulating their
representations, It is ultimately our need to observe these objects that brings them into
existence. The manner in which the observation is made determines how computation
takes place. After 3 discussion of this issue, we return to our examples to observe their

behavior through emulation in Daisy.

4.4.1. Non-finite Data Structures. The function

Kic <= <c! (K:c) >.
produces a list whose head is ¢’s value and whose tail is also such a [ist, In fact, for any
positive numeral n, the expression [n: K : c]] returns ¢'s value; the list is infinite for all
intents and purposes, The definition

K:c < recl whereL = <c!L>,
yields the same result since it specifies that L must be a list whose head is the value of ¢
and whose tail is also such o list, There is a special symbol in Daisy to express constant
sequences like this, One may define
K:c &= <c >,
The asterisk is meant to be suggestive of a Kleene star, and should be taken to mean
“arbitrarily many c’s."
The function
N:c <= <c!(Naddi<c 1>) >.
produces a list of increasing numerals. /N can also be described by ‘'data recursion
N:c < reclL

whersa
L =<e!l{<add +>:< <1*+> L >} >

Let ¢ = 2. The computation of [<add +>:< <14> L >] can be pictured as a pro-
gressing sum, with each element of L resulting from the previous value:

79

<le>= 1111111 ..
L= 234sennm..

<add*> = 345asmm.

The translation from circuit description to Daisy expression is straightforward. It

follows the model of component behavior defined in Section 3.4

aignal or behawvior Daizy
component semantics czpression
[c] e® <c*>
Mo,..0) (1) + {@,0) <f+>:1<0..0>
cl D (c,[:l) <e 10>

We will retain the convention of using operator symbols written in upper case to
refer to components. The example above would use ADD, defined as <add *»>. An
adjustment is required to make components out of Daisy's monadic operations, which
are applicd directly to their operands and not to I-tuples. For example, one writes®
[ine : n] rather than [[inc : <n>] to increment a numeral, This does not fit with the
usual transformation strategy, for while one is tempted to write [<inc +> 3 <§ +>]
to get a stream of 6's, the argument <5 #> cannot be transposed; it is not a signal of
tuples. On the other hand, the expression < <5 #>> > transposes to <<5> +> to get
a uniform strcnn; of 1-tuples. To increment this strenm, ine should expect an argument

list of length one. We therefore define the component version of a monadic operation as
INC=<(A[n].inc:tn)*>

Figure 4.0 gives component versions of the Daisy operations used later.

4.4.2. Output Driven Computation. In a purely demand driven model, compu-

tation is caused by the need for a result. Ultimately, need is determined by the device
that displays that result, One can build and manipulate non-finite data structures in

150 a3 to avoid expressions like [inc: <inct <ines5>>> L

ADD = <add +>
DCR=<{(A[x].derzx)+>
DIV = <div *>
INC=<(A[x].incex)+>
LT? = <It! »>

MPY = <mpy *>

MUX = il +>

SUB = <sub +>

ZERO' = < (A [x].zerol :x) *>

Figure 4.6. Daisy Component Implementations.

Daisy as long as care is taken about how they are displayed (Friedman- and Wise,
1076b). This relationship can be specified by introducing a causal operation called strict

whose convergence depends on the existence of a value. Thus, [Jolricts <u v>]
returns v’s value after u has converged®,

Through judicious use of airict, call-by-valuc interpretation can be imposed in
Daisy. For example, function F defined by [F :{ n m] <= ¢] becomes call-by-value®
when transformed to

Fsnm)] <=astrict:< n slrict :< m e >>,
To address the relationship between inputfoutput and computation let us define a

device to be a manipulator of atom streams. A single occurrence of alrict is used to

define the behavior of a atom siream consumer:
Display s [¢!S] <= alrict: < ¢! (Display:S) >.

Woe sholl make no assumption of temporal order in defining o generic tnput device:

5Note that u {3 not necessarily made fully manifest. For example,
| strict s <<ul u’> v>] converges independent of u and u’ because the Jist constructor is not
strict,

8Conversely, In call-by-value interpreters function closures can be used to induce call-by-
name through a dual operation called defay (Landin, 1965; Henderson, 1980).

81

Receive t x <= < random-atom! (Receive:x) >. ’

Ideally it is Display that brings characters forth in the order they are typed. Imagine a

program that converts values into atom streams:

Print : L <= rec Print’; <L <>>.
where
Print’s[L c¢] <=
let [ulv] =L
in
atom?: L — <L l¢>>, Print’: <u Print’: <ve> >.

Now consider the expression [[Display : Print ¢+ <e ! ¢’ >]. The computation is
ordered, first ¢ then e’, because Print produces its stream that way and Display con-
sumes the stream in order. If e’ diverges, the prefix of the result is still displayed. In
fact, the computation of ¢’ does not take place until after ¢'s value has been transmit-

ted. We shall make use of this fact when we attempt to observe circuits in emulation.

4.4.3. Experimentation with Realizations. Recall that the factorial
specification is realized by the circuit description

= 31 DCR(X)

Y= 11 MPY(X,Y)
READY = ZERONX)
VALUE = Y

-

This transiates to the Daisy expression

FAC 1x0 <= recD
where
X = <x0! DCR:<X>>
Y= <11 MPY:KXY>>
READY = ZERONL<X>
VALUE = Y.

What goes in the box is an expression stating what we choose to observe about the cir-
cuit, Let us develop an experiment to display the entire circuit in operation. The obvi~
ous first attempt is the expression [[Print 1+ <X Y READY>]|, but a display of this
form would cause the signal X to be produced in its entirety, Hence, we would never get
an opportugity to see Y and READY, The solution is to look at finite prefixes of each

signal in turn., A transposed version of <X Y READY> can be obtained by applying
an identity component to the signal list, The interpreter transposes as a matter of
course. We get a picture of the circuit in “time slices”. Thus, the experiment we want
is

< AxX 2> 1 <X Y READY >

Let us generalize this experiment to work for other realizations, Define a function
called Test that transposes any list of signals. In the figures that follow, a carriage
return is interposed Between time slices:

Test s signallist <= rec Format : ID 2 signal-[ist
where
ID = < Axx *>
Format : [u!lv] <= < carriage-return u! Format : v >.

In the factorial example the desired experiment is

FAC 1 x <= Test 1 <X Y READY> where...” .
Figure 4.7 shows an interactive session in which this expression is executed?. As we fully
expect, the first time interval that the X-register contains 0, the factorial of the initial
value 2 is found in the Y-register. In the next cycle the value is destroyed and X dimia-
ishes forever. The interpretation program must be interrupted to stop the display.

A similar experiment is run on the FIB realization in Figure 4.8. Again, the desircd
value appears as soon as the READY signal asserts its presence. It is worth noting that

the circuit continues to compute valid Fibonacei numbers afterward.

The GCD realization was

"Daisy is implemented on a Digital Carporation VAX 11/780, under the UNIX® operating
system. Output from the Daisy sessions shown throughout this dissertation was recorded directly
from the terminal by a host monitor program. These text files have been modified as follows:
some carriage-returns and blank characters are deleted; some blanks are replaced by tab charac-
ters to align columns. Daisy source listings are edited to the idealized syntax of Section 4.2; true
source listings for each of the fgures is shown in Appendix B. Daisy’s prompt is an ampersand,
‘&'. The host interrupt character is EXT, typed control-C, and displayed as ‘1C'.

83

X=31U
Y = 4?1 SUB(W, U)
= MUX(V, X, Y)
= MUX(V, Y, X)
= LTHX, Y)
READY = EQH(X, Y)

Execution of the above is shown in Figure 4.9. Again the experiment is to trace the sig-
nals X, ¥, and READY in parallel. This time, the circuit becomes completely stable two
clock cycles after READY becomes true. Furthermore, the desired value of the compu-
tation is preserved—a desirable characteristic from the standpoint of integration—
although its value ends up in the Y-register. The experiment has revealed a property of
the realization that is not accounted for in its specification, The quality of becoming
stable is in fact not expressible in the specification language as it now stands, since it
implies that the GCD circuit computes forever. The closest we can come is to specily an
infinite loop whose formal meaning would be the totally undefined function. Thus, sta-
bility, like the quality of correctness, must be dealt with by some other means. We shall
not develop this notion formally for it is not worth the effort. One can always impose
stability on a circuit by using the READY signal to disable the registers. We return to
the general issue of making assertions about performance in Chapter 7. For now, emula-
tion of the circuit has at least given us a chance to discover an unspecified property
without having either to build the eircuit or to code it up in a simulation language. This

is a significant practical advantage of our approach.

1

L FAC realization
FAG:x =: rec test:<X Y READY>
where
X = <x | BCR:<X»>
Y = <1 | MPY:<X Y>>
READY = ZERD?:<X>,

&4 ' = 7
’-(FAC‘T « Tracing X, Y, and READY

7 1 1)

6 7 n)

(6 42)

(4 210 a

(3 840 1

(2 2520)

(1 65040 o)

(0 5040 true) «+ Value ready
(-1 0 oo

(-2 0 1

(-3 0)

(-4 0 0o

(-6 0 1) tC

1

- Stmulation interrupted

Figure 4.7. Experiment with the FAC Realization.

FIB:x <= rec test:<X Y READY>

« FIB realization

whore
X = <x ! DCR:<I>>
Y=<11 2>

Z =<1 t ADD:<Y Z5>
READY = ZERD?:<X>.

- & = 7
l(FIBW « Tracing X, Y, and READY

(v 1t o)

(6 1 [0

(6 2 0o >

(4 3 0>

(3 b 0 >

(2 8 >

(1 13 (W

(0 21 true) « Value ready
(-1 34 >

(-2 66 (0

(-3 89 o >

(-4 144 a1 1C

1

L Simulation interrupled

Figure 4.8, Experiment with the FIB Realization.

856

GCD: {x y) <= rec test:<X Y READY>

& GCD: {16 24) M
(=
(15 24 1
(16 9)

(@ 6)

(6 3 1)

(3 3 brue) -
3 o 0

(o 3 S

(o 3 (x >

(o 3 0)

(o 3]) tc

1

whore
X=<x'!' W

<y ! SUB:<W U>>

IF:<¥ X Y>

IF:<V Y X>

LT?7:<X Y>

EADY = EQ?:<X Y>

unn

Y
|V}
W
v
R

k 4

. GCD realizalion

~ 20 =15 4 = 24
- Tracing X, Y, and READY

~ Value ready

~ Simulation interrupted

Figure 4.8. Experiment with the

GCD Realization.

88

5. Design Examples

We now have a language for describing digital circuits and a method to derive cir-
cuit descriptions from functional specifications. In this chapter, the method is applied to
a larger example; a circuit is derived for a programming language interpreter. As
descriptions get larger, it becomes necessary to organize them more carefully. We can
“structure' circuit equations as we structure programs, by decomposing them hierarchi-

cally.

Since all of the structural combinations distribute over operator-lifting, we may
arbitrarily package (i.e. give a name to) groups of interconnected combinatorial com-
ponents. The instantaneous behavior of the packaged combination lifts to the signal

behavior of the group.

We have already considered specifications that use complex data types, such as
stacks. However, we have so far avoided building circuits over complex operators, by
deriving equivalent specifications over more primitive types. In this chapter we finally
face the task of implementing circuits over non-primitive signals. In programming, one
hides implementation details by introducing abstract data types, We shall do the analo-
gous thing at the behavioral level, introducing abstract components in our circuit deserip-
tions. Like its programming counterpart, an abstract component is simply a

specification of the external behavior required by the surrounding circuit.

Implementation of an object that has the right external behavior may be left as a
subproblem. With the complex-typed signals factored out of the description, develop-
ment of the controlling circuit can continue. As abstract components are factored from
circuit descriptions, instruclion signals are introduced to coordinate their bebavior.
Coordination of behavior forces us, for the first time, to consider the communicative

qualities of the circuits we describe.

87

Hierarchical décomposition of large descriptions is common to all design realms, It
is neither novel nor surprising that we do it with circuit descriptions, but is simply a
necessary prelude to our attack of a larger design problem. Section 5.1 intreduces some
notation for structuring circuit descriptions. We exercise this notation on a small exam-
ple that we have seen before. Siuce our example has to do with “language driven"
design, we discuss that term in Section 5.2. In Section §.3 we synthesize a circuit that
interprets a programming langunge called L. The derivation is long and has five major
steps. Recall that aynthesis means a derivation that is not necessarily mechanizable.
Indeed, there are numerous design decisions involved in our development of the L-
circuit. We shall point out the transformations that require designer intervention as we

present them.

The derivations that follow were done by hand. In Appendix B, the evolving
specification is rewritten in Daisy. Executable versions of the specifications were quite

helpful in debugging the derivation,

5.1. Higher Level Components

In Scction 2.4 we used the Wand-Friedman transformation strategy to synthesize a

stacking version of the non-linear scheme

| F(z) <= p(z] — f{z), b{ Fa,fz)), Fla,(z))).

We arrived at the form

Gz, o) <= p(z}) — R(f(z), o), G(g,{s), push(0, push(y,(z}, o))}).

Rfv, o) < emptyf(o} = v,
eqfftopfo), 0} ~ Gftop(pop(v)), push(1, pushfv, pop(pop{c)} }} },
R{ h{top(pop(c}}, v}, popfpop(c))}).

For the purposes of this discussion, we shall separate the recursion stack into two stacks:
r holds actions and ¢ holds values. Since every recursive call pushes exactly one action
and one value, the modification is trivial. In addition, let us use truth values {#, f} to

denote actions, there being only two. The revised specification is

89

Gfz, o, r) <= p(z) — R(f(z), o, 7), G(ﬂg{z)r P“‘h(ﬁ(z}: o)), push(tt, v)).

Rfv, 0, 1) <= emplyf(r} — v,
top(r} — Gftop(c}, pushfv, popfe}}, push(f, pop(r})),
R{ hftop(e), v), pop(a), pop(r) }.

By the construction of Section 2.4.4 this specification is transformed to a system
with a single function variable symbol. A new control token, w, encodes which of G or
R is in control. The identifier, v, in the definition of the function R is changed to z in

order to give the system a uniform formal argument list.

H{w, z, 0, 1} <=
atffw, G} — [p(z) = H(R, [(z), o, 1), H{Q, g (z), push(tt, v}, push(g (2}, o})],
atffw, R} — [femptyf(r} — z,
top(r) — H{G, top{o), push{ff, pop(r}), push(z, pop{c}}),
H(R, h{ top(o), 2}, pop(r), pop(o)} |.

By distributing the conditional, we can turn this equation into an instance of U,. After

a little nlgebra on the resulting terms we arrive at the equation

H{w, 2, 0, r} <= andfatf{w, R} emptyf(r)) — z,
H{ muzfatf(w, G), muz{p(z), R, G), muzftopfr), G, R}),
muz{atf(w, G}, muzfp(z), 1, g,(z}), muaftop(r}, hftoplo}, 2}, top(e} }),
muzfatf{w, G), muz(p(z), o, push(g (2}, 2}, muzftop(r), poplc), push(z, pople}))},
muzfat?{w, G), muz(pfz), v, push{f, r), muzftop(r), pop(r), push{tt, pop(r}) }),

We shall adapt some familiar structured programming techniques to decompose the reali-

zation of this function.

6.1.1. Packaged Combinations. Let us introduce a more sophisticated multi-
plexor to ila.ke advantage of the fact that the conditional structure of each inner call is

the same. Define a combined operator that does four-way selection.

90

muz‘(p, g 1, 4, v, th,) <= muzfp, muzfq, u, v}, muzfr, w, z)).
We should perhaps call the combination something like “3-by-4'selector"; the name muz,

is used for brevity. Using muz, we can rewrite f{'s defining equation as

Hfw, 1, 0, 1) <= andfatf{w, R} emplyf(r)) — z,
H(muz fat?(w, G), p(z), top(r), R, G, G, R},
muz {atflw, G), p(z), top(r), /{z), 9 (2), h{lop(z), 2}, top(z)),
muz (aif(w, @), p(z), top(r), o, push(g,(z), o), pop(c), push(z, pop(o})),
muz‘(at?(w, G}, p(z), top(r), 7, push(ff, r}, pop(r), push{tt, pop(r)})).

It is not an accident that muz, fails to absarb all the shared subexpressions. The reason
is evident when H is transcribed to a circuit description. As before, lifted operations are
written in upper case. Lifted constants are enclosed in square braces '[' and ‘)’ to distin-

guish them from signals and components,

c(v, 1%, 0% *) <=
w= o’ | MUX(U, V,Y, [R], [G], [R], [G])
X = 221 MUX (U, V, Y, F(X), G(X), H(TOP(Z), X), TOP(Z))
L = ¢’ | MUX (U, V, Y, E, PUSH(G (X), £), POP(E), PUSH(X, POP(E)))
T = /1 MUX(U, V,Y, T, PUSH({[i, T), POP(T), PUSH((«t}, POP(T))).

= ATHW, (G])
= P(X)
= TOP(T)

READY = AND(ATHW, (R]), EMPTY(T))
VALUE = X

The outputs of the components ATf, P, and TOP are shared by all instances of MUX‘.
Had the subexpressions atffl, G}, pfz), and topfr} been incorporated in the definition of

muz,,

cate components. While duplication is not necessarily a bad thing, we elect to avoid it

each instance of the multiplexor would have included a duplicate set of the predi-

here, Combined operation muz, can be lifted to component MUX f because muz, is

91

defined by a trivial expression, By Propositions 3.3-1 through 3.3-4, the combination is

transparent to lifting,.

5.1.2. Abstract Components. While circuit C certainly computes the same thing
as H, and hence as the original specification F, it is hard to justify calling it a realiza.
tion. Its registers £ and T range over stacks, and so there is much yet to do before
going to the laboratory with this circuit description, We should think of stacks
abstractly and hide their implementation details. Let us therefore introduce a ‘“‘class
object' that gives the necessary information about a stack: what its top is and whether
the stack is empty. That is, we shall replace stack objects, to which operations are
applied directly, with stack agents, which can be instructed to apply those operations.

Separate the signals that have to do with the two stacks, and rewrite the realization as

c(war 2%, o°, r } <=
W = o’ | MUX(U, V, Z,, [R), [G], [R], [G])
X = 21 MUX(U, V, Z, F(X), G(X), H(Z, X), Zg)

U= ATXW, [G])
V= P(X)
Z= G,(X)
READY = AND(ATHW, [R]), E)
VALUE = X

L =01 MUX (U, V, Z;, L, PUSH(Z, £), POP(E), PUSH(X, POP(X)))

Ec= EMPTY!E)
Zg = TOP(T)
T =7 | MUX(U, V, Z,, T, PUSH(I}, T), POP(T), PUSH(|tt|, POP(T))).

E.= EMPTY!T)
Zp = TOP(T)

Two signals have been added and one name has been changed, in order to bring out the
similarity between the stacking subcircuits. Y has become E,., the “l-am-empty" signal

from the action-stack. The corresponding signal Ey for the value-stack is not used but

92

is included in the description for symmetry. The new signal identifier Z was introduced
because the ability to do the operation G, should not be ascribed to the behavior of the

stack.

Our next goal is to hide all the pushing and popping inside of a component
definition. We must only ensure that the new component's external behavior, the values
on the signals Z;,, Ey, Z,, and £, is the same as before, As they stand however, the
equations that specify these behaviors are too specific, for they imherit their decision
making apporatus from C. The stack agents must be able to (1) push, (2} pop, {3)
replace the top of, or (4) do nothing with the stacks in their care. It should be left to
the surrounding circuit to determine which of these operations to perform. Introduce a
set of instructions, Inst = {NOOP, PUSH, POP, PLOP}, and define a component

STACK : (Stack X Sig,,, X Sigy, } — (5igy, X Sigg,o)
that makes the instructions work.

STACK([s%, INSTRUCTION, VALUE) <=
rec
{ TOP(L}, EMPTYf(L))}
where
L =0%1 operate®(INSTRUCTION, VALUE, £ }

operatefinsiruction, value, stack) <=
eqf{instruction, NOOP) — o,
eqffinsiruction, POP} — pop{o),

eqf(instruction, PUSH) — push(value, o),

eqffinatruction, PLOP) — puakfvalue, popfc}).
Now if C can be made to generate the right instructions at the right times, STACK: can
be used in place of the signals £ and T. Determination of the appropriate instructions is
easy; it is given by the original signal definitions in C. The STACKs for £ and T can

share an instruction signal, /.

¥

93

C(v’ 1%, 0% %) <=
W= o’ | MUX(U, V, Z,, R}, [G), [R], [G])
X= 2% MUX (U, V, Z, F(X), G,(X), H(Zg, X), Zy)
= ATHW, [G})
= P(X)
= G,(X)
READY = AND(ATY(W, [R]), E,)
VALUE = X

1= MUX (U, V, Z,, [NOOP), [PUSH], [POP], [PLOP])
(Zg Eg) = STACK(¢?, I, MUX (U, V, 2, 0, Z,8, X))
(Zg Ey) = STACK(r?, I, MUX (U, V, Z,, w, (], w, [t¢])

The circuit has been factored into abstract components that communicate with
instructions, The factorization is an application of conditional distributivity to opera-
tions (Sec. 2.6.3). In more detail, the **next" value for the stack o is an expression of the

form
p = [1— o, pushfu, o)}, [r — pop(c), pushfv, popfo})]
where p, q, and r are the appropriate propositional terms, Let us “normalize” the opera-
tions in order to make way for the factorization. That is, introduce combined operations
noop'(z, o) <= 0. push'(z, o) <= push(z, o).
pop’(z, o) <= poplw). plop’(z, 0} <= push(z, popfa})).
With the normalized argument the conditionals distribute over operations and operands

alike.
apply([p — [g — noop’, push’},[r — pop’, plop’l},
[P"’[‘I-“-:"IJ fr—m, 9],
[P-’{q_"’: "}: [r-"’! 0'”)

To lift this expression we need to think in terms of a component APPLY whose inputs

include the signal

g4

VALUE
. X —~ _|
MUX 7 !
-
|| Z
%
f.c. | 'S],:‘ gn -
n.e. | MUX é ZS h
71K
| i |V
E . w
EH=—1 mux ma ik A lu
o ~ =
l
L
Bl T A READY
D
n.c. :i! IET |
m ne.] MUX é ZT
y - K
[
-[m MUX l
|

Figure 5.1. A Schematic for Circuit C.

96

MUX (P, Q, R, {noop], { push], [pop], [plop])

However, it is counterintuitive to assert that aperations are legitimate values for a signal
to hold. The physical interpretation must be that the selected operation is encoded as
an instruction to be interpreted by the abstracted subcircuit. Essentially the same prin-
ciple is involved when we introduce a control token. It is this technique of factorization

that motivated our decision to model a component as a sigaal in Section 3.5.

Figure 5.1 gives a schematic version of the circuit description for C. Since we
began with a recursion scheme the realization is a generalization, with components f, g,

g, h, and p being variable. The Fibonacci function is an instance of the original non-

linear specification

F(z) <= plz) = Ifz), b{ Flg,fz)), Flg(3))).

with
plu) <= Utffu, 2). _—I—IE} | i?
flu) <=1, —|ne
hiu, v} <= add(u, v). 5
g,(u) <= der(derfu)). der {~ der
0,(u) <= der(u). ™

The corresponding instance of circuit C, in which these packaged combinations replace
the component variables, realizes /B provided it halts. (Recall that the stack transfor-.

mation may have weakened the resulting specification.) The controlling circuit for °

.

specification FIB is

Cpppl o, 7, 0%, #) <=
W = v’ | MUX (U, V, Z,, IR], [a], [R], [G])
X = 21 MUX(U, YV, Z, 1, DCR(DCR(X)), ADD(X, Zg), Z5)
= ATHW, [Q))
= LTHX, 2)
= DCR(X)
READY = AND(AT?(W, [R]), E,)
VALUE = X

1= MUX (U, V, Z_, [NOOP), {PUSH], [POP}, [PLOP])
(25 Eg) = STACK(e% I, MUX (U, V, Z., =, 2, n, X))
(20 Eq) = STACK(7, I, MUX (U, V, Z_, w, [f], », [#])}

Figure 5.2 shows the usual Daisy experiment on C,, with stacks implemented as lists
(sce Appendix B). We have introduced techniques to structure circuit descriptions by
decomposing them into hierarchies of higher level components, Qur decompositions fol-
Jow conventional design methods. Packaged combinations such as MUX ; Serve as mac-
ros that identify repeatedly used connection patterns, Their introduction is valid
because operator combination is transparent to lifting. Abstract components are the
behavioral analag of Hoare's abstract data types (1972}, To hide implementation details,
signals over complex values are replaced by agents that manage those values. The fac.
torization involves the introductian of instructions generated by the surrounding circuit.
While we have not provided a plausible realization for STACK components, we have
succeeded in isolating the task and can proceed with the refinement of the controlling
circuit,

Deciding how much of the surrounding circuit to incorporate into a higher level
component is non-trivial. Had MUX p included predicates P and AT?, they would have
been duplicated in every instance of MUX P and the opportunity to share some of the

computation would have been lost. Had the D-S7T'A CK description retained its ability to
compute G, it would have been too specialized to reveal its similarity to the T-STACK.

97

FIBckt: (%0 x0 80 t0) <= rec test:<READY X I VI WV2 E2U V>
whero

W = <m0 } MUX-N:<P Q V2 [R#] [G»] ([R+] [G»]> >
X = <x0 | MUX-N:<P § V2 {1»] DCR:<DCR:<X>> ADD:<X V1> Vi> >
fvt E1] = STACK:<g0 I MUX-N:<P Q V2 [77#] DCR:<X> [7?=] X>>
[v2 E2) = STACK:<t0 I MUX-N:<P Q V2 [77=] [<>s] [??7»] [tt=]>>
I= MUX-N:<P Q V2 (noops] ([pushs] (pop*] (plop»1>
U= ATT:<W [C*]>
V= LT?:<X (2»]>
READY = AND:<AT?:<W [R*]> E2>,

MUX-N = [mux-N*].
miz~N:(p g r u v ¥ x] <= mux:<p mux:<q u ¥> mux:<r ¥ x>>.

STACK: [0 I V] <= rec <<top*>:<5> <empty?=>:<5>>
where

§ = <80 | <operate*>:<I V 55>

operate:{i v g] <=
same?:<i Gnoop> -> 8,
game?:<i Opop > ~> pop:s,
samo?:<i Qpush> -> push:<v s8>,
same?:<i Qplop> -> plop:<v &>>.

Figure 5.2a. Experiment with Cpp — Source for the Realization.
(See Appendiz B for the implementation of stacks.)

fib:n <= FIBckb:<0 n MTetk MTsetk>. T Regiater setup

& fib:4 o Find FIB({)

(+ Tracing READY,
€8 4 push ?? O ?? true true {]) XLV, W,
(0 2 push 3 © [1 [true [1) V,E, U V
([] 0 noop i1 © [] [] true true) (See F"yure 5.251
(. 1 plop 1 1 00 {] (1 true)

(A 1 noop 1 0 tt [] trus true)
(01 1 pop 1 1 st [{1 true)
([] 2 plop 8 1 11 01 [l 1)
(0 3 push 2 O tt [] truse [1)
40 1 moop 2 0 [1 (] true true)
qN 1 plep 2 1 01 {] Q true)
(0] 2 push 1 0 tt [true [])
(Q 0 noop 1 0 f1 I[I true true)
({1 1 plop 1t 1 {1 0O (1 true)
(1] 1 noop 1§ 0 tt [] trues true)
(0 1 pop 1 1 ty f{] Q true)
(0 2 pop 1 1 tt [] {] 0o
qn 3 pop 2 1 tt [] N i)
(tbrue 6 pop 77 1 77 true [] 7)
(true 73404895/14680979 pop 77 1 77 true [[1) | Yo/ue ready
{true 73404895/14680979 pop ?7 1 ?7? true [[1)
(true 73404805/1468097% pop 77 1 77 true [1 [1) ‘T Value lost.
(trua 73404896/14680979 pop 77 1 77 true []1 (1)
(true 73404805/14680979 pop ?7 1 7? true (} [3)
T Simulation
interrupted

Figure 5.2b. Experiment with Cpg — Record of an Experiment.

09

5.2, Language Driven Design — Introduction
Let us brielly consider a dillerent instance of the realization C, derived in the previ-

ous section., The same circuit description scheme gives an evaluator for arithmetic

expressions, specified by a semantic function similar to the one in Section 2.8.1.
The argument z will range over expressions in a language Ezp
ezpression ;= alom I (ezpression -+ expression)

Assuue operations lefi:Ezp— Erp and right:Ezp— Ezp that return left and right subex-
pressions; alomf:Ezp— Bool that distinguishes atomic expressions; fetchf:Atom— Int
that produces numbers from atoms; and opn:{Int X Int)— Int, an arithmetic operation.

The recursion equation
[Efr) <= atom?(z) = fetch{z), opn{ [E{left(z}), IE(right{z})).
defines the value of any expression in Ezp. Since /E’s defining equation is an instance of

the non-linear specification of the preceding section, the corresponding instance of C

realizes [E.

Cin® 2% 0% ") <=
W=« ! MUX(U,V, Z,, [R), [G] [R], {G])
X = 1 MUX[YU,V, 2, FETCH(X), LEFT(X), OPN(Zg, X), Zy)
U= ATHW, [G})

V= ATOM?I(X)

Z= RIGHT(X)
READY = AND{ATHW, [R]), E,)
VALUE = X

[= MUX,(U, V, Z,, [NOOP), [PUSH], {POP], [PLOP])
{2 Bp) = STACK(e% I, MUX (U, V, Z,, m, Z,n, X))

(Z Eg) = STACK(r% I, MUX (U, V, Z_, m, [, u, [1] })

The circuit is a “direct interpreter"” for a suitably represented language of arithmetic
expressions. [t calculates a value by processing the expression itself, saving both inter-

mediate results and subexpressions on its stack. Non-atomic expressions are evaluated

100

left-to-right, since that was the order imposed by the stacking transformation. A variety
of improvements in the design are possible, of course. We might arrange some form of
look-ahead to keep from stacking some atomic subexpressions, This refinement can be

developed formally by first unfolding [E to expose more tests:

[Efe) <= atomf(e) — [etchfe),
atomffleftfe}] — opn(fetchflefife}), [Efrightfe}}),
atomf(right{e)) — opn([Efleft{c})), fetch{rightfe}}),
opn{ E{left{e}}, Efright(e})).

and then transforming to circuit form.

A more conventional architecture would not stack text at all, but requires a com-
piler to translate expressions into sequential programs. Wand (1982a, 1982b) develops a
method for deriving compiler/machine pairs that yield more classic stored program
organizations, His derivations lead to iterative machine specifications and can therefore

be immediately extended to obtain circuit descriptions of the machiaes.

5.3. Application to Language Driven Design

In this section the derivation techniques we have developed so far are used to syn-
thesize a realization from a programming language specification. Thke target circuit is a
direct interpreter for expressions in the applicative language L defined below. The
derivation has six major steps. All but the first are transformations; of the five transfor-
mations, two are direct constructions. To varying degrees, the remaining steps involve

designer creativity, and thus are at best semi-mechanizable.

We begin with a formal definition of L’ semantics. This fully abstract
specification is then rewritten as a function on represcnted expressions. Hence, our first
step is to turn L ‘s formal definition into something concrete enough to be regarded as a
program, an L-initerpretor. Readers uncomfortable with the mathematics can skim the
details ou first reading, and take the interpreter specification (Figure 5.4) as the starting

point for synthesis.

The initial specification is non-linear. The second derivation step introduces a
recursion stack to linearize control. As we have mentioned before, this is regarded as a
creative step because recursive calls must be ordered. The resulting interpreter imple-
ments an applicative order computation rule for L and is only partially equivalent to the

initial specification.

101

The stack version of the interpreter is compiled into a loop by encodini; the serious
symbols as a control token. We arrive at a specification that could be transformed to a
circuit. However, some refinements are made that lead to a more compact version of the
loop specification, These changes expose some subtle issues in representation, and this

derivation step involves more designer creativity than any of the others.

The refined loop algorithm is then transcribed to a realization. The last step in the
derivation introduces abstract components to factor complex-typed signals out of the

interpreter’s description.

Like most lengthy presentations, this one tells little of what motivated specilic
design decisions. The product of the synthesis is described, without discussion of the
blind alleys, or the discovery of features that reflected negatively on earlier speciﬁcntic;ns.
At each step of the derivation a version of the evolving specification was written in
Daisy. Experimentation revealed flaws in some design refinements, and a number of
typographical errors. The Daisy versions, and some trial exberiments, are shown in

Appendix B.

5.3.1. The language L. L is a purely applicative, lexically scoped language with
constructs for programmer-defined functions and self-referential values. Its formal
definition is given in Figure 5.3. All operators and programmer-defined functions are 1-
placed. One writes [[{(add:n):m]] to add two numerals; the operation add returns a
second operation that “adds n". (Parentheses show how expressions should be parsed.)
Assume that the operator set includes {zerof, onef, inc, der, ItP, eqf, add, sub, mpy}.

The operations associated with these names are held in an initial environment.

Label-expressions! are used to define functions recursively. Our three example

functions are expressed as follows in L:

! The form [i << e] is analogous to the Lisp expression “{LABEL 1 E)" {McCarthy,
el.al., 1065). While any expression may occur to the right of the “'assignment” symbol, it is not
immediately clear what expressions are sensible there. For example the form “x <& incix" does
not have the efect of setting z to z + I, but instead diverges. That \-expressions are meaningful
in label-expressions depends in part on the fact that they evaluate to closures, that is, data struc-
tures that incorporate environmental information. {McCarthy's LABEL requires ¢ to be a
LAMBDA-expression,) To allow other non-trivial forms, we need primitive operators that return
closures. A suspending CONS would do nicely.

102

Expression Syntax

Ezpu=Ie | Nmi | Ai.e|i<=e|eie,|e,—~ e, e,

Domains
{de (it} identificra
Num {n} numerals
Bool {6) truth values
Opn = Val — Bas {o} operations
Err = {'invalid function”,...} {m} error messages
Ezp fe} ezpressions
Bas = Num + Bool + Opn + Err {v} basic values
Val = Bea + Fin {v} ezpresacble values
Fin = Val — Val {f) Junctions
Env = [de = Val fp) environments

Valuation IL : Ezp — Env — Val

Linllp =n
L[iJe = ofi)
LINi.clle =xv. Le] (olv/i]]
L(i<=clp =fiz(he. L[e] ole/i])
Lfec,:ele = apply (L]e]p) (L(e,]e)
Lle, — ¢,y ¢]p = test{Le,Jo)~ LleJe, Lle,]p

Auxiliaries
plv/i] = Xz, [z =i} — v, p(z).

apply = N fv. ([iaOpr) — fv, {f isFtn) — fu, “invalid function”’.
test = Av. (v iaBool) — (v asBool), §.

Figure '§.3. Standard Semantics of the Language L,

103

GCD <= Ax.AYy.
(eqhix) sy = x,
(Itt:x) : y — (GCD:x) : ((sub:y):x), (GCD:y) : ((sub:x):y)

FAC <= M x. zerol:x — 1, (mpy:x) : (FAC:(der:x))

FIB <= A x . (lthx) : 2 = 1, (add:(FiB:(dcr:x})) : (FIB:(der:{dcr:x))

These forms are used for the benchmark tests in Appendix B.

5.3.2. An L-Interpreter. We follow Wand's advice to compiler designers (1982a).
Given the semantic function I : Ezp — Env — Val, we seek a machine description, IM,
corresponding to L. However, while IL acts on abstract entities, [IM acts on their
representations. Some notation is helpful. Given a domain, D, let Rep, denote a
representation of D. If a is in Rep,, denote the thing o represents by > When a isa
complex expressio.n, we shall write Y[a].

One of the tasks of a compiler is to produce program representations from
expressed programs, The machine must interpret compiled programs consistently. That

is, given a compiler IR : Ezp — R‘pg:,' and a machine

™M "{chsw X Repg } = Rep,,,
we require that

V[IM(IR(ezp), env)] = L[eap Jenv

Since we are deriving a direct interpreter for L, IR is a trivial translator, and we omit
reference to it by asking instead that

V[M(ezp, env)] = IL [ezp [Jenv.

We will assemble IM’s specification by attempting to rewrite as the analogous
function on concrete representations. Along the way, new objects will be discovered that
require representational counterparts, and some of the properties of these objects will
have to be inherited by their representations. Which properties to preserve are revealed

when we try to prove IM’s correctness,

Representations are expressed as records delimited with square brackets, [' and 'J'.
Within the delimiters are a sequence of field names, the first of which is always a tag.
For example, represented expressions (discussed just below) have record structure

104

[tag lft rgf]. With each record format there are predicates, field extractors, and record
builders, designated by the associated field name. For example, expressions have field
extractors lap, Ifi, and rgt. Since NUM is a possible expression tag, there is a predicate
numf that tests for that tag, and a constructor make-NUM that builds numeric expres-

sjions.

Expression Representation. Of the six kinds of expressions, only the conditional
has more than two subexpressions. Let a represented expression be a record of three
fields, [tag ift rgt], where tag is one of {NUM, IDE, LAM, LBL, APL, OND, TST}. Define the

translator IR as follows

Rin] = [NUM n w]
R[i] = [DE in]
RINi.e] =LaMiIR[e]]
Ri<=e] =[LBLiR[ec]]
R[e,:¢,] =]arL Re,]] Re,]]
Rle,—e,y¢] =[cnD Rfe,] [rsT R{e,] Re,]]]
From now on, we shall suppress unused fields, and write [[DE ¢]]| rather than
[[mE ia]].

Environment Representation. We shall not define a detailed record structure for
Repy,, lostead, just assume that operations
find : (fde X Repg,,) — Rep,,,

and
extend : (Rep, X Rep, , X ide) — Rep.,,

exist that satisly

Ylfind(i, env)] = env(i)

v[extend(eﬁv, val, i)) = enw [val /[i}

A third operation on Rep, , called "label”, will be added later.

106

Value Repr'esentation. Rep,, 't record format is [tag Ift rgt env], and includes

boolean values [BIT 4], numerals [NUM n], error messages [ERR m], and primitive opera-
tions [OPR o], Other value-objects which use the rgf and env fields will be added later.

5.3.3. Deflnition of IM. We decfine the concrete interpreter IM by cases, according
to expression type. In presenting the definition we first write down IM's intended
abstract value, and then look for an expression in reduced terms that has that value.
We may have to introduce new objects with special properties to succeed. Existence of
these objects is assumed. The presentation can later be viewed as a proof of IM's partial
correctness, depending on the existence of the postulated objects.

Numerals. We intend
Y[IM([NUM n), env)] = L[n] env = n.
Assuming that [NUM n] = n, define
IM([NUM n], env) = [NUM n].

Identiflers. We intend
Y[M(IDE §], env)} = L[Jenv = env (i).
Since we have already assumed that ®(find(f, env)] = cgv(t‘), we should define

IM([IDE ¢], env) = find(¢, env).

A-expressions. We intend
Y[IM([LAM § ezp], env)] = L) i.. cip] env = Av. L[czp] (env|vfi])
We need something in Rep,,, to stand for the right-hand object. Add function closures
to Rep,,, with the record format [FTN § ezp env]. If we can ensure that
TFIN ¢ ezp env] = Av. L{eip | (env[vfi])
then we can define
IM([LAM i ezp], env) = make-FTN(i ezp env).

A function closure adequately represents its abstraction if it produces the right answer
whenever it is applied. We therefore need an agent to do application. Define

APPLY([FTN ¢ ezp env], val) = IM{ezp, extend(env, val, 7)).

Then by earlier assumptions,

106

Y[APPLY ([FTN § ezp env], val))
= Y[IM(ezp, extend(env, val, i)} A APPLY
= IL [eap (% [extend(env, val, 7)) Induction Hypothesis
= Lezp] (e?w[vg!'/l']) Assumplion sbout eztend
=(Av. L [[egp ﬂcgv[u/a'])ugl substitution

as desired.

Label-expressions. To avoid dealing directly with the fiz operation we shall hide it
in the environment specification. Let us modify the original definition of L.

PROPOSITION §5.8-1. For a:Env— Val,
fa{re.aple/i]l)=a (fz(Xp'plap’]i])}

PROOF: {Appendiz C).

CORROLLARY 5.8-2. If I.'s definition s revised to read
L[i <= clp = Lle] (e sl LLelo’ / i)

the resulting valuation ia unchanged,

PROOF: by structural induction on the language L. The valuation is unchanged on
base expressions, that is, numerals and identifiers, On composite expressions we may
assume by induction that subexpressions have the same valuation. The only question-
able case is [<= e]|, which holds by Proposition 3.5-1 with a = L[e].

a

Reading IL's new definition literally (if somewhat purposefully), to evaluate
[# <= e]] we must arrange to create an environment p’ that binds # to ‘'the evaluation
of ein p’ ", Hence, a representation is needed for an evaluation. Define an ezpression
closure to be a value of the form {SPN ezp env]. If we intend v[SPM ezp env] to equal
L eip]]egv , then an agent like APPLY is needed to ensure this relationship. We are in
the process of defining that agent right now; it is IM. We also need an operation

107

label : (Jde X Repﬁ." X Repy,) — Repg,,
that satisfies®
“label(i, ezp, env)] = fiz X p’. env[IL [e3p 10/},
The {abel-operation is correct if the environment it creates binds the right value to every
identifier.

Suppose that find(i, label(s, ezp, env)) = [SPN eap label(f, ezp, env)]. Modify IM

to test for expression closures whenever it looks to the environment.

IM([IDE ¢], env) = COER CE(find(s, env)).

COERCE([SPN ezp env']) = M(ezp, env”).
Then
YIIM(s, label(¢, ezp, env))|
= V{IM([SPN ezp label(s, czp, env)], label{§, ezp, env))] | A label, IM

= V[IM(ezp, label(i, ezp, env))| A COERCE
= IL [ezp ["[label(i, ezp, env)] LH.
= Leip(fishpo'. env[(IL] c2p Jp’/i)). intention of label

Therefore, define

IM([LBL i ezp], env) = IM(ezp, label(s, czp, cnv)).

Applications, We intend
VIIM([APL ezp, cap), env)] = IL[[cgp‘ 3 egpz]] ey
= app!y(ﬂlﬂcgp,]] env) (ILllcgp,]] env)
We shall implement apply by completing the specification of APPLY begun earlier. In
case that the ezp, evaluates to a function closure, we already specified how it should be

opplied when we looked at lambda expressions. Presumably, the machine has the under-

lying capability to apply operators. That is, assume there is a mechanism, “apply", such

ZThe implementation in Appendix B defines
label{ide, ezp, env) <= ree x where x = extend(env, make-SPN(ezp, x), ide)).
Thus, we once again build a self-referential representation for the recursive specification. For a
recent discussion of this issue, see (Wand, 1983).

108

~that
[apply([oPR o], val)] = o{val).
Any other value produces an error when applied. The following definition of APPLY

accounts for all the cases:

APPLY(ftn, arg) <=
oprl(fin) — apply(/in, arg),
finl(ftn) — let [tag ide exp env] = fin
in IM(ezp, extend(cnv, ide, val)),
make-ERR(“invalid function'’).

The Daisy-like declaration [let [tag ide ezp env] = fin]| simply states fin’s record struc-
ture in the case that it is a function closure, Subsequent occurrences of the field names
could be replaced by the corresponding field extraction operations.

Conditionals. We intend
Y[M([OND ezp, [TST ezp,ezp)] = L [[cgpl — egp:, egp,]] env
On the right we get
teat (IL egp,]] env) — (I I egp:ﬂegv). (Z egp,]]cgv).
Assume there is an operation, test : Rep,, , — Bool, that satisfies test(val) = test(val),
and define
DM([CND ezp, [TST ezp, ezp,]], env) = test(IM(eap,, env)) — IM(ezp,, env), IM(ezp,, env).

This completes our construction of a concrete specification for the L-interpreter.

Two new types have been added to Rep,,: function closures and expression closures.

Thus, the possible value records are:

operator — [OPR o] error message — [ERR m)
numeral — [NUM n] Junction closure ~ [FTN i ezp env)
boolean — [BIT b] ezpreasion closure — [SPN ezp env)

Figure 5.4 gives the specification of IM from the discussion above. We have postulated
an underlying type that includes the representations, representation builders, field
extraction primit.ives,' and operations find, extend, label, apply, and test,

109

M(cap, env) <=
let [tag ift rgt] = ezp
- in
num!(ezp) — eap,
idel(ezp) — COERCE(find(Ift, env)),
lam?(ezp) — make-FTN(if2, rgt, env),
1bi?{ ezp) — M(rgt, label{ {2, rgt, env)),
aplt(ezp) — APPLY(M(Ift, env), M(rgt, env)),
cnd?(eap) — let [tag’ Ift’ rgt’] = rgt
in test(IM(Ift, env)) — M(Ift’, env), M(rgt’, env),

COERCE(val) <=
oprl{ val} — val,
num!(val}) — val,
err?(val} — val,
fenl{ val) — val,
spn?(val} — let [tag ezp’ env’] = val
in M(ezp, env).

APPLY(fin, arg) <=
opri(ftn) — apply(ftn, arg),
ftal(ftn) — let [tag ide ezp env] = fin
In M(ezp, extend(ide, arg, env)),

make-ERR(“invalid function”),

Figure 5.4. Non-llnear Specification for an L-interpreter

110

5.3.4. Stacking Version of IM. Using the Wand-Friedman construction discussed
in Section 2.4.5, M is now transformed to an iterative specification with a control stack.
The resuit is shown in Figure 5.5. Since the construction forces us to choose an evalua-
tion order for recursive calls, we end up at a weaker interpreter than the formal
definition demands. In this case an “applicati‘_ve order” interpreter is derived. For
example, the L-expression [5:{(x <=x)]} should produce an error message according to
the definition of /L, and does so under the M of Figure §.4. However, its interpretation
diverges under the ™M of Figure 5.5 (See the last experiment in Appendix B).

In this case, an appropriate version of the control stack is one on which environ-
ments and aclions can be pushed. Actions are represented by records of the form
[tag ift rgt]. The possible actions are

[HLT] — Aalt the machine
[ARG ezp] — evaluate an application’s argument
[ACT val] — to apply a function

[TST ezp, eap,] — lest a conditional's predicate.

We have allowed the right subfield of a CND-type expression, always something of the
form [TST ezp, ezp,], to serve literally as an action, so our trivial translator IR is some-

thing of a campiler after all.

111

M(ezp, stk, env) <=

let [tag Ift rgt] = exp

in num?(ezp) = RETURN(eap, atk),
ide!(ezp) — COERCE(find{ Ift, env), atk},
lam?(ezp) = RETURN(make-FTN(ift, rgt, env), atk),
bl ezp) — DM(rgt, atk, label(ift, rgt, env)),
apli(ezp) — M(Ift, push{make-ARG(rgt}, env, stk}, env),
end?(exp) — DM(Ift,, push(rgt, env, stk), env),

COERCE(val, atk) <=
let [tag czp env] = val
in oprl val) = RETURN(val, stk),
num?{ val) - RETURN(val, stk),
errl(val) = RETURN(val, atk),
ftal(val) = RETURN(val, stk),
spnl(val) — M(ezp, atk, env).

RETURN(val, atk) <=
let [nzt env] = top{ stk)
[tag ift rgt) = nat
atk’ = pop(atk)
in hit} nat) = val,
tsti nat) — [(test(val) — M(Ift, atk’, env), IM(rgt, stk’, env)),
argl(nzt) — M(ift, push(make-ACT({ft), m, stk’), env),
actl{ nzt} — APPLY(ft, val, atk’).

APPLY(fin, arg, stk) <=
let [tag ide eap env] = fin
in opri{ ftn) — RETURN(apply(/in, arg), atk),
funl(fin) — M(ezp, stk, extend(env, ide, arg)),
RETURN(make-ERR(“invalid function’’), atk).

Figure 5.5. Stacking Version of the L-interpreter.

112 |

5.3.6. Simple Loop for the L-interpreter. We now use the construction of
Section 2.4.3 to compile the M of Figure 5.5 into the simple loop shown in Figure 5.6.
To prepare for the transformation, all of the serious functions must be defined over the
same state descriptor. The various argument names are combined to a single formal
parameter list, and the defining equations nre altered appropriately. The functions
modify only those parameters they originally depended on, and pass the arbitrary value
m, in the other positions.

A control token ¢ is added to encode which of M (E, for “EVAL'"), COERCE (C),
APPLY (A), or RETURN (R) is in control. In the case that c equals R and the action is
n test, the selection of an alternative expression is distributed through the recursive call

to M. That is, we have changed the clause
test{ val) — M(E, m, m, m, ift’, stk’, old), M(E, u, w, m, rgt’, atk’, old}
to
IM(E, n, u, =, [test(val) — Ift’, rgt’], atk’, old).
We are safe in making this local transformation since the system is linear and the condi-

tional involves only total operations,

5.3.8. Some Refinements in the Loop Version. A little design refinement is
irresistible. Note the following about the machine of Figure 5.8.

1. Unless an identifier is bound to an expression closure, its evaluation results in sim-

ply moving its binding to position val and returning.

2. There are only three cases when a type predicate is used in two states, The predi-
cate numf is used at EVAL and COERCE The predicates oprf and finf are used
at COERCE and APPLY

3. When control is at RETURN, the argument ezp is not used.

4, The arguments fin and val are unused except when control passes to APPLY, and

in APPLY the arguments ezp and val are unused,

With these points in mind, let us now propose that expressions, values, and actions
be “superimposable”, like variant records. That is, suppose they are represented in such
a way as to be accessed by the same field extraction primitives., This allows us to do
some register optimization. (The trick of allowing TST-expressions to serve as actions
foreshadows this refinement.} If the tags are kept distinct, we can make several local

113

M(cti, fin, arg, val, ezp, ik, e-rw) <=
let
[tage ide f-tezt feenv] = fin
[tag v-teat v-env] = val
[tag ift rgt]) = czp
[nzt old] = top(#tk)
[tag ift’ rgt’] = nzt
stk” = pop(atk)
in
(ctl = BE) —
num?(eczp) — M(R, n,'m, ezp, m, sik, env),
idel(ezp) — IM(G, », m, find(ezp, env), m, atk, env),
lam?(ezp) — M(R, w, w, make-FTN(Ift, rgt, env) , m, aik, env),
Ibl}(ezp) — DM(E, w, w, m, rgt, atk, label(Ift, rgt, env)),
apl!(eap) ~ M(E, », m, m, Ift, push(make-ARG(rgt), env, stk), env),
cnd!(ezp) — M(E, w, m, w, Ift, push(rgt, env, atk), stk},
(etl =0) —
errl{ val) — M(R, =, a, val, =, stk, env),
num!{ val) — M(R, », w, val, m, sik, env),
oprl(val) = M(R, u, m, val, m, atk, env),
finl(val) — M(R, », m, val, m, stk, env),
spnl(val) = M(E, », », m, v-lezt, stk, v-env),
(ctl = R) —
hit!(nzt) — val,
tst!(nzt) — M(E, m, m, m, [test{val) — Iift’, rgt’], atk’, old),
arg! nzt) = M(E, w, m, m, Ift’, push(make-ACT{ val), w, atk’), old),
actl(nzt) — M(A, val, ift’, a, u, stk’, old),
(ctl = A) — '
oprl{ fin) — M(R, m, w, apply(fin, arg), m, atk, env),
ftnl{ fin) — M(E, m, n, ®, rgt, stk, extend(env’, Ift, val)),
M(R, m, m, make-ERR(“invalid function’), m, atk, env),

Figure 6.8. Simple Loop for the L-interpreter.

114

trapsformations on ™M that reduce the sizé of its specification. The result is an
equivalent version of IM shown in Figure 5.7, '

1. Change M at EVAL in the case that ezp is an identifier. Place "“find(ezp, env)"
back in ezp. Alter COERCE to test ezp rather than val. Since the only overlap is
in the case of numerals, which are handled the same way by COERCE and
EVAL..'

2. ..combine COERCE and EVAL into a single case.
3. Alter every branch to RETURN to place the top action on the control stack in

czp. We are simply “spreading"” the stack into an available vacant register. If
none of the action tags equals any of the expression or value tags, we may also
combine the states RETURN and EVAL/COERCE.

4. Use val and ezp to hold the argument and function when going to APPLY.

5.3.7. Realizatlon of IM. We now have IM expressed as a simple loop and can
transcribe it into a circuit description according to Theorem 3.3-5, Components are
enclosed in braces to make it easier to discern them from signal identifiers. The entire
conditional structure is distributed across the state descriptor, making IM the outermost
symbol, Figure 5.8 defines a packaged combination, MUX,,, that implements the

required conditional. Figure 5.9 shows the resulting circuit equation.

5.3.8. Refined Realization of IM. The final transformation, shown in Figure
5.10, factors out complex-typed signals by replacing signals STK and ENV with abstract
components STACK and ENVIRONMENT, defined in Figure 5.8. Both are specialized
to serve this circuit. STACK takes instructions PSH, POP, and NOP, and saves actions
and environments. ENVIRONMENT takes instructions SET to change the environment
in effect, HLD to keep the current environment, LAB to produce a labeled environment,
and EXT to extend the current environment. It continually finds a binding for one of its
input signals,

The defining equation for the signal C has been simplified to eliminate one MUX,,
component. The circuit goes into APPLY exactly when the expression register kolds an

action of type ACT. The resulting realization is the last of our derivation.

116

M(ctl, val, czp, stk, env) <=
let
[2ag ift rgt env’] =
[nat old] = top{atk)
stk’ = pop(stk)
in
(etl=E)—
" Ble(ezp) — val,
num!(ezp) — M(E, ezp, nzt, sik’, old),
oprl{ czp) — M(E, ezp, nzt, stk’, old),
ide!(ezp) — M(E, w, find(exp, env}, atk, env),
lam?(ezp) — IM(E, make-FTN(ift, rg¢, env), nzt, atk’, env),
b1} ezp) — M(E, w, rgt, atk, label(ife, rgt, env)),
apll(ezp) — M(E, m, ift, push(make-ARG(rgt), cnv, atk), env),
end?(ezp) — M(E, m, ift, push(rg¢, env, atk}, env),
ftnl{ ezp) — M(E, ezp, nat, atk’, old),
spn!{ ezp) — M(E, m, Ift, stk, rgt),
tst?(ezp) — M(E, w, [test{ val) — Ift, rgt], atk’, old),
argl(ezp) — M(E, w, {ft, push{make-ACT(val), m, atk), old),
act?(ezp) — M(A, val, ft, stk’, old),
err}{ ezp) — IM(E, ezp, nat, atk’, old),
(eti=A)—
opri{ ezp) — IM(E, apply(exp, val), nzt, atk’, old),
ftnl(ezp) — M(E, m, rgt, alk’, extend(env’, ift, val)),
M(E, make-ERR(“invalid function"), nzt, stk’, old).

Figure 5.7. Refined Loop for the L-interpreter.

116

mux,(c, ezp, e-num, e-opr, e-ide, e-lam, e-1bl, e-apl, e-cnd, e-fin,
c-apn, c-lat, e-arg, ec-acl, e-err, a-opr, a-fin, a-err) <=

(¢e=E)—

[num?(e2zp) — e-num,oprl(cap} — e-opr, ide¥ ezp) — e-ide, lam!(ezp) — e-lam,
bl ezp) — e-lbl, apll{ ezp) — ec-apl, endl(ezp) — e-cnd, ftnl(ezp) — e-fin,
spnl(ezp) — e-apn, st} eap) — e-tst, argl ezp) — c-arg, act){ ezp) — e-act,
errl(ezp) — e-err),

(¢e=A)— | oprl(ezp) —a-opr, ftul(ezp) — a-fin, c-err|.

ENVIRONMENT(INST, X, Y, Z) <= rec ([fad](X, ENV), ENV)
where
ENV = env’ | [muxJ(INST, ENV, X, [label|(X, Y, ENV), [extend|(X Y Z))

muxg(inat, v, v, w, 7} <=
(inst = HLD) — u,
(fnst = SET) — v,
(inst = LAB) — w,
(inet = EXT) — z.

STACK(INST, ACTN, ENV) <= rec (NXT, OLD)
where

{NXT, OLD) = transpose{[top[(STK))
STK = #k° { [muxg[(INST, [push{ACTN, ENV, STK), (pop}(STK})

muxg(inat, v, v, w) <=
(inst = NOP) — u,
(inst = POP) — v,
(inst = PSH) — w,

Figure §.8. Higher Level Components for the L-realization.

117

C= %1

VAL =val? !

ALU =
ERR =

EXP =ezp® |

LFT =
RGT =
TST =
CLS =
FND =

STK =atk® 1

PSH =
RTN =
(NXT OLD) =
ACTN =

ARG =
ACT =

ENV =ent’ |

LBL =
EXT =
SAV =

M(¢%, val® exp’ ath®, ent’) <= rec O where

[mux,J(C, EXP, [E], ([E), [E], (E), {E], [E), (E) (B}
€], (E) [EL [A), (E), [E) (E} (E}
[mux,}(C, EXP,EXP, EXP, =, CLS, ®, m, u, EXP,
. = m, VAL, EXP, ALU, =, ERR)
[apply](EXP, VAL)

[make-ERR)(EXP, C)
[muxM](C, EXP,NXT, NXT, FND, NXT, RGT, LFT, LFT, NXT,
LFT, TST, LFT, LFT, NXT, NXT, RGT, NXT)

[ire])(EXP)

[rgt)(EXP)

[mux]|([test](VAL), LFT, RGT)
[make-FTNJ(LFT, RGT, ENV)
[ind}(EXP, ENV)

[mux,,}(C, EXP,RTN, RTN, STK, RTN, STK, PSH, PSH, RTN,
STK, STK, PSH, STK, RTN, RTN, STK, RTN)

[pusk|(ACTN, ENV, STK)

[pop)(STK)

(top](STK) 7

[mwux,)(C,EXP, =, ®, = & ®ARGRGT, =,
m, m, ACT, |, =, m, -, .)

[make-ARG|(RGT)

[make-ACT|(VAL)

[mux, |(C, EXP,OLD, OLD, ENV, OLD, LBL, ENV, ENV, OLD,
RGT, ENV, ENV, ENV, OLD, OLD, EXT, OLD)
[labell(LFT, RGT, ENV)

[extend](LFT, VAL, SAV)
[env](EXP)

Figure 5.9. Realization of the L-interpreter,

118

C=

TST =
ALU =

LFT =
RGT =
SAVY =
CLS =
ERR =

(NXT OLD)
S1 =

52 =

ARG =
ACT =

{FND ENV) =
El =

E2 =

M(¢, val, ezp®, atk’, env®) <= rec O where

¢’ | [mux]{ ACTHEXP), [E], [A])

VAL =val’ ! [mux,J(C, EXP, EXP, EXP, =, CLS, w, =, u, EXP,

m, =, wm VAL, EXP, ALU, s, ERR)
[mux)([test)(VAL), LFT, RGT)
[apply](LFT, VAL)

EXP =ezp” | [mux,,|(C, EXP, NXT, NXT, FND, NXT, RGT, LFT, LFT, NXT,

LFT, TST, LFT, LFT, NXT, NXT, RGT, NXT)
[E)(EXP)
[rgt)(EXP)
[env)(EXP)
[make-FTN](LFT, RGT, ENV)
[make-ERR](EXP, C)

STACK(S1, S2, ENV)
[mux, }(C, EXP,[POP],[POP],[NOP],[POP|,[NOP], [PSH], (PSH],[POP),
[NOP],|NOP], [PSi1],[NOP},[POP],[POP),|NOP|,[POP})
[oux, {C, EXP, =, ®w, w, = @« RGT ARG, n,
n, m, ACT, ., ., ., ., w)
[make-ARG](RGT)
[make-ACT|(VAL)

ENVIRONMENT(E!L, E2, E3, SAV)
[mux, J(C, EXP, [SET], {SET),(HLD], [SET), [LAB), [HLD], [HLD}, [SET),{
(SET], [HLD), (HLD], [HLD), [SET), [SET|,{(EXT), [SET])
[mux,}(C, EXP, OLD, OLD, LFT, OLD, LFT, =, u, OLD,
RGT, a, ., s, OLD, OLD, RGT, OLD)
[mux,)(C, EXP, =, =, =, uRGT, W, 8, u,

., n, ", ", ., m, VAL, =)

Figure 5.10. Refined L-realization.

119

5.3.9. Remarks. We have derived a description for a machine that interprets suit-
ably represented expressions in the language L with a call-by-value semantics. In
Appeadix B, each step in the derivation is expressed in Daisy, and a set of trial expres-
sions are interpreted by the various versions of IM.

The executable versions of M's specification would eventually serve as an experi-
mental vehicle for continued design refinement. For example, a trace of the circuit
shows that it wastes cycles testing for expression closures. (See the last experiment in
Appendix B.) We would do better to make that test concurrent with evaluation, so that
the presence of an ecxpression closure has the eflect of an interrupt. Of course, innumer-
able other modifications are possible, and we shall not pursue them here.

The programs in Appendix B were used to debug the derivation. Siuce the
transformations were carried out by hand, there were a number of errors. Many were

discovered by attempting to execute the erroneous forms.

In transforming the speciﬁﬁation to one having linear control, L's semantics have
been weakened; there are expressions which converge under the initial specification but
do not on the target machine, We could alter L's formal specification to reflect this
change in its design. Figure 5.11, giving L's continuation semantics, is the appropriate
modification. While we took a separate step to introduce the control stack, the transfor-
mation is entirely in the spirit of Seciion 5.3.2. Had we started with L’s continuation
semantics rather than its standard semantics, we would have proposed a representation
for continuations and introduced the appropriate agents and operations for these objects
directly {Wand, 1982a).

120

Domains

Ide
Num
Bool
Opn = Val =+ Bas

Err = {“invalid Junction’,...
Ezp

Bas = Num + Bool + Opn + Err
Val = Bas + Fin + Spn
Fin = Val = Spn
Spn = K— Val
K = Val— Val
Env = Ilde — Val

Valuation — L ¢ Ezp — Env — K —Val

Llnlps =5 n

L{i]ps = coerce fpi} &

{i} identificrs
{n} numerals
{6} truth values
fo) operations

{m) error messages
{e} ezpressions

{v} basic values

(v} eapresaible values

{f] Junctions

o) ezpression closures

) eapression conlinuations

{p) environments

LIxi.elpr =« (Avx’. Le] {plv/i)) ¢’}

L{i <= clon = fir (Me. Lle] lelil)

Lle selorx =Liefo (M Lleo(rv. {applyfvr)))
Lie,—e,pe,]on = Liello(Av. fteat v)— LLe,Jox, Le,lpx)

Auxiliaries

olv/i] =Xz (2= i) = v, ofz).

coerce = AvK. (visSpn)— fvk), { & v}

apply = A fax. (fiaOpr}) — x{fv}, {f {sFin} — fox, “invalid function”,

teat = Av. (visBool} — (v asBosl}, .

Figure 5.11. Coatinuation Semantics for L.

6. Circuit Refinement

Experiments with realizations in Section 4.4.3 and Chapter 5 have revealed that the
derived circuits can be improved. In this chapter we turn to the issue of refining circuit
descriptions. Although a specific refinement task is considered below, the method of
refinement is consistent with the methods developed earlier. A (specialized) set of
transformation rules is used to attain a goal. Since we are concerned with improving cir-
cuits and not deriving them, both source and target descriptions will now be connec-
tivity expressions, The initial specification describes the instantaneous behavior of a
combined operation. Our transformations yield digital system realizations that perform
the same computation as the specification but do it in a serial lashion. Of course this

complicates the timing of the circuit involved,

The task is to modify a large combinatorial system so that it has fewer external
connections. This goal is attained by “folding" the system so that components, and
hence external leads, are superimposed. Since an individual component cannot simul-
tancously produce two results, it is necessary to serialize its behavior, Time is traded

against space, where the latter is measured in terms of a "pin count”,

It will be necessary to keep track of individunl values produced by the system in
circuit-folding derivations, Since Daisy is fairly useful for this kind of bookkeeping, it is
used as the transformation medium. That is, we shall build our algebra of synthesis on
Daisy-like notation, rather than the purely functional or purely sequential languages

used earlier.

121

i u
.l 4

To illustrate the problem, let us consider the following configuration of components.

| |
f f L N B]
i |

v

(1)

1 Vy

ll',

3‘3—- Sy —.:I:

(—)
. 1] - L]
ses s [T

The schematic notation above is informal. The series of tokens along a single wire sim-
ply illustrates that the f-component is acting on each of the u’s, One should not read
too much into this picture; for example, it does not imply that wires necessarily store

values. The price for reducing the external connectivity of this system is that the sur-

rouvading circuit must somehow be modified to support the serialization. This is a simple

serialization problem; the u’s can be presented in any order; the v's are produced in the
v

same relative order. Now consider a system that has internal connectivity:

U t 1/
(1) iy .‘ .’ P
I [!
g g LI N g

Y vy

v

n
The g's can be superimposed as before, but in this case the attempt at folding introduces
feedback. A register! is needed to synchronize the system internally.

the fabrication medium.

! This is a good time to recall that the word “register’" was adopted for ita brevity and to
note that what is really meant here is storage mechanism. How storage is achieved depends on

The operation f is applied in parallel and independently to the individual values

goesy U producing results Y) geeey Yy Suppose that we want to implement a design that
has only one input and one output. The obvious modification is to serialize the u's and
use a single fcomponent:

122

123

The surrounding circuit must present the u’s in an order that exploits the feedback in

the circuit. There is only one suitable ordering.

In seeking a method of synthesizing local refinements like the ones above, we
should, if possible, account for the changing performance relationship between the sub-
circuit and the system that surrounds it. We develop a transformation system below in
which, at some point during a derivation, we elect to identily some fragment of the
evolving description as a signal. Once the identification is made, the content of the sig-
nal becomes superfluous in the description. However, this residual information is
retained as a specification of external behavior and can be used as a basis for coordinat-

ing the target system with its surroundings.

The order that values are serialized drives the transformation process. While the
examples in this chapter are small enough that appropriate orderings can be deduced by
inspection, it will be apparent that without guiding heuristics synthesis would be hope-
lessly explosive, Gannon (1982) discusses a method to analyze regularly connected data-
flow systems to find appropriate orderings. His model assumes connective storage: pro-
cess coordination is achieved by storage along connecting paths. Both examples above
accept tokens on such a path, and deliver values to another, Note howevcr, that some
of the connective storage is already implemented if the g-circuit's output is takenr from

its internal register:

u,]
L]

!
v, |7

Having introduced storage we now need a clock. In transforming a combinatorial
subsystem to a synchronous.one, it becomes necessary to determine how the target's
temporal behavior can be coordinated with it surroundings, Cuny and Snyder (1982)

present a model in which autonomous processing elements are specified according to

124

their external communicative behavior., and they address the problem of finding viable
computation rates by which the processors can be interleaved to perform synchronously.
A process is described by a regular expression over sets of transactions, We shall call
such an expression a schedule. In their notation, our second example above initially had

schedule
*
[{Rvol Rul’annn’ \V‘l yevep w'n } [.
(The subscripts identify external connections. ‘R' means ‘‘read"; ‘W' means “‘write". In

the work cited, connections are identified by the names of the surrounding processing

elements. These names are not known here, so port identifiers are used iustead.)

The initial system is combinatorial; it does all its transactions at once. The refined

version is sequential, either
[(R, Ry Wy} [{Ry Wy} P71]°
or
[{R, Ry} [(Ry W[(Wi T’
depending on whether or not the internal register is used to buffer out.pﬁt. The residual

byproduct of synthesis mentioned above will be displayed in a form from which such

expressions could be extracted.

The synthesis method developed in the rest of this chapter does not compete with
methods such as Gannon's or Cuny’s and Snyder’s, rather it serves as a bridge between
them. On large problems analysis is needed both to guide the construction of solution
circuits and to deal with the increased temporal complexity of the target system. The
method offers a way to maintain correctness while constructing realizations that achieve
the goal of serialization. Section 6.1 develops a set of basic transformations on Daisy
expressions, These are generalized in Section 8.2 to a rewriting system that we shall use
to attack serialization problems. Section 6.3 presents three examples of ‘‘scheduling
derivations' on increasingly complex configurations of companents,

6.1, Transformation Axioms

-A combinatorial system will be specified in Daisy by a system of value-defining
equations (Sec, 4.2}, The left-hand sides of these equations are formal exzpressions:
identifier structures delimited by square braces ‘[' and ‘)'. The right-hand sides are
aclual ezpressiona; value structures delimited by angle brackets ‘< and *>'. To

125

evaluate these systems, on environment is constructed that recursively binds formal
structures to values. For the remainder of this section suppose we are dealing with a

specification

S <= rec ¢ where

where experiment e is an expression over z,..., Z,. Recall that S value is
. Df<a,..a >]p’
D(e] fiz{ 7o, 5, [<a,..a, np/[,r",n]])

where p, is some initial environment (Sec. 4.3).

Let |a denote the value of a in p’; that is, |a = D{a]p’. Then by Daisy's version

of environment extension,
p'= pa[‘la“/zn] oo [15‘,/ z‘.].
However, p, can be extended in any order, as long as the z's are distinct, and in fact can

be arbitrarily restructured. With this in mind, we propose the following axioms for

transformations on S:

Axiom N: (Vacuous Equations) The equation [[] = <>]| can be added to S.

Axiom G: (Gluing] The equations [z = a]] and [Jy = b] can be replaced by
[{zly]=<albd>].

Axiom E: ({Ezlraneous Equationa) If the identifier y is free in S then
{s) The equation [y = b]] can be added to S, for any ezpression b.
fii) The equation [z = a]] can be replaced by [z = y]] and {y = a].

AxiomF: (Function Facloring) The ezpression [|<[fsa, ... fra_>] can be replaced by

[<f... [>E:<) w0 0 > [, where E stands for a transposition operation,

Axiom 8: (Signal Interpretation) Nil = <m >,

128

These axioms are all valid in the semantics of Daisy. Axiom N introduces an equa-
tion that has no effect in S because the formal expression contains no identifiers.
Axioms G and E do not change the value of § because the list constructor is not strict;
adding unused bindings and indirection through extraneous names simply restructures
the environment, Axiom F exploits Daisy's application combinator, d-apply. The point
of the axiom is that operations may be factored out of structures by applying the reduc-
tion rule for function-lists in reverse. Axiom S foreshadows our intention to interpret
some finite sequences as signala: the main goal of synthesis in this chapter is to construct
signals by serializing values. Consequently, we shall permit finite sequences to be inter-
preted as signals with only Buoitely meaningful prefixes. This is the only axiom whose
validity cannot be deduced directly from the definition of Daisy in Chapter 4. In fact,
Nil is implemented to satisfy Nil = fiz M.(I o), where in Daisy, = (don't-know) is an

all-purpose error message.

68.2. General Transformations and their Behavioral‘lnterpretation

We now combine the axioms of the preceding section into a set of specialized
transformation rules for the serialization problem. Each definition is followed by a dis-

cussion of how the rule makes progress towards a serjalized target,
Let the specification § be as before, except that it will now be parameterized by a
list of input values:
Sifu, ... u] <=rec e where

z,=2a

!]

*» w =

Rule I': {Gluing} Let & be a permutation of {1, 2, ..., n}. Any subset of equationa in S
{3,(;; = ",ﬁ)l 1<j<p<n)
may be rewritlen aa

[z'w Zypp) e z'(’)] = <y By e 80>

127

Rule I' is valid by repeated use of Axiom G, as its name suggests. It is used to associate
the z's or a's together in a single structure. Often, this structure is later reinterpreted as

a signal,

Rule A: {Delay} The ecquation [z = a] may be rewritten as [[y! 2] = <w 1 a>],
where y is any formal ezpresaion of identifiers that are free in S.

We obtain the new equation in A through Axioms G and E, by gluing the extraneous
equation [[y = w] to [x = a]. In the derivations below, y will always be a simple
identifier and z will olways be a linear sequence. So we will be changing equations of the
form
[2,2,..] = a
to
lvz,2,..] = <ula>,

Explicit concatenator symbols indicate that a register has been added to the evoalving
circuit. This register postpones the z's in time, which is why A is called the delay rule.

To avoid making up meaningless names, we sometimes write a m for y:

[wzz2,.]=<alae>.

Rule A: (Lifting) The capression [<[ia,..fta>] ean be rewritten as
[<f*>&E:<a, .. a,>], where E is the identity component <Ai.i*>,

The validity of lifting follows from the meaning of application, as discussed in the previ-
ous scction under Axiom F, and from the the interpretation of Nil as the everywhere
indeterminate signal. The rule differs from Axiom F in that here we regard the finite
sequence of fs to be a component. By Axiom F, [<[ta, .. fsa >] can be rewritten as
[<f..[>:8:<a,..0>]. Extend [<f../>] to the infinite sequence [<f*> |
and by Axiom S interpret {<a, ... s >] instead as the signal [<a, .0 ws..>]

The result of application is

<fia,..[ia [:mfim ..>

128

Assuming fcompletely strict, this becomes
<fta,..[ia wa ..>
which by Axiom N we may write as
<[ia, .. [ra >
The identity component = does a generalized transposition on inputs of any dimension.
This is the same coercion used in the circuit experiments of Section 4.4.3. Rule A is used

to introduce to the evolving description a single component that serially computes indivi-

dual values.

Rule M: {Selection) Supposc § contains two equationa of the form
7,2, 25)]=a
ly, v ey,] =0
Let [{z, 2, ... z 11 be a formal ezpression in whick z, is one of z; or y, for all i,
Then there is o selection component M by which

[z, 2 .o 2,] = M:<a b,

M is simply a multiplexor with a fixed predicate signal. For example, if we have
[z, 2,] = <a;a,>
[y, 9.1 = <b,b,>
and we want a signal of the form (2, y,], then we may may replace these equations with
[z, v,] = MUX:<K<8# > <a,a8,><b,6,>>
We shall denote the fixed predicate signal as a subseript on M, eacoded as a string of
bits, with ‘0’ interpreted as true.

[z, 9.} = Myp<<a,a,><b b5>>

129

Rule &: finstallation} The identifier z 12 an instance of the value a in S if either a isw or
the equation [z = a] can be deduced from S. A formal structure is an instance
of an actual structure if its elemenls are each inatances of the correponding ele-
ments of the actual slructure, A aclual value can be replaced by any of its

instances.

Rule ¢ is used to replace values consumed in § with results produced in 5. For exam-
ple, if S contains the equations

t= <amc>
(z,2,3,] = <abe>

By Rule ¢, ¢'s defining equation may be replaced by

z = <:, z, z,>

The rule implies that w is truly arbitrary. That is, we must agree that any value may
serve where an unknown value is required. [nstallation is a restricted form of substitu-
tion used to introduce feedback. The equations of S do not immediately admit substitu-
tion because they are not identities: their left-hand sides are formal structures and their
right-hand sides are not. For instance, the defining equation [z = z] may bind z to the
divergent value?, just as surely as does the equation [[z = z +1]. We must avoid

transformations that would lead to such equations,

We shall keep track of value instances by a naming convention. The identifier
[‘a’]) is by convention an instance of the value a. For example, a name for the parame-
ter u can be introduced by Axiom E with an equation of the form ['u’ = u].

6.3. Scheduling Derivations

We shall give three examples to show how the rules defined in Section 8.2 can be
applied to the scheduling problem. The first two come from the discussion in the intro-
duction to this chapter. The third is a somewhat more complicated combination, a por-

tion of a regularly connected network.

*which is the minimal fixed point of the equation, The use of defining equations as identities
to reason about Lucid programs leads to the same *'glitch” {Ashcroft and Wadge, 1977).

130

6.3.1. Circuit F. Consider the simple serialization problem for n = 8. The com-

binatorial system is specified

(1)

oy Yy o
oot Yoy 0 O
“—-\-.—.q

Stfa b ¢] <<= rec O where

x =N<a>
y =i<h>
t = fie>
From § we may derive
X = NiCa>
y = hi<h> Given
z = fi<e>
[xyz] = <fi<a> i i<ec>> r
[xyiz] = < >iE:i<<a> <> > A
xyz = <f+>:<<abe>> meaning of &

The final step above is a symbolic transposition of the argument to <f*>. We are
turning the individual arguments to <f+> into a signal. To emphasize that we are now

thinking of S as a digital circuit, let us identify its signals,

V= <Lhid<U>
xyz =V
U= <abe>

Idenh’ﬁcah’on'
of signals

131

The derived circuit applies the combinatorial component <f*> to its input signal U and
produces output signal V. If g, b, and c are presented in order on U then the results z, y,
and then z are delivered on V. We shall rephrase this interpretation as a aschedule
specification; the defining equations for U and [x y z] state the external characteristics of

the circuit.

U I vV
SCHEDULE

Input Output

{at time) {at time)

() H ¢ 0 1 2

U a b ¢ Vi x y 2

8.3.2. Circuit G. Define S for the simple feedback problem, again with n = 3.
d b

I]
g

Q p—en
o 0y

()

Si[d a b ¢] <= rec O where
x =gp<ad>
y=g<bx>
= picy>

We begin by superimposing the ¢'s in the only reasonable order.

X = gi<ad>
y = gi<b x> Given
1= gI<cy>

132

[xyz] = <g:<ad> gi<bx> gi<cy>> r

[xyz] = <g#>:E:<<ad><hx><ey>> A

[xyz] = <gtr>:i<<abe> <dxy>>

Note that z is produced at '‘time 0" but is consumed at “time 1" by <g¢>. We shall

have to delay this instance of z if the circuit is to use it.

[mxyz=ml<gr>i<<abe> <dxy>> A

Let us invoke our interpretation of Nl as the totally indeterminate signal and write

mxyz]=n!<gt>:i<<abeca> <dxye>> | Nl

Our next goal is to separate the sequence <d x y m> into two sequences that segregate

internally computed values from externally provided values. Add an extraneous instance

of d and do some gluing.

mxyz]=8!<pr>:<<abew> <dxyu>>
[dwen] = <danan> Azions E, G

Now by the Sclection Rule, the system can be rewritten

[(d'xyz] =M, i<<dees>V> M
=l Lg>:<<abeca> <dxya>>
[exyz]=V

133

Since ‘d’is an instance of d and zis an instance of u, we may rewrite this system as

[d'xyz] =M, <<dusa> V>

mxyzj=V

= ml <gr>i<<abend> <'d'xy>>

If we name the rest of the signals we get

=ulgu<UW>

W = M,,,:<D U>
mxyz=V
U= <abcu>

D= <dann>

Identification
of signals

We have derived a description of a circuit of two inputs and one output

U
D m g v

a LW

F 4

SCHEDULE
Input Output
0 ! g ¢ (4] 1 2)
uU: a V: B X Y 2

134

8.3.3. Circuit H. The final example is o portion of a combinatorial array discussed
by Gannon (1982).

d
¢
b h X }l t
r l

— 4

|—

a h e h u
s} . |

Siabcde] <=rec <rstuv>
where
[rx] = hi<ec b>
[yv] = hi<d x>
[sz] = i<y a>
[tu] = hi<ez>
As usual, we shall attempt to superimpose certain external leads, namely a with b, and d

with e. One possible derivation follows:

[rx] = hi<e b>
[y v] = hicd x>
[s2] = hi<y a>
[tu] = hige 2>

given

[[rx]ls z]] = <h:<cb> hi<y a>>
[y vI[t u]l] = <h:<d x> h:<e 2> >

I, twice

f[rx}[s2]] = <h*+>:<<cy> <ba>>
[y v][t u}] = <hs>:<<de> <xz>>

A, twice

136

([Fsejx28]] = E:<he>:<<cym> <bam>> g, Nil
(Ir t][vu}] = E:<he>:<<d e> <x 2> >

[[Fsw]xzm]] = S:<hé>:<<cyn> <bau>>
(v v u]] = E:<he>:<<d e> <x 2> >

my'tf=wl <yt> {1)4, G
[c'am] = <cms> (2} Aziom E
[’ 'y’] = M, i<<cam> <m'y' t'>> M (1) and (8)

[Fse]lxzw]] = E:<hs>:< <l 'y '$'> <bam>> ¢

(v t][vu]) = E:<hs>i<<d en> <xza8>> Nil
[wiy' it = m! <y t>
[lci ly! lt"l] — Mn“:< <cma> <n ‘y! lt!>>

[1J] = S:<hs>:<K N>
[L M] = E:<he>: <0 I>
P=s!L
K=M,:<QP>

{dentification

of signals

frsw] =1
xzm] =J
[yt] = L
[uv] = M
(w'y''t]| =P
[’ 'y' '] = K
= <bau>
= <des>
= <caa>

These equations describe a circuit with external input signals N, O, and Q; external out-
put signals /, M, and P; and internal signals /, KX, and L. The schematic and schedule

specification are:

136

0 Q_
l
muz
K
N s L i M
L
!
| P
!
SCHEDULE
Input Output
g 1 2 o 1 2
N: a b I: s
0 e M: u
Q c ® = P]

6.4. Remarks

This chapter demonstrates that the algebraic framework we have developed to
obtain circuit descriptions is also useful for refining them., We introduced a set of axioms
and rules that are tailored to a particular problem. The implication is that by similar
specialization, a transformation system would evolve to deal with local changes in a

design as well as the global generation of one.

The reader may have noticed that in the schedule for Circuit H the stored value ¢ is
available earlier if the combinatorial output L is used instead of P. Hence, this circuit
can execute its function in two cycles if the register is used soley for internal synchroni-
zation. However, even if the delayed occurrence of ! is used, the circuit’s schedule can be

overlapped.

137

N: al b! a® b® a2 b ..
O: d' e &* e d & ..
Q ¢c s 2w oL
I: S LR L R LA S
M: vbout v Y our L

P: m = t @ t2 =8 t* @®w ..

A single additional cycle is needed to capture the last f. The schedule specifies Circuit H
in terms of its external communication, Using the overlapping shown above, its input-
output characterization in the Cuny-Snyder notation is

{RyRy Rq W, Wyt [{RN Ro Wy Wyl (Ry Rg Rq W Wy Wp}]*{wl’}

While eack step in these example derivations is a valid transformation on
specification text, it is not immediately clear what drives the derivation toward a circuit
realization. Our heuristics were to segregate internal from external values, and to intro-
duce delays to align compornent inputs with component outputs. However, since we are
free to introduce delays of any duration, and since some value orderings are inadmissible,

a transformation strategy based on those simple heuristics could easily go awry.

In Circuit H one can see that if inputs a and b are serialized, & should precede a
because b is needed to produce z, z is needed for y, and y is needed when g is used.
However, even with analysis the small configuration in Circuit H can be folded in
numerous ways, into a circuit of one, two, or three components. Even with some prus-

ing a blind transformation strategy is explosive.

7. Conclusion

7.1. Review

This dissertation shows that the discipline of applicative style is a ftting basis for
digital hardware design because the abstraction of functionality, upon which applicative
style is predicated, is also fundamental to digital design. Functional specifications and
digital realizntions are given in virtually the same notation. Moreover, the transition of
interpretation from instantaneous operation to sequential behavior, lifting, is transparent
to the basic techniques of this approach. This transparency erases the discontinuity that
typically results when design moves from an abstract specification notation to a concrete

realization notation,

The design method is to specify an algorithm in a purely functional notation,
without regard to representation or conirol, and then to derive from that specification a
description of an equivalent digital/synchronous system. I have focused on transforma-
tion methods, a form of synthesis in which the engineer is simply ‘*doing algebra' on the
formulation of 2 design. Notation is manipulated by such rules as folding, unfolding,
combination, and symbolic simplification, with the goal of reaching a syntactic form that

fits the implementation realm.

7.1.1. Iteration. The secondary notation of a flowchart or finite state machine,
which is often used in conventional circuit design, does not arise in this method. How-
ever, it should be emphasized that this is merely an occlusion of syntax. A major step in
each of the examples was to find an sterative version of the specification. [terative form
characterizes sequential control (i.e. flowchartability); thus, this approach gives the

engiceer a notation to develop a quality that is intrinsic to other notations, such as

138

139

flowcharts, In that sense at least, a functional specification language is more abstract,
bence less constraining, than a procedural one. It leaves the way open to develop reali-
zations according to other strategies than the linearization of control.

A aimple loop can always be constructed from an iterative specification by introduc-
ing a parameter that serves ns a control token. Simple loops are essentially realizations:
Theorem 3.3-5 yields a circuit description immediately by lifting. The elementary func-
tional recursion of the [oop transposes to the signal reflexivity of a connectivity descrip-
tion. At the same time, the method admits prevailing structured design techniques.
Hierarchical decomposition, through macros (packaged combinations) and representation
abstraction (abstract components), are transparent to lifting.

7.1.2. Circuit Synthesis. A signal is a mapping from time to values that sub-
sumes the recurrence relation by which digital systems are usually described. I avoid
explicit mention of time by modeling a signal as a seqience and a circuit as a fixed point
in the domain of signals. Since behavior is discrete (and since feedback loops always
pass through registers), constructing the fixed point is equivalent to inductively solving
the corresponding recurrence. This model unifies the mathematical treatment of
specification and realization languages and also results in an experimental vehicle for
synthesis: Daisy. Daisy's application operator interprets “function-lists'' in a manner
consistent with (in fact it motivated) the definition of component application in Section
3.5. The choice to model a component as signal of operations—rather than as an opern-
tor on signals—is of little consequence in a basic behavioral model because primitive com-
ponents are constants in that interpretation. However, when circuits are factored into
communicating abstract components, the residual inatruction signal is consistently
viewed as a component whose operation varies. The factorization distributes the condi-
tional across application, then distributes application over behavior; as usual, everything
lifts.

Experimentation served two purposes in this investigation. It provided the means
both to observe circuit behavior and also to certify derivations empirically. In a few
instances, observation revealed qualities of performance that are not addressable in the
specification language. The “‘discovery” in Section 4.4 that the GCD circuit stabilizes
was an illustration that formal specifications do not account for every quality that a
realization might have. The lengthy derivation in Section 5.3 was done entirely by
hand, although a number of the steps could be automated using published techniques, A

140

Daisy version of each stage of the derivation was written and executed (Appendix B) on
a representative set of inputs. At the very least, this reduced typographical errors, but
it also raised the level of our confidence in the derivation. A proof need not be com-
pletely correct to be useful (Lipton, et.al. 1979); a circuit description must be.
Automated synthesis systems are likely always to have gaps that must be bridged empir-
ically, for they free the engineer to think ever more abstractly, The ability to construct
and carry out experiments is n significant advantage, if not a necessity, all the more so if

it can be done directly in the notation of the synthesis system.

7.1.3. Circuit Reflnement. Through Chapter 5 the emphasis in synthesis is on
manipulation of specifications. If this area is not fully understood, it is at least well
charted by research in program synthesis. [n passing from specification notation to reali-
zation aotation the concerns of the designer should become more local, for it is at that
point that the monolithic view of the developing description disintegrates, from a simple
loop into a system of interconnected but otherwise autonomous components, This in no
way implies that all design decisions can be made on the specification-side, As an exam-
ple of local refinement strategies Chapter 6 presented a “‘special purpose’ transformation
system. The specific goal was to use serialization to trade space, measured by the
number of external connections, against time. Correct realizations were constructed
through a small set of rewriting vules. The derivations introduced registers to implement
serialization and therefore also complicated the timing of the circuit. However, they also
spawned o schedule, for target behavior that could be used to coordinate it with the sur-

rounding system.

7.2. Limitations of the Approach

If one seeks to appraise the realization language in terms of *‘typical” eircuit
designs, one can readily see that it falls short of its fundamental purpose: to “portray
implementations'' {Chapter 1}. The notation makes it difficult to express bidirectional-
ity in signals; whether the difficulty is due to shortcomings in syntax or semantics should
be considered carefully. This dissertation only touches on the issue of communication;
an important question to consider in judging this approach is how it extends to account

for external and independent signals,

141

7.2.1. Bidirectionality. Since the specification language.is purely functional, it is
not surprising that an applicative realization language suffices as a target for synthesis.
As defined lere, circuit deseriptions state comnectivity using applicative terms that

require a distinction between input and output. Consequently, my realization language

is inadequate for describing components, such as some memories?, whose input and out-
put leads are physically identical. Milner overcomes the problem by using a notaticn for
connectivity that does not depend on the input/output distinction (Milner, 1973). The
realization language I have adopted translates easily to Milner's notation. What emerges
is a relational model of behavior; functionality is a special case. Of course, directionality
(perhaps “causality” is a better word) is also obscured in the resultant semantics. Rela-
tional specification languages, such as Prolog (See for example Clark and Gregory, 1981),
might be used to confront bidirectionality directly. On the other hand, directionality
(functionality) is the preferable abstraction and should mot be lightly discarded. One
finds evidence for this thesis by looking at how circuit design has evolved away from its
natural basis {analog components in equilibrium) to an artificial digital basis that forces
a circuit to behave as a function on its state. Bidirectional wires rarely? serve simultane-
ously as both input and output; rather, they are a physical unification of conceptually
distinet entities. That point notwithstanding, physically identical parts of an object
should surely be identified in the description of that object, and in the case of bidirce-
tional leads this is a problem for the applicative realization language adopted here,

7.2.2. Digital Asynchrony, Communication, and Integration. My exam-
ples all deal with closed specifications and consequently | was able to develop circuit
descriptions in a uniform temporal framework. 1 employed standard techﬁiques to
decompose architecture, but said little about decomposition of control. How standard
control factorizations (procedures, coroutines, ete.) are lifted merits study, When a
designer breaks a problem down in this fashion he incurs a liability in the form of a com-
munication problem and must develop a protocol by which autonomous controllers coor-

dinate their activity.

Digital asynchrony is discrete autonomy. The interval between meaningful external

events is an unkrown but always integral number of clock cycles, The first Jaw of

1See {(Mead and Conway, 1080, p. 161, Fig. 5.10) for another fine example.

*Counterexamples are wholeheartedly invited.

142

structured digital design is to “latch"” truly asynchronous signals and thereby ensure
that, from the point of view of the system, they occur at opportune moments.

The subject of digital asynchrony has been broached several times in this disserta-
tion. For example, one way to introduce autonomous processes is to designate them as
operations. That is, assume that they behave in negligible time and deal with coordina-
tion separately. In the L-circuit of Chapter 8, the ENVIRONMENT instructions EXT,
FND, and LBL, were presumed to result in trivial operations. However, it is barely credi-

ble to assume that extend, find, and label are trivial®. To complete the realization of the
L-interpreter it will likely be necessary to ﬂintroduce protocols for waiting, in order to
intergrate the autonomous abstract componeﬁts. In the meantime, a natural strategy
for control decomposition is to carry out design-as-usual while treating certain serious
symbaols as though they were trivial, Some coanventional design techniques, for example
self-timing strategies {(Mead and Conway, 1980}, would support this strategy.

A circuit that is party to a communication (and this includes many circuits) cannot
be specified iu closed form. Its description must account for externally generated signals,
and the operator/value based specification language used here must be extended to
express input/output. The single-puleer discussed by Winkel and Prosser (1980, pp.
183-186) is a nice example because its computation is minimal in relation to its commun-
ication,

Problem Statement., We have a debounced pushbutton, with the down position
menning on (true) and the up position off {false). Devise a circuit to sense the depression

of the button and assert an output signal for one clock pulse. The system should not al-
low additional assertions of the output until alter the operator has released the button.

A solution, below, presumes not only that the button is debounced but also that it is
latched. The specification for the single-pulser must take into account that some of the
identifiers change according to external stimuli. Let us introduce pseudo-operations ge!

and puf that express this. Assume that a depressed button and pulse assertion are both
implemented by high voltage. The authors' flowchart specification, expressed as an

30'Donnell’s associative architecture (1981, 1983) can perform these operations in unit time if
some restrictions are made., The question is not whether such things can be done, but whether
they will be done in a particular design endeavor. A conventional implementation, using off-the-
shell components, would certainly require several cycles to implement these operations,

143

iterative specification over type Dig (Sec. 2.1), becomes?

FIND(b, p) <= high?(b}— WAIT(get(b), putfhigh)),
FIND(getfb)}, putflow)).

WAIT(b, p) <= highf(b) — WAIT{ get{b}, putflow} },
FIND{ get{b}, putflow)).

With binary control token ¢ representing WAIT/FIND as kigh/low, a realization is

C = w1 MUX,(B, C, tkigh), [low), [high], [low])
B = GET(B)
P= PUT(MUX,(B, C, (high], [low], [low), [low})

where muz, (b, ¢, w, z, y, 3} <= high?(c) — [high(b) — w, 2],
[hight(s) — y, z].

Analysis of the conditionals [eads to a refined realization:

GET(B)
PUT(AND(B, NOT(C)))

T ®Q
i

Put and get are coercions from externsl signal to value; they become redundant when
lifted. If they are simply eliminated we arrive at the authors’ solution circuit.

C= !B
P= AND(B, NOT(C))

Note that since there must be some voltage on every signal at every time the

1Since this specification has no base clauses it does not converge, Unless we are careful about
the meaning of pul, its minimal soluticn is the undefined function.

144

specification reads and writes on every iteration. Admittedly, this is a clumsy way to
introduce external communication to the specification language, but at least it is direct.
Attempts to isolate a less verbose applicative construct for external communijcation have
lead to a number of proposed constructs for indeterminacy. Filman and Friedman sur-
vey the variety of approaches in their text (1983). The issue was addressed as early as
1963 by McCarthy, through his AMB operator (1963a). Keller (1978) discusses indeter-
minacy usi.ng Kahn's process semantics as a starting point. There does not appear to be
a consensus on that topic at this time. Along the lines of the research reported here,
Johnson (1982) shows one way to specify asynchronous systems using the indeterminate
constructor of Friedman and Wise (1979, 1980, 1981). This constructor is implemented

in Daisy, but was not exploited in this dissertation.

7.3. Prospects for Research

This discussions of the previous section ask basic questions about the foundations
of functional style. There are, as well, many refinements to the method presented here

that are worthy of investigation.

7.3.1. Mulitiphase Clocking. My schematics depict registers as boxes that are
governed by a universal clock. The notation and terminology call to mind a printed-wire
fabrication medium, where the qualities of a stor:-sge component are consistent with the
pictures. In other media storage elements can be less physically imposing, and ean also
give rise to other synchronization strategies. In VLSI designs, for example, storage is
sometimes implemented with pass transistors and synchronized by alternating clocking
signals (Mead and Conway, 1080). Muiliphase clocking could be expressed in my realiza-
tion lapguage through a partitioning of storage elements (the term ‘‘register” becoming
counterintuitive at this point) according to the phases they serve. One might obtain a
canonical £phase system in a form like [Z = :®0 1 ¢ ! G(Z}] and then proceed to
make refinements. How a properly phased realization can be synthesized merits study;
and may also be a key to addressing the bidirectionality problem (Section 7.1.1).

145

7.3.2. The Realization Language as a Formal System Aschroft and Wadge
(1976) present Lucid as a formal system in the tradition of Hoare's (1989). (I noted the
similarity between my realization language and Lucid in Section 1.2,1,) A Luecid
specification can be viewed as a set of axioms, used to deduce assertions about behavior.
The works just cited address correctness; hence, description text is used to generate
verification conditions. Although I have adopted synthesis as a means for dealing with
correctness, in the course of experimentation other kinds of observations were made
about circuit behavior. Aschroft and Wadge point out that Lucid can be used to
address other properties, and it would be interesting to explore how the realization
language might be used to generate “performance conditions” about stability, power
consumption, fault tolerance, and so on. Hafner and Parker (1983) do just that; they
use a behavioral description language, syntactically similar to mine, to synthesize timing

requirements.

There is also the intriguing possibility that with appropriately redefined base opera-
tions, realizations themselves might construct performance characterizations or fabrica-
tion data, For example, since recursion corresponds directly to connectivity in realiza-
tions, a graphics data base could be established by evaluating a realization in an

environment where the ground symbols are bound to graphics primitives.

7.3.3. Other Topies. This dissertation gives additional motivation for the contin-
ued study of transformability among recursion schema, and other general problems sur-
rounding the automation of synthesis. Research is needed not only to formalize seman-
tics but also to address the nature of interaction in synthesis systems. [f one stipulates a
compounent of human creativity in computer-aided design, then it is not enough simply
to require of the human all that the computer cannot or has not yet been programmed
to do.

It was noted in Section 1.1 that design is dualistic: it is characterized as an inter-
play between the selection of an algorithm and the selection of a representation in which
that algorithm executes. This holds in software and hardware alike, and this disserta-
tion makes only modest inroads into the problem area of choosing a representation.
This is an open area for research, but the question that follows from this investigation

can be stated simply: *which methods lift?"

146

7.4. Final Remarks

I prefer the game of GO to the game of CHESS. It stimulates me more, although
differently. Since I am a master of neither game, my preference is hardly authoritative;
but even if [were a master of both my preference would not make GO a better game.

[did not set out to prove in this dissertation that applicative methods are better
than others for the design of circuits. The question | asked mysell was whether the con-
straints of the the style would allow one to describe circuits, and if so, are there any
advantages in using the style for that purpose. That one can describe circuits in a
purely applicative way, though perhaps moderately surprising at first, says nothing
about the practicality of doing it. However, that one can derive a realization by ‘‘doing
ordinary algébra" indicates that the approach is indeed a promising basis for engineer-
ing. This inference depends on the reader's agreement, first, that the target notation
achieves its concretely descriptive purpose (I believe that to be sell evident); and second,
that the specification language is a suitable notation for expressing ideas. The second
point is a premise of this work; to conclude here that the approach is superior to conven-
tional methods would be to beg the question. Still, I think that those who are familiar
with digital design will, in retrospect, find substantial benefit in applicative style.

For those already predisposed to McCarthy's basis, this dissertation has something
further to say about its appropriateness and its relationship to programming. It is addi-
tional positive evidence presented in a more neutral (i.e. less von Neumann) setting, To
compare functional languages to procedural ones is, to a large extent, to compare
specifications to their realizations, or for that matter, GO to CHESS. If, nevertheless, one
is resolute to make a comparison, it should be done on the basis of an independent tar-
get language. Digital systems seem more suitable than, say, machine code for this pur-
pose. I think | have shown applicative methods to be competitive in that realm, and [
hope that the evidence herein is sufficient to provoke futher investigation. | also hope
that CHESS players who would follow the progress of that investigation try a few games
of GO,

Selected Bibliogranhy

Ashcroft, Edward A. and William W, Wadge, Lucid, a nonprocedural language with
iteration. Comm. ACM, 20(7):519—-526 (July, 1977).

Auslander, Marc A. and H.R. Strong, Systematic recursion removal., Comm. AC)/,
21(2):127—133 (February, 1978).

Backus, Joln, Can programming be liberated from the von Neumann style? Comm.
ACM, 21(4).613~041 {August, 1978),

Backus, John (1981a), The algebra of functional programming: function level reasoning,
linear equations, and extended definitions. Proc. of the Symposium on Functional
Languages and Computer Architecure, eds. B. Nordstrum, A. Wikstrom, and Soren
Holmstrom, Goteborg, Sweden, June, 1981, 408—-450.

Backus, John (1981b), Function level programs as mathematical objects. Proe. of the
1981 ACM Conference on Functional Programming Languages and Computer Archi-
teeture, (ACM order no. 556810), 1—-10.

Backus, John, F.L.Bour, J. Green, C. Katz, J. McCarthy, P.Naur, A.lL Perlis,
H. Rutihauser, K. Samelson, B. Vauquois, J.J. Wegstein, A. van Wijngaarden, and
M. Woodger, Revised report on the algorithmic language ALGOL 60. Numer. Math.
4:420-453 (1963). Also published in Comm. ACM, 8(1):1-17 (January, 1063).

Brainerd, Walter S. and Lawrence H. Landweber, Theory of Compulation, Wiley and
Sons, New York, 1974,

Burstall, Rod M. and John Darlington, A transformation system for developing recursive
programs. J. Assoc. Comput, Mach., 24(1):44-67, (January, 1977).

Burge, William H., Recursive Programming Techniques, Addison-Wesley, Reading, Pa.,
1075,

Cardelli, Luca, An Algebraic Approach to Hardware Descriplion and Verification, Ph. D.
dissertation, Univ. of Edinburgh, 1982.

Cardelli, Lueca, Analog processes. Proc. of the Ninth Symposium on Mathematical Foun-
dations of Compuler Science, Lecture Notes in Compler Science, No. 88, Springer,
New York, 1980, 1811903,

Chandra, Ashok K., Efficient compilation of linear recursive programs. Stanford
Artificial Intelligence Memo AIM-169, Technical Report STAN-CS-282, Dept. of
Computer Science, Stanford University, April, 1972,

Cheatham, Thomas E., Jr., Glen H. Holloway, and Judy A. Townley, Symbolic evalua-
tion and the analysis of programs, IEEE Trans. Software Engry., SE-5(4):402—-417,
{July, 1079).

147

148

Clark, Keith L., and Steve Gregory, A relational language for parallel programming.
Proc. of the 1081 ACM Conference on Functional Programming Languages and Com-
puter Architecture, (ACM order no. 566810), 171—178.

Cohen, Norman Howard, Source-to-source Improvement of Recursive Programas, Ph.D.
dissertation, Harvard Univ., Cambridge, Mass., 1980,

Cooper, David C., Bohm and Jacopini's reduction of flow charts. Comm. ACN,
10{8):403, 473 (August, 1067).

Cuny, Janice E. and Lawrence Snyder, Conversion from data-flow to synchronous execu-
tion in loop programs. Report for the BLUE CHiP Project, Purdue University
Department of Computer Sciences, West Lafayette, Indiana, 1082,

Darlington, John and Rod M. Burstall, A System which ahtamaticnlly iﬁ:proves pro-
grams. Acta Informat., 8:41—60, 1976.

De Millo, Richard A., Rickard J. Lipton, and Alan J. Perlis, Social Processes and proofs
of theorems. Comm. ACM, 22(5):271-280, (May, 1979).

Filman, Robert E. and Daniel P. Friedman, Coordinated Computing: Tools and Tech-
niques for Distributed Software, McGraw-Hill, New York, 1983.

Friedman, Daniel P. and David S. Wise, An approach to fair applicative muitiprogram-
ming. in Semantics of Concurrent Computation, ed. G. Kahn, Lecture Notes in
Compler Seience, No. 70, Springer, New York, 1979 203—228.

Friedman, Daniel P. and David S. Wise, Aspects of applicative programming for file sys-
tems. Proc. ACM Con/f. on Language Design for Reliable Software, ACM SIGPLAN
Notices, 12:41-55, (March, 1977).

Friedman, Daniel P. and David S, Wise (1978a), Aspects of applicative programming for
parallel processing. [EEE Trans. Comput., C-27(4):289—298, (April, 1978).

. Friedman, Daniel P. and David S. Wise (1976a), CONS should not evaluate its argu-
ments. in Automata, Languages and Programming, eds. S. Michaelson and R.
Milner, Edinburgh Univ. Press, Edinburgh, 1978, 257-284.

Friedman, Daniel P. and David S. Wise, Fancy ferns require little care. Proc. of the
Symposium on Functional Languages and Computer Archilecure, eds. B. Nordstrum,
A. Wikstrom, and Soren Holmstrom, Goteborg, Sweden, June, 1981, 124—156.

Friedman, Daniel P. and David S. Wise (1978b), Functional combination. Compuler
Languages, 3(1):31-35, 1978.

Friedmar, Daniel P. and David S, Wise, An indeterminate constructor for applicative
programming. Conf. Rec. 7th ACM Symposium on Principles of Programing
L anguages, (January, 1980), 243—-250.

Friedman, Daniel P. and David S. Wise (1976b), Output driven interpretation of recur-
sive programs, or writing creates and destroys data structures. Inferm. Procees.
Lett,, 5(6):1556~160 (December, 1976); Erratum: 9(2):101 (August, 1979).

149

Friedman, Daniel P, and David S. Wise (1076¢), Unbounded computational structures,
Software - Practice and Ezperience, 8:107—-416 (1978). '

Friedman, Daniel P., David S. Wise, and Mitchell Wand, Recursive programming
through table lookup. ed. R.D. Jenks, Proc. 1876 ACM Symposium on Symbolic
and Algebraic Computation, 85~89,

Gannon, . Dennis, Pipelining array computations for MIMD parallelism: a function
specification. Proc. of the 1882 International Conference on Paralflel Processing,
IEEE {order no. 421), 1982, 284—-286.

Garland, Stephen J. and David C, Luckham, Translating recursion schemes into pro-
gram schemes. Proc. of an ACM Conf. on Proving Assertions about Programs, Las
Cruces, New Mexico, January, 1972, published as SIGPLAN Notices 7(1) and
SIGACT News No. 14., (January, 1972), 83—-98.

Gordoun, Michael J.C., The Denotational Description of Programming Languages, An
Introduction, Springer, 1979,

Gordon, Michael J.C., The denotational semantics of sequential machines. Inform. Pro-
cess. Lelt,, 10(1):1-3, (February, 1980).

Gordon Michael J.C. (1881a), A model of register transfer systems with applications. to
microcode and VLSI correctness. Corrected version of Dept. of Computer Science
Internal Report CSR-82-81, Univ. of Edinburgh, 1981.

Gordon Michael J.C. (1981b), A very simple model of sequential behavior of nmos,
Proc. of the VLSI §1 International Conference, Edinburgh, August, 1081,

Greibach, Sheila A., Theory of Program Structures: Schemes, Semantics, Verification,
Lecture Notes sn Compter Science, No. 38, Springer, New York, 1676,

Hafer, Louis J., and Alice C. Parker, Automated synthesis of digital hardware, /EEE
Trans. Comput., C-31(2):93-109 (February, 1981).

Hafer, Louis J., and Alice C. Parker, A formal method for the specification, analysis, and
design of register—transfer level digital logic. [EEE Trans. on Coempuler- aided
Design of Integrated Circuils and Systems, CAD-2(1):4—18 {January, 1983).

Harel, David, On folk theorems. Comm. ACM, 23(7):370~-389 (July, 1980).

Henderson, Peter, Functional Programming: Application and Implementation, Prentice-
Hall, Englewood Cliffs, 1080.

Henderson, Peter, and James H. Morris, Jr., A lazy evaluator. Conf. Reec. Third ACM
Sympoaium on Principles of Programming Languages, 1978, 95—103,

Hill, Fredrick J. and Gerald R. Peterson, Introduction to Switching Theory and Logical
Design, (third ed.), Wiley and Sons, New York, 1988,

Hoare, C.A.R, An axiomatic basis for computer programming. Comm. ACM,
12(10):576-580, 683, (October, 1989),

150

Hoare, C.A.R., Prool of correctness of a data representation. Acta Informat., 1:271-281
(1072).

Johnson, Steven D. Circuits and sys'tems: implementing communication with streams.
Proc. 10th IMACS World Congress on Systems Simulalion and Scientific Computa-
tion, Vol. 5, eds, W.F. Ames and R. Vichnevetsky, Montreal, August, 1082.

ICabn, Gilles, A preliminary theory for parallel programs. Rapport de Recherche n* 6.
IRIA Labaria, (January, 1973).

Kahn, Gilles, and David MacQueen, Coroutines and networks of parallel processes. IFIP:
77, North-Holland, 1977, 933—938.

Keller, Robert M., Denotational models for paralle] programs with indeterminate seman-
tics. in Formal Description of Programming Concepls, ed. E.J. Neuhold, (Proc. of
the IFIP Working Conference, August, 1977) North-Holland, 1978, 337—-3686.

Kleene, Stephen C., /ntroduction to Metamathematics, North Holland, New York, 1952.

Kohlstaedt, Anne T., Daisy 1.0 reference manual, Technical Report No. 119, Indiana
Univ, Computer Science Dept., Bloomington, Indiana, November, 1981.

Landin, Peter J., A correspondence between ALGOL 80 and Church’s lambda notation —
part I. Comm. ACM, 8(2):80-101, (February, 1985).

McCarthy, John (1983a), A basis for a mathematical theory of computation. Computer
Programming and Formal Systems, eds. P. Braffort and D. Hirschberg, North-
Holland, Amsterdam, 1983, 33—-70.

McCarthy, John, Recursive functions of symbolic expressions and their computation by
machine, part [. Comm. ACM, 3(4):184—195 (April, 1960).

McCarthy, John (1963b), Towards a mathematical science of computation. Proc. of the
IFIP Congress 62, ed. C. M. Popplewell, North-Holland, Amsterdam, 1983, 21~28.

McCarthy, John, P.W. Abrahams, D.J. Edwards, T.P. Hart, and M.l. Levin, Lisp 1.5
Programmer’s Manual, The MIT Preas, Cambridge, Mass., 1973.

Manna, Zohar, Mathematical Theory of Computation, McGraw-Hill, New York, 1974.

Manna, Zohar, and Richard J. Waldinger, Synthesis: dreams => programs. IEEE
Trans. Software Engrg., SE-5(4):2904—-328 (July, 1979).

Manna, Zohar and Richard J. Waldinger, Towards automatic program synthesis.
Comm. ACM, 14(3):1561-185, (March, 1971).

Mead, Carver and Lynn Couway, Introduction lo VLS Systems, Addisor-Wesley, Read-
ing, 1980,

Meyers, Thomas JI., Infinite Structures in Programming Languages, Ph.D. dissertation,
University of Pennsylvania, Philadelphia, 1980.

Miloe, George and Robin Miluer, Concurrent processes and their syntax. J. Assoc.
Comput, Mach., 268(2):302-321, (April, 1979).

161

Milne, Robert and Christopher Strachey, A Theory of Programming Language Semantics,
Chapman and Hall, Loadon, 1876.

Milner, Robin (1980a), A Calculus of Communicating Systems, Lecture Notes in Compter
Science, No, 88, Springer, New York, 1980.

Milaer, Robin, Processes: a mathematical model of computing agents. Proc. Logic Col-
loq. '79, eds. Rose and Shepherdson, North-Holland, 1973.

Milner, Robin (1980b), On relating synchrony and asynchrony. Technical Report No.
CSR-75-80, Univ. of Edinburgh, Edinburgh, 1980.

Morris, James H., Jr., and Benjamin Wegbreit, Subgoal induction. Comm. ACM,
20(4):200-222, {April, 1977).

Mycroft, Alan, The theory and practice of transforming call-by-need into call-by-value,
Proc. of the Fourth Inlernational Symposium on Programming, ed, B. Robinet, Lec-
ture Notes in Compter Science, No. 18, Springer, New York, 1080, 260-281.

O'Donnell, John, A Systolic Associative LISP Computer Architecture with Incremental
Paralle] Storage Management, Techical Report No. 81-5, Department of Computer
Science, University of lowa, 1981,

O'Donnell, John, (1983) personal communication,

Paterson, Michael S. and Carl E. Hewitt, Com parative schematology. in Record of Pro-
jeel MAC Conference on Concurrent Systemas and Parallel Computation, Association
for Computer Machinery, New York, 119128, (December, 1970).

Scott, Dana S., Data types as lattices. SIAM J. Comput,, 5(3):522-587, (September,
1976).

Scott, Dana S., Domains for denotational semantics. corrected and expanded version of
a paper presented at JCALP 82, (July, 1982).

Scott, Dana S., Logic and Programming Languages. Comm. ACM, 20{9):634—-041, (Sep-
tember, 1977).

Steele, Guy L., Jr. and Gerald J. Sussman, The revised report on Scheme: a dialect of
Lisp. MIT Artificial Intelligence Laboratory Memo 4562, January, 1978,

Stoy, Joseph E., Denotational Semantics: The Scoll-Strachey Approach to Programming
Language Theory, MIT Press, Cambridge, 1977.

Strong, H.R., Jr., Translating recursion equations into flow charts. J, Comput. System
Set., 5(0):254—285, (June, 1971).

Tenunent, Robert D., The denotational semantics of programming languages. Comm.
ACM, 19(8):437—453 (August, 1976).

Vuillemin, Jean, Correct and optimal implementations of recursion in a simple program-
ming language. J. Comput, System Sci., 9(3):332—364, (March, 1974).

Wadsworth, Christopher, Semantics and Pragmatica of Lambda-calculys, Ph.D. dlsserta-
tion, Oxford, 1971.

162

Wand, Mitchell (1080a}, Continuation based program transformation strategies. J.
Assoc. Comput, Mach., 37(1):164—180, (January, 1980).

Wand, Mitchell (1982a), Deriving target code as a representation of continuation seman-
tics. ACM Trans. Programming Languages and Systema 4(3):496-517

Wand, Mitchell {1980b), Diflerent advice on structuring compilers aud proving them
correct. Technical Report No. 95, Computer Science Department, Indiana Univer-
sity, Bloomington, September, 1980,

Wand, Mitchell, /nduction, Recursion, and Programming, North Holland, New York,
1980,

Wand, Mitchell, Loops in Combinator-Based Compilers. Conf. Rece. 10th ACM Symp.
en Principles of Programming Languages 1983, 190-198,

Wand, Mitchell (1082b), Semastics-directed machine architecture, Conf. Rec. 9th ACM
Symp. on Principles of Programming Languages (1982), 234—241,

Wand, Mitchell, and Daniel P. Friedman, Compiling Lambda-expressions using con-
tinuations and factorizations. Computer Languages, 3:241-263, (1978).

Winkel, David and Franklin Prosser, The Art of Digital Design, Prentice-Hall, Englewood
Cliffs, New Jersey, 1980.

Wise, David S., Interpreters for functiona] programming., Funclional Programming and
tts Applicalions, eds, J. Darlington, P. Henderson, and D.A. Turner, Cambridge
University Press, Cambridge, 1082, 186-195.

Wise, David S., A powerdomain semantics for indeterminism, in preparation,

APPENDIX

A. True Syntax of Daisy

At the time of this writing a parser for Daisy’s proposed syntax (Figure 4.1} has
not been fuily implemented. This appendix gives the present version of the language.
Further documentation can be found in Kohlstaedt's programmer's manual {1082),
which also cites published research that inspired development of the lapguage. Appen-
dix B shows the Daisy source actually used for examples in this dissertation. The
present. syntax of the language is given in Figure A-1.

Examples of conversions between present syntax and proposed notation are shown in
Figure A2,

The conditional phrase structure is made unnecessary by the fact that the list con-
striuctor is non-strict. There is a 3-place operation, if, that selects an alternative based
on the truth vajue of its first argument. The Boolean coercion fuanction in Figure 4-1b

describes the implementation of if accurately. Recursive and lexically scoped systems

cxpression u= @ expresaion | atomn | fern | application | abstraction
alom = identificr | numeral | operalor

Jern u= (list) | < list > | { biat }

list u= Q@ l czpresaion ¥ | ezpression ! ezpreasion l cazpression list
application = ezpression s expression

abatraction = \(eapression . ezpression)

definition = capression = ezpression | identifier 1 expression =: ezpression .

Figure A.1, Present Daisy Syntax

164

156

Daisy stylized teat

0i @

7 [xy]
(! y [x1y]
Cam [k

<a b <ab>
<a ! b <alb>

<a *> <a*>

{a b} {ab)}
{a ! b} (31b)

f:a fs:a

\(z. 0 Ax.e
if:<paqbc> p=a,q-—b,c

lot:(x a o) letx =aine
lot: ((x y) <a b> @) letx =a y =bine

roc:(z a o) rec ¢ wherax =a

f:x = a. Fix <=e.

Figure A.2. Conversions to Present Daisy Syntax.

are built by pseudo operations rec and let.

A fern is o “list specification™, the salient properties of a list being its content and
its order. The three lTern delimiters express progressively weaker stipulations about
them. The delimiters ‘(...)' have been changed to ‘[...]' in the idealized language because
parentheses will eventually be reserved for parser divection. Ferns of the form ‘[..]'
denote phre lists, a form of structural quotation stating content and order literally.
Ferns of the form *<...>' denote value lista, whose content depends on the current
environment, but whose order is fixed. Value lists are an abbreviation of Lisp's LIST
operation. Ferns of the form *{...}' denote lists of values, but do not specily an order.
The construct is used to address indeterminacy.

160

Comments in Daisy programs are delimited on the left by a vertical bar, ‘| ', and on
the right be a carriage return. Comment lines are used to mimic the proposed notation.
For example, the factorial realization

X='! DCR(X}

Y=112

Z=11 MPY(Y, Z}
READY = ZERO?(X])

s implemented in idealized Daisy as

FIB:x <= rec test:<X Y RE:\DY>

whera
YoX = ¢x | DOR:<K>>
Y=<112>
Z =41 1 ADD:<Y Z>>
READY = ZERD? : <A>.

The true source for the ex periment is

FIB:x =: roe: ({X Y Z READY)
< <x | DCR:<X>>

<t 1 2>
<1 1 ADD:<Y Z>>
ZERD?:<X> >

tost:<X Y READY>)

With mimicing comments added the source file used was

FIB:x =: rac:{{X Y Z READY)

<[X =
<x | DCR:<X>>
| Y=
<t 1 2>
| Z =
<1 | ADD:<Y Z>>
| READY =
ZERO?:<X>
>| in

test:<X Y READY>)

. - B. Daisy Trials

This appendix contains listings of the Daisy source for experiments of Section 4.4.4
and listings for experiments with the L-interpreter derivation in Chapter 5. Appendix
A gives the conversion between the idealized version of Daisy used in the body of this

dissertation and the present syntax of the language as reflected here.

The program source listings were printed from the source files used for experimen-
tation. The execution listings were recorded from the actual trial rums, but have been
manually modified to clarifly the output. In some listings, blank lines were deleted for
vertical compression and blank spaces were added to align columns. Repetitive setup
commands and responses were deleted from the execution record. Other medifications of

the listings are noted where they occur. Included in this appendix are:
» jmplementations of frequently used components and experimentation aids;

¢ realizations of the iterative specifications for the factorial, Fibonaces, and

greatest-common-divisor functions, discussed in Section 4.4;

the realization of the stacking version of the Fibonaccs specification, discussed in

Section 5.1;

the specifications and realizations generated in the derivation of the L -interpreter

circuit in Section 5.3;

trial forms that were used to test the evolving L -interpreter descriptions; and
o experiments with the L -realization.

Each listing is accompanied by a brief explanation including references to relevant

figures and discussions in the body of the dissertation.

157

158

ADD = (adde).

BCR = (\((x).der:x)»).
pIV = (div+).

EQ? = (eq?#).

IF = {if*).

me = (\((x).inc:x)*).
LT? = (1t7%).

MPY = (mpy®).

S5UB = {sub%).

ZERD? = (\((x).eq7:<x O>)%).
AD = (and=).

- eae

Daicy Components. Discussion: Section 4.4.1. Compare with Figure 4.6.

tert:x =; format:;transposs:x, Print sigpals in parallel

transpose = (\(x.x)*}. - time slices

format:{(c18) =: <CR c | format:S>. - iterleave carraige contol

I
I
I
|
I
]
I

CR = 1:parsa:{()). - carraige control character

Experimental Aids. Discussion: Sectien 4.4.3. The assignment for OR is a way to
obtain the carrnign-return character (ASCU OD, hexadecimal), which is not available by

uame in Daisy.

159

FAC:x =: rac:{(X Y READT)

| X =
<x | DCR:<X>>
t Y=
<1 I HPY: <X Y>>
| READY =
ZEROT : <>
>} in

tast:<X Y READY>).

FIB:x =: rac:{({X Y 7 READY)
<[X =
<x | DCR:<X>>

<11 2>

2 |
]

<1 | ADD:<Y Z>>
| READY =
ZERO?:<X>
>| in
test:<X Y READY>),

GCD:(x y) =: rec:((X Y U W V READY)
<| X =
<x | U
| Y =
<y ! SUB:<W U>>
U

IF:cV X >

| ¥ =
IF:<Y Y X>

| v =
LT?:<X Y>

| READY =
EQ7:<X >

>| in

test:<X Y READY>).

Daisy Source for the Example Realizations. This is source for expcrimentation
with the realizations of the iterative specifications for factorial (Figure 4.7), Fibenaccs
{Figure 4.8), and greatest common divisor (Figure 4.9). Executions of these descriptions

are shown in the figures.

180

evlst:parse:dski: Q' /usiu/sdj/PhD/thesis/complib
ovlst:parse:dski:0' /usiu/sdj/PhD/thesis/tools
| List representation for stacks,
HTstk = (77 »). | Empty stack
| Stack operations:
empty:STACK --> BOOL
top:STACK -=-> VALUE
noop:STACK —-> STACK
pop:STACK --> STACK
push:VALUE x STACK --> STACK
push:VALUE x STACK --> STACK

empty?:{g) =: samo?:<s MTstkd>. |
top: ((t | 8)) =: ¢, |
noop:E =: 8. |
pop:(t ! 8) = s. i
pushi: (v 8) =: <v | 8>, !
plop: (v (&t 1 8)) =: <v | &>, |
[
cperate:{i v g) =: | Instruction decoder.
if:< same?:<i Qnoop> 8 |
sama?:<i Qpop > pop:s |
same?:<i Qpush> push:<v &> |
same?:<i @plop> plop:<v 8>>, | :
' | Higher Level Stack Component.
STACK: (80 I V) =: rec:(S]
| § = | STACK:[sO I V] <=
[rac <TOP:S EMPTY?:S>
I where S = s0 | OPERATE:<I V¥ 5>,
|

<50 ! <oparate*>:<I V 8>
[in
<<top#>:<8> <ampty?#>:<5>>),

Stack Representation. Stacks are represented as lists for the stacking realization of
the Fibanaeei specification in Sect.i.on 5.1, There is a discussion of the abstract com-
ponent STACK toward the end of that section. Idealized source for the experiment is
aiven in Figure 5.2{a); and the experiment itself is shown in Figure 5.2(b). The first two
lincs obtain component definitions and experimental aids from files named “complib’
and *tools.” Read the ntom '??' as m, The empty stack is an iafinite list of don’t-knows.
Definitions of abstract aperations are straightforward {e.g. push is cons), except perhaps
for top, which has additional formal argument structure because it will be used in a
component (see the discussion in Section 4.4.1)., The function operate serves as an

instruction decoder in the abstract component.

181

KUX=} = (mux-l=). | Higher Level Multiplexer
nux-H:(p qruvwzx) = !
if:<p if:<q u v> if:<r w x>, |
| Stacking version of Fibonacei
FIBckt: (10 z0 50 t0) =: |
rec: {(L X {V1 E1) (V2 E2) I P Q READY)
<jL=
<10 1 NUX=-H:<P Q@ V2 <1%> <0*> <1%> <0%>> >
I X=
¢x0 | MUX-H:<P Q V2 <i*> DCR:<DCR:<X>> ADD:<X V1> V1> >
{[V1 Ei]l=
STACK: <80 I MUX=N:<P Q V2 ('#») DCR:<X> ('#%) X>>
| (v2 E2]= . _
STACK:<t0 I MUX-N:<P Q V2 ("#) <<ox> (’#2) <Qtu#>>>
1I=
MUX-N:<P @ V2 (noop*) {push*) (pop*} (plop*)>
[P=
EQ?7:<L <0*>>
1Q=
LT7:¢X <2%>>
|IREADY=
AHD:<EQ7:<L <1%>> E2>
*lin

tast:<READY X I VI L V2ZE2Z P Q>).

- £ib:n =: FIBckt:<0 n MTstk MTstk>.

Stacking Realization of FIB., The packaged component MUX-N is called MU.\'J in

Section 5.1, The lLelp function fib initializes registers for experiments, Execution of this

description is shown in Figure 5.2(b).

162

ido?

hlt?

nun?:

bit?:
arre:
oprt:
tta?:
fix?;

arge:
act?:

(tg

1 {tg
lanm?:
lbl?:
apl?:
cnd?:
tst?:

(tg
(tg
(tg
(tg
(tg

(tg
(tg
(tg
{tg
(tg

(tg
(tg

1 (bg

make~-FTi:
make-ERR;
make-ACT:
make-ARG:argument
tag:({t 1 r @))
1ft:({(t 1 r e))
rgt: ((t 1 r e))
clg: ((t 1 r o))

1f
11
1f
1f
11
11
11

if
18 4
1f
11
11

1f
1f
1t

closure
messngea
action =:

rt)
rt)
rt)
I't)
rt)
rt)
)

Tt)
rt)
rt)
rt)
rt)

rt)
Tt)
rt)

halt = <QHLT>.
TP? = <Q777%>,

w N uwnnn
. e e =

nnuan
e we ae e

same?

: samoe?
: szme?
: sameT?:
: game?:
same?:
: samel:

sama?
sama?
sama?
same?
same’?

samef:
gsame?:
sama?:

: <OFTH ! closure>.
: <GERR message>.

<ig
i<tg
H.37:4

<tg
<tg
<tg
<tg

Sty
1<tg
istg
1<tg
474

<tg
<tg
<tg

CHULD,
QIDE>.
QLAM> .
OLBL>.
QAPL>.
QCHD>.
OTST>.

QBIT>.
QERR>,
QOPR>,
QFTN>,
aFIXx>,

QARG>.
GACT>,
QHLT>,

<QACT action>,

& M gt e

<0ARG argument>,

|IL-machine type predicates

| Expression types.

| MNumeral
Identifier
Lambda-exp, \Ide.Exp
Reflexive—~exp, Ide <= Exp
Application, Exp : Exp

Conditional, Exp -> Exp,Exp

rgt-part of conditional

Value predicates
Boolean
Error message
Operator
Function closure
Expression closure

Action types

save function, evaluate arg

halt

Constructors and extractors
function closure
aerror message
apply action
avaluate-argument action

Constants
initial continuation

|
|
|
|
!
|
|
[
[
I
|
I
I
|
]
i
| apply function
I
I
|
[
I
I
|
I
I
I
|
|
]
| don't-care signal

Representation of the Underlying Type for the L-interpreter. Discussion: Sec-

tion 5.3.2. All concrete types are represented as lists. Continued on the following two

pages.

183

Primitive Conditional
test: (p ¢ a) =:

let: ((p-tag p+rval) p

if:< bit?:p if:<p+val c a> <>>).
Primitive appliecation
apply: ((tag ! op) opnd) =: op:opnd.
Stack operations
push: (actn env stk) =: <actn env ! stk>.
pop: {actn env ! stk) =: stk.
top:{(actn env | stk) =: <actn env>.

Components

IF = <if#>, .
AND = <and#*>,
ACT? = <\((x).act?:x)*>.
transpose:x =: (id#*):x.
id:x = x,
TOP = <\{(x).top:x)*>
POP = <\{(x).pop:x)*>
MAKE~ACT = <\ ((x).make-ACT:x)*>
MAKE~ARG = <\((x) .mako-ARG:x}*>

component version of top
component version of pop
componont version of make-ACT
componant version of make-ARG

Main multiplexor

R S — — — — — — i B NV Wy — p— — — — — — — T —

glet: {ctl exp e-num e-opr e-ide e-lam
@-1bl e-apl e-cad e-ftn
a-{ix e~tst s~arg e-act
e-err a-opr a-ftn a-err) =:
if:<same?:<ctl GEVL>
if:< num?:exp e-num opr?:exp e-opr ide?:exp e-ide lam?:exp o-lam
1bl?:exp e-1bl apl?:exp e~apl cnd?:exp e-cad ftn?:exp e-Itn
fix?:exp e~fix tst?:exp o-tst argf:exp e-arg actf:exp e-act
err?:exp e-arr >
sama?:<ctl QAPL>
if:< opr?:exp a-opr ftn?:exp a-ftn a-err 5>,
SLCT = (slct*).

Representation of the Underlying Type for the L-interpreter (cont’d).
SLCT is the main multiplexor for the realization (¢f Fig. 5.8).

164

initenv =
Vi, if:¢
same?

© gamae?:
same’t:
same?
game’?

sama?:

same?:

gama?

same?:

find: ((tag ide) env)

extend: (ide val env)
\(x. if:<samo?:<x

jide> val env:x>).

labol: (ide exp env) =:
rec: (rho
oxtond:<ide <OFIX exp rho> env>

rho) .

: onv:ide.

| Initial environment

Environment operations

let: (error make-ERR:(nonnumeric operand)

1<1

<y’
<1

1<
41

<i

<i

241

0zed?>
Gonae?>
Gine >
Gder >
aiL? >

eq? >

Qadd >

Osub >

Gmpy >

<00FR
<QOPR
<00PR
<00PR
<80PR
<00PR

<QOPR
<QuP

<QOPR
<G0PR

<00PR
<0OPR

<GOPR
<Q0OPR

make-ERR:<QUNBOUND 1>

\(v. if:<pum?:v <O0BIT eq?

\(v. if:<num?:v <OBIT aq?

\(v. if:<oum?:v <QNUM inc:

\(v. if:<oum?:v <ONUY dcr;

\{u. if:<aum?:u

\(v. if :<num?:v <OBIT 1t7:
", aerror) >

\{u. if:<num?:u .

\(v. if:<num?:v <QBIT eq?
arror >) >

\(u. if:<num?:u

\(v. 1f:<pum?:v <ONUM add
error >) >

\(u. if:<num?:u

\{v. if:<num?:v <ONUM sub:
error >) >

\(u. if:<num?:u

\(v. if:<num?:v <ONUM mpy:

error >} >

).

:€2:v 0>> error>) >
:€2:7 1>> error>) >

142 2:v>> arror>)>

1<2:u4 2:¥>> error>)>

——— -

2:v> errord>) >
2:%» orraord) »

<2:u 2:¥>> arrord>)>

<2:u 2:v>> error’)>

€2:u 2:v>> arror>)>

Representation of the Underlying Type for the L-interpreter (cont'd).

Initenv is a function that initially maps operator symbols to operations. Operations are

function closures, tagged as type OPR. Binary operations for L are implemented as cur-

ried versions of Daisy’s operations.

186

¥: (exp onv) =:

let: ((tag 1ft rgt) exp

if:<
num?:exp exp
ide?:exp COERCE:find:<exp env>
lam?:exp make-FTN:<lfit rgt env>
1bl?:exp M:<rgt label:<1ft rgt onv>>
apl?:exp APPLY:< M:<1lit env> M:<rgt onv>>
cnd?:exp, - lat: {(rgtetag rgtelft rgtergt) rgt

test:< M:<1ft env> M:i<rgtelft env> M:<rgtergt env> >)

3).

COERCE:val =: if:¢
opr?:val val
num?:val val
err?:val val
ftn?:val val
fix?:val 1let:{(valetag val~axp val+env) val
M:<valeexp valeonv>)
>,

APPLY: {ftn arg) =:
if:<
opr?:ftn apply:<f{tn arg>
ftn?:£tn let:({ftn+tag ftn+ide ftnraxp ftnvenv) ftn
M:<ftneexp extend:<ftn~ide arg ftn+env>>)
make-ERR: (invalid function)
>.

try:exp =: M:<oxp initenv>.

Concrete Non-linear Specification for the L-interpreter. This specification was
derived in Scction 5.3-2, ond appears in Figure 5.4. This and all of the following
specifications are accompanied by o help function try that properly initializes the state

for “top level” evaluation.

1688

W:(exp stk env) =

lot: ({tag 1ft
if:<

nun?;exp .

rgt) exp

RETURl:<exp stk>

ide?:exp COERCE:<find:<exp env> stk>

lam?:exp RETURN:<make-FTN:<1ft rgt env> stk>
1bl?:exp M:<rgt stk label:<1lft rgt onv>>
apl?:exp M:<1ft push:<make-ARG:rgt env stk> onv>
cnd?:exp M:<1ft push:<rgt env stk> envd>

3.

COERCE: {val stk)
lot: {{tag axp
if:<

opr?:val
num?:val
errt:val
tton?:val
$ix?:val

env) val

RETURN:<val stk>
RETURN:<val stk>
RETURN:<val stk>
RETURH:<val stk>
M:<exp stk env>

>).

RETURN: (val stk) =:
let: ((nxt onv) top:stk
let: ((tag 1ft rgt) nxt
lat: (stk pop:stk
if:<
tst?:nxt M:<test:<val 1lit rgt> stk env>

arg?:nxt M:<1ft push:;<make-ACT:val <> stk> env>

act?:nxt APPLY:<1ft val stk>

hlt?:nxt val

.

APPLY: (ftn arg stk) =:
let: ({tag ide oxp env) ftn
if:<
opr?:iftn RETURN:<apply:<itn arg> stk>
ftn?:ftn M:<exp stk extendi<ide arg onv>>
RETURN: <make~ERR: {(invalid function) stk>
>).

try:exp =: M:<axp <halt> initenv>.

Stacking Version of the L-interpreter. Discussion: Section §.3.4 {c/. Fig. 5.5).

167

lat: ({nxt old) top:setk

lot: (stk*' pop:stk
if:<
sama?:<ctl GEVL>
1f:<
num?:exp M:<GRTN
ide?:exp M:<GCRC
lam?:exp M:<ORTN
1bl7:exp M:<QEVL
apl?:exp M:<OEVL

cnd?:exp M:<OEVL
>
sama?:<ctl GCRC>
if:<

err?:val M:<ORTN
opr7:val M:<ORTN
num?:val M:<QRTH
ftn?:val M:<QRTH
fix7:val M:<QEVL
>
same?:<ctl ORTH>
1f:<
hlt?:nxt wval
tet?:nxt M:<QEVL
arg?:nxt M:<0EVL
act?:nxt M;<0APL
>
gamea?:<ctl QAPL>
if:<
opr?:ftn M:<ORTN

ftn?:{tn M:<OEVL
M:<ORTN
>
>N,

M:(ctl ftn arg val exp stk env) =:
let: ({f+tag f~ide f+exp f«onv) ftn
lat: ({v+tag v+exp v+onv) val
lot: ({e+tag 1ft rgt) oxp

let: ({n+tag n+lf{t nergt) nxt

< O
< O
<O O
<O O
<O
<O O

<> <>
<> <O
<> <>
<> <O
<> <>

<> <>
<> <0
n+1{t

<> <
<> <O
<> <

tryiexp =: M:<OEVL <> <> <> exp push:<halt <> <>> initenvd.

exp <> stk eav>

2ind:<exp env> <> stk enwv>
make=-FTN:<1ft rgt oenv> <> stk env>

<> rgt stk label:<lft rgt envd>

<> 11t push:<make-ARG:rgt env stk> env>
<> 11t push:<rgt env stk> env>

val <> gtk anv>
val <> gtk env>
val <> gtk env>
val <> gtk enwv>
<> v+axp stk veonv>

<> tast:<val n~lft n-rgt> stk' old>
<> n+lit push:<make-ACT:val <> stk'> old>
val <> <> stk' old>

apply:<ftn arg> <> stk env>
<> f~exp stk axtend:<f+ide arg f«onv>>
make-ERR: (invalid function) <> stk env>

First Loop Version of the L-interpreter. Discussion: Section 5.3.5 (¢/. Fig. 5.8).

168

M:(ctl val exp stk env) =:
let: ({tag 1ft rgt env') exp
let: ({nxt old) top:stk
let: (stk' pop:stk

if:<game?:<ctl QEVAL>

if:<
hlt?:0xp wal
num?:exp M:<O0EVAL exp nxt stk‘ old>
opr?:exp M:<QEVAL exp nxt stk' old>
ide?:exp M:<QEVAL <> find:<exp env> stk enwv>
lam?:exp M:<QEVAL maka-FIN:<lfit rgt env> nxt stk' old>
1bl?:exp M:<OEVAL <> rgt stk label:<lft rgt env>>
apl?:exp M:<OEVAL <> 1ft push:< make-ARG:rgt env stk> env>
cnd?:exp M:<0EVAL <> 1ft push:<rgt env stk> env>
ftn?:exp M:<0EVAL eoxp nxt stk® old>
fiz?:exp M:<QEVAL <> 11t stk rgt>
tst?:oxp M:<QEVAL <> testi:<val 1i%t rgt> stk eav>
arg?:exp M:<QEVAL <> 1f{t push:< make-ACT:val <> stk> env>
act?:exp M:<OAPPLY val 1ft stk env>
oerr?:exp M:<0EVAL exp nxt stk’ old> '
>
same?:<ctl QAPPLY>
if:<

opr7:exp M:<OEVAL apply:<exp val> nxt stk' old>
ftn?:exp MI<QEVAL <> rgt stk extend:<lft val env*>>
W:<QEVAL make-ERR:(invalid function) nxt stk' old>

>

.

try:oxp =: M:<OEVAL <> exp push:<halt <> <>> initenv>,

Refined Loop for the L-machine. Discussion: Section 5.3.8 {c/. Fig. 5.7).

189

ENVIROHMENT : (CINSTR ARG-1 ARG-2 ARG-3) =:
rec: {({FHD ENV}
<| Flib =
<find#*>:<ARG~% ENV>
| ENV =
<initenv ! SLCT-E:<INSTR ENV
) ARG-1

>| in
<FHD EHV>).

SLCT-E = <slct=-a*>,
slet=a: (i vO v1 v2 v3) =:
if:< samae?:<i Qhld> +0
gama?:<i QOset>» vl
sama?:<i Qfix> +2
gama?:<i Qext> 3 >,

STACK: (INSTR ARG-1 ARG-2) =:
rec: ((STK (HXT OLD))

<f S8TK =
] [NXT OLD} =
transposa: TOP: <STK>
>] in

<HXT OLD>).

SLCT-5 = <glct-5%>,
slet-s:{} vO v1 v2) =:
if:< sama?:<i Qnop> vO
sama?:<l Opsh> vl
gsame?:<i Qpop> v2 >,

<labael*>:<ARG-1 ARG-2 ENV>
<extendt>:<ARG-1 ARG-2 ARG=3>>>

ENVIRONMENT's
instruction decodar.

<<halt <>> 1 SLCT-5:<INSTR STK <push»*>:<ARG-1 ARG-2 STK> POP:<STK>>>

STACK's
instruction decoder.

Abstract Components for the Realizations. Discussion: Section 5.3.8 (¢f. Fig. 5.8).

170

<]

CTL

EVL

APL

VAL

ALU

FIN

ERR

EXP

FND

TAG

LFT

RGT

SAV

IS8T

-ty

M:{ctl0 val0 exp0 stk env0) =:
rec:{(CTL EVL APL

| Control register
VAL ALYV FTH ERR | Value register
EXP FND TAG LFT RGT SAV TST | Expression rag.
STK (NXT OLD) STK' PSH ACTH ARG ACT | Stack register
ENV FIX EXT) | Environment rag.

<ctl10 | SLCT:< CTL EXP EVL EVL EVL EVL EVL EVL EVL EVL
EVL EVL EVL APL EVL EVL EVL EVL>>

<QEVL»*>

<O0APL*>

<val0 ! SLCT:< CTL EXP EXP EXP ??? FIN ?7? 777 ?77 EXP
7?7 7?? ??? VAL EXP ALU 777 ERR >>

<apply»>:<EXP VAL>
<make-FTN#*>:<LFT RGT ENV>
<make-ERR: (invalid function)s»>
<axp0 ! SLCT:< CTL EXP NXT NXT FND NXT RGT LFT LFT NXT
LFT TST LFT LFT NXT NXT RGT NXT >>
<find*>:<EXP ENV>
<tag*>: <EXP>
<1ft*>:<EXP>
<rgt*>:<ExP>
<cle*> <EXP>

<tost*>:<VAL LFT RGT>

(continued)

Firat L-roalization. Discussion: Section 6.3.7 (¢f. Fig. 5.9). Continued, next page.

171

| (continuved) <=-

| STK =
<gtk0 | SLCT:< CTL EXP STK®' STK* STK STK' STK PSH PSH STK'
STK STK PSH STK STK' STK* STK STK® »»>
] [NXT OLD] =
transpose: TOP: <S5TK>
| 8TK' =
POP:<STK>
| PSH =
<push*>:<ACTN ENV STK>
| ACTH =
SLCT:<CTL EXP ?77 7?7 777 7?7 TT?? ARG RGT 777
T?? 7?77 ACT 777 TT? P77 777 ?°7 >
| ARG =
MAKE~ARG: <RGT>
| ACT =
MAKE-ACT:<VAL>
|
| EWV =
<aenv0 | SLCT:< CTL EXP OLD OLD ENV OLD FIX ENV ENV OLD
RGT ENV ENV ENV DLD OLD EXT QLD >»>
| FIX =
<labelx*>:<LFT RGT ENV>
| EXT =
<axtend*> :<LFT VAL SAV>
>|in
monitor:<CIL VAL EXP NXT>).
monitor: {(1alld) (valvd) (ealed) (taltd)) =:
<la va oa ta cr | if:<hltT:ea <> monitor:<ld vd ed tdd>>>.
try:exp =: M:<O0EVL <> exp push:<halt <> <>> initenv>,

First L-realization (cont’d). The help function monitor traces registers CTL, VAL,
EXP, aad NXT, aud terminates the trace if the Aalt-action shows up in EXP.

172

<| CIL

| VAL

] ALU
] FIN

] ERR

| TAG
[LFT
[RGT
| SAY

| I8T

| -=>

H:(ctl0 val0D exp®) =:
rec: ({CTL

state labal

|
VAL ALU FTH ERR | values
EXP TAG LFT RGT SAV TST | exprassion
{NXT DLD) S1 82 ARG ACT | stack
(FND ENV) EO E1 E2) | environment
<ctl0 | IF:<ACTT:<EXP> <OAFL*> <QEVL*>>>
<val0 { SLCT:< CTL EXP EXP EXP 77?7 FTN ?P?7? 77?7 7?77 EXP
777 777 77?7 VAL EXP ALU ??? ERR »»
<apply*>:<EXP VAL>
<make-FTl*>:<LFT RGT ENV>
<make-ERR: (invalid function)#>
<oxp0 ! SLCT:< CTL EXP NXT NXT FND NXT RGT LFT LFT NXT
LFT TST LFT LFT NXT NXT RGT MAT >>
<tag#>: <EXP>
<1t t*>: <EXP>
<rgt+>:<EXP>
<cle»> :<EXP>
<tast*>:<VAL LFT RGT>
(continued)

Refined L-realization. Discussion: Section §.3.8 (¢f. Fig. 5.10). Continued, next page.

173

| (continued)<=-
|
| [NXT OLD] =
STACK:<51 S2 ENV>
] 51 =
SLCT:< CTL EXP <Qpop*> <Qpop*> <Qnop*> <Qpop*>
<0nop*> <Opgh*> <Qpsh*> <0pop*>
<Qnop*> <QGnop*> <QUpsh*> <Onop#*>
<Gpop*> <0pop*> <Onop*> <Gpop*> >
| 82 =
SLCT:<CTL EXP ??7 ?7t ?7TT ?7? 777 ARG RGT 7??
T?T ??7 ACT 77?7 P77 7TY? PP YT >
| ARG =
MAKE~ARG:<RGT>
| ACT =
MAKE-~ACT : <VAL>
| _
| [FND ENV] =
ENVIRDNMENT:<E0 E1 E2 SAV>
| EO =
SLCT:<CTL EXP <@pet*> <0sets> <0hld*> <Qset*>
<afix*> <0hld*> <Qhld»> <Quet*>
<0gat*> <Ghld*> <0hld*> <Qhld*>
<0sate> <Qgat*> <Qaxt*> <QOsat*>>
|] El =
SLCT:<CTL EXP OLD OLD EXP OLD LFT 7?77 7?7 OLD
RCT 777 777 ?7? OLD OLD LFT OLD >
| E2 =
SLCT:<CTL EXP 7?77 777 777 7?7?P RGT ?77 777 777
TT? TTT T TPT TET TTT VAL 7?77 >
>|in
ronitor:<CTL VAL EXP NXI>).
monitor: ((calcd) (valvd) (ealed) (nalnd)) =:
<ca va ca na cr ! if:<hlt?:ea <> monitor:<cd vd ed nd>>>.
try:exp =: M:<QEVL <> exp>.

Refined L-realization (cont'd). The help function moniter traces registers CTL,
VAL, EXP, and NXT, and terminates the trace if the halt-action shows up in EXP.

174

|
| torm - 5
I
tstl = (HUM 5}.
|
] form - (\i.i):5
|
tst2 = (APL (LAM I (IDE I)) (NUM 6)).
|
| form - one?:0 ~> err, zero?:0 =-> 0, err
I
tst3 = (CND (APL (IDE one?) (NUM 0)) (TST (ERR 0)
(CND {APL (IDE zod?) (NUX 0))
(TST (NU¥ 0) (ERR 1))))).
]
| torm = ((\f.(\a. f:a)):(\x.inc:x)):b
I
tstd = (APL (APL (LAM F (LAM A (APL (IDE F) (IDE A)}))
(LAM X (APL (IDE inc) (IDE X))))
(NUM 6)).
I
| form - F <= \X.\Y., (eq?:X):Y -> X,
| (167:X):Y > (F:X):((8ub:Y):X),
] (F:Y):{{sub:X):Y),
tstI = (LBL F
(LAM X
(LAM Y
(CHD (APL (APL (IDE eq?) (IDE X)) (IDE Y))
(TST (IDE X)
(CND (APL (APL (IDE 1t?) (IDE X)) (IDE Y))
(TST (APL (APL (IDE F) (IDE X))
(APL (APL {IDE sub} (IDE Y}) (IDE X)))
(APL (APL (IDE F) (IDE Y))
(APL (APL {IDE sub) (IDE X)) (IDE Y)))
NN,

ged: {x y) =: try: <O0APL <QAPL tstI <OHUM x>> <ONUM y>>.

‘I'rial Forms for L-interpreter Experimentation. Continued, next page.

175

]
| form - F <= \X. one?:X ~> X, (wpy:X):(F:{der:X)).
|
tstlL = (LBL F
(LAM X
(CHD (APL (IDE ome?) (IDE X))
(TST (IDE X) '
(APL (APL (IDE mpy) (IDE X))
(APL (IDE F) (APL {IDE der) (IDE X})N)N))).

fac:x =: try:<GAPL tstL <OQNUM x>>,

|
] torm = F <= \X, zed?:X -> 1,

] one?:X => 1, (add:(F:(dcr:x))):(decr: (der:X)).
]
tst = (LBL F
(LAM X
(CHD (APL (IDE zed?) (IDE X))
(TST (NUM 1)
(CND (APL (IDE ona?) (IDE X))
(TST (NUM 1)

(APL (APL (IDE add)
(APL (IDE F)
(APL (IDE dcr) (IDE X))))
(APL (IBE F)
(APL (IDE dcr)
(APL (IDE der) (IDE X)))))
1)),

fib:x =: try:<QAPL tstl <ONUM x>>,

Trial Forms for L-interpreter Experimentation (cont’d'). The forms tatl, tstL,

and tstN define the greatest-common-divisor, factorial, and Fibonacei functions. The

help functions ged, fac, and fib build applications for repeated testing.

& file:0/usiu/sdj /PhD/thesis/L/rep.d

ose id TOP POP MAKE-ACT MAKE-ARG)

& file:0/usiu/sdj/Phd/thosis/L/forme.d

) & file:0/usiu/sdj/Phd/thesis/L/M.R.d
' (M COERCE APPLY try)

£ try:tstl
(KUY 5)

& try:tst2
(lluM 6)

& try:tst3d
(nuit 0)

Lk try:tstd
(NUM 6)

& ged: (2 3)
(nuM 1)

¥ fac:4
(NUM 24)
£ fib:3
(nuy 3)
-4

)
DSI exit.

e

e

]

-

176

Load representtations.

(num? ide? lam? 1b17 apl? cnd? tst? bit? err? opr? ftan? f£ix? arg? act?
h1t? make~FTH make-ERR make-ACT make-ARG tag 1ft rgt cls halt 777 test a
pply push pop top find extend label initenv slct SLCT IF AND ACT? transp

+ Load trial forma.

((tstl tst2 tst3 tstd tetl ged tstl fac tstN 1ib)

- Non-linear specification
{Fig. 5.4}

Trialy -
- Form: &

- Form: (M.i):6

- Form: one?:0 — err,
zerol:0 — O, err.

- Form: ((\f.\a.f:a):
(\x.incxx)):5

L Createsl Common
Divisor

L Factorial

+ Fibonaced

t End-of-file

on ths trial.

Annotated Listing of Trial Runs on the Various Interpreters. The first trial

tests the non-linear specification of the L.interpreter. All trials are on the expression

forms defined on the preceding pages. Trials are continued on the following three pages,

L4

{4 COERCE RETURN APPLY try)

X try:tstl
(NUM B)

t try:tst2
(NUM 5)

k try:tst3
(o 0)

& try:tst4
(NUM 6)

& ged: (2 3)
(NUM 1)

& fac:4
(NUU 24)

& £ib:3
(HuM 3)

&

)

DSI exit.

{M tr try)

& try:tstl
{NUM 5)

& try:tet2
(UK B)

& try:tst3 T
(o 0)

& try:tst4
(NUH 6)

& ged: (2 3)
(NUM 1)

& fac:4
(NUM 24)

& 11b:3

. (NUM 3)

3

)

PSI exit,

& file:0/usiu/edj/PhD/thesis/L/U.S.d

& file:0/usiu/sdj/PhD/thesis/L/¥.I1.d

{Initialization Deleted)
- Stacking specification,
{Fig. 5.5}

1

45

$

L (ALi)s5

- one?:0 — err, zero?:0 ~+ 0, err

1

1

- ((\f.\a.f:a):)\x.incax)):5

- Greatest Common Divisor

1

- Faclorsal

b

f

- F'ibonaced

1

- End-of-file on this trial,

{Initialization Deleted)

+- First loop version.
{Fig. 5.6)

45

1

L (ML1):6

« one?:0 — err, zero?:0 — 0, err

L ((\f.\a.fa):)\x.incx)):5

1

. Grealeat Common Divisor

4

. Factorial

$

 Fibonacci

1

- End-of-fille on this trial,

'Trial Runs (cont’d).

177

178

(4 try)

k try:tetl
(NUY 5)

& try:tst2
(HUM B)

& try:tstd
(NUM 0)

& try:tst4
{NUM &)

& ged: (2 3)
(RUM 1)

& fac:4
(HUM 24)

& £ib:3
(NUM 3)

&

)

DSI exit,

& (M monitor try)

& try:tstl
(NUM 5)

& try:tst2
(NUM 5)

& try:tst3
(NUM 0)

& try:tstd
(HUM 8)

& ged: {2 3)
(NUM 1)

& fac:4
(NUM 24)

& £ib:3
(NUK 3)

-/

)

DSI exit.

1

{Initialization Deleted)

& file:@/usiu/sdj/PhD/thesis/L/U.12.d « Refined loop.

(Fig. 5.7}
45
- (ALi):6

+« one?:0 — err, zero?:0 — 0, err

1

- ((\f\a.f:a):\x.inex)):6
«} Greateat Common Divisor
« Factorial

« Fibonaces

~ End-of-file on this trial,

{Initialization Deleted)

& file:0/usiu/sdj/PhD/thesis/L/M.C1.d < First realization.

{Fig. 5.9)

« B

1

L (\L.i):5

1

- one?:0 — err, zero?:0 — 0, err

1

- ((\f\a.f:a):\x.incxx)):B6

. Greatest Common Divisor

3

« Factorial

- Fibonaces

1

1

- End-of-file on thia trial,

Trial Runs (cont’d).

179

{Initialization Deleted}

& file:0/usiu/sdj/PhbD/thesis/L/M.C2.d T Refined realization.

(M monitor slct-e SLCT-E ENVIRONMENT (Fig. 5.10}

slct-s SLCT-S STACK try) s
& try:tstl

{(NUM 6) « (M.i):5
& try:tst2

(HuM B) « one?:0 — err, zero?:0 — 0, err
L try:tst3

(HUM 0) «t ((\f\a.f:a):)\x.incxx)):5
& try:tst4 _

(NUM &) «t Greatest Common Divisor
& ged: (2 3)

(HUM 1) o Factorial
¥ fac:4

(UM 24) v+ Fibonacci
& £ib:3

{NUM 3) ot End-of-file on this trial.
4
)
DSI exit.

Trial Runs (cont’d). In the realization trials, the help function try is redefined to
return the content of the VAL register as soon as the kalt action appears in the EXP

register.

180

&
)

(EVL
EVL
EVL
EVL
EVL
EVL
EVL
EVL
EVL
EVL
EVL
EVL
EVL
EVL
EVL
EVL
EVL

DSI exit.

(1
777
(NUM B)
77
777
e
7
Y
7?7
77
7Y
717
77
7?7
777
777
777

(APL (NUM 5} (LBL
(UM B)

k file:0/usiu/sdj/PhD/thesis/L/M.R.d
(M COERCE APPLY try)
& try: (APL (APL (IDE add) (NUM 2)) (NUM 2))
(ERR (invalid function))

& file:0/usiu/sd]/PhD/thesis/L/M.C2.d

(4 monitor slct-e SLCT-E ENVIRONMENT
slet-g SLCT-§ STACK try)

& try:(APL (NUM B) (LBL X (IDE X)))

X (IDE X))) (HLT)
ARG (LBL X (IDE X)))

(ARG (LBL X (IDE X))) (HLT)

(LBL X (IDE X))
(IDE X)

(FIX (IDE X) beta)
(IDE X)

(FIX (IDE X) bota)
(IDE X)

(FIX (IDE X) beta)
(IDE X)

(FIX (IDE X) beta)
(IDE X)

(FIX (IDE X) beta)
(IDE X)

(FIX (IDE X) beta)
(IDE X)

(ACT
{ACT
(ACT
{ACT
(ACT
(ACT
(ACT
(ACT
(ACT
(ACT
(ACT
(ACT
(ACT
(ACT

(NUM
(NUM
(NUM
(UM
{NUM
(NUM
(Nuy
(HUM
(NUM
(NUM
(HuM
(HUM
(NUM
(UM

5))
5))
5))
5))
5))
6))
5))
6))
5))
5))
5))
6))
5))

6)) tC4

%

t

1

1

1

-

-

r=

Non-linear specifiation
= Load interpreler

- Evaluate B : (x <= x)
- Interpretation con-
verges lo an

error mesaage.

Circuit realizalion
- Load interpreter

- Evaluate B : (x <= x)

- Tracing CTL, VAL,
EXP, and NXT.

- Evaluator loops

- Daisy interrupled,

Demonstration that the Realization is Partiui. ‘The literal beta is Daisy's symbol
for a (mon-printable) function closure. Here the object is the environment field of an L-

function closure. The realization diverges because the derived interpreter is applicative

order.

181

(EVL
EVL
EVL
EVL
EVL
EVL
APL
EVL
EVL
EVL
EVL
EVL
EVL
EVL
EVL
APL
EVL
EVL
EVL
EVL
EVL
EVL
EVL
EVL
EVL
EVL

(LAM X

{CHD (APL (IDE zed?) (IDE X))

(HUM 2))

& try:tst

(1

777

777

(FTH X -*-)
777

(NUM 2)
(NUM 2)
777

277

777

777

(OPR ~*-)
777

777

(NUM 2)
(NUM 2)
(BIT [1)
777

77

777

777

(FTN X -»=)
777

777

277

(OPR -%-)

(18T

{APL
{LBL
(LAM
(ARG
(NUK
(ACT
(FTN
(CND
(APL
(IDE
(OPR
(ARG
{IDE
{NuM
(ACT
(OPR
(TsT
(APL
(IDE
(FIX
(LAM
(ARG
{APL
(IDE
(OPR
(ARG

& file:0/usiu/sdj/PhD/thesis/L/M.C2.d
(4 monitor slct-e SLCT-E ENVIRONMENT
slct-8 SLCT-§ STACK try)

k tst
(APL (LBL F

(IDE X)

(APL (IDE F) (APL (IDE dcr) (IDE X)))))))

(LBL F -*~) (NUM 2)) (HLT)

F (LAM X =-==)) (ARG (NUM 2))

X =) ' (ARG (NUM 2))
{(NUM 2)) (HLT)

2) (ACT (FTN X -»- beta))
(FIN X -»- beta)) (HLT)

X ~*- bata) (HLT)

(APL -%=) -»-) (HLT)

(IDE zed?) (IDE X)) (TST -x-)

zed?) (ARG (IDE X))
-»=) (ARG (IDE X))
(IDE X)) (TST -*-)

X) (ACT (OPR -»*-=))
2) (ACT (OPR =-%-))
(OPR -#=)) (TST ~*-)

-%=) (TST -*-=)

(IDE X) (APL -+-)) (HLT)

(IDE F) (APL =-*-)) (HLT)

F)

{LAM X =-*- bata)
X -%=)

(APL -»-))

(IDE der) (IDE X))
der)

-t—)

(IDE X))

(ARG (APL -%-)}

(ARG (APL =-»-))

(ARG (APL =-#=))

(HLT)

(ACT (FTH X -*»- beta))
(ARG (IDE X))

(ARG (IDE X))

(ACT (FIN X -*- bata))

1

1

- Load

. Test
form

- Try st

- SPN?

- SPN?Y

- SPN!

- SPNY
{cont'd}

Experiment with the Realization. [(F <<= (Mx. zero? :x — x, F : (der 1 x))) : 2]
is evaluated to show cycles wasted in testing for expression closures. Signals CTL, VAL,
EXP, and NXT are traced, The symbol = # = appears in place of output text that was
manually deleted. Useless closure tests are indicated by the annotation “*— SPNP".

182

EVL
EVL
EVL
APL
EVL
APL
EVL
EVL
EVL
EVL
EVL
EVL
EVL
EVL
APL
EVL
EVL
| EVL
EVL
EVL
EVL
EVL
EVL
EVL
EVL
EVL
EVL
EVL
APL
EVL
APL
EVL
EVL
EVL
EVL

777
777
(UL
(NUM
(UM
(UM
717
777
777
777
(OPR
777
777
(nud
(UM
{BIT
777
277
777
777

(FIN X -*-)

777
77T
777
{OPR
777
7T
{HuM
(NUM
(NUM
(UM
777
77
(L
777

2)
2)
1)
1)

_g—)

1)
1)
)

-*-)

1)
1)
0)
0)

(IDE
(NUM
(ACT
(oPR
(ACT
(FTN
(CND
(APL
(IDE
(OPR
(ARG
(IDE
(NUM
(ACT
(OPR
(TST
(APL
(IDE
(FIX
(LAM
(ARG
(APL
(IDE
(OPR
(ARG
(IDE
(HUM
(ACT
(OPR
(ACT
(FTH
(CHD
(APL
(IDE
(oPR

X)

2)

(OPR -%=))

_‘-)

(FTR X -*- beta))
X -»- beta)

(APL -%-) (TST -*-)}
(IDE zed?) (IDE X))

zed?)

-*-)

(IDE X))

X)

1)

(OPR ~%-))

*)

(IDE X) (APL -x=))
(IDE F) (APL ~*-))
F)

{LAM X =-+=) bota)
X =%=)

(APL -»-))

{IDE decr) (IDE X))
der)

—%)

(IDE X))

X)

1)

(OPR =*=))

-*-)

(FIN X -%- baeta))
X -*- beta)

(APL -#=)) (TST -*-)
(IDE zed?) (IDE X))

zaed?)
_g-)

(ACT (OPR
(ACT (OPR

-%-))
)

(ACT (FIN X -»- bata))
(ACT (FTH X -#~ beta))

(HLT)

(HLT)

(HLT)

(TST -=-)
(ARG (IDE
(ARG (IDE
(TST -»-)
(ACT (OPR
(ACT (DPR
(TST -#~)
(TST -+-)
(HLT)

(HLT)

(ARG (APL
(ARG (APL
(ARG (APL
(HLT)

(ACT (FIN
(ARG
(ARG
(ACT
(ACT
(ACT
(ACT
(ACT
(HLT)
(HLT)
(HLT)
(IST -»-)
(ARG (IDE
(ARG (IDE

(IDE
(FIN
(GPR
(OPR
(FTN
(FTN

(IDE-

X))
X))

~%=))
-%-))

)
-+-))
~%-))

X -%- beta))
X))

X))

X =-*- baeta))
-%=))

-%~))

X -*- bata))
X ~*-~ beta))

X))
X))

fcont'd)

~+ SPN?

« SPNY

« SPNY

- SPN!

1

- SPN?Y

1

- SPNY

“+ SPN?Y
{cont’d}

Experiment with the Realization (cont’d).

183

{cont’d)
EVL (OPR -*-) (ARG (IDE X)) (TST -*-)
EVL 777 (IDE X) (ACT (OPR -%-))
EVL 777 (NUM ©O) (ACT (OPR -=-)) ~+ SPN?
EVL (NUM 0) (ACT (OPR -=»-)) (TST -»-)
APL (NUY 0) (OPR -»-) (TST -»=)
EVL (BIT true) (IST (IDE X) ~-»-) (KLT)
EVL 777 (IDE X) (HLT)
EVL 777 (NUM 0) (HLT) —+ SPN?
EVL (NUM 0) (HLT) 3 ~+ Halt.
)
k
) D51 exit.

Experiment with the Realization (cont'd).

. | ' C. Proofs

Let FIB and G be defined by
FIBf1) <« (z €1) — 1, FIB(z-8} + FIB{z—1)}

Gfr, y, 2} <= (z=0)—y, Gfz—1, 2, y *+z).
Then for all a >0, FIB{a} = Gfa, 1, 1},
PROOF: Using induction hypothesis *“If a < & + 1 then FIB{a) = Gfa, 1, 1)".
Base Step.

FIB(O) = 1= G[0, 1, 1) AFIB, AG
FIB(1)=1=G[0, 1,8 =G1, 1, 1) AFIB, v, AG

Induction. Suppose 0 < a < k + 1 implies FIBfa} = Gfa, 1, 1}, Then

FiB(k + 2) = FIBfk) + FIB(k + 1} AFIB
=Gk, 1,1} + Gk +1,1, 1) LH., used twice
= Gtk +8 1, 1} Proposition £.9-1

Let FAC and G be defined by
FAC(z) <= [z =0) — 1,2+ FAC(z —1).
Glz, y) <= (2 =0} = y, Gz =1, z 3y},
Then Jor all ¢ 20, FAC[a) = Gfa, 1).

184

1856

PROOF: by structural induction on Int,

Base. FAC[0} = 1 = G0, 1)

Induction. Suppose FAC(k} = Gfk, 1}, Multiplication is commutative ard associative,
and the equation for G is an instance of the recursion scheme of Proposition 2.3-3.

Hence
FAC(k + 1) = [k + 1) » FAC(k) AFAC and (k + 1} #0,
=(k+1)s Gfk, 1} LH.
= Gfk (k+1)s 1) Proposition 2.8-8
=Gfk+1, 1) VG aand (k +1)#0

PROPOSITION 2.4-3.
Cansider the linear recursion scheme:
F(z) <= p(z} — flz} h{F(9(=)}
and the ilerative system

Gfz, y} <= pfz) — H{y, f(z)), Clo(z}, y).
Hz, y) <= pfz) — 1, Hly(z), hiy)).

For all a, Ffa} = Gfa, a).
PROOF:
CLAIM I: If pfa) is [alse then for all a and b, H{a, b} = h{H{y{s}), b}.
PROOF: By subgoal induction on H. Since pfa} is false, Hfa, &) = Hfgfa), h{k)).
Now if pfgfa})is true then
Hfg(s}, h(6}} = k{b) = h{H(g(a), b}}
Otherwise, by induction
Hig(a), ()} = h{H{gfg(a)}, h{b}]} = h{H[s{a)}, b))
This proves Claim I.
CLAIM II. If p(b)} is false then G{a, b) = h{G{a, g{b}).

PROOF: By subgoal induction on G. If pfa}is true then Gfa, b} = H(b, f{a)), which
by Claim | equals &{H(fg(b}, /{a})), since pf{b) is assumed false. Under the premise
that pfa)is true, this folds to A{G{a, g{b}}).

188

If p(a)is false then Gfs, b} = Gfgfa), b} = k{G{(gfa), g(b})) by induction. How-
ever, if pfe)is false, this also folds to A{G(a, g{b})}). This proves Claim II.

PROOF of the PROPOSITION: To show that for all e, Gfa, a} = F{fu), we proceed by
subgoal induction on G. If pfa}is true then

G(a, o] = H{s, [{a}} = [(a) = F{a).

Otherwise,
Gfa, o} = Gfgfa), a} AG
= h(Glyfa), g{a}}} Claim If
= h{F{gfa)}) LH.
= Ffa) GF

THEOREM 2.4-5.
Let F be defined by
F(z} <= p(z) — J(z), bz, Fla(z})).
and consider the specification,
Gfu, v, 7, y, 2) <= p(z) — L(u,m, u,m, [z),
Gfu,m, gz, m, m}.
L{e, v, z, y,)} <= pfz} — :, Mfy, gz, g2, u, :}.
M{u, v, 2, y, 2} <= pfz) — L{u, w, v, m, hfy, 2]},
Mfy, v, gz, gy,).
Far all a, F{a}) = Gfa,m, a,u, =),
DISCUSSION: Let g" denote the n-fold composition of g with itself. Observe that if F
converges on a, the result is of the form
kfa, h{ga, ..., (g™~ Va, fg"a)...))

(Some parentheses have been suppressed.) We adopt the following strategy for comput-
ing this term iteratively:

(1) Compute fg"a and call it =

187

(2) Fori=n-1,.. 0,compute y = g'a and set z to Afy, z).

The problem is to perform the loop in step (2) without the benefit of a counter. This is
done by noting that n is precisely the number of times g must be applied to zin order to

make p true. The strategy is implemented by introducing a “trailer” identifier that lags
behind the computation of g"z by ¢ steps, so that when g"z becomes true, the trailer
contains g™z, This value makes it possible to reconstruct the {** outer call. The solu-

tion schewme uses five identifiers

u — the initial value of the argument

v= a restart value for the next pass through step (2)
z— the value tested by p.

y— the trailer identifier

;= a value accumulator

As the statement of the theorem asserts, an iterative equation for F is

Glu, v, 7, y, 3] <= p(z) — Lfu,w, u,n, Iz,
Gfu,m, gz,m,).

Ly, v, 3, 9, :) <= pfz) = 2, M{u, ga, gz, u, :).

‘u{“r u4, W z} <= P(z} - L(": " vae, h(y) z))r
M(u: v, 9%, oY, :)0

G computes the inner term fp™z, then resets z to its initial value for the first pass
through the loop. L advances z by one step, saves that value for the next pass through

the loop, and sets the trailer to 2z’ initial value. M computes g™z by advancing z and
yin tandem.
CLAIM I: If p(b} ia Jalse then M{fa, b, ¢, d, ¢) = h{a, M{gua, gb, ¢, d, ¢)).
PROOF: By subgoal induction on M, depending on the value of pfc) and pfgh). If
pfc}is false, then

Lha. = Mfa, b, ge, gd, ¢) AM; -pfec)
= hfa, Mfga, gb, ge, gd, ¢)) LH.; =p(b)}
= r.h.a vM; —pfe)

Otherwise, if pfc)is true, then

Lhes. = Lfa,m, b, ., kid, c)) AM; pfc)
= Mfa, gb, gb, a, h(d, ¢)} AL; =pfb)
and
rha = hfa, Lfga, m, gb, &, h(d, ¢)} | AM; pfe)

Now il pfgb] is true, both sides reduce to hfa, kfd, ¢)). If not, then

Lh.s. = hfa, M(ga, ggb, gb; a, h(d, ¢))) LH.; ~p(gb}
= hfa, M{go, ggb, ggb, gu, h(d, e})} AM; —p(gb)
= hfa, L{ga, w, gb, u, k(d, c})} vL; -~plgh)
= r.h.o.

This proves Claim 1.

CLAIM II: If p{a} is false, then Gfa,u, c,m,u} = hfa, Gfge,u, c,m,m}},

PROOF: By subgoal induction on G; the case depends on the value of pfc).

CASE 1 {plc) ia false).

Lh.a, = Gfa,m, gc,u,n} AG
= hfa, Gfga, w, gc,n, n}) LH.
= r.h.a. \vir}

CASE 2 (p(c) is true).
Lhe = Lfs, m, a,m, fc) AG
= Mfa, ga, ga, a, fc} AL; -pfa}

And on the right,

188

1889

r.h.a = hfa, L{ga,n, ga, w, fc}} |ac

Now if pfga} is true, both sides reduce to Afa, fc); s0 suppose pfga}is false. Then

L.h.a = Mfa, ga, gga, ga, Jc) AM; —p{ga)
= h{a, M(ga, gga, gga, ga, fc}) Claim 1
= hkfa, L(ga,m, ga, ®, [c)} vL; ~p(ga)
= r.k.a. v

This proves Claim II.

PROOF of the THEOREM: To show that for all a, Gfa,w, ¢, mw, m} = F{a), we procecd
by subgoal induction on F. [n case pfa)is true, both sides reduce to ffa). If pfa}is false,
then

Gfa,m, a,m,m} = Gfa,w, ga,n, u} AG; —pfa)
= hfa, Gfga, », ga, m, u})} Clasm II
= h{a, G(gs}) VG; —p(a)
= hfa, F(ga}) LH.
= F(a) VF; ~pfa)

EXAMPLE 2.4-8

Let us introduce notation to abbreviate the stack operations. For values a and b,
and stack o, let the expression [[/a & / o]]] be an abbreviation for [pushfas, pushfs, o})].
Take the formal parameter [fu v /o’/]] to mean that the identificrs u and v name the
top two elements of the current stack and o’ names the current stack, understood to be
called o, with ¥ and v removed.

Applications of 1-place operations are abbreviated by suppressing parentheses

around the argument. For example, we shall write g, (z) simply as g,z.

The initial specification is

190

Sy F(z) <= p(z) — ¢, hf F(Qg’): F(Q;:‘))

The first step of the transformation introduces the stack and a return function R.

F(z,0) <= R((p(z) = ¢, h(F(Ug:}: F(ﬂ,’)}) o).

R(z, o) <= emptyffoc} — v, 000,

Use rule (2) to distribute R through the conditional,

F(z, 0) <= pfz)— Rfc, 0}, R{ h{ F(ﬂg’): F{Qﬁ)): o).

Rfv, o) <= empty?f{u) — v, 000,

Define ¢’ = Mfy,, F(yJj; r = F{gz); and t = gz. Allocate an action value, a = 0. By

rule (3), transform §, to

Flz, 0) <= p(z)— Rfec, 0}, R{ Flgg), [0 gz !a]).

Ry, [w: lo']}) <= emplyflo) — v,
atffw, 0) — R{ kv, F(z})}, ¢’), OO0,

By rule {1} we can get rid of the second call to R in the equation for F.

F(z, 0} <= p(z) — Rfec, o), F(go% [0 g, lof).

s Ry, [w:lo’]) <= emptyflo) — v,
atffw, 0} — R{ h{v, F(z})), ¢’}, 000,

Let ¢’ = Afy, , y,); r = F(z); and ¢t = v. Make the final transformation according to

step (3), with new action value a = £,

181

Ffz, o) <= p{z} — R{c, o), F(5% IO g,t tof).

Rfv, lwz!o’]} <= emptyflo} — v,
 atffw, 0) — F(z, [1,v10’))
atffw, 1) — R h{v, z), o°).

PROPOSITION 4.2-1
For all environmenta p, and all expresaions’e and ¢,
DI(A[htt] . h)y:<ele™> p=Dfelp
and

D[(X[h!t].t):<ele> Jo=D[c]p

PROOF: Both nssertions have similar proofs, differing only in the last few steps. Only
the second proof is given here.

DI(A[h!it].t):<ele’ >]p
= d-apply (DX [hit] . t]p) (D[<ecle >]p) AD
= deapply (A v. D([t]p[v/ (11¢]]) (D[ele , DLels) AD, twice
=(xv. D[the[v/ [a1¢]]) (D[elp , Dep) Ad-apply
= pe]p[(PLele, DUele) /iy subatitution
= p[(Plele, DUeDo) / rgg]re) AD
=ple’lo/t][D0DeBe/ h](t) AEnv. eatension
= p{D[e'Yo/t]rt) AEnv.
=D[e']p AEnv,

192

PROPOSITION 6.3-1 '
Fora:Env—Val, fiz(Ne.aple /i) J=a (fe(Xp'plap’/i])

PROOF: Let p, = fiz X p’.plap’[i, and define v, = ap,. Since g, is a fixed point,

2o = plan, /1] = plv,/ i]. (*)
Hence,

v gapa =aplv,/]
and so v, is o fixed point of (Ae .aple/f]). Let v, be any other fixed point, and define
p, = p[v,/i]. Then since v, is a fixed point, consider
o, = o2/ i1 10) = plap, /7]
Thus, p, is a fixed point of Xp”. p{ap’/ i]; hence pa E p,. By (+) we have
oleg/i1=,E 0,2 olv, /]

Since p, and p, only differ at i, it must be that
plv,/ illi) = v, E v, = o[v, /i](i).

That is, v,is the minimal fixed point. Therefore,
fir{ Ae.aple /1]) = —ap,,—n(ﬁz(kp plap’/i])

D. Symbols

a, b, ¢ = constant symbol, 17
z, ¥, ¢ — identifier, 17
P, ¢ — predicate symbol or propositional expression, 17
r, 8, { — term or expression, 17
¢ — expression, 17
F, G, H — lanction variable symbol, 17
p — r, 3 — conditional expression, 18
F{z}<= r. = recursive function definition, 19
» — inderterminate, or “floating” value, 16
I — register initializer, 51
¢ ~ value token in a schematic, 53
[/] = component counterpart to an operation symbol, 51
E] — register, 53
Z = identity component, 127
[...]] = syntactic quotation, 17
A + B - separated sum domain, 42
A X B — product domain, 42
A — B - contintous function domain, 42
JtA—=B—-fE A—B,43
(-} = pairing operation, 43
#|0, #|1,... = projection for domain pairs, 43
#sD, #aaA, ¥inD — inspection, restriction, and injection for domain sums, 43
E — domain element designator, 41

C — approximation ordering, 41

193

194

L — minimal approximation, 41
A z.e¢ — abstraction of e by z, 42
Auv].e=Xz.efz]0)(z]1), 44
= - strongly equivalent, 71

Sig,, — the domain of signals over D, 62

d® — constant signal, 62

AF — “by unfolding F's definition'’, 21
vF - “by lolding F’s definition”, 22
I.H. — “by induction hypothesis”, 27
¢, = verification condition for F, 25

z? — initial value of signal X, 55

X @" — hehavior of signal X at time n, 52

K* - constant operation, 31
7 — projection operation, 31
fg — serinl combination of operations, 31

<..> = parallel combination of operations, 31

‘ ’..” ‘
e[! "] ~ a substitution, 21
T

1o Ey
T = trauslator from applicative terms to combined operations, 32
T, D, &L, - a valuation fenction, 46, 70—-75, 102
R - L compiler, 104
Rep, = a representation for V, 103
ezp, ¥[...] = abstract value of, 103

[tag..] — represented value, 103

INDEX

188

Index

A

Abstract component, 13, 87, 01-98, 140
Accumulator, 9, 37
Action, 38-39, 88, 110
Actunl expression, 124
Application
—, Daisy, 71
—, of a component, __
Applicative
— premise, 1
— style, 1
— language, 65
apply, 44
— companent, 93
Approximation ordering, 41
Autonomous processes, 142
Axioms, for serialization (see serializalion}

B

Backus-Naur notation, 46

Balanced format, 29, 33

Behavior, 3, 52, 62—63

Behavioral equivalence, 52
Bidircctionality, 141142

Bool, 41

Branched conditional format, 25, 20

C

Call-by-name, 65-87
Call-by-value, 05—067
Carrier, 16
Circuit

— description, 52

~—, in Daisy, 70

-~ F, 130—-131

-G, 131-133

— H, 133-137
Clock, 60
Clositre, 11, 66, 106—107
Combinator, {0
Combinatorial component, 51
Combined operation, 31—32

Communication, 03, 142-144
Compilation, 2, 100
Component, §, 10, 63

—, in Daisy, 7980
Computation rule, 66, 139
Conditional expression, 18
Connective storage, 123—124
Constant, 16

~— combinator, 44

~— operation, 31

— signal, 62
Continuation, 12, 46—48, 119
Continuous, 41
Control

~ algorithm, 7

— token, 34, 37, 89, 112, 139
Convergent term, 23
Creativity, 28, 145
Cuny-Snyder model, 123-124, 137
curry, 44

D

Daisy, 4, 65, 139
~, kernal language, 69
—, standard semantics, 69-78
Pata recursion, 10, 78
Data-flow, 123
Defining equation, 19
Delay rule, 86
Demand driven, 65—~660
Device, 80-81
Dig, 16, 143
Digital asynchrony, 142
Digital circuit design, 1
Digital system, &
Direct interpreter, 89
Distributivity
-~ of conditionals, 2031, 48—49, 93-04
— of lifting, 56-59, 91, 138
Domain, 41—-42
Don't-care, 16
Don't-know, 16

i .

Engineering, 2
Environment, 21, 65

— in Daisy, 70-71, 125

—, representation in L, 104
Experiment, 68-69, 81

—, in Daisy, 81—-86, 96-98
Expression, 18

F

FAC, 10, 22-23, 97, 37, 45, 60, 08, 81-84
Feedback, 2
FIB, 19, 37, 60, 08, 8285, 05-907
FP programming, 8—-9
fiz, 44, 108
Fixed point, 44
Flewchart, 138
- in circuit design, 5, 138—130
Flowchartability, 3, 36
Folding, 21
— circuits, 13, 121—122
Formal expression, 124
Formal parameter, 17
Function variable symbol, 17
Function, 3
Functional, 4

G

GCD, 19, 61-02, 68, 82—-86, 139
get, 143

Global identifiers, 19

Gluing, 126—120

Go, 146

Ground term or expression, 19

H

Higher level components, 88—98
History (of values), 5, 8

[

fde, 41
Identifier, 17, 41
Identity component, 127

Indeterminate constant, 10
Induction, 24—-27

—, structural, 24—25

—, subgoal, 26—27
Infinite sequence (in Daisy), 78—79
Injection, 43
Input-output assertion, 25
Inspection, 43
Instance (of o scheme), 20
Instantaneous bebavior, 51
Instruction, 13, 39, 87, 92, 140
Int, 17
Iterative, 3, 15, 20, 27—-28, 138

Kernel language, 80—77

L

L (language), 12-13, 88, 100—120
-, continuation semantics of, 120
—, interpreter for, 101~103
-, standard semantics of, 101-103

Ly 18

Ly, 18

Lg, 51

Lo 18
-, as a data type, 45

Lambda abstraction, 42

Language driven design, 99—100

Lazy evaluation, 68

Lifting, 6, 53, 138

Linear specification, 6, 20

Lincarization, 37, 46

Lisp, 8, 65, 71

Lucid, 9

M

M, 105—144

Message, 09

Metalinguistic variables, 17
Multiphase clocking, 144
Multiple valued operations, 49
Multiplexor, 30

muz, 30-31

187

198

N S

n-place, 168 Satisly a definition, 20
Nmi, 41 Schedule, 124, 140
— derivation, 124, 126-137

O - specification, 131

Schematie, 4=5, 53
Operation, 16 ’ Scott-Strachey notation, 4, 7, 18, 40-45,
Output driven, 70-81 139

Selection, 30
P Self-timing, 142

Serial combination, 31, 44
Packaged combination, 13, 87, 80—91, 95, Serialization, 121-123, 140

114, 140 . - axioms N, G, E, F, § , 125
Padding, 29, 33 - —rules T, A, A, M, 1, 126129
Pairing, 43 Serious, 18, 39
Paralle] combination, 31, 44 Signal, 9, 50, 6~032, 139
Partial correctness, 2, 26 — equation, 52
Predicate, 18 ~ expression, 50—51
Probe, 71 Simple loop, 8, 12, 59—061, 139
Process, 10, 63 Simplification, 21
Program, 4~5, 27 Single-pulser, 143144
Projection Solution
— combinator, 44 —, as a fixed point, 45
— operation, 31 —, of a specification, 22
Prolog, 141 Specification, 2-4, 12, 15-19
Propositional expression, 18 - of control, (see
put, 143 Stability (in circuits), 83, 139

Stack, 38
Q, R — component, 92
Standard semantics, 45—47
Rank, 17 State, 9
READY, 85 Stream, 10—11
Realization, 2 Strict, 23, 128

- |language, 12, 50-53 —, Completely, 23

— of a specification, 56 strict, 80
Recurrent, 18 Structured
Recursion, 44—45 - digital design, 7, 13

-, data, fsee reflezivity) — programming, 7

— cquation, 2, 16—23 Substitution, 20

— scheme, 15, 20 Suspension, 11, 68
Reduction, 21 Synthesis, 2
Reflexivity, 10, 45 - of iterative form, 36—40

Register, 5, 50-83
Representation, 103105
~ problem, 145
Restriction, 43
Rules, for serialization fsce Serialization)

199

T

Tag, 103—-104
Term, 18

Trapsformation, 2, 138
Tronsparency, {see distributivity

transpose, 03
Translator (7), 32, 58—569
Trivial, 18

U

U, 28, 33-30, 54

U, 35

uncurry, 4

Underlying type, 5, 15—10
Unfolding, 21

Universal schemes, 35
Universal type, 15

v

val, 21—23

VALUE, 55

Valuation, 20-23

Verilication condition, 25, 145

w

 Wand-Fricdman construction, 38—40, 88,
110

X, Y, Z

Vita

Steven Dexter Johnson received a B.A. in Mathematics and Rus-
sian from Depauw University in 1970. He completed an M.A. in
Mathematics at Indiana University in 1972 and an M.S, in Com-
puter Science in 1977. From 1977 to 1970 he was a Member of
Technical Staff at Bell Telephone Laboratories, Holmdel, where he
was involved in the development of design and manufacturing aids

for hardware.

Since 1979 he has been a Research Assistant and then Visiting
Lecturer at Indinna University. He is a member of the Association
for Computing Machinery and of the IEEE Computer Society.

