
INFORMATION TO USERS

This reproduction was made from a copy of a document sent to us for microfilming.
While the most advanced technology has been used to photograph and reproduce
this document, the quality of the reproduction is heavily dependent upon the
quality of the material submitted.

The following explanatiotuof techniques is provided to help clarify markings or
notations which may appear on this reproduction.

1.The sign or "target” for pages apparently lacking from the document
photographed is "Missing Pagc(s)” . If it was possible to obtain the missings
page(s) or section, they arc spliced into the film along with adjacent pages. This
may have necessitated cutting through an image and duplicating adjacent pages
to assure complete continuity.

2. When an image on the film is obliterated with a round black mark, It is an
indication of cither blurred copy because of movement during exposure,
duplicate copy, or copyrighted materials that should not have been filmed. For
blurred pages, a good image o f the page can be found in the adjacent frame. If
copyrighted materials were deleted, a target note will appear listing the pages in
the adjacent frame.

3. When a map, drawing or chart, etc., is part o f the material being photographed,
a definite method of "sectioning" the material has been followed. It is
customary to begin filming at the upper left hand comer of a large sheet and to
continue from left to right in equal sections with small overlaps. If necessary,
sectioning is continued again—beginning below the first row and continuing on
until complete.

4. For illustrations that cannot be satisfactorily reproduced by xerographic .
means, photographic prints can be purchased at additional cost and inserted
into your xerographic copy. These prints are available upon request from the ■,
Dissertations Customer Services Department.

5. Some pages in any document may have indistinct print. In all cases the best
available copy has been filmed.

University
Microfilms

International
300 N. Zoeb Road
Ann Arbor, Ml 48106

8321375

Jo h n so n , S teven Dexter

SYNTHESIS OF DIGITAL DESIGNS FROM RECURSION EQUATIONS

Indiana University Ph.D. 1983

University
Microfilms

International 300 N. Zeeb Road, Ann Arbor, Ml 481 OS

Copyright 1983

by

Johnson, Steven Dexter

All Rights Reserved

Synthesis of Digital Designs from Recursion Equations

BY

Steven Dexter Johnson

Submitted to the faculty o f the Graduate School

in partial fulfillment o f the requirements for the degree Doctor of Philosophy

in the Department o f Computer Science, Indiana University

May, 1983

©1983

Steven Dexter Johnson

ALL RIGHTS RESERVED

It

Accepted by the faculty of the Computer Science Department, Indiana University,

in partial fulfillment of the requirements for the Doctor of Philosophy Degree. *

Doctoral Committee: (Chairman

Danis. Win

Denit I P. Frttdman

John OVonntU

Frtnilin P. P to tn r

MtitktU WW

G ttrft J. M ini) (Miner A n ito r)

May 13,1083

1U

Abstract

Synthesis o f D igital Designs from Recursion Equations, by Steven Dexter Johnson

The discipline of applicative program design style is adapted to the design of digit at

(sometimes called synchronous) systems. The result is a powerful and natural methodol

ogy for engineering correct hardware implementations. This dissertation presents a

method to develop digital/synchronous system descriptions from recursive specifications;

offers a prototype genera] purpose modeling language th a t supports this design task; and

makes a formal connection between functional recursion and component connectivity

th a t is pleasantly direct, suggesting tha t applicative notation is the appropriate basis for

digital design.

Design is a translation of notation from an abstractly descriptive speciTieafton to a
concretely descriptive realization. Recursion equations are used as a specification

language. The realization language is another form of recursion in which variables

denote sequences (rather than functions) that represent digital component behavior.

Self-rcfcrence in realizations corresponds to feedback in a physical implementation.

Synthesis is a method for constructing realizations tha t are guaranteed to meet

their speciGcations. It is a synonym of “engineering" peculiar to computer science,

where the concern is not only with methods but also with their automation. This term

suggests a factor of human guidance, as opposed to compilation which does not. Realiza

tions can, however, be compiled from iterative speciGcations. Even for the case of non

iterative speciGcations, synthesis of an iterative version is the primary tactic here. This

tactic formalizes the conventional digital design technique of decomposing a circuit into

an architecture and a Gnitc state controller.

The formal setting for a discussion of this topic is the calculus of Scott and Stra-

chey. A speciGcation denotes the Gxed point of a functional; a realization denotes a

Gxed point in a domain of sequences. This approach to synthesis, then, is yet another

application of modeling "function recursion" with “data recursion", or reflexivity. An

interpreter has been implemented for Daisy, a dialect of the Scatt-Strachey notation.

Any description expressed in Daisy can be directly executed at successive steps in its

evolution. Thus, the natation that serves as the medium of engineering serves also as a

iv

vehicle Tor experimentation. This is im portant to the practice of design because the

engineer can explore some aspects of performance without expensive constructions of

hardware prototypes, or risky recadings in a simulation language.

Two examples follow, A non-trivial exercise in language-driven design, derivation

of a controller for an applicative language interpreter, reveals tha t powerful global struc

turing techniques, such as hierarchical decomposition and da ta abstraction, are inherited

immediately from the functional style of description. ExecutabiUty of the current

description at each stage of the derivation provides a model for testing representation

decisions and trivial modifications. Next, a specialized algebra is developed to address a

typical local refinement problem: reducing external connections by means of serialization.

Thus, local as well as global design problems yield to the applicative method.

Applicative notation is especially suitable for digital circuit description because the

basic algebra is the same in both realms. Even though the underlying symbols are inter

preted differently (f.e. operations vs. components; values vs. signals) the manner of com

bining them (e,Q composition/construction vs. serial/parallel wiring) is identical. Hence,

recursion equations, M cCarthy’s mathematical basis for the science of computation, is

fitting for hardware design because it so well reflects the pkyttcal basis of computation:

digital electronics,

Acknowledgements

I would like to thaak Daniel Friedman and David Wise for their guidance and sup

port throughout a most interesting course of study. They have shared both knowledge

and learning with me, which is to say they are good teachers. 1 am grateful.

In the past year, David’s infectious enthusiasm and ability to nurture emerging

themes have been crucial to the progress of this investigation. He has skillfully worn all

the hats of a research director, but I value beyond th a t his friendship and patient

encouragement.

John O'Donnell, Franklin Prosser, and Mitchell Wand contributed a diversity of

perspectives on the subject I chose to investigate. I hope tha t each is reflected here in a

fair light, I thank my committee for their attentive reading of the drafts or this work

and apologize to them for any remaining errors.

The programming language presented herein was implemented by Anne Koblstacdt

and myself, between September 1080 and June 1982. Its development continues. Wc

gained much from earlier implementations to which Cynthia Brown and Casper Martin

contributed. This project was funded in part by the National Science Foundation,

under grant numbered M CS-77-22325.

I am indebted to my parents, Anne and Dexter, for bequeathing to me a taste for

knowledge and providing for me the opportunity to pursue it.

It is somehow saddening to write th a t Jennifer Deam, who devoted the same por

tion of life as I did to this endeavor, must now make do with a brief acknowledgement.

If her contributions to this work, and presence in it, are intangible to its readers, it is
comforting to know that she shares the joy of its completion. And so, to Jennifer, with

love, I thank you.

— adj ~

vi

Table of Contents
Chapter Page

1. In tro d u c tio n1

1.1. Sum m ary.................. 4

1.2. Belated R esearch... 7

1.2.1. Sequential Formal M odels... 8

1.2.2. Operational Aspects of Modeling ..10

1.2.3. Other Motivations...,... 11

1.3. Outline of the Presentation..12

2 . T h e S pecification L a n g u a g e .. IS

2.1. Typed Recursion Equations...10

2.2. Solutions to Specifications.. 20

2.3. Reasoning about Recursion Equations...................... 23

2.3.1. Structural Induction ...24

2.3.2. Subgoal Induction..25

2.4. Transformations on Recursion Equations...27

2.4.1. Grammatical Transform ations..20

2.4.2. Distributivity of the Conditional and M ultiplexors ;....... 20

2.4.3. Combined O perations...31

2.4.4. Universal Schemes... 33

2.4.5. Synthesis of Iterative F o rm 30

2.5. The Scott-Strachey N otation.. 40

2.5.1. Flat Domains.. 41

2.5.2. Non-flat Domains...42

2.5.3. Domain O perations... 43

2.5.4. Functionals.. 44

2.5.5. R ecursion.. 44

2.5.0. ReflexIvity... 45

2.0. O ther Issues..45

2.0.1. Specifying the Specification Language.. 45

2.0.2. Specifying C on tro l.. 40

2.0.3. Distributivity of the Conditional, Revisited.................................... 43

2.0.4. Multiple Valued Functions..40

vii

Chapter Page

3. T h e R ea liza tio n L a n g u a g e ...50

3.1. Digital Circuit Descriptions..51

3.2. Translation to Circuit-Dcscription Form ..53

3.3. Decomposition of Combined Com ponents..50

3.4. Circuit Synthesis..50

3.5. A Domain Model of Behavior..02

4 . D a isy .. 05

4.1. Operational Semantics - a Sum m ary............................. 05

4.2. The Language... 07

4.3. Formal Semantics of a Subset of Daisy..00

4.4. Circuit Emulation...78

4.4.1. Non-Gnite Data S tructu res.. 78

4.4.2. O utput Driven C om putation... 70

4.4.3. Experimentation with Realizations 81

5 . D esign E x a m p le s .. 87

5.1. Higher Level Com ponents..88

5.1.1. Packaged Combinations.. 80

5.1.2. Abstract Com ponents... 01

5.2. Language Driven Design - In troduction... 00

5.3. Application to Language Driven Design...100

5.3.1. The Language L ... 101

5.3.2. An L-interpreter..103

5.3.3. DeGnition of IM ...105

5.3.4. Stacking Version of IM... 110

5.3.5. Simple Loop for the L -in tcrpreter...112

5.3.0. Some ReGnements in the Loop Version.. 112

5.3.7. Realization of IM.. 114

5.3.8. ReGned Realization of IM ...114

5.3.0. R em arks... 110

vili

Chapter Page

6. C irc u it R e f in e m e n t ... 121

0.1. Transformation Axioms ...124

0.2. General Transformations and their Behavioral Interpretation..........120

0.3. Scheduling Derivations... 120

6.3.1. Circuit F .. 130

0.3.2. Circuit G ... 131

0.3.3. Circuit H ... 134
0.4. Rem arks..130

7. C o n c lu s io n ...138

7.1. Review..138

7.1.1. Iteration... 138

7.1.2. Circuit Synthesis..130

7.1.3. Circuit Refinement.. 140

7.2. Limitations of the Approach... 140

7.2.1. Bidirectionality... 141

7.2.2. Digital Asynchrony, Communication, and Integration................141

7.3. Prospects for Research... 144

7.3.1. Multiphase Clocking...144

7.3.2. The Realization Language os a Formal System145

7.3.3. Other Topics...145

7.4. Final R em arks.. 140

S elected B ib lio g ra p h y ... 147

A p p en d ix

A. True Syntax of D aisy..154

B. Source for Experim ents.. 157

C. Proofs..184

D. Table of Symbols .. 193

In d e x ..190

ix

List of Figures

Figure Page

2.1 A Standard Semantics for Terminal Term s... 47

4.1 Daisy Expression Syntax..OS

4.2 Daisy’s Kernel S y n tax .. 72

4.3 Conversions to the Kernel Language.. 73

4.4 Daisy's Standard Semantics

a. Domains... 74

b. Valuation...75

c. Auxiliaries..70

4.5 Some Daisy Operations... 77

4.6 Daisy Component Implementations...80

4.7 Experiment with the FAC Realization..84

4.8 Experiment with the FIB Realization...85

4.0 Experiment with the GCD Realization.. 80

5.1 A Schematic Tor Circuit C .. 94

5.2 Experiment with CF|Q

a. Source for the Realization.. 97

b. Record of an Experim ent... 98

5.3 Standard Semantics of the Language L ..102

5.4 Non-linear Specification for an L-interpreter...100

5.5 Stacking Version of the L -in terpreter... I l l

5.0 Simple Loop for the L-interpreter.. 113

5.7 Refined Loop for the L -in terpreter.. 115

5.8 Higher Level Components for the L-realization.. 110

5.9 Realization of the L -in terpreter... 117

5.10 Refined L-realization...118

5.11 Continuation Semantics for L ... 120

A .l Present Daisy S y n tax .. 154

A.2 Examples of Conversions to Present Daisy S y n tax 155

x

1. Introduction

Advocates or applicative "programming" style claim th a t it is somehow closer to the

intuitive process of conceiving an algorithm, and is, therefore, the proper notation for

the development of computations. Since few deny the need for better programming

methods, this "applicative premise" has received a good deal of scrutiny over the past

twenty years. Much of this research demonstrates th a t the approach is viable; tha t is, it

shows tha t the discipline can be used successfully to attack problem classes that a t first

glance nppenr to be beyond its capabilities.

The research reported here began as a test of the applicative premise in a funda*

mental and difficult problem area: the design of hardware. The original approach was to

make an earnest attem pt a t denial of the premise by showing th a t it was not an

appropriate basis for addressing the problem of circuit description. The attem pt failed,

for I found thut a purely functional notation is quite viable for digital circuit design, and

is in some ways preferable to conventional engineering. The substance of this investiga-

tion lies in the design method th a t evolves from strict adherence to applicative style.

The main conclusion here is th a t hardware designers can be comfortable with this

method because they hnvc been thinking appHcativcly all along. By adopting a digital

implementation technology the designer orients a circuit in time and thinks of it as n

function (on state) rather tbnn as a feedback system in equilibrium. This temporal con

straint on product behavior reflects an abstraction from, and a simplification of, the phy

sical elements of electronics. The abstraction is made in order to attain a tractable intel

lectual basis for organizing behavior. Of course, abstraction is a quality of any design

discipline; hut the correlation between the motives of digital design and applicative style

is not merely superficial; the means of abstraction—functionality—is the same.

1

2

Automation of circuit design—and automation is an eventual goal of this work—

entails Gilding a representation for circuits, This appears to be a profound obstacle to

applicative style, for it necessitates building a data structure th a t describes feedback, a

manifestly circular physical quality. It is not immediately obvious how to construct cir

cular data in a notation th a t prohibits expressed side effects. The solution is to use

recursion (i.e. reflexivity through fixed point constructions) to describe connectivity. In

doing so, one simultaneously obtains a description of the product and a model of its

behavior.

Design is viewed as a translation of notation, starting with a specification and end

ing with a realisation. The specification language should be abstractly descriptive; its

main purpose is to convey thought. The realization language should be concretely

descriptive in the sense th a t it portrays an implementation accurately enough to serve as

a starting point for fabrication. Specifications will be systems of typed recursion equa

tions expressed in the style of McCarthy (1003). The realization language is a linear

form of circuit schematic in which the connectivity of the circuit’s components is
expressed by equation rather than a drawing of boxes and lines.

Manna defines synthesis to be "the theory for constructing programs [read: realiza

tions] tha t arc guaranteed to be correct [with respect to their specifications] and there

fore do not require debugging or verification” (1974, p. 219), It is a synonym for

enyineeriny tha t is peculiar to Computer Science, which is concerned not only with

methods but also their automation. It is used here to suggest a system th a t employs

human guidance to produce realizations (as opposed to compilation, which does not).
However, I do not present a mechanized system here; synthesis is carried out by hand,

although some of the steps clcnrly can be automated. An essential feature of synthesis is

that the meaning of the specification is preserved, or at worst, altered in a perceptible

way. For example, realizations may be acceptable even though they are only partially

correct; tha t is, they produce the correct answer whenever they “halt” but sometimes

diverge when the specification does not. The designer may prefer to strengthen the

specification, rather than reject the realization, according to some ulterior motive (such

as a presupposed architecture). The process of synthesis gives a context for this kind of

decision making.

The method of synthesis used here is transformation, A collection of correctness

preserving rewriting rules is used to derive realizations. Burstall and Darlington (1077,

3

p. 46) characterize this method as "an inference system in which the sentences are recur

sion equations.” Transformation is a relatively direct form of synthesis, a formalization

of step-wise refinement. Other forms generate realizations as a byproduct of some other

activity, such os the proof of a theorem1 (Manna and Waldinger, 1071, 1070).

The conventional approach to digital design centers on the development of a

sequential algorithm to control the architecture of the circuit. The controller is usually

presented as a finite state machine, flowchart, or imperative (i.e. statement-oriented)

program. Various methods exist to translate this abstraction of control into hardware.

The control algorithm serves as a basis for making representation decisions about the

architecture. The approach presented here is fundamentally similar although it is car

ried out in a functional notation. The initial objective of transformation is to find a ver

sion of the specification tha t is in iterative form. From there, construction of a circuit

description is straightforward. Since iterative form characterizes “ flowchartability,” its

synthesis has been studied as a means to derive programs. The fruits of this research

are directly applicable to circuit synthesis.

Use of a functional specification style must be justified partly as a m atter of prefer

ence. It is an attem pt to cast design in a clean mathematical setting. If, as is the case

here, the principal goal is correctness, then an unambiguous meaning for source and ta r

get notations is a necessary starting point. Functional style has additional advantages

as a basis for digital hardware design. The fun c tio n a l programmer” and the digital

designer have similar vocabularies. The ubiquitousness of the word "function” in their

discourse is testimony to that similarity. To the programmer however, “function" is

more a noun; to the circuit designer it is more a verb. The programmer deals with

operations and values; the designer deals with components and signals. In the latter case

a notion of orderly activity over time is implicit: a component bchavca. T h a t is, the pro

grammer and the designer think in the same sentences but with a different semantics.

Nevertheless, they use the same algebra, manipulating basic symbols by such rules as

composition (wiring in series), structural combination (wiring in parallel), and the use of

selection (multiplexing) to achieve a function (functioning). I exploit this commonality

to nebieve a basis for design.

'What constitutes a specification or realization is relative. In the synthesis system cited here,
recursion equations serve as the realization language.

4

Specification and realization meanings are unified in the functional stylist's

metalanguage: the calculus of Scott and Strachey, This language bos a computable

semantics, and an interpreter is presented for a crude dialect called Daity. Daisy could

serve as a medium for transformation, but its role in this investigation is onty as a vehi

cle for experimentation. Direct executability of the descriptive notation bos three practi

cal benefits, The evolving design can be demonstrated without prototyping or transla

tion to a simulation language. Gaps in the automation of synthesis can be bridged

empirically (Mere the gap is quite large since none or the synthesis is yet automated).

Most important, emulation of target behavior can reveal properties of performance that

arc not addressed formally, either because they are not describable in the specification

language or because they are not worth establishing through formal means.

The early chapters tha t follow make the formal connection between specifications

and realizations. Later, this foundation is applied to two non-trivial design tasks: a con

troller for n programming language interpreter is synthesized, and a specialized transfor

mation system is defined to address a problem in local circuit refinement. It is shown

that various standard structured design techniques arc reflected naturally in this metho

dology (Section 1.3 expands this prospectus),

1.1. Summary

The following expressions are substantially equivalent:

Ffa) w here F(x) <5= pfx) — f(x), F(y(x)). (S)

x := a {

w hile -'ji(x) do x := ij(x}\ (P)

* : = / (x)

X - a ! <j(X)

READ Y - p(X) (C)

VAL UE = f(X)

Specification S defines its value as the output of a recursive function F, whose defining

equation has the structure generally associated with the program P. The system C is a

5

linear description of the schematic2 for the register transfer circuit

R E A D Y

VALUE

The component |J] is a clocked storage element that for brevity 1 shall call a register, A
synchronizing signal is common to all registers and, like the power supply, is suppressed

in the schematic. The token (•) indicates that the register has been initialized with the

value a, or more generally that the circuit is now in a state in which its register contains

a. Id S and P the ground symbols p, f, and g are primitive operations, part of the voca

bulary or a fixed (but often not otherwise specified) underlying type for making

specifications. The circuit components [FJ, and [7] are counterparts of operations,

hut it is understood that they operate over time, continually producing a value tha t is a

function of their present input. The register synchronizes the system and makes it possi

ble to assume that component behaviors arc discrete.

Each of S, P, and C is a canonical representative of its realm. If the underlying

type is powerful enough, any partial recursive function can be transformed to a single

repetition, and it follows that any program can be expressed as a loop3. A schematic
similar to C often accompanies an introduction to digital/synchronous systems (e.g.

Mead and Conway, 1080, pg. *221; Hill and Peterson, 1008, pg. 250). It exhibits the

characteristic property tha t nil closed signal paths pass through a register.

The correspondence between P and C is the basis for conventional structured

hardware design. A standard formalism for describing a flowchart schema is to define

the “ value history" of its state (e.g. Manna, 1974; Greibach, 1075). The history is the

3Left-right (low Is used in schematics wherever possible, so that a component's inputs are on
the left. Schematics are informal notation, and will always be accompanied by systems like C
that state the input-output relationship explicitly.

3Thc heredity of this “folk theorem" is explored by Hera] (1080), Sis essentially Kleenc nor
mal form (Kleenc, 1050, pg, 288), although the use of repetition rather than minimization suggests
(Brainerd and Landweber, 1074, Corollary 5.7).

0

sequence of values the state will acquire, expressed as a first order linear recurrence rela

tion depending on the current state and the current label (which can be given as part of

the history). If the monolithic state history is decomposed into individual variable his

tories the result is a simultaneous first order recurrence relation. It is also a register

transfer description, describing how each stored value in the circuit will change as a

funct ion the present register content.

My approach is to derive individual histories from (systems of) recursion equations

rather than from flowcharts. Since an essential step in the process is to place the equa

tions into iterative form, the passage from specification to realization will only sublimi
nal)}* construct a flowchart. In the circuit description C above, the natation suppresses

the recurrence. This is valid because the dependency Is fixed by the nature of com

ponents, and worthwhile because a concise description of connectivity emerges. Thus,

the crucial transition between specification and realization notations changes the

interpretation of the primitive symbols. I refer to this transition in meaning as lifting.

The formal connection between source and target languages is made on the basis of

the forms S and C above. Consequently, synthesis decomposes into a subtask of

transforming an initial specification to an instance of S, followed by a sequence of

refinements to the corresponding instance of C. I shall show that much of the transfor

mational algebra used to obtain S is transparent to (i.e. distributes over) lifting. Hence,

a less succinct class of specifications, called simple hops, are immediately realizable and

yield more informative schematics.

In theory any system of recursion equations can be expressed as a simple loop, but

to obtain it one must assume th a t the underlying operations are powerful enough to

implement recursion. For example, if arithmetic is available, an encoding can be used to

represent a control stack. If such computational power is not assumed—as may well be

the case in digital design—then not all specifications can be directly realized. Varying

the ‘‘ground rules" about what is admissible as au operation induces a complex hierar

chy of transformability on the class of all specifications. Under a minimal set of assump

tions simple loops can be constructed from any linear specification {i.e. one without

nested recursive calls). Recursive linearity characterizes flowchartability, and translation

of recursion equations into flowcharts has been widely studied. The results arc all appli

cable to our principal strategy of circuit design.

7

Separation of control and representation is a common theme in algorithmic design,

independent of the implementation realm. Compare Hoare's remark on structured pro*

gramming (1972)

In the development of programs by stepwise refinement ..., the programmer is en
couraged to postpone the decision on the representation of his data until after he has
designed his algorithm, and has expressed [t as an 'abstract' program operating on his
'abstract1 data. He then chooses for the abstract data some convenient and efficient con
crete representation in the store of a computer; and finally programs the primitive opera
tion required by his abstract program in terms of this concrete representation.

to th a t of Winkcl and Prosser concerning structured digital design (1980, p. 131).

One of the first steps of a top-down design is to partition the design into (a) a control al
gorithm and (b) an architecture that will be controlled by this algorithm. The top-down
analysis will suggest a rough preliminary version of the system architecture, involving
abstract building blocks such a registers, memories, and data paths...

Next, we work out the details of the control algorithm at an abttracl level. The
control algorithm is in many cases surprisingly independent of the hardware,..

In the functional specification style, this separation of aspect entails postulating a type

on which the specification will operate. To proceed in this way it is clearly desirable to

start in a fully abstract setting, but with the knowledge tha t once a type emerges it is

certain to have a computable representation. A fully abstract functional language exists

in the notation of the Scott-Strachey calculus (Stoy, 1977). In addition to serving os a

most-abstract starting point for design, the Scott-Strachey calculus is also used as a

metalanguage through which the meanings for specifications and realizations are unified.

The metalanguage has a computable semantics, and through interpretation can also

serve os a vehicle for experimentation.

1.2. Related Research

The fact that the formal language used for mathematical models also has a comput

able meaning (cads to some difficulty in classifying the bearing of other research on this

presentation. It makes the useful distinction between formal and operational models

somewhat hazy, since there is tha t sense in which a mathematical formulation can be

considered a program. The confusion is nowhere better illustrated than in the vanguard

work of McCarthy, a founder of the functional specification style, who proposed using

recursion equations os a basis far the specification of computations (1903) and

8

simultaneously provided an interpreted language, Lisp (McCarthy, ct.aL 1005), for

experimentation. Both of M cCarthy’s contributions are influential to this investigation.

The problem is tha t Lisp’s interpreter is often confused with the underlying mathem at

ics? Thus, the division of the review below into formal models and operational aspects of
modeling is for the most part artificial. Most of the researchers cited are involved in

both areas.

1 .2 .1 . S e q u e n t ia l F o r m a l M o d e ls . In Chapter 3 a notation is defined for the
description of digital behavior. Two equivalent definitions are given for the meaning of

the natation: the first associates each ground symbol with a function on the natural

numbers; in the second definition each symbol denotes a sequence. The first definition

should be familiar to hardware designers, for it corresponds to the usual interpretation of

a circuit's state as a first order linear recurrence relation. The restatement of the model

in terms of ’‘value histories” gives a domain formulation of the same model. It is essen

tially the same formulation as Kahn's (1073) and was foreseen as early as 1005 by Lan-

din. It is introduced as a prelude to the implementation of the model in Chapter 4.

As noted in the summary above, any characterization of computation in terms of

discrete value histories can be construed as an approach to digital design. Extraction of

histories is frequently used to formalize or analyze programming constructs. Texts by

Manna (1074) and lecture notes by Greibach (1075) employ this approach to describe

flowchart schema. Each goes on to develop formally the relationship, first noted by
McCarthy (1003), between flowchart and recursion schema. They therefore establish,

albeit indirectly, the basis of our approach to digital design.

The symbolic evaluator of Cheatham, Holloway, and Townley (1070) derives “ the

recurrence relations tha t describe the behavior of loop variables,” as a means for the

analysis and verification of imperative programs; but they have at the same time pro

duced a digital circuit assembler and optimizer according to our model.

The notion th a t functional style employs same algebraic framework as digital

designer is perhaps best illustrated in the FP programming movement (Backus, 1078,

1081a, 1081b). An algorithm can be expressed in a purely combinatorial form that

corresponds to how circuits are physically wired. The FP style goes beyond my goal

*Stoy (1077, p. 182) gives a very clear discussion of this point.

g

however, by promoting variable-free programming5, and thereby suppressing a quality

th a t I shall eventually emphasize: state. By suppressing state, one rids one's self of a

mathematically clumsy concept. However, FP languages invariably have a construct for

iteration [e.g. Backus's intert operator) and therefore retain the computationally neces

sary concept of an accumulator (read: register). The description a digital system th a t

implements an algorithm eventually centers on register behavior; hence, to construct

such a description this behavior must be identified. The identifiers correspond exactly to

the program variables of the recursive specification.

In his dissertation, Cohen (1080) also uses an iteration construct os a basis for

transforming recursion equations into programs. He also gives a fairly thorough review

of research in the compilation of recursion equations. The circuit synthesis techniques

presented here extend many of these results to a different implementation realm.

Iterators often carry an implicit termination condition, reflecting the program m ers

preoccupation with tha t property. However, termination is not a quality enjoyed by cir

cuits if they arc modeled in terms of their temporal behavior. The more natural abstrac

tion is th a t of infinite behavior which occasionally notifies the outside world th a t mean

ingful events arc taking place. Ashcroft and Wadge (1077) present a formal system

called Lucid in which non-finite histories are implicit. Lucid is also suggested as a pro

gramming language tha t incorporates iteration in a "mathematically respectable way."

The circuit description C, above, is easily recognizable os a simple Lucid program, and in

fact has the appropriate semantics. The use of circuit description text as a formal sys

tem to support inference is briefly discussed in Chapter 7. In his dissertation, Meyers

(1080) also investigates the use of non-finite structures in programming. While the pro

perties of non-finite, especially sequential, objects arc central to the development below,

their use as a programming construct is not. R ather, they are used to model the proper

ties of electronic components and serve as a target language for synthesis.

The preferred format setting is the functional calculus of Scott and Strachey. A

domain formulation of behavior, presented here in Section 3.5, here was proposed by

Kahn (1073, Kahn and MacQueen, 1077). The set of signals over a set of primitive

values is defined by the domain isomorphism

sBackus does not prohibit the use of variables in expressing algorithms, but seeks to reduce
their influence on conceiving algorithms. See (Backus, 1031).

10

Signal — Value X Signal

(Kahn uses the domain of sequences, Value'*, which is the essentially the same domain).

That is, a signal is an infinite sequence of values. Components are (simple) processes

tha t produce and consume signals.

Milner has developed a robust mathematical foundation for describing process

semantics (Milner, 1073, 1080a; Milne and Miluer, 1070; Gordon, 1080), in which my

model can easily be embedded. He characterizes process behavior as a point in the

domain

Behavior = In p u t— (Output X Behavior)

A component gives rise to a function from signals to signals. Given a process behavior

and an input signal it is a trivial coercion to construct the right output signal. The
basic difference here is that components arc defined as higher order signals; th a t is, as

sequences of operations. Application is generalized to deliver the induced signal-to-signal

function. This is merely a technical adjustm ent in light of the fact th a t the only com

ponents 1 will allow arc constant sequences. This constraint is temporarily relaxed in

Chapter 5 to introduce communication.

Gordon (1081a, 1081b), Cardelli (1080, 1082), and Milner (1080b) use process

semantics in microcosm to address circuit behavior. Their goal is descriptive; they

develop a mathematically attractive notation for circuit analysis and verification. For

this purpose their notation is clearly superior to the applicative notation used here

because it can describe a wider class of circuits. However, the purpose here is synthetic,

and a purely applicative target language is sufficient to realize purely functional

specifications. We return to this point in the conclusion.

1.2.2. Operational Aspects of Modeling. My approach to synthesis maps

(fixed points in) a domain of functionals to (fixed points in) a domain of signals; it takes

self-reference in the guise of recursion to self-reference in the guise of fecdbnclc. Imple

menting recursion with "rcflcxivity" is commonplace in programming. Compilers use

program pointers to manage control; reduction interpreters use shared text to optimize

substitution.

More overt forms of “data recursion” arc often presented os advanced functional

programming techniques {e.g. Friedman, Wise, and Wand, 1070; Burge 1075; Henderson,

1080). The earliest example is Landin's use of otreame in conjunction with his effort to

XI

give an applicative operational description of ALGOL 80 (Landin, 1905), It is worth not*

lag that he introduced streams as a modeling construct to factor (index) variable his*

torics out of loop statem ents, but immediately observed th a t the same mechanism

“would be used to model input-output if ALGOL 00 included such". He elected to

represent histories as lists, and had to confront the possibility tha t non-terminating

loops would produce infinite histories. He could not directly express infinite da ta struc

tures in his “call-by-vnlue" modeling language, and used function closures os a delay

mechanism to defer the possibly divergent, and anyway untimely, construction.

In 1070, Friedman and Wise proposed tha t this closure trick be incorporated into
the primitive da ta space operations so that all computation is deferred until it becomes

timely. A simitar mechanism was independently presented by Henderson and Morris

(1070), and suggested earlier by Vuillimen (1074) and Wadsworth (1071). The eflect on a
conventional reduction interpreter is profound, for a suspending constructor induces an

outermost reduction rule. Under reasonable assumptions about the underlying opera

tions, outermost reduction is consistent with the formal meaning of an expression as a

least fixed point. Moreover, non-finite data structures can be built and manipulated as a

m atter of course; constructs like Landin’s streams become transparent. The interpreter

for Daisy is implemented on a virtual list multiprocessor tha t uses suspending construc

tion. It Is therefore possible to express specifications and realizations without fear that

they will be compromised by on overly strict interpreter.

1 .2 .3 . O t h e r M o t iv a t io n s . Between 1978 and 19S0 Friedman and Wise published

several articles (1970c, 1977, 1078a, 1978b, 1070) promoting a purely applicative

specification style and showing tha t it could be applied to “systems programming" prob

lems. Since a circuit is a system, it seemed evident th a t the approaches they were sug

gesting would be a promising basis for hardware design.

I owe much to W and's work in compiler generation (1080a, 1080b, 1982n), as might

be inferred from the choice of example in Chapter 5, and the style in which it is

developed. He gives a decidedly small set of generalized combinators that captures the
code-structurc of conventional programming languages, and develops a formidable s tra

tegy to decompose a semantic definition into a compiler/machine pair. The machine

“factor" is in iterative form, and it follows from this investigation that it can be used to

construct special purpose hardware for the direct execution of compiled code. In the

example just mentioned, however, W and's elegant factorization is omitted since its goal

12

is not really at issue here; a direct interpreter is derived instead. The reader who is

uncomfortable with the resulting machine is urged consult W and's work for insights into

how f might have arrived at a more conventional implementation.

1.3. Outline o f the Presentation

Chapter 2 reviews the language of typed recursion equations tha t I refer to as

apecijicationa. Basic methods for reasoning in and about this language are summarized.

The chapter serves not only to state preliminary results, but also to give an introduction

to readers who are unfamiliar with the description style. Three examples, representing

iterative, linear, and non-linear specifications, are presented and subsequently used to

follow the development through Chapters 3, 4, and 5. A series of extensions to the

specification Innguage are made, starting with the incorporation of structural combina

tion and a selection primitive, and ending with the admission of stacks to the underlying

type as a means to implement recursion. The extensions make it. possible to transform

vnrious structural classes of specifications into aimptc hops. The final sections of the

chapter review the notation of the Scott-Strachey calculus, which is used to address

issues tha t arise later in the presentation. Among the issues discussed arc the

specification of semantics, which will be the starting point for a lengthy synthesis exer

cise in Chapter 5; and the use of continuations to specify control.

Chapter 3 defines a realization language for describing the logical behavior of digi

tal circuits, and makes the fundamental connection to the specification language. It is

then established tha t the functionals used to combine operators may also he used to

combine components. As a result, simple loops arc shown to be essentially realizations,

lacking only a lifting of the interpretation of ground symbols. The digital model is res

tated in the terms of the Scott-Strnchey calculus, as a prelude to an implementation of

the model in Daisy.

A direct semantics for Daisy is defined in Chapter ‘I, along with a brief summary of

its implementation. Bnsic programming techniques for circuit experimentation arc

defined. The chapter concludes with a series of experiments on the example

specifications. In one case, observation of the derived circuit's behavior reveals an

interesting property of performance tha t is not addressed in the specification.

Most of Chapter 5 is devoted to a non-trivia! design exercise: the synthesis of an

intcrpreter-circuit for an applicative programming language called L. To attack larger

13

design tasks, we must of course adopt structured design techniques. The transparency

of structural combination to lifting makes possible the hierarchical decomposition of real

izations into packaged components, the behavioral analog to the programmer's "m acro".

The technique of information hiding also lifts, resulting in a factorization of abstract

components. This decomposition leaves a residue signal of instructions, and forces us to

confront the issue of overt communication for the first time.

The ^-interpreter's derivation begins with a formal definition of the language,

which is a non-linear, fully abstract specification. Of the six major steps in the transfor

mation, two require substantial designer creativity. The first step is to propose a more

concrete specification of L nnd hence is mainly concerned with finding an underlying

type for interpretation. Once a type has been found, construction of a simple loop ver

sion of L is straightforward, although to reach a linear version some control decisions

must be made. I pause to do some register optimization, presented as a creative task.

An improved loop is transcribed to a circuit description, from which abstract com

ponents arc then extracted. In Appendix B, the successive descriptions are given in

Daisy and executed to show the logical behavior of the evolving design.

Chapter 0 suggests an approach to circuit refinement. A specialized set of transfor

mation rules is tailored to address a complexity problem in large scale design. The task

is to "fold" a combinatorial system with many external connections into a synchronous

system in which computation is serialized. The derived circuit is a data-flow element in

which some of the connective storage is realized. The transformation process produces

as a byproduct a computation schedule that can be used to coordinate the refined circuit
with the surrounding computation.

Chapter 7 reviews the presentation, discusses some of its shortcomings, and sug

gests areas for further investigation.

The language Daisy is presented in a somewhat idealized form in Chapter 4.

Appendix A gives the present syntax. Appendix B shows the Daisy source for running

examples throughout the presentation. Appendix C contains proofs of some of the pro

positions in the body of the dissertation. Appendix D is a table of symbols used in the

body of the dissertation.

The primary motive of this study was to extend McCarthy's "mathematical basis

for the science of computation” (1063a, 1063b) in the direction of its physical basis.

This area is an excellent test bed for the discipline of applicative style, but its goal

14

should uot be taken as the description of all hardware. In electing digital implementa

tion technologies hardware designers have already adopted functionality as their funda

mental abstraction and can profit further from a design methodology tha t stems from

the same foundation. It is my hope th a t those familiar with conventional digital design

methods will see in this presentation a fitting basis for their craft. However, the pro

found formal foundation and rich notation th a t have evolved from M cCarthy’s basis can

be a hindrance. It is hardly reasonable to expect the “uninitiated" reader to absorb all

the principles without first perceiving a payoff. The reader who i3 unacquainted with

functional style should consider reading this material in two passes, first to see its direc

tion and then to fill in the details. On first reading, one might do well to skip Sections

2.5, 2.(1, 3.4, 4.3, 5.3.2, and 5.3.3, for it is in these sections th a t I formally address Issues

tha t are cither on the fringe of the subject a t hand or are intuitive to anyone already

familiar with the design of computations.

2. The Specification Language

A recursion equation is an equation whose variables range over functions. A

specification is a system of recursion equations. Any specification has a canonical solu

tion; it is the set of minimally defined functions tha t simultaneously satisfy the
definitions. Hence, the specification language is unambiguous. This chapter reviews

basic facts about recursion equations and ways to reason about and manipulate them. A

thread of fncts is established th a t leads to a connection with the realization language to

be defined in Chapter 3. The thread unwinds through a sequence of extensions to the

notation, making it possible to transform larger and larger classes of specifications into

iterative form. Iterative form is a characterization of “sequential control", and thus

coincides with the class of specifications th a t, under a minimal set of assumptions, can

be associated with a flowchart description of a computation. Just os flowcharts arc a

frequently used basis for digital design, iterative specifications are so used here.

Specifications are made in terms of an underlying typet a collection of ground sym

bols th a t denote values and operations from which more complicated things arc built. It

is the designer's “ implementation realm". If the realm is TTL logic, for example, the

underlying type would have two voltage levels and a parts catalog of components. In

practice, specifications will always be typed. However, some transformations on

specifications are valid no m atter what the underlying type is. Hence, we shall often be

dealing w ith recursion schemes or recursion equations over unintcrprcted ground sym

bols. Finding generally valid transformations is obviously desirable, since they are appli

cable in any realm.

There exists a “universal type” in which all others can be embedded. A rather

sophisticated notation has evolved around its use. We shall refer to this notation as the

15

16

Scott-Strachey language. It represents one limit to which our specification language

might be extended. The language allows for the description of highly abstract entities,

such os function-valued functions, and is in a sense too abstract for our purpose of syn

thesis. In using Scott-Strachey notation os a starting point for a design, the first step

will always be to propose a representation—that is, a suitable underlying type—for a

more concrete specification.

McCarthy is generally acknowledged as a founder of the functional specification

style. The basic syntax of the spcciGcation langunge is simitar to the language he uses in

enrjy articles (McCarthy, 1903a, 1903b). Much of the our basic vocabulary comes from

an introductory tex t by Wand (1980). Manna's text (1074) and Griebach's lecture notes

(1975) are good introductions to the relationship between recursion equations and

flowchart schema. Both cite the landmark works in this area.

2.1. Typed Recursion Equations

A design will be implemented from basic components, and in making a

specification, this vocabulary is usually fixed in advance. This set of “ building blocks" is

called the underlying type of the specification.

D EFINITIO N S. 1-1. .4 type D conaiata of

t. A carrier act, D, of vatuea.

it. A act of constants, C C D .

ill. A finite aet of total operations, f:D n

iv. A finite aet o f total predicates, p:Dn

An operation f :D n—*D is said to be an n-place operation. C and D are often equal,

but when containment is proper, D will always be inductively defined from C. T hat is,

D will be the smallest set containing C and closed under the operations of D . An

indeterminate constant ■ is sometimes appended to C, and the set of tru th values may

likewise be extended. Depending on the co n tex t,! is either unknown (don’t-know) or its

value doesn't m atter (don’t-care).

An example of a type is D ig, for digital logic, with carrier Dig = {high, four), 2-

place operation

—► D for varioua n.

—* (true, false), for varioua n.

17

nandfx, y) =
low if x — y — high

high otherwise.

and 2-place predicate high? = { (high, true), (low, false)}* D ig can be extended by intro

ducing ■ to its carrier1: nand(m, y) — nandfx, m) — u ; a n d kighf(n) — ■.

Most of the examples in this chapter are arithmetic; they have underlying type In t

of integers, with carrier Int = {••—£, —1, 0, 1, constants Int; 1-place operations

inc and der (increment and decrement); 2-ptace operations add, sub, tnpy, and div (add,

subtract, multiply and divide); 1-place predicate zero? and 2-place predicates U? and

eq? (test for zero, less-than, and equal). I n t is more primitively defined as having con

stan t set { 0), operations tnc and der, and predicate sero?. Int is inductively defined as

the smallest set containing { 0 } that is also closed under me and der,

A set of symbols is associated with the underlying type and serves to represent it in

the specification language. When it is necessary to make a distinction between symbols

and their abstract counterparts, symbols are either underlined or enclosed in the quota

tion delimiters * (J1 and ']]’. For In t the symbol set includes inc. der. eg?, m, etc.; and a

numeral for each integer.

The letters u, v, w, i , y, and : are identifiers; they serve as formal parameters in

function definitions.

- Strings of upper case letters, such os 'F A C and lGCD\ arc function variable sym

bols, which arc defined by equation. The letters F, G and H are the function variable
symbols usually used. The rank of F is the number of formal parameters it requires.

In discussions where the underlying type is not explicitly mentioned, the

metalinguistic variables /, g, and h will range over operations; p and q will range over

predicates; a, 6, and c will range over constants; F, G, and H will serve as function vari

able symbols; and x„ z3, ... will stand for identifiers.

Specifications are built from applicative expressions involving ground symbols and

the special character set

'Depending on the implementation technology, it may be more appropriate to define
tiandflow, m) = nandfm, low) = high (Mead and Conway, 1980, p. 15).

18

DEFINITION 2.1-2. The language L T of terminal terms » defined inductively by:

t. c G L j f o r constant e♦

iV. x G E T for identifier x.

in. I f f is an n-ptace operation and t{, tg tn are terminal term*, then

 ̂r*
The language LR o f recurrent terms is defined inductively by:

i. l t q l r

ii. I f F is a function variable symbol of rank n and t[f tg fn are recurrent

terms, then F £ tf A ... A tn J_ G LR.

The language L£ o f expressions is defined inductively by:

i. l r c l e .

iV. I f f is an n-place operator symbol and e|f eg en are expression*, then

fL et i eg a — i e„ l 6
iiV. If F is a function van a We symbol of rank n and eJ(e; en are expressions,

then F £ e{ ± eg A ... ± en G LE.

iv. I f p is an n-place predicate symbol and I, r, e/f e; efl are expressions, then

the conditional expression p A eg A ... ± en ^ — L r g

The substring to the left of the ^ in a conditional expression is called a proposi-

tional expression. UnqualiGed, the word “ term" means "recurrent term ” . Our interests

center on the function variable symbols and w hat they denote. Hence, they arc called
serious symbols; all other symbols arc trivia/. Terms and expressions inherit the quali

ties of their components.

D EFINITIO N 2,1-3.

A term (expression) is called serious i f it contain* a function variable symbol. Of/ier-

wise, it is trivial.

A term (expression) over identifiers xf xn is one that contains no identifiers other

than ij , ..., xn.

10

A ground term (expression) it one that eontaint no identifiers.

We can now define a specification to be a system of function-defining equations.

The left-hand sides of these equations are “calling patterns" consisting of a function

name and a format param eter list. The right-hand sides are defining expressions, stating

what the functions do when called, Two additional special symbots, < = and A are

needed.

DEFINITION A recursion equation hat the form

F [x f j. xf A ... A zJ l <S= e

where F is a function variable symbol o f rank n, and e it a expression over xJ} xg ,,,,, zn.

This equation is said to be F's defining equation. A specification is a finite set o f recur

sion equations, each defining a unique function variable symbol.

Note th a t tfie definition prohibits “global" identifiers. T h a t is, a function’s defining

expression involves only identifiers in the function’s param eter list. The following exam

ples of specifications in I n t will be used to illustrate the ideas of this chapter and the

next*.

GCD(z, y) <*= eq?(x, y) — z, ^ j

ttffx, y) -* GCD(x, subfy, x)), GCD(y, subfx, yj).

FAC(x) zerof(x) —► 1, mpyfx, FAC(dcr(x))). (S.)

FIB(x) <= Uffx, S) -* l,add(FIB(der(dcr(x))), FIBfdcrfx))). (S J

Intuitively, specification S t defines a greatest common divisor function, S t defines a fac

torial function, and the function defined by S3 returns the xlh clement of the Fibonacci

sequence: i , 1, 2, 3, 5, 8. . . . Two of these specifications are ambiguous; neither 5, nor Sf

states what the function it is describing should return on a negative argument. This

‘It is standard practice to switch to the more familiar infix notation for operations in Int. I
will occasionally make the switch when doing so clarifys the presentation (in Section 2.3 for exam
ple). However, when making "official" specifications, 1 shall continue to use prefix, notation, and

20

ambiguity will be resolved in the next section.

The three specifications differ in their structure. In $t the function variable sym*

bols are outermost in all serious terms. In St tl > is a t most one function variable sym

bol in any recurrent term. S a has neither of thes*. qualities.

DEFINITION 2.1-5. A recurrent term is

linear - i f it contain* a single function variable symbol.
iterative - i f it is linear and its /u net ton variable symbol is left-most in the term.

/I conditional expression [Jp (^ , f ., tn) — r , s j is linear (iterative) i f each t. is a ter

minal term and both of Us 6 ranc/i«} r and s, are either terminal or linear ^iterative/, A

recursion equation is linear (iterative) i f its defining expression is. A specification is

linear (iterative) if each of its defining equations is,

The recursive structure of a specification is of interest in itself, and will sometimes

be considered independently of the underlying type. A recursion scheme is a recursion

equation in which the ground symbols are left unintcrpreted. A recursion scheme S ' is

called an instance of recursion scheme S if some or all of the unin ter prctcd symbols of S

have been consistently replaced by specific symbols to get S'. For example, specification

S} above is an instance of the nonlinear recursion scheme

F(x) <S= p(x)-* c, h(F(g(g(x))), F(g(x))).

2.2. Solutions to Specifications

The ground symbols in an expression denote the entities th a t they represent in the

underlying type. Thus, the value assigned to any trivial term is simply the value of its

abstract counterpart. Function variable symbols denote functions th a t satisfy, or arc

consistent with, their defining equations. To make the notion of consistency precise, wc

shall define a relation called valuation between specification tex t and meanings. Applica

tion of a serious function is interpreted as a textual replacement, called a substitution.

beg the reader's Indulgence, since In later chapters I would have to revert to prefix anyway.

21

DEFINITION 8.8*1. Let t be an expression over identifiers z{ ,..., xn. and let tt tn be

arbitrary expressions.
*/ V

Zt Xn

denotes the expression obtained by substituting t{for each occurrence of x. in e.

A specification gives a context for substitution in a valuation.

DEFINITION 8.8-8. Let S be a specification over a type with carrier D. Let c be a con

stant, f an n-ptace operator «ym6 o/, and p an m-ptace predicate symbol. Let F be a func
tion variable symbol defined in S by the equation ^F(xt ,..., x j <S= SF. [), where 6F is an

expression. The /unction val maps ground expressions to values in D as follows:

val H cU = c

v a t y { t t , ... , t j f l ~ f(va l I t t \ , ..., t r o / j t j , /

t ia /[|p (t |(... , f m) r, s I| =
unf Brfl, if pfval Q v a / | t n]|y m true

vat 5 J] , if pfval [[vat is false

 <.>1 - '”] D
x ,i "•> x n

■ The function vat can be extended to a function over arbitrary expressions by pro*

viding nn environment tha t gives values for free idcntiGcrs. T hat is, given a function

p : Ide — D, where Ide is the set of identifiers, add the clause "un/fli]] = p(x)n to vaFs

definition.

Given a specification, the value of a ground term can be derived by reduction; th a t

is, through symbolic manipulation of the expression according to the rules of Definition

2,2-2. If a step in a reduction is justified by known properties of the underlying type, we

shall call it a simplification. A step justified by the substitution rule is called an unfold

ing if the rule is applied from left to right. The inverse of unfolding is folding. We shall

write “A F " to mean "by substitution according to F ’s defining equation" (unfolding),

22

and “ v ^ ” ' t 0 mean "the abstraction of common subexpressions by identification,

according to F ’s defining equation." (folding).

Recall the recursion equation

FAC(x) xcrof(x) —» 1, mpt/f x, FACfdcrfx))).

which we claimed earlier to specify a factorial function. Using Definition 2.2*2 and some

simplification we can readily show th a t the expression FA C(2) reduces to Si

FAC(S) ~ :erof(2l -» I . mmtfS, FAC/dcrfSl)

— tnpfifB, FACfdcrfSI)

= mpy(S, FACfl})

= ttipyfS, hero9(1) —► 1. mpyfl. FACfdcrfl))})

— mpyfSt tnptjfl, FA C/0))

— mpy(S, mpyfJ, zerof/O) —* 1, mpu/O. FACfdcrfO))))

= tnpy(S, mpyfl, I f)

— 2

A F A C

conditioned (—*)

simplification

A F A C

— simplification

A F A C

simplification

Numerous mechanical steps have been omitted, as has any explicit mention of the valua

tion function. We simply allude to val by underscoring text. The coercions between

trivial tex t and its meaning will be omitted henceforth.

By the reduction above, any function tha t satisfies F A C ’s defining equation must

map 2 to £/. On the other hand, the expression §FAC(—lf§ cannot be reduced to a

value using the rules of Definition 2.2-2; val^FAC f-1)§ is undefined. The solution to a

specification is taken to be the set of minimally defined functions that satisfy their

definitions. Minimality insures uniqueness and makes the specification language unambi

guous. A forma] development of this subject can be found in M anna’s text (1074). The

solution to F A C ’s defining equation is the function factorial: Int —- Int

i n ! if n > 0
faetorial(n) =

undefined otherwise

Since solutions are unique we need not distinguish function variable symbols from the

functions they represent. The name FA C rather than the name factorial can serve to

identify F A C ’s solution.

Although we have now made subliminal any distinction between symbols and their

denotations, we did not institute a formal connection between notation and its meaning

merely to discard it in the next paragraph. We shall return to the definition of val when

we discuss the mechanical reduction of expressions in Chapters 4 and 5.

There is ample tem ptation to be clever when performing reductions. The third step

of the reduction above produces the subterm mpy(l, FA Cfdcrfl))). It is intuitively rea

sonable to replace this term by FACfO), since 1 is a multiplicative identity. However,

reducing mpyfO, FA C f - 11) to 0 is suspect, since one of the subterms is undefined. While

such "optimizing" simplifications make sense in computer arithmetic, we shall prohibit

them by requiring tha t simplification only be applied to convergent terms, th a t is, to

terms tha t arc guaranteed to reduce to values.

DEFINITION 8.2-3. An operation (or predicate) f is strict if it is undefined whenever

any of its arguments is undefined. Strict operations that also respect n, so that

ff..., u ,...) — n as long as no arguments are undefined, are said to be completely strict.

It is always assumed that the operations and predicates are strictbut not always com

pletely strict. The assumption implies tha t tex t cannot be "thrown away" through

simplification in a reduction. The conditional reduction rule is therefore crucial, since by
it aione may divergent subexpressions be discarded.

2.3. Reasoning about Recursion Equations

We shall mainly use induction to reason about specifications. The methods used

most are structural induction and subgoat induction, illustrated below. The examples in

this section are based on recursion schemes or on recursion equations over In t. Infix

notation for the arithmetic operations and predicates is used in order to make the exam

ples easier to follow. Later, we shall revert to prefix notation.

24

2 .3 .1 . S t r u c t u r a l I n d u c t io n Structural Induction is the familiar technique for

proving a proposition over an inductively defined set. To show a proposition P is true

for nit elements of a set S, one gives a proof “ tem plate” for a parameterized version of P,

Pfs). In a 6a«e step, P(a) is proven directly for a subset of minimal elements in S. In an

induction step, the assumption of P(o) is shown to imply P fs ') where s ‘ is any “next”

element of S. For example,

PROPOSITION 3.3-1. Let G be defined at follows over Int:

Gfx, y, :) <= (x =0) — y, G(x — 1, y -h s).

Then for all a > 0 and for alt b and c, G(a + 8, b, c) = G(a, b, c) + :G(a +1, b, c).

PROOF: By induction on Int. Let P(k) be

“F or all b and c, Gfk + 8, b, c) — Gfk, b, e) + G(k +1, b, c). ”

Base step fP(0)).

G{2, b, c) ~ G(l, ct b -he)
- GfO, b -he, b + 8c)

= b-he

= GfO, b, c) + G(0, c ,b -h e)

— GfO, b, c) -h Gfi, b, c)

A G

A G

A G

y G , twice

y G

Induction step fP fk) D Pfk - h i)) . Assume G(k + 8, b, c) — Gfk, b, c) + Gfk +1, b, cJ.

Gfk + 3, b, e) = Gfk + 8, c, b -h c)

= Gfk, e ,b + e) -h Gfk + 1, c, b + c)

= Gfk + 1, b, e) -h Gfk -h 8, b, c)

AG, k + 3 * 0

Induction Hypothesis, Pfk)

y G , k + i * 0

The following corollary to Proposition 2.3-1 is used later.

C O R O L L A R Y 8,3-8. Let FIB and G be defined by

25

FIBfx) <£= (x < 1) ~ l t F IB fx - 2) + F IB (x- 1)

0(x, y, :) <= fx =0) — y, G fx -1 , z, y + z).

Then for ail a > 0 , FIB fa} = G(a, 1, I f

PROOF: The proof is by induction on Int using induction hypothesis nI f a < k +1 then

FIB(a) — Gfa, 1 , 1}". The details are given in Appendix C.

a

2*3.2* S u b g o a l I n d u c t io n . Subgoal induction is an induction over the “depth" of

recursion. The proof style, introduced by Morris and Wegbreit (1977), is natural because

it uses the specification text as a proof generator. Hence, it emphasizes the notion that

in writing a specification, the designer is in fact formulating a proof. Assume that all

defining expressions are in branched conditional format:

F(xt x j <*= Pj - rJf p , - pm - rm

where the propositional expressions p. are mutually exclusive and exhaustive, and each r.

is a recurrent term. An mpwf-oulpuf assertion ^ F fxi >•••* * „ / s) is associated with each

function variable symbol, relating its arguments x. to its result z. Each branch of F ’s

defining equation generates a verification condition of the form3 P & I D R, P is the

premise that the predicate for the branch is true, I is the inductive assumption tha t all

serious functions used in the branch satisfy their input-output assertions. The conclu

sion R states tha t the input-output assertion is true on this branch.

PROPOSITION 2,3-8, l e t R be defined by

Efz) <= (z - 0) — x,

(x &0) —* E(x —1) + 2x — l ,

Then for ait x, E(x) ~ i*

PROOF: by subgoal induction on E, E ’« input-output assertion is

3A third premise Is sometimes needed, stating that F produces equal outputs on equal Inputs,
This condition is not used in any of our proofs.

20

VE (x ; z) = “z = zs ”

E's defining equation generates two verification conditions

t. (x =0) 3 V E(z ; x)

t't. [(x *0) & E(x —1 ; :)j D "l?E (t ; : + S x - l)

For verification condition (i),

2 = 0

0 - Or
m

2 - 1 *

premise P

arithmetic fact

substitution of equals

For verification condition fii),

z * 0

Z - (x - l f

z = x: - Bx + 1

z?= s + S x—1

premise P

premise I, that is V E(z - 1 ; :)

arithmetic

more arithmetic

The last line is 'I• E fx ; z + Sx ~ l) with z — E(x —1). T h a t is, if x & 0 then E(x) =

E (x—1) + 2z — l = x:. Since the predicates are exhaustive, the two cases establish the

desired result.

□
Nate tha t by subgoal induction the undefined function [[G (x) ^ true-* G(x).§

satisfies any input-output assertion. The function E in the example above docs not meet

its input-output assertion if it is given a negative argument, since it diverges. Subgoal

induction is a partial correctness method; the functions involved satisfy their input-

ouput assertions whenever they are defined. To show total correctness a separate termi

nation proof may be given, or a well-founded measure may be included in the input-

output assertion.

Subgoal induction is often used when not enough is known about the underlying

type to support a structural induction. Hence, it useful for reasoning about recursion

schemes, as the following proposition illustrates.

27

PROPOSITION 2.3*4. Let g be a commutative, ataociative, 2-place operation (i.e. for alt

x and y, gfx, y) = g(y, x) and g(x, gfy, z}) = g(g(x, y), :)). Let G be defined by

Gfx, y) <= p(x) -* y, -p fx) — G(b{x), gfx, y)).

Then for all a, b, and c, G (a, gfb, c)) — gfb, G fa, c)).

PROOF: by subgoal induction on G.

Case 1. If pfa) is true, then by G*a defining equation,

Gfa, gfb, c)) = gfb, c) ~ gfb ,Gfa, c)).

Case 2. Assume that pfa)\s false, and by induction th a t for all 6 ' and c \

Gfhfa), g f b c ')) = gfb',Gfhfa), c'))

Gfa, gfb, c)} = Gfhfa), gfa, gfb, c)))

= Gfhfa), gfb, gfa, c)))

= Q(b, Gfhfa), gfa, c)))
= gfb, Gfa, c))

AC?, -p fa}

g is commutative and associative

I.H.; b‘ = b, and c ' = gfa, c)

V G , -p fa)

Proposition 2.3*4 also has a useful corollary.

COROLLAR Y 2,3-S. Let F A C and G be defined by

FA Cfx) <*= fx =0) — 1, x * FACfx -1) .

Gfx, y) <=z fx =0) -* y, G f x - i , x * y).

Then for all a > 0, F A C fa) = Gfa, J).

PROOF: by structural induction on Int. See Appendix C.
□

2.4. Transformations on Recursion Equations

This section presents the central issue of this chapter; the translation of

specifications from one form to another. For our purposes, the goal is to find a target

specification th a t is in iterative form. Iterative form is of interest in general because of

its correspondence to sequential control algorithms (i.e. programs) (McCarthy, 1003a;

28

Patterson and Hewitt, 1070; Manna, 1074; Grcibach, 1075). Since digital circuits are

also sequential in nature, many of the results of research in compilation of recursion

equations are also or use in the synthesis of circuits. The compilation problem bas been

studied widely; Cohen gives a survey of relevant papers in his dissertation (1080).

We embark on a scries of extensions to the specification language tha t make it pos-

sible to find iterative “ versions'* of certain recursion structures. The first extensions arc

utterly reasonable; they express ways th a t basic components might be physically com

bined. Later extensions force us to make assumptions about the computational power of

the underlying type; they yield iterative versions through constructions th a t implement

recursion.

W ith modest extensions to our notation we demonstrate tha t any iterative

specification can be transformed to an instance of the “ universal iterative scheme"

F(x) < = p(x) -* f(x), F(g(x)J. (U})

The initial connection between specifications and circuit descriptions is mode on the

basis of Ur

A collection of results is reviewed below, showing tha t any linear specification has

an iterative version, although it may not compute in the same way as the original1.

The simple extensions are not enough for more complex cases. Non-linear

specifications exist for which no iterative version can be found, unless further assump

tions arc made about the underlying type. Corollary 2.3-5 is an example. It gives an

efficient iterative version of the factorial specification, but the transformation depends on

the algebraic properties of multiplication. As stronger assumptions are made about what

can be computed by the underlying type, larger classes of specifications become

transformable. It is not the purpose here to explore these relationships in detail. We

shall simply stipulate th a t transformation is a creative design task th a t is partly

automntable. Obtaining a specification with n particular structure is a heuristic by

which engineering proceeds.

4This is a fuzzy qualification at best, since no measure of performance has been assigned to
the specification language. Strong (1071) develops a formalization of operational tranelatabiiitg to
address this issue.

29

2 .4 .1 . G r a m m a t i c a l T r a n s f o r m a t io n s . We shall refer to afiy “preprocessing"

translation of a specification os a grammatical tram formation. Such transformations are

used to place specifications into a normal form in order to apply a general construction.

Such translations exploit Definition 2 .2-2 by symbolically folding or unfolding defining

expressions, New definitions may be introduced into the system so th a t existing

definitions can be folded into a simpler form. We shall see examples of this process in

later derivations {e.g. in Section 2.4.4).

B r a n c h e d C o n d i t io n a l F o r m a t . In Section 2.3, recursion equations were assumed
to have the form

F(j t x j <*= pt - rt, pt - rt ,..., pm - rn

Translation to this form would introduce additional function calls to replace r. if it were

a not a term, and modify the propositional expressions to make them mutually

exclusive.

B a la n c e d F o r m a t . A specification is balanced if each defining expression in the sys

tem is a recurrent term , or a conditional whose alternatives are either both trivial or

both serious. Extraneous function definitions can be used to balance alternatives. If the

initial system is linear (iterative), a linear (iterative) balanced version can always be

found (Greibnch, 1975, pp 7—12).

A r g u m e n t P a d d in g . In constructions th a t follow it will be necessary to alter

specifications so tha t each defining equation uses the same formal param eter list. The

translation involves changing identifier names in a consistent fashion, and possibly

adding unused formal parameters. By convention, the don't-care value is supplied as an

argument when the corresponding formal param eter is padding.

2 .4 .2 . D i s t r l b u t iv l t y o f t h e C o n d i t io n a l a n d M u lt ip le x o r s . The conditional

construct distributes through application. For instance, the expressions

[[p — f(r, s) , f(t , u) | and y ((p — r, tj, [p — s, uj) fl are equivalent, even if / is

replaced by a function variable symbol5.

^provided the function depends on one of its parameter. Consider (F(xJ <= c .|. If
Bp — F(a), F(b)\ = \F (fp — a, bf JJ, then it reduces to c, whether p is defined or not.
Definition 2 .2-2 suggests that conditionals should be undefined if their propositional expressions

30

While the non-strictness of the conditional is crucial to expression valuation, it is

desirable to introduce a selective operation to replace conditional expressions when

strictness isn 't an issue. A multiplexor is a strict version of the conditional expression.

DEFINITION 2>4-L Let p be a propotitional expression. The operation mux is defined

as follows

b i f p is true
undefined if p, b, or c is undefined
e i f p is false.

muxfp, b, c) —

Giving mux the status of an operation raises several technical problems. One of its

operands is a propositional expression, which must now be adm itted as a possible term.

This forces tru th values into the underlying type, and the remaining operations must be

extended to handle them. We may assume either tha t the underlying type "adm its

selection", perhups through an encoding of tru th values in the carrier, or th a t the valua

tion function has been patched with a special case for multiplexors. In any event, the

issue is not crucial because multiplexors arc only used here to replace conditionals.

Transforming Qp —» r, a]] to Hmuxfp, r, is tantam ount to an assertion th a t r

and s both converge. For example, replacing

F(x) <= pfx) — / fx), f(F(x)).

by

F(x) <= ffmuxfp(x), i , F(x)).

is invnlid because in the second form, the defining expression always diverges, whereas
the first does not. The following criteria are sufficient to guarantee that replacement by

multiplexors is harmless:

1. r and s arc trivial expressions.

2. The surrounding specification is linear.

The conditions insure tha t r and s will be ground terms in any reduction, and will there

fore always converge. If the surrounding specification is linear, p must be trivial by

Definition 2.1-3. By condition (1) r and s contain no serious subexpressions, and

are.

31

divergence cannot be introduced through unfolding the recursion equation in which they

occur. Condition (2) implies tha t no prior substitution has introduced a serious expres

sion.

2*4*3* Combined Operations* The notation is now extended to permit groups of

operations to be expressed as a single combined operation.

Constanta. For each constant c introduce a constant-operation with symbol K c.

K e(s) - c .

identifiers. For each coordinate of the state, introduce a projector, jr..

n ;(x ,> xt >-"> XJ ~ xr

Serial combination. Operator composition is expressed by juxtaposition.

! qN = I(qM) ‘

Parallel combination. A sequence of operations enclosed in angle brackets denotes

ubrondca3t1' of the argument.

!•“ > / n-> (:) = (I i (:) >-"> f n(2))'

These extensions make sense in terms of circuitry. As their names indicate, parallel and

serial combination suggest ways th a t components are physically wired together. Projec

tion is a “ tic into a bus". A constant-operation corresponds to a fixed source.

The goal is to rewrite any terminal term over the identifiers z , ,..., xn as something

of the form mt(x{ ,..., xnJ, where 7 is a combined operation. In the process, individual

identifiers are replaced by their coordinate addresses in an argument vector. The com

bined term may be written simply as 7 (z), where the identifier z stands for the state of

the compulation.

32

PROPOSITION 8.4-8' Define a trantlator 7, taking terminal terms to combined opera

tions, as follows

T l c l = K '

T II*,*11 = Wf

T l f { l t fJD = / < T |I T l t ^ >

For any terminal term t over the identifiers x{ i n

w i | I r l I < K « / , . . , « J I = I .
Xt >'"> Sn

PROOF: The proof is a straightforward structural induction on L v but requires a for

mal definition of substitution. Several similar proofs may . be found in W and’s text

(1080).

P

Combined operations will be introduced exclusively by the translator . The under

lying type is not necessarily closed under arbitrary combinations, for if it were, they

could be used to build data structures. As with multiplexors, the use of combinations is

limited to cases where they can be dealt with syntactically by an enhanced valuation

function. They serve simply as “macros”.

Notice th a t the term |\ f(e) \ translates to |/< /C * >]]. But by the definitions above

of serial and parallel combination,

/ < /<* > (z) = f(i?{z}) = f tC (z)

Although the translator encloses all argument lists, even those of length one, in a parallel

combination, we shall suppress the brackets in the case of l-place function combinations

for the sake of legibility®. Thus $f< K*> D is written [[//Cjl.

8A quite elegant approach to programming results from the algebra of combinations in which
this transformation is an elementary rule (See Backus, 1078, 1081). The use of combined opera
tions is transitory in this presentation; it lasts until Section 3.4.

33

2 .4 .4 . U n iv e r s a l S c h e m e s . Specifications can be classified by a collection or

representative schemes to which they can be transformed. Using grammatical transfor

mations, multiplexors, and combined operations, there is a construction by which any

iterative specification can be transformed to an instance of the scheme

Ffx) <*= pfx) — f(xj, Ffgfx)). (U{)

The construction is straightforward, and is roughly the same os Cooper's version (1007)

of the folk theorem: "Every looping structure can be transformed to a single while—loop"

(H ard, 1080). However, it is carried out in a functional notation. We will make do with

a small example, itself a generalization th a t shows how to construct iterative versions of

certain linear specifications. Consider the recursion scheme:

L(x) pfx) — ffx), h(Lfgfx))

and the iterative system

L returns hnJgnfx), where the superscript denotes rt-fold composition, and rt is the

number of times g must be applied to x in order to make p true. Intuitively, G computes

f g n(x) and passes it to //, along with the initial value of x. H uses p to recompute rt, and

applies A that many times, It is not difiicult to show th a t

PROPOSITION S.4-3. For all a, L(a) = Gfa, a).

. PROOF: (Appendix C).

Wc shall now construct an instance of Ut from specification R Q. The construction

requires the initial system to be in balanced form (Sec. 2.4.1). To balance our example,

we need only replace the z in H's defining equation with a dummy function call. Fa

defining equation is padded to make its formal parameter list conform to the others.

Gfx, y) <= pfx) — Hfy, ffx)), Gfgfx), y).
Hfx, y) <*= pfx) — x, H(gfx), hfy)).

34

Gfx, y) <t= pfx) — Hfy, ffx)), Gfgfx), y).

Hfx, y) pfx) — Ifx, m), Hfgfx), hfy)).

?(z, V) <= *•

The next step iutroduces a new param eter to record which function is “ in control",

and rewrites the system os a single recursion equation. It m ust be assumed th a t the

encoding can be represented in the underlying type. Let control token w range over the

values { Q, II, 1} and let the predicate a tf be a test for one of these values. Transform

R t into a single deGning equation for function F:

R ;

Ffw, x, y) <£= atffw, I) - * x,
atffw, G) -> [pfx) — FfU, y, ffx)), F(G, gfx), y)],

[pfxy-* Ff I, x, m), FfU, gfx), hfy})].

The propositions distribute. We Grst push p inside the call to F; since the scheme is

linear, multiplexors can be used for selection.

Ffw, i , y) <=■

atffw, \) —► x,

atffw , a / - * Ffinuxfpfx), II, G), muifpfx), y, gfx)}, mxtxfpfx), Jfx), y}},

Ffmuxfpfx), I, H), muxfpfx), x, gfx}}, muifpfx), a, hfy))).

D is ir ib ut io n o f n / f y ie lds

R.

Ffw, i , y) atffw, i) — x,

F f muxfatffw, Q), muxfpfx), II, Q), muxfpfx), I, 11)),

muxfatffw, Q), muxfpfx), y, gfx)}, muxfpfx), x, gfx}}),

m it xfat ffw, G), muxfpfx), ffx), y), muxfpfx), ■, hfy)}}.

The operations of R^ arc structurally combined to get the desired instance of U Let

35

p ' = at?<irt K !>

r = *t

g ' ~ < m u x< a t? < K J K ° > m ux< pjrt 1<H !<?> m ux< p jr t K t K H> >

mvtz<at?<7Tt K ° > m u x < p n t na gn f> mux<,png Kf gjrg> >

m u x < a t f< ir t K ? > m u x < p n gf x g ns> m u x < p n g K m

Using these combined operator symbols we arrive at the desired instance of

The construction preserves the meaning of the initial specification. It can be shown by

subgoal induction on F tha t for all a and 6

F f a , a, b) = Gfa, b),

F(H, a, b) = Hfa, b), and

F f I, a, b) = Ifa, b).

Hence by Proposition 2.4-3, F f a , a, a) — Lfa), where L is defined by the linear equation

we began with,

The construction can clearly be generalized to arbitrary iterative systems, and a

generalized construction yields a universal linear scheme.

THEOREM S.4'4• f f multiplexors and combined operations are allowed then

i. Any iteratiue specification can be transformed to an instance of the scheme U{:

Ffx) < = pfx) -* ffx), Ffgfx)).

it. A n y linear speciyfeafton can be transformed to an instance of the scheme UL t

Ffx) <= pfx) — ffx), hfx, Ffgfx))).

PROOF; Each scheme is a special case of a construction presented by Cohen (1080, pp.

030-043), who cites Chandra as the originator of (it) (Chandra, 1072).
□

Patterson and Hewitt (1072) also note the universality of U^ when they present a

F(z) < = pY'•> - I ’M , F (g W -

30

flowchart schema equivalent to any linear specification. The following theorem restates

their result as an assertion about transformability to iterative form.

THEOREM Let F be defined by U^, and consider the specification.

Gfu, v, x, y, z) < = pfx) — Lfu, m, u, m, fx),
G(u, m, gx, m, m).

Lfu, v, x, y, z) <Z= pfx) -* z, Mfu, gx, gx, u, :).

Mfu, v, x, y, z) < = pfx) -* Lfu, m, v, u, hfy, :)),

Mfu, v, gx, gy, z).

For all a, Ffa} = G(a,m, a,m,m).

PROOF: fAppendix C).

The extensions allowed so far are not powerful enough to yield iterative versions of

arbitrary specifications. The following well known example is due to Patterson and

Hewitt (1072):

THEOREM B.J-6. I f multiplexors and structural combination are all that is allowed, there

is no general transformation that yields an iterative version of

Ffx) <= pfx) -* ffx), h f Ffgt(x), F fg /x))).

DISCUSSION: The usual statem ent of the theorem is that the scheme is not "flowchart-
able". Its proof depends on formalizations we have not introduced and so it is omitted.

The strategy is to show tha t the iterative version would need an unbounded number or

identifiers to produce the right value in an arbitrary underlying type. For details see

(Patterson and Hewitt, 1072), (Manna, 1974), or (Greibnch, 1075).
□

2 .4 .5 . S y n th e s is o f I t e r a t i v e F o r m Specifications in iterative form correspond

with the notion of sequential control associated with flowcharts; a program statem ent is

a function on the program's state. We have assembled enough notation to permit any

linear specification to be translated to iterative form and hence to an instance of the

37

scheme Uf . So far, we have made simple stipulations about the computational qualities

of the underlying type. It must admit selection and certain forms of combination. It

must be robust enough to represent a finite number of control tokens and have a test for

equality. The review included the negative result th a t not alt specifications have itera

tive versions.

On the basis of recursive structure alone, it is not decidable whether a non-linear

specification has an iterative equivalent (see for instance Greibach, 1075, Theorem 7.0).

However, in the course of our discussions we have managed to find iterative versions of

all of our example specifications, Corollary 2.3-5 shows that by introducing an “accumu

lator", the factorial specification

FACfx) <= zero f f x) - * 1, mpyfx, FACfdcrfx))).

has iterative version

Gfx, y) <£= zero f f x) —* y, Gfdcrfx), mpyfx, y)).

This version is intuitively better than the construction of Theorem 2.4-5 because it is

faster; but its validity depends on the algebraic properties of multiplication.

Corollary 2.3-3 shows th a t the Fibonacci specification:

FIBfx) Uffx, 2) —* 1, addf FIBfdcrfdcrx)), FIBfdcrfxf)).

Has iterative version

Gfx, y, z) < = rcro f fx) — y, Gfdcrfx), z, addfy, z)).

Hence, not all instances of the troublesome non-linear scheme of Theorem 2.4-0 resist

translation.

Cohen (1080) reviews efforts to address the translation problem. The work gen

erally fallows two lines, both of which ore forms of synthesis. Darlington and Qurstall

(1077) describe “an inference system in which the sentences are recursion equations"
where human guidance adds information th a t makes transformation succeed. A

specification is transformed algebraically by folding, unfolding, and the application of

previously established transformation rules, until an improved specification emerges.

The other approach is to assume that explicit operations exist or can be implemented in

the underlying type, in effect supposing it can be used to implement certain recursion

patterns. More powerful operations permit wider specification classes to be linearized.

38

Having looked at the transformation-system approach let us now consider the

recursion-implementing strategy. Suppose that the underlying type contains operations

th a t are powerful enough to implement w ith stacks. T hat is, assume that a value e;

completely stric t combinations called push, pop, and top; and propositional combination

empty?; all exist th a t satisfy

empty f(c) = true emptyfpuskfu, v)J = false

topf t j = ■ popft) = ■
topfpushfu, v)) — u popfpushfu, v)J = v

If these powerful operations are available, then general methods exist to linearize arbi

trary specifications. The construction below, due to W and and Friedman (1078), is used

in Chapter 5. It introduces a “run time stack” and a new serious function to handle

“return jum ps". The specification is then repeatedly refined so th a t control is linearized.

CONSTRU CTIO N 2.4-1. (Wand and Friedman, 1978)

For simplicity, assume that in the initial specification all functions are defined over

the same set of identifiers.

^ <̂ =

t

FJ X1 <=

Designate a set of action values, at } where A will be determined by the time the

transformation is complete, and rewrite each equation as

F { Zn’ 1

The new parameter o names the recursion stack. Add a new function variable symbol

ft, for “return” , whose defining equation is constructed as we go along. Its general form

will be

30

' R(v, a) <= empty ?(a) —► v,
eq?(top(cr), a J —* do-aamethiny-wilh'V-and’restorc-a,

eq?(top(tr), a j -* do-sometking-with-v-and-reitore^a,
*

♦

eqf(topfa), a j —* do'3ometking-with~v*and-re3torC'tT.

Arbitrarily select a serious expression of the form R(e, <j) and transform the system as

follows

1. (Tail*recursive call) If e is of the form F.(tt t j , and each tj is trivial,

change R(e, a) to

Fj (tj tn, a).

2. (Decision) If e is of the form p(tf 1^ - * r, j , and each t. is trivial, change

R(e, a) to

p (^i t '" t t^} —*■ R(f , (t), R (st tr),

3. If e is not in any of the forms above, then find an expression e 'o v c r unused

identifiers yt ym\ a serious expression r; and trivial expressions t , f n ;

such that

. = « ' f p’ '"1
lyr yg , - > y j

If c is a conditional, choose r from its propositiona] expression if possible.

Obtain an unused action value a, and replace Rfe, tr) by

R (r , puiltfa, puah(tf push(tm, a}...))

and add to R *s defining equation the clause

eq?(top(ir), a)-* R (e*\ * ' * ' m] , popm(a))
y j

where «. stands for the term the term [[topfpop'ftr)}^.

In words, step (3) says to pick a serious term to call recursively. Any trivial values

needed on the return may be computed now and saved on the stack. By the time the

transformation is complete the stack parameter will have been introduced to all serious

calls, and the specification will be in iterative form.

40

EXAM PLE 8.4-3. If the W and-Friedman construction is applied to the specification

F(x) < = p(x) -* €, h(F(gjx)), F fg jx))).

one possible target specification is

F(x, a) <£= p(x) — R(e, a), F(g jz j , puah(0, puahfgjx), a})).

R(v, a) <= empty f (a) —» v,
atf(topfa), 0} — F (top(pop(a)), puahfl, puah(vt popfpopfa))})) ,

at?(top(a), j ; — R(h(top(pop(tr))t v), popfpopfa))) .

The derivation is shown in Appendix C.

This construction does not state how to choose which serious term to call. In the

example, the strategy was to evaluate arguments left-to*right. The obvious criterion is

to choose an expression tha t is known to be needed. Mycroft (1080) gives an algorithm

that makes this determination under certain conditions. If the choice is wrong, the ta r

get specification may errantly diverge. Since partially correct target specifications are

sometimes acceptable, we shall leave this choice to the designer’s discretion.

2.5. The Scott-Strachey Notation

This section is a brief review of the "type free" notation of Scott and Strachey. It

is a language defined over a universal type in which any "reasonable" (i.e. computable)

type can be embedded. It is therefore the limit to which we might extend our

specification language. W hat the language does not do is say anything concrete about

representation. Any use of the Scott-Strachey notation as a starting point for design

synthesis entails an initial subgont of choosing an appropriate type over which a more

concrete specification can be made. The Scott-Strachey style has been used with partic
ular success to describe the semantics of programming languages. The rather rich nata

tion th a t has evolved out of this area is used throughout this dissertation. Tennent

(1076), Gordon (1079), and Scott (1977, 1982) each give a casual introduction to the

notation and its use. The standard tex t on the subject is by Stoy (1977). The two

volume work of Milne and Strachey (1976) is a comprehensive example of the use of the

theory to describe a programming language.

41

For our purposes Scott’s is a theory of data types, which he calls domains. One

may think of a domain as a set of descriptions, or answers th a t might be printed by a

program. Some descriptions are better than others, in the sense th a t they are more com

plete; some arc incomparable because they ore not intended to describe the same thing.

A domain then, is a set D with a reflexive, transitive relation called approximation

and expressed by the symbol *C\ Membership in D is expressed by the symbol * E \ D

must satisfy certain axioms w ith respect to It must contain a minimal7 (or empty, or

divergent) description *XD' that approximates every other description. T h a t is,

for a t l d B D , X £ d.

Intuitively, any sequence of successively better elements in D must converge to a limit

th a t is also in D. Operations on domains are required to be continuous, tha t is, to

preserve limits8,

2.5.1. Flat Domains. A basic, or flat, domain meets the minimal requirements:

1 E V ~ -L or x — y>

Examples:

Truth values Boot = {ff, jf, JL).

Integers Int — {..., -2, -1, 0, 1, 2, ...} U {_L}.

Numerals N m l — [strings over {'O', *1',..., *9')] U {_!_}.

Identifiers Ide = {±, u, v, w, x,

The conventional ordering on these sets (e,g, < on the set of integers) is not the domain

ordering: a program th a t is supposed to print *5' may diverge and produce no descrip

tion, or it may print 'S', but if it prints '4' then it is not an approximation. Bool and

Int arc semantic domains corresponding to the carriers of our underlying types. Nml and

7 A maximal (or overdcflncd, or contradictory) description, denoted 'T^', may also be as

sumed. It docs not enter into any of the discussions in later chapters, so I shall ignore it in this
review.

'Continuous functions preserve limits over a wider class of sets than those that arc mono
tone, Monotonicity can be generalized to “dlrectedness" (Stoy, 1977). The real concern is not
with individual descriptions, but with neighborhoods: collections of approximations to the same
ideal. Scott has recently rephrased his formal presentation in these terms (Scott, 1982).

42

Ide arc syntactic domains wherein wc have defined our specification languages. We shat)

sec later th a t the distinction is subjective.

2 .5 .2 . N o n - f l a t D o m a in s Complex domains are built by combining domains in

various standard ways. Given domains A and B, wc will have need for the following

domain constructors:

A X B The (coalesced) product domain is the set {(a, b)[aEA and 6 Efl} with

ordering

(a, bj (a% b') iff a Q a' and b C K

= serves consistently as the minimal clement.

A + B The (separated) jum domain is the set A U B U (XA+q} with approxima

tion ordering

* E A+BV*ir* = ± A+B o r x C A y o r z C g y.

A —1 B The /unction domain is the set of continuous functions from A to B, with

approximation ordering

/ g i f f z B A implies f(z) g(x).

A“ The n-ary product domain is a generalisation of the product domain con

struction to n*tuples, for a given n.

Let e be an expression, possibly including the identifier x, and suppose th a t when

ever some element flEA is substituted for z in e, the result is a unique element of B.
Hence, substitution induces a function from A to B. The abstraction of e by z, written

flX x. e [), denotes the function just described. If e is suitably expressed, then this func

tion is continuous; th a t is (\ z . t) B A —*B, Applicative expressions tike §f(z)\|, abstrac

tions themselves, and conditional expressions

p — a, b
a i f p = it
b i / P = jr
x i / P = x

are all suitable for abstraction. The nesting of X-expressions gives rise to identifier

conflicts, and so the substitution rules must be refined to replace only free identifiers—

those tha t are not in the scope of an interior X-expression.

43

There are several conventions for abbreviating this simple but verbose language.

Since parentheses serve only to state the scope of an expression, they are often

suppressed, One may write l/n f l rather than Application associates to the left,

so th a t [I/pa]] means \(S g)o \ . (Note tha t this differs from our convention for serial

combination.) The function-domain constructor associates to the right to be consistent

with this convention. T hat is, HA —* B — C]] means QA —► (B —► C)Q. When the con

text allows it, membership in a function-domain is expressed with a colon rather than

the membership symbol * E \ Thus, f l / ;A —*-B]] mimics the mathematical notation for

saying “/ i s a partial function from A to B.u

The scope of a X-cxpression extends as far to the right as possible, generally to the

end or a line, or to the first unbalanced *)'. QX uv . ej] abbreviates QX uX is. e |. We will

sometimes write ^Ffx) <= e.Q instead of [[F = Xx.cjj; and |[e where x ~ f J instead of

l (\ x . e) (t) $.

2 .5 .3 . D o m a in O p e r a t io n s . For flat domains, continuous versions of basic opera

tions may be assumed. There are standard operations to go with complex domain con

structions. These operations are expressed with special notation.

P r o d u c t s . Let D — A X B, aE A , and i E B. There is a pairing function {*, *) E

A—*B—*Dt and there are projectors * \0 E D—*A and * jJ E D-*A th a t satisfy®
(a, 6}J0 = a (a, 6) j i = b

This notation may be extended to n-ory products.

S u m s . . Let D — A + B and let o ' E D and b* E D be elements that came from a E A

and b E B respectively. Operations E £) — Bool (inspection), *inD E A — D

(I'n/ec/ton), and *atA E D —* A (restriction) exist tha t satisfy

= “ ainD = a ' » ' « * = •
6 'itfA = f f b'asA —

The corresponding operations itB, asB, and inB exist for the summand B.

’Usually, *11 and *12 arc used Instead.

44

2 .5 .4 . F u n c tio n a ls * Functions qualify as data types, and there are a number of

higher level functions-on-functions, or functionals, tha t arc useful. Among these are the

structural combinators (e/. Sec. 2.4.3):

I C - X s . c

n,j = (X z. z\0)t jrf — (\ r . r) I), etc.

serial = X f g . f ^ z . f (g z))

parallel — X/^ »•*/„ • (X s z ,..., f n s'1))

The following standard functionals are used later.

apply :(A-*B) — A — B takes a function and an argument and returns the correct answer

for th a t function on th a t argument.

apply — X /c . / a

curry: ((AX B)—*C) —* (A— B— C) takes a 2*place function and returns a 1-place func

tion tb n t must be applied twice to get the desired Yatuc.

curry = X/.X u.X tu f (u , v).

For example, if a dd: (Int X I n t) —- I n t is the 2-place addition function, then

(curry add)(8) returns the function th a t adds two to its argument, and (curryadd)(8)(8)
= add(8, flj. There is an inverse to curry th a t “ unwraps" argument tuples.

uncurry = X /. (\ x . f (x \0) (x \ l))

Uncurry is expressed implicitly by enclosing formal parameters in square brackets,

[X [u, v | . c j.

2.5.5* Recursion* If f ; D —*Dt then rfED is called a Jiied point of / if d — f(d).
The function fix;(D —*D) —* D returns the minimal fixed point. T h a t is, (fix J) — f f f ix j ')

and for all fixed points d of /, fixff) £ d. Fix is continuous and expressible in X-

notation10.

If D is itself a function domain, then fix yields the solution prescribed by Definition

2.2-2. For example, let D — Int —* Int and take / to be

*°One version is the Y combinator: Y = X/.f X x.f(xx))(X x.f(xx)}. For a discussion, see
(Stoy, 1077).

45

X £. (\ n . (n =0) -*■ 1, n *(£(n -1) } }, f

Note that / has the required functionality, D —* D. If FAC = fixff) then FAC = J(FAC).

T hat is,

FAC - (\ n . (n =0) — 1, n (FAC)
= X n . (n —0) —* 1, n* (FACfn - I))

by substitution. Since fix gives the minimal solution we are justified in writing the equa

tion above as

FAC(n}<±= (n~0) — 1, n*(F AC fn—1)}.

On the other band, this discussion shows th a t we can avoid self-reference in our

specifications by using fix in writing

FAC = f i x f \ (. (\ n . (n = O j —► 1, n *({(n - t) } J)

2 .5 .0 . R e f le x iv ity . Fixed points can be defined over any domain, and fix is aiso

used to define self-referential, or refiexivc data types. For example, the domain of “s-

cxpressions":

Sexp = Atom + (Sexp X Sexp)

describes Lisp's da ta space (McCarthy, 1000); an s-expression is cither atomic or consists

of a pair of s-expressions.

2 .0 . O t h e r I s s u e s

The additional power of the Scott-Strachey notation, the facilities to describe data

structures and to manipulate functions, make it possible to attack aspects th a t are

difficult to address in the more concrete typed language. Issues such as the specification

of meaning (the original motive of Scott's and Strachcy's work) and the formalization of

“control" yield quite gracefully to the calculus. These topics and a few others are

reviewed in this section, partly to exercise the rather extensive notation tha t has been

introduced so far. Each of the issues discussed here arises later in the investigation.

2.6*1* Specifying the Specification Language. Wc give a brief example to

demonstrate the use of Scott-Strachey notation to describe semantics. Consider the

language of terminal terms defined in Section 2 .2 (Definition 2.1-2). Suppose for simpli

city tha t all operations take exactly two operands. The syntax of L T can be defined as a

reflexive d a ta type

4Q

Term = N m t + Ide + Apl

Apl = Opr X Term X Term

Terms are built from atoms Id the flat domains of numerals and identifiers and a collec

tion of operation symbols. A domain Apl of applicative terms is recursively constructed

by pairing an operation symbol with two operand-terms. Numerals denote integers and

operators denote 2-place functions on integers. These meanings are also domains,

namely Int and Opn — (Int X Int) —* Int; let them be given by semantic functions

Af:Nmt —* Int and IK:Opr — Opn. A mapping from identifiers to tbcir meanings is also

needed, and will be in the domain of environments Env = Ide —* Nml.

We are now ready to define a semantic function 2T: Term —* Env —* Int th a t

specifies the meaning of a term:

2T = X t p . (t iaNml) -* N (t asNml),

(t is Ide) — JN(p (t aside)), help (t as Apl) p.

help = X ap .(IK (a[0)) (W(a[l)p , T£(a\8)p).

The auxiliary function kelp simply makes the definition easier to read. Help could be

eliminated by expanding its definition in the equation for 2T; and so it serves as a

"macro". Expressions like kelp, which have no free variables and can therefore always

be eliminated by substitution, are called combmators.

Additional abbreviations make these definitions easier to read. A Backus-Naur

style is used to describe syntactic domains and to document concrete syntax. Valuation

functions are written as a set of identities in the style of Definition 2.2-2. Elementary

coercions are suppressed through the use of naming conventions. The revised definition

is given in Figure 2.1. The figure gives a standard semantics for Term; it says nothing,

for example, about the order of argument evaluation or error recovery. Stoy (1077) gives

methods for addressing such issues, one at which is introduced in the following section.

Language specifications in this style will be made in Chapters 4 and 5.

2.6.2. Specifying Control. A continuation is a formalization of control in the
domain Vat — Ana. A function in this domain takes a value produced in the present

and states what is to be done with tha t value to produce an answer. One can linearize a

non-linear specification by using continuations to describe a calling order. For example,

47

Syntactic Domains

Ide

Nml

Opr

Term Nml | Ide | Opr (Term t Term)

Semantic Domains

Opn — (Ini X Int) —* Int
Env — Ide — Nml

Valuations

IK : Opr —* Opn

i V ; Nml — Int
IT : Term —» Enu -* /nl

Z T M p = N(n)
T T l Q p = JV/p i)

Figure 2.1. A Standard Semantics for Terminal Terms.

consider the following proposition:

PROPOSITION 2.6-1. Let F and G be defined as follows

P M <= PM — c, h(F(g0(x}), F(gtfx))).

Gfx, n) <i= p(x) — k(c)j G(gjx), /X u . C/ff/iA v .n h (u t v) j) J).

Then for all a and 7 , C7/a, 7 / =

PROOF: by subgoal induction on F. If p(a) is true then both sides reduce to 7 (c). O th

erwisc,

(i) identifiers

(n) numerals

(0) operators

(t) terminal terms

operations

(p) environments

48

= G(gja), I \ u . G (g t(a), [\ v . - f k f u , v)]) j) A G

= / X u . G(gx(a), / X v, yh fti , v)J) j)(F(g0(a))) I.H.

~ 0 (g t(a)t / X u . 7 h(F(g0(a)}, v)J) eubatitution

= / X 11. 7 V F(90{a)), vJKFfgJa})) LH.

- 7 h (Ffgja)), Ffgjaj)) aubatitution

= 7 F(a) V F

□
A more palatable version of G results if we introduce names for its continuations,

G(x, k) <=■ p(x) — it(c), G(g0(x), DoG(gJx) k))

where

DoG{xt k) <£= X v. G(x} DoRfv, k)).

DoR(xt k) <5= X v . nhf x , v)>

in words, G "sends" e to its continuation, k, if pfx) is true. Otherwise it computes gj x)

with a modified continuation, DoG, The new future of G is to save the result of the

present computation white G computes gf(x), DoR applies k to the two results before

resuming the original continuation.

These continuations inherit values from the present and record obligations for the

future. They express the qualities of a control stack in a form suitable for reasoning.

Wand (1080a) suggests th a t when seeking ways to implement recursion it is preferable to

look for ways to represent continuations rather than to search a catalog of stack optimi

zations,

2 .0 .3 . D l s t r i b u t iv i t y o f th e C o n d i t io n a l , R e v is i te d . In Section 2.4.2 condi

tional selection was allowed to distribute over operands. By the following sleight-of-

hand, we can conclude that distributivity applies to operations as well:

p — J(z)> g (y) = p - > apply(ft *), oppiyfg, y) A apply

= a pp lyf (p - * f , g j , [p — x , y }) d ittr ib u tiv ity

- b - * I, g l (p - * * > v) A apply

(t is by no means clear that apply has a concrete counterpart in the typed specification

language, for this would imply th a t operations exist tha t produce operations as values.

The assumption of “ functional operations", strains intuitive correlation between the

underlying type and the designer's component catalog, much more so than the admission

of structural combination. However, we shall see in Chapter 5 th a t this factorization

can be meaningfully interpreted as a metaphor for communication.

2 .6 .4 . M u l t ip le V a lu e d F u n c t io n s . To describe circuits, we must eventually deal

with objects that have several “output leads". Our development extends routinely to
permit multiple valued operations, as we have already done by introducing parallel com*

bination. However, the presence of multiple valued operations can lead to considerable

confusion in detail. Whereas before we might appeal to the rigidity of the term transla

tor T (Prop. 2.4-1) to guarantee tha t all the nrities match correctly, it now becomes

necessary to keep track of aritics explicitly. For example, of only one coordinate of a

many valued operation is used, a projector must be introduced to access it. This m atter

of “ typing" arises in several guises in the course of this presentation.

3. The Realization Language

A digital circuit description bos two principal properties to specify: what com

ponents arc in the circuit and bow they are connected to each other. A number of

assumptions are made concerning the nature of components. They are perceived as hav
ing physically distinct inputs and outputs. As a direct consequence, the model defined

below cannot address such issues os the relational (as opposed to functional) qualities of

fundamental electronic elements1, and the bidirectional use of signal paths often found in

physical implementations. The model is expressed in a language tha t describes logical

behavior and physical connectivity, but not physical requirements such as power supply.

Most im portant, the notation docs not refer directly to timing. Component behavior is

coordinated by storage elements called registers, whose behavior in turn is governed by

an external synchronizing agent, or clock.

Since a component's inputs and outputs are distinct, its connectivity can be

described by an applicative expression. The realization language is built from signal

expressions, which are terminal terms th a t are sometimes annotated with an initializa

tion clause. A signal expression denotes a signal, or history of values acquired over

discrete time. T hat is, a signal is a non-terminating sequence of "instantaneous" values,

and is modeled by the reflexive domain SigD — D X Sig^. The semantics of a circuit

description will eventually be given as a fixed point in this domain. However, the first

concern is not so much with signals as with the values tha t occur on them. In particular

lA resistor is a constraint, such as 5ft = OHM n {{v, i, r) I r =5} where OHM = {(v, i, r) I
n = i* r). To Introduce a resistor as a component, one would have to choose between 5ft =
(X v .5 * t) and 5ft = (\ i . v -i-5), That is, either current or voltage would have to be free In a
description involving resistors.

50

SI

we .would like to know whether a signal produces a specified value a t some time. Hence,

it is appropriate a t the outset to invoke the ordinary interpretation or a sequence as a

function from integers (i.e. time) to values. In Sections 3.1 through 3.4 a signal expres

sion is defined to denote such a function; in Section 3.5 the meaning of the realization

language is restated in terms of sequences, where the obvious coercion,

behavior :St'gD —* (Int —* D), relates the alternate semantics.

Under the functional interpretation, a realization defines a first order liuear

recurrence, a conventional formalism for digital behavior (See for example Hill and
Peterson, 1008, Sec. 0.7), We shall later settle on the sequential interpretation because it

leads to an experimental basis for design synthesis. Section 5.5 is a prelude to the imple

mentation of realizations in the modeling language presented in Chapter 4.

3.1 Digital Circuit Descriptions

The computational aspects of a circuit are denoted by a set of components whose

instantaneous behavior is tha t of an operator in some type.

DEFINITION 3,1-1. A combinatorial component is an operator or predicate symbol in

an underlying type.

The symbol J_ is reserved to denote storage in a manner described below. Storage

components are informally called registers, although this term should not be taken

literally. We shall build realizations from a language of signals, which express the

behavior of components or groups of components.

DEFINITION S.t-S. The language Ls of signal expressions contains terminal terms and

terms of the form [[c t Sfl, where c is a constant and S is a signal expression.

For the next two sections, components are enclosed in boxes to distinguish them

from ordinary operators. Thus ladd l is a component and [2] is a primitive signal

expression over the integers. Behavior, defined just below, is a mapping from signal

expessions and integers to values. T hat is, given a signal expression and a “time",

52

behavior is tlie value oa the expressed signal at th a t time, the symbol l@’ is abbreviates

this relation.

DEFINITION S.1-3, Let Ls be the language of signal expressions over a type with carrier

D; and let w denote the non-negative integers. The /unction :L G X w - * D defines

the behavior 0/ ground term s 6 Ls at any time n as

i. {T]®" = c, for all n, where e g / ? .

»V. If e 6 D and s 6 Ls

(e 1 sj®° = c, and

(c 1 s}°(n + >) = i ° n.

Hi. If f is on m-ptace operation and s} ,..., are in Ls, then for alt n,

Definition 3.1>4 accounts only for ground expressions. The behavior associated

with an identifier behavior is defined by equation, and a circuit description is a system of

equations.

DEFINITION 3.1-4. A signal equation has the form “X 3 5 " where X is an identifier

and S is a signal. X satisfies its defining equation if and only i f A'**” = S Qn for all n. A

circuit description is a system of signal equations, each defining a unique signal name.

Identifiers arc capitalized in circuit descriptions since they have became the serious

symbols. The cqunlity symbol denotes behavioral equivalence, or equality of value at all

times, which is obviously an equivalence relation. Consider the circuit description

A" = 1 I fm pFlf r . X)

r = 1 i Y)

It can easily be shown by induction that for all n, K®" — n + 1 and ,Y®" = n t .

S3

A circuit description is a linear form of circuit schematic. The identifiers name

component outputs, and the equations specify connectivity. The description above is

expressed graphically as

Schematics such os the one above serve as an informal notation and will always be

accompanied by a equations! circuit description. The component [T] is a generic clocked

register, but reference to the clock is omitted. The tokens {•) assert th a t at “ time zero"

the circuit is in a state where the registers contain the indicated values.

3.2 Translation to Circult-Descrlptlon Form

The central result of this chapter is th a t the correspondence between operations

and components extends in a natural way to a correlation between the terms of an itera

tive specification and the signals of its realization. We shall refer to the change in

interpretation of a term from its “ instantaneous" value to its behavioral counterpart as

lifting. It is of course no accident th a t circuit descriptions are generated by the same

language of terms used to develop recursion schemes. Our first goal is to establish a

relationship between the universal iterative scheme and its register transfer counter

part. Let us establish some preliminary facts.

LEMMA 3.S-1. For constant a, signal S, and 1-ptace operation/,

\B (a I S) = 1(a) 1 HfSj.

P R O O F : By definition 3.1-3,

m t a ! S)1« = 1(a) = (1 (a) ! fflfSj (-

54

and

! S))*<n+t) = fffa ! S } ^ n i' 1̂) = f (S ° n) = /£]W 7 ® n = fffa) ! \J] (S } j^ n+i)

□

LEMMA S.8-8. Let f be a 1-place opcra/ton and let

X = a I \R {X)

U = a ! K

T/ien A* id 6cAaw'ora//y e^ui'ea/erif fa £/.

PROOF: (by induction on n): Definition 3.1-3 shows X oa — a = U®°. Suppose that

A'0n = f/®n. Then by Definition 3.1-3 and induction,

jy O fn + tj _ y £ y O « y — — y ® n = £ /® fn

□
The connection between the specification and realization languages is made on the

basis of the universal iterative scheme U^

THEOREM 3.S'3. Le t F be defined by the recursion scheme

F(z) <= P M — I N , E(g(x)).

and let X be defined by the signal equation

X = a I

Then i f F converges on a, there is an n fo r which the following three statements hold:

11. p (X Gn) is true.

it. p (X Qk) is false for all 0 < k < n.

Hi f(X*>n) = F(a).

PROOF: by subgoal induction on F. If p(a) is true then (t-iiV) hold for n — 0. Other

wise, Ffa) = Ffgfa)). By inductive hypothesis, there is an JVsuch tha t (t-iYt) bold for

55

v = tW i E f f l
By Lemma 3.2-1 V = W\(a 1 V). If p(a) is false, statem ents (i-m) hold for the signal

V - a I V

when n = i f V*i. By Lemma 3.2-2, X — U and therefore statem ents (i-ttV) also hold for

-V.
□

Theorem 3.2-3 affirms the assertion made in Chapter 1 th a t the universal iterative

scheme U{ is related directly to the universal register transfer schematic.

•
! X

9 j

Here x° stands for the appropriate initial value on the signal X. We shall not address

the question of how registers are initialized. To the basic feedback loop we may add two

additional components, one to compute the terminal call, and one to represent the predi

cate. The component [7] eventually produces a value equal to the specified function's

result; the component p produces a signal th a t indicates when a result is available.

R E A D Y

VALUE

Expressed os a circuit description, this schematic translates to

X = x° i [F] (X)

VALUE = \J](X)

R E A D Y =

Since circuits do not converge to values, but rather “arrive a t” them , we shall require a

circuit th a t meets its specification to contain a signal th a t indicates when the specified

value is present.

66

DEFINITION S.S-j. A circuit description realises a specification i f and only if it has a

signal R EAD Y, that states when the specified value is present, and VALVE, that contains

the specified value.

3*3 Decomposition of Combined Components

Since any linear speciGcation can be transformed to an instance of Uf) the circuit

description above is a realisation for all iterative specifications so long as combined

operations are allowed in the underlying type. However, it does not have a very infor

mative schematic; wc should like to know what is going on inside those boxes. When

structural combination was introduced in Section 2.4.3 it was claimed th a t it "made

sense" in terms of circuit connectivity. We shall now justify th a t claim by showing that

the packaging of operations in combined form is transparent to (i.e. distributes over)

lifting. A given instance of the universal circuit description can always be decomposed

into a more detailed schematic by reversing the transformation steps th a t combined

operations.

To expose more details about the inner workings of a circuit, we must extract sig

nals corresponding to individual registers within the state. If a combined operation is

decomposed according to the propositions th a t follow, it is reduced to base terms that

are cither constants or projections. If projections are replaced by the identifiers from

which they originated, they name signals tracing state-coordinate behavior. Consider a

specification with formal parameter list (u, v), tha t has been translated to an instance of

U{, and is therefore defined over a "monolithic" state identifier Z. Intuitively, if the

behavior of Z is a sequence of pairs:

m (: !] : : :]

Z is decomposed by applying a lifted projector.

u = \ n l (x)

v = H E W

The following propositions establish the "local" transparency of structural combination

to lifting. For serial combination (composition), by Definition 3.1-3, for all n,

57

lM (z) Ia' = (f 11(2“’I = ffe(zaV) = W B W 'i = /E k E O T 4" ■
Hence

p r o p o s i t i o n s .s -L U B (z) = U \(\a l (z) h

□
Since signal-tuples have not been directly defined, there is no immediate correspon

dence between the forms like I < / g > I fZ) and (0 (Z) , 0 (2)) * However, when serial and

parallel combination ore used in conjunction, as is always the cose when generating com

binations, the result is transparent.

PROPOSITION 3.3-8. If< g i. . .Q m > \(Z) - U] (\ g i \ (Z) \ g ^ \ (Z i l

PROOF: By Proposition 3.3-1,

| / < g f . . . g m > [(Z)= E l (I < g / . . . g m > | (Z)).

By Definition 3.1-3, the meaning of parallel combination, and for all n,

l \ i < g i . . . g m > \ (Z)l« * = 0 / H < S i - H - > \ IZ II*"1

= IK i , ... t>m>(zaV)

= tJZ*V)

= / r / E W / # V » . [G a l f f l l * ’)

□
By similar arguments,

58

PROPOSITION 3.8-3. \ir i<gi...gm> \ /Z) =

PROPOSITION 3.3-4• For anV constant c, |AT \ (Z) — PH.

□
To deal with identifiers, we must look a t lifting in the context of a defining equa

tion. Consider the recursion scheme

F(xj ZjJ p * r, F(tj t^).

where propositional expression p, expression r, and all t. are trivial. Under translator T,

F's transformation to an instance of U{ yields

G(:) T m N - * n r \ N , G « T l t l \ . . . T \ t ii\> {z)).

The identifier : is now understood to name the state descriptor (xt x j . Our goal is

to conclude th a t for any trivial term f,

w m m = i (•)

where the interpretation of t on the right is, of course, lifted. By Proposition 3,3-4, this

equation holds if t is a constant; by Propositions 3,3-2 and 3.3-3, and structural induc

tion over the language of terms, behavioral equivalence holds if / is a trivial application.

The only remaining question is whether (*) holds for identifiers. Since 7"| ar.J = jr., we

must have \iri\fZ) — x. to support the induction. Let us therefore introduce a signal

equation

.v(= d O f f l

for each identifier in F*s defining equation. Now by Theorem 3.2-2 the circuit realization

far G defines

Z - S° y| < rg f /D . . . rn | (21

If Z is replaced by its defining equation in each X (’s signal definition, we get

S9

= 1 [e J] f l<rH il.»TH nl> I(Z)) Lemma 3.S-1

= irf (ia) I { n U U fZ)

= *? I /. by the argument above

Props. 3,3-1 to 3.3*4

This establishes the fallowing:

THEOREM 3.3*5. Let p be a trivial propositionat cjprestion. Let r, fn be trivial

ezpressions. The iterative recursion scheme

F f t j ,..., x j p ~~* r, Eft j t^J.

is realized by the circuit equation

That is, if the registers that produce signals X t X n are iniiia/ijerf with x°{ ,..., 2°

respectively, VALUE will contain Ffx® x°t) the first time R E A D Y is true.

R E A D Y = p
VALUE ~ r

□

3.4 Circuit Synthesis

We shall call instances of the scheme in Theorem 3.3-5 simple loops. A realization

is obtained immediately from any simple loop by a transcription to circuit description

form. The transcription indicates a change in the interpretation of the terms in the

specification; they have been lifted. Because its realization is immediate, a principal

method of circuit synthesis will be to find a simple loop version of a specification.

60

Let us bring our examples up to date, For concrete underlying types, the com*

poncnt counterpart of an operator or predicate wilt henceforth be written in upper case.

Thus, ADD denotes I add | .

F a c t o r i a l . The initial specification for the factorial function was

FACfx) <= zeroffx) —* 1, mpyfx, FAC(dcr(x))).

By Corollary 2.3*4 the simple loop

Gfx, y) zeroffx) — y, G(dcr(x), mpyfx, y)).

gives the same answer when y is initialized to i . T h a t is, FACfx0) — Gfx0, 1) for all

non*negative x°. G*a defining equation translates to the circuit description

X - x° I DCR(X)
Y - 1 I M PYfX, Y)

R E A D Y - Z E R O ffX)

V A L V E - Y

By Theorem 3.3-5 the first time true appears on the READ Y signal, VALUE will contain

(*°)!-

Fibonacci. The initial specification was

FIBfx) <=r ttffx, 8) -* 1, addf FlBfdcrfdcrfx)), FIBfdcrfx))).

By Corollary 2.3*2 an equivalent simple loop is

Gfx, y, z) <= U?fx, 8) — y, G f dcrfx), z, addfy, z)).

That is, for all x°, FIBfx0) = Gfx0, J, 1). Hence, a circuit th a t computes the Fibonacci

function is described by

X - x° t DCR(X)

Y = 1 ! Z

Z = 1 1 ADDfY, Z)

R E A D Y = ZE R O ffX)

VALUE - Y

When A' arrives at zero, Y will contain FIBfx0).

81

G r e a t e s t C o m m o n D iv is o r . We began with

GCD(x, y) <= cqffx, y) — x,

tiffx, y) -* GCD(x, subfy, z)), GCDfy, subfx, y)).

The Uf-test must be distributed to get a simple loop. Since the specification is linear,

the test can be implemented with a multiplexor:

Gfx, y) <= eqffx, y}~* x, G(muxfUffx, y), x, y),

muxfUffx, y), subfy, x), subfx, y))) .

Arbitrarily push the conditional once more, inside the call to sub. We notice below a

common subexpression tha t results.

Gfx, y) <*= eqffx, y) — x, G(muxfUffx, y), x, y),

subfmuxfltffx, y), y, x),

muxfUffx, y), z, y))) .

This leads to the realization

X - z° I M U X fLT ffX , Y), X, Y)

Y - i f \ SU BfM U XfLTffX , Y), X, Y), MUXf LTf f X, Y), Y, X))

READ Y = E Q 9 (X ,Y)

V A L U E - X

VALUE contains G G D f x y °) as soon as R E A D Y arrives a t true. Of course, common

subexpressions can be ideutified:

A' = x° I U

r = y° I SUBfU, W)

U - M U X (V ,X , Y)

W = MUXfV, Y, X }

V - LT t f X , Y)

R E A D Y = E Q f f X , Y }

VALUE = X

A schematic for the GGD realization can be drafted from its signal equations:

62

VALUE

R E A D Y

3 .S A D o m a in M o d e l o f B e h a v io r

In tbia section the behavior model is restated io the Scott-Strachey notation, The

motive for the translation will become apparent in Chapter 4 where an interpreter is

presented for a version of the metalanguage. The restatement not only unifies the

semantics of specifications and realizations, but wilt be used later os an intcrpretable

basis for experimentation.

Signals have already been described informally as “value sequences” , and it is

clearly appropriate to model them as such. Let D be a flat domain of values th a t a sig

nal can hold. A signal is in the domain of infinite sequences

SigD = D X SigD

For dBD, the constant signal Q[j Is modeled as

d 00 = / i x X a . (d , a)

Given tB S ig D and dBD, the register |[d ! i j is expressed simply as the p a ire d , a).

Behavior is given by a function behavior: SigD —* Int —*■ D, where Int is the domain

of integers (Sec. 2.5.1).

behavior ~ \ s n . (n = 0j —* (s{0), behavior(s[I)(n — 1)

By the fixed point property, behavior(d°°, n) — d for all n; behavtorf (d, a), 0) = d; and

behaviorf (d , a), (n + 1)) = behavior (a, n). Hence, cases (i) and (it) of Definition 3.1-3

are satisfied in the model.

83

A 1-plaee component must give rise to a function in St‘gD — SigD. However, we

shall not take components themselves to be those functions, but rather define a com*

ponent to be an operation-valued signal. T h a t is,

ComD ~ S i g ^

For iustancc, 0 — / “ • Until Chapter 5 only these constants in ComD will be needed.

Application is generalized to deal w ith signals. Component application becomes

coordiniilc-wisc application of instantaneous operations to instantaneous values. For I-

place operations an app/p-lifting functional like,

maptiat = X f s - {apply (f\0) (a\0) , mapliat (f [l) (a[ljj.

suffices. IT the goal were to be a formal study in this model, it would be best to assume

that nil operations are unary, or perhaps currg’d, However, since our purpose remains to

provide a notation tha t depicts implementations, we shall introduce a mechanism that

admits n-nry (and u-valued) operations. There is a problem with structures: application

of an u-placcd component to n signals cannot be achieved by a simple mapping func

tional like mnpliat, for at each instant the operation expects its argument to be a tuple.

An additional combinntor is needed th a t, in effect, transposes a tuple-of-signals into a

signal-of-tuples. If f;Dn —*■ D, the combinator needed to apply Z00 is

tran*po«cn = X a , . . .an-(((»t W ,..., (*nW) , (tranapoaejat \ l) ... (aR\ l))) .

A generalized combinator, transpose, can be written to handle all dimensionalities. We

arrive at the following definition of component application which we will denote with an

infix colon. If / E S * g p n _ p and s E Sigpn then

I / j *1 = maptiat // 'transpose a).

In the domains of signals and components, the meaning of a circuit description can

now expressed as the Gxed point. T hat is, a circuit description {X. — S . } has meaning

This model of behavior is essentially tha t of Kahn (1973) who also uses and equa-

tional signnl-dcfinition style. It is easily related to Milner’s simple process behavior

model (1073) os presented by Gordon (1080). Minor variations are due to differences in

emphasis, Milner’s model is more generally descriptive. He defines the domain of

proceaaea as follows;

64

Proeeaa = Input —► (Output X Proceaa}

T hat we have modeled components instead as higher order signals is a technical point,

since only constants in ComD are permitted. This restriction Is relaxed slightly and only

temporarily in Section 5.1, as a means to introduce communication. Milne and Milner

(1070) present an algebra of connectivity th a t covers a wider class of concurrent

behavior than we attem pt here, We shall return to this point in the conclusion.

4. Daisy

Daisy is an interpreted language in which both specifications and realizations can

be implemented. It is a descendant of Pure Lisp (McCarthy, ct.at, 1005) and to a lesser

extent of Scheme (Sussman and Steele, 1078). Its interpreter executes in a d a ta space of

binary list cells and uses graph reduction to solve recursive equations. Daisy’s syntax is

similar to many contemporary applicative languages (Burge, 1975) (Henderson, 1080); it

is a language or expressions with no explicit sequential control constructs. Computation

is demand driven, making interpretation yield "call-by-name” semantics. Consequently,

specifications in Daisy are entirely consistent with the valuation function or Definition

*2.2*2. Moreover, circuit descriptions can also be computed even though representation of
behavior involves infinite da ta structures. We will take a brief look a t Daisy’s imple

mentation and then give a formal definition or a subset of the language. The remainder

of this chapter is devoted to dem onstrating how Daisy might be used to support circuit

synthesis.

4.1. Operational Semantics — a Summary

Functional language interpreters can be classified in terms of string reduction,

although few actually work th a t way. Instead, they use graph reduction to reduce dupli
cation of substituted text. The necessary bookkeeping is implemented by a hidden data

structure called an environment, which represents a mapping from identifiers to values

(see Sec. 2.2). Substitution steps are emulated by adding new bindings for formal

parameters in this da ta structure.

Recall from Definition 2.2-2 tha t the value of an expression depends in p a rt on the

substitution of actual arguments for formal parameters according to function definitions.

In reasoning about reduction we could arbitrarily unfold serious terms. However,

e s

66

mechanical evaluators must have a computation rule by which they deterministically

select which terms to unfold. A leftmost-innermost rule is most often used: the interpre

tation algorithm unfolds the Erst iterative term it encounters reading left to right, makes

a substitution, then simplifies. This reduction strategy is referred to os call-by-vatue

interpretation, since it mimics th a t operational argument evaluation protocol as defined

in ALGOL 00 (Backus, et. a /., 1 0 63).

Daisy's computation rule is leftmost-outermost, meaning th a t the corresponding

string reduction interpreter expands the Grst function variable symbol it encounters.

This is analogous to passing text rather than values to subprograms and so is called a

catt’by-name computation rule.

The advantage of calt-by-vnlue is its relative efficiency on conventional architec

tures. However, call-by-name is a stronger rule: it produces results more often. The

difference is illustrated by a simple example. Consider the system

Ffx, u) <S=

Gfz) <*= Ffx, G(z)).

and suppose that the ground term G(a) is to be evaluated. Let —* and -* indicate

reduction according to the definitions of F and G respectively. The reduction sequences

under t he two computation rules are

G (a } ~ Ffa, Gfa))^* a fcall-by-name}

G(a) — Ffa, Gfa))^* Ffa, Ffa, Gfa)}) ... (call-by-valuej

This reduction clearly diverges under the call-by-value computation rule. If underlying

operations are assumed to be strict, then call-by-name interpretation converges whenever

a vnluc is defined (Manna 107-1, p. 388).

Daisy inherits its computation rule from the mechanisms it uses to manipulate its

data space. When a new record is built, each of its fields is filled with a suspension, or

expression closure, which contains the information needed to compute the value of th a t

field. The computation does not take place unless and until the field is accessed. Once

access occurs, and if the suspension converges, the referent field is updated with the

result, so that subsequent access need not recompute it. This basic model of computa

tion has many names including lazy evaluation (Henderson and Morris, 1070), delay rule

(Vuillcmin, 1074*), and demand driven (Ashcroft and Wadge, 1077; Kahn and MacQucen,

87

1077). The East of these will be used here. Two consequences of demand driven compu

tation are of consequence here:

1. Since environments are suspended, argument evaluation is deferred untit identiGer

bindings are sought. In the absence of other side effects, the deferral yields the

call-by-name characterization of interpretation, with some improvement in efficiency

because redundant reductions are shared (Friedman and Wise, 1070a),

2 . Non-finite data structures can be built from finite descriptions1. Only those por

tions of such structures th a t are needed are actually brought into being. (Friedman

and Wise, 1070b, 1070c; Friedman, Wise, and Wand, 1070), In particular, the sig

nals tha t are modelled as infinite sequences in Section 3.4 can be readily expressed

and manipulated in Daisy.

Daisy is a vehicle to state specifications and realizations in executable form.

Specifications arc not compromised by the in terpreters evaluation strategy because the

call-by-name semantics are consistent with their formal meanings. The facility to mani

pulate infinite objects implies th a t the logical description of circuits can be explored

through direct emulation. If it is granted tha t the realization language is an adequate

starting point to fabricate an implementation, its direct interpretation is a way to

observe logical behavior without physical prototypes,

4.2. The Language

Figure 4.1 gives an idealized definition of Daisy's syntax. (The parser for tht'a

grammar has not been fully implemented; Appendix A gives a description of the current

syntax.) The stylized syntax is used from this point on in examples, since it more

closely reflects the notation we have developed so far. Actual source for the running

examples is shown in Appendix B. The alternate forms of conditional and body have the

same meanings; which to use is a m atter of preference or style. For example, if p, c, and

a arc lexically small, it is probably better to write [[p —* c, <t|| rather than [[If p th en c

else a]] since the keywords in the second version visually dominate the text.

Function definitions are similar to the notation of Chapter 2, except for the explicit

application operator and the use of a list specifier to construct arguments. The three

‘This is a simplification since descriptions are themselves data, It is only required that the
description be finitely dcscribable, and so on.

08

expression » * " (expression) | 0 expression

atom | fern | application | a ttra c tio n j conditional | system

atom • * identifier | numeral | operator

fern * *
• • [list] | < list > | { l i s t}

h'tl * 1 P 4
• » A | expression * | expression I expression J expression list

application * •
* • * * expression t expression

abstraction * *
• • X expression . expression

conditional • «
• * If expression then expression eke expression

expression —► expression , expression

system • *
■ * body | rec body

body • • let specification in expression [expression where specification

specification • t B
• * » » A | definition speai/icatton

definition • * M
4 » « ■ expression — expression | identifier i expression <£= expression .

Figure 4.1. Daisy Expression Syntax.

example rune lions might be defined as follows in Daisy:

rec □ w h ere

FAC ix zeroT sx —• 1» FAC td c n x .

F IB ix If ItT s < x 2 > th en 1

else add t < F lB td c n d c n x F IB id c n x > .

GCD :x < = le t [u v] = x

in

if eq? :x th e n u

else if It! :x th e n GCD t < u su b : < v u > >

else GCD t < v sub i < u v > > .

The box (□) would contain some ground expression to be evaluated according to this

specification. We shall usually display specifications in the context of some “expcri-

00

m eat" tike this2. The somewhat contrived version of GCD illustrates Daisy’s lack of

emphasis on argument structure. Although GCD takes two arguments, its formal

parameter does not name them. It is the inner specification, [l e t [u v] = x ...Q that

idcntiGes z ’i coordinates. The "2-place" operations eqf and It? can be applied directly

to z, since it will have the required structure.

4 .3 . F o r m a l S e m a n t ic s o f a S u b s e t o f D a is y

The language deGnition in this section omits some features of Daisy th a t are not

used in this investigation. There is a construct for indeterminacy (ferns of the form

H{ ... }fl) which has only recently been formalized (Wise, 1083). Operational discus

sions of this construct have been published by Friedman and Wise (1070, 1080, 1081)

and Filmnn and Friedman (1083). As in Lisp, expression tex t is indistinguishable from

ordinary da ta in Daisy’s data space, and programs can be written to produce other pro

grams. However, Daisy’s program .representation is rather involved; discussion of it is

omitted since program builders arc not presented here.

The figures referred to in this discussion appear at the end of the section. Figure

‘1.2 is a simplified language th a t will be used for Daisy’s formal definition. W ith the

exceptions already mentioned, expressions in the full language can easily by converted to

this "kernel’* language, Some examples of the conversion are shown in Figure 4.3. Fig

ure 4.4 gives a standard semantics for the kernel language.

D o m a in s (Figure 4.4a). Opr is a set of identifiers reserved to denote primitive opera

tions on Daisy’s underlying type, Vai Some of Daisy’s operators are summarized in Fig

ure 4.5. The structure of formal. arguments, given by the domain equation for Arg,

comes into play in defining environment extension. Included in Val are the primitive

syntactic types and a set of messages tha t are returned when expressions are found by

the interpreter to be erroneous or meaningless. Operations also produce messages; for

example, an arithmetic operation returns an error message on non-numeric operands.

The non-flat summands of Val arc Clst a domain of function closures, and Lstt the

domain of value pairs. Env is the usual domain of environments, th a t map identifiers to

their bindings. The primitive valuations for numerals and operators ore left unspecified.

2In the implementation, functions may be directly defined at top level os though the
operator’s programming environment had been initiated in a "recD where...”.

70

S e m a n t ic s (Figure 4.4b). The interpreter Is specified by the valuation function ID,

with auxiliary combinators as defined in Figure 4.4c, Numerals, operators, and quoted

identifiers evaluate to themselves; the empty fern evaluates to Nil. Unquoted identifiers

evaluate to their bindings in the current environment. Value pairs arc expressed by list

concatenation. Abstractions are closed in the environment in which they are evaluated

(making Daisy a lexically scoped language), Conditional expressions and recursive

definitions have standard meanings. The interpretation of application is discussed below

when the auxiliary combinator d-apply is introduced.

A u x i l ia r ie s (Figure 4.4c). The environment extension combinator binds structures to

values. The formal argument is used as a pattcrm by which the value is accessed;

identifiers are bound to their corresponding locations. If the formal argument is a simple

list, the effect is the same os a call-by-name param eter passing protocol. As the GCD

example above indicates, the formal argument may be used to name arbitrary pieces of

the actual argument. The implied principle is tha t all functions are monadic, and that

formal arguments serve as a kind of record declaration. However, the interpreter does

not check for a pattern match at binding time, as to do so would introduce strictness. A

list membership operation Member? might be defined1:

M em ber!: x <£= le t [a 1 1st] = x

le t [e ! 1s t '] = 1st

in

if null! ;ls t th e n < > ,

else if samel :x th en Q true,

else Member! t < a I 1st *>.

The let-definition gives names to the components of the formal argument, x. The

“ binary** operation tame? is applied to x because it happens tha t its first two elements

arc the ones tha t need to be compared. As is the case with all such operators in Daisy,

tame? docs not require th a t its argument be of length two. The head and tail of the

list 1st are named a and 1st', even though 1st might be empty. Again, this is valid in

Daisy because there is an intervening nuffP-test before 1st' is used.

3This example, like the GCD definition, u meant to illustrate a point about blading in Daisy,
and is not put forward as an example of good programming stylet

71

Application is orthogonal, meaning tha t the evaluator renders an interpretation for

any value th a t appears in the function position. This is shown in the definition of auxi

liary function d-appty. Numerals, for example, are taken to denote list probes returning

the element at the appropriate coordinate of the argument. If the function-part is a list,

its elements arc applied coordinate-wise on the transposed argument. This choice of

interpretation for list application comes out of the investigations by Friedman and Wise

(1076c, 1078a) of systems programming, but it is also consistent with the circuit

behavior model of Section 3.4.

The function predicate assigns an interpretation of tru th to every value; as in Lisp,

NU is the only instance of falsity. The Boolean inteprctation of a message is erroneous.

On valid values predicate’s result is a branch-like operation tha t selects an alternative,

by coercing one of the values in a pair. The reader can check th a t the conditional is

non-strict in its alternatives.

We shall say no more about the implementation of Daisy except to note the impor

tan t fact since the list construction primitive is suspending th a t list concatenation is not

a strict operation. By the definition of ID, it is straightforward to show

PROPOSITION 4.2-1. For all environments p, and all expressions e and e't

ZD fl (X [h l t] . h) i < e l e ‘> j|p = ID J e]]p

and

ZD [[(X [h I t] . t) : < e l e '> Jp =

PROOF; (Appendix C).

a
These equivalences hold even if c o r « ' diverges, and are maintained by Daisy’s imple

mentation. Hence, the pairing and projection functions of the Scott-Strachey tangugc

can be implemented by

pair ! y > .

head i [H l] <S=: A .

ta i l :[A 1 (] < = t .

The required axioms:

head : pair i < e e ' > s e

arc satisfied in the implementation.

ta i l : pair : < e e ' > s e '

expression :;= 0 identifier | { expression)

atom [fern J application [abstraction] conditional j system

atom ::= identifier | numeral | o p e r a / o r

fern ::= < > | < e x p r e s s i o n 1 e x p r e s s i o n >

application expression : expression

abstraction X a r g u m e n t » expression

argument [] | identifier | [argument I a r g u m e n t]

conditional I f expression t h e n e x p r e s s i o n e l s e e x p r e s s i o n

system r e c argument = e x p r e s s i o n I n expression

Figure 4.2* D aisy’s Kernel Syntax.

73

Let e be any expression, t any identifier, and x any argument.

©e — not permitted unless e is an identifier

I - } — not permitted

\ e . a — not permitted unless e is an argument

< e « '> < e ! < e ' ! < > > >

[* * '] — [* 1 1 *' * n i l

< e * > (X 1. rec j = < 1 ! j > l n j) : e

I n r] < 0 i 1 Ot* > (N.B. As a value, only)

F : x < = e . F = (X x . e)

e w h ere x — e ' (X x . e) : e '

le t x = e i* — e ' I n □ - * (X [x i ' | . P) K e e >

e -* e' t e " — if e th en e 'e ls e e "

rec le t □ *—■ re c P

Figure 4.3. Conversions to the Kernel Language.

74

Syntactic Domains

Ide (0 identifiers

Nml (n) numerals

Opr (o) operator symbols

Arg = M7.+ Ids + (Arg X Arg) (*) formal arguments

Exp N expressions

Semantic Domains

Int integers

Nil nuMary value

Opn = Val —*■ Vat operations

Vat — Nil + Ide + Nml + Opr + Mag + Cla + Lat fv) values

Mag = { “Invalid function”, ...} (m) messages

Cls = (Val -> Val) (I) function closures

Lat - (Val X Val) ft) lists

Ertv — fde -* Vat (P) environments

Valuations (see Figure 4.4b)

IV: Nml —* Int Numeral meanings — unspecified

IK: Opr —'* Opn Operator meanings — unspecified

ID : Exp —» Val Expression evaluation

Figure 4.4a* Daisy's Standard Semantics — Domains*

75

ZD : Exp —* Env —*■ Vat

ZDR n]p = n

ZD(| © t]] p = i

ZDR a J/) = o

m i < > }p = M7

zd R * D /» — p(0

m i < et \ et > i p = (I D i e ^ p , JZ? | [Qp)

m i et : e# 1 P = rf*app/y /ZD R ej py /ZDflef Rp;

ZDR X « . c]]p = Xt i .ZDRef lp[v/*J

ZD R if then ef else e, D P - /predicate/ZD R e; R p/J (ZD Ref]] p , ID R e^J pj

ZDR rec j — e, In ef Jp = ZDRef R (f i x \ p ‘ . p [Z D R e J p ' / x])

Figure 4.4b. Daisy's Standard Semantics — V aluation.

78

Environment Extension, {*{ */*]): Env Vat —* Arg —* Env

p[v j x \ - \ i , (x isNU) — p(i),
(x islde) -* ((x = i) —'► vt p(i)J, p \ t l v j x \ t \ \ h d v f x J0]

d-apply: Vat -* Val —*• Val
d ' a p p l y = \ f a . f f i s M s g) —► "/nuafid Fun eft on"

(f islde) —» “Undefined Function Symbol —

ff “ Opry — (B< f)(a),
f f isNil) — Nil,

(f isNml) — probe (IN J) a,

(fisCls) — fa ,

(f t'sLst) —*> ̂ f) f/ic/i d-apply(tl/) (tls a)}.

predicate: Vat — (Lot -* Vat)

predicate — X e . —►/’X /. "Bad proposition"),

(v i s N i i) ^ (\ t . i \ i) , (\ U [o) .

probe: Int —* Val —» Val

probe — X n / . f n = ff/-* /A dI), probe(n —l)(tl l) .

hd, tl, hds| i/«,* Vaf —* Ko/

hd = Xu. (v isLst) —* vlO, "Invalid hd'Oceess”.

// = X u.^u -* v[l , "Invalid tl-access

hds — v .(v isNil) —* Nil, { Arf/Arfu^ Ada (tl v) J

ffa = v. (v isNil) —* Nil, (t l (h d v) , tls (tl v))

Figure 4.4c. Daisy’s Standard Semantics — Auxiliaries.

77

Reference comparison

sam e? - reference equality
Type Predicates

n u l l ? - teat for nil n o t - not null l i s t ? - non*nutl list

n m b r ? - numeral9 l t r l ? - literal atom? a t o m ? - numeral or literal

Numeric Comparisons

z e r o ? — test for zero

I t ? — less than eq? — equal g t ? - g r e a t e r tA an
l e ? — at most n e ? - not equal g e ? - a t l e a s t

Unaru Numeric Operators {Numbers are represented in Rational form)

s g n - sign (-1 , 0, 1) i n c — increment d c r - decrement

n e g — negate n u m — numerator d e n - denominator

l n v — i n v e r t q u o — quotient m o d — remainder
Binarp Numeric Operators

a d d — addition s u b — subtraction

m p y — multipliction d i v — division

C o n s t r u c t o r * and Probes

c o n s - (X [h t | . < h t t >) f r o n s - (X [h t] . { h 1 1})

f i r s t - (X [h ! t] . h) r e s t - (X [h ! t] . t)
List Operators

I f — cztcndcd eonrfiVi'ona/, as in (pt —* vt, p{ — P,* ~ * VJ
I n ? - list membership

s i g m a - n u m e r a l summation pi — numeral product

a n d - alt true o r — not alt null

Input/ O u t p u t
c o n s o l e — prompt'character —► character-stream-from~keyboard

s c r e e n — e A a r a e f e r - i t r e a m —* terminal display

d s k l — host-fUe —* e A a r a c t e r j t r e o m
d s l e o — character'strcam —* host-file

p a rs e — c A a r a c t e r - s t r e a m —* ciprcssion-stream

e v l s t — ezpressian-stream -* valuc'Stream

I s s u e — value~stream —► character'Stream

Figure 4.5. Some Daisy Operations.

78

4.4. Circuit Emulation

It bos already been noted tb a t specifications can readily be transcribed into Daisy

to get executable versions. Realizations are ju s t as easily transcribed, as is demonstrated

later in tbis section. The formal model of components and signals as infinite sequences

may be implemented by constructing infinite lists to represent them . Since dependencies

among signals are well behaved, there is no difficulty in building and manipulating their

representations. It is ultimately our need to observe these objects tha t brings them into

existence. The m anner in which the observation is made determines how computation

takes place. After a discussion of this issue, we return to our examples to observe their

behavior through emulation in Daisy.

4 .4*1. Non-finlte Data Structures. The function

K ic <S= < c 1 (K:c) > .

produces a list whose head is c 'j value and whose tail is also such a list. In fact, for any

positive numeral n, the expression J n : K : cj] returns c's value; the list is infinite for all

intents and purposes. The definition

K : c re c L w h e re L = < c ! L > .

yields the same result since it specifies that L must be a list whose bead is the value of c

and whose tail is also such a list, There is a special symbol in Daisy to express constant

sequences like this. One may define

K : c <£= < c * > .

The asterisk is meant to be suggestive of a Kleene star, and should be taken to mean

“arbitrarily many c 's ."

The function

N : c <= < c 1 (N :add:<c 1 >) > .

produces a list of increasing numerals. A'can also be described by “data recursion"

N : c <±= re c L

w h ere

L = < c I (< a d d * > ; < < 1 * > L >) >

Let e = 5. The computation of |[< a d d * > : < < ! * > L >]] can be pictured as a pro

gressing sum, with each element of L resulting from the previous value:

79

<1 *> = t 1 1 1 1 1 1 ...
L — 2 3 4 ■ ■ ■ ■

< ad d * > = 3 4 5 ■ ■ ■ ■ ...

The translation from circuit description to Daisy expression is straightforward. It

follows the model of component behavior defined in Section 3.4:

signal or feeAatior Daisy

component semantics expression

B c« < c * >

p) (D t < p , - P) < f * > t < □ . . .□ >

c ! □ (c .O) < c 1 □ >

Wc will retain the convention of using operator symbols written in upper case to

refer to components. The example above would use ADD , defined as < add *>. An

adjustm ent is required to make components out of Daisy’s monadic operations, which

arc applied directly to their operands and not to 1-tuples. For example, one writes4

[[inc i n j rather than [[inc : < n > jj to increment a numeral. This does not fit with the

usual transformation strategy, for while one is tem pted to write R < inc * > : < 5 *>]]

to get a stream of 0’s, the argument < 5 * > cannot he transposed; it is not a signal of

tuples. On the other hand, the expression < < 5 * > > transposes to < < 5 > * > to get

a uniform stream of 1-tuples. To increment this stream , inc should expect an argument

list of length one. We therefore define the component version of a monadic operation os

INC = < (X [n] . inc : n) * >

Figure 4.0 gives component versions of the Daisy operations used later.

4.4.2. Output Driven Computation. In a purely demand driven model, compu

tation is caused by the need for a result. Ultimately, need is determined by the device

th a t displays tha t result. One can build and manipulate non-finitc data structures in

4so as to avoid expressions like Qinc t < inc t <inc s 5 > > > j).

80

ADD = < a d d *>

DCR = < (X [x] . dcr i x) * >

DIV = < d iv * >

INC = < (X [x] . inc : x) *>

l t ? = < itr * >

MPY = < m py * >

MUX = < i r * >
SUB = < su b * >

ZERO! = < (X [x] . zero! i x) * >

Figure 4.0. Daisy Component Implementations.

Daisy as long as care is taken about how they arc displayed (Friedman- and Wise,

1070b), This relationship can be specified by introducing a causal operation called strict

whose convergence depends on the existence of a value. Thus, [[jlr ic f: < t i v > |

returns v la value after u has converged1.

Through judicious use of strict, call-by-valuc interpretation can be imposed in

Daisy. For example, function F defined by {F s (n m] <5= e j becomes call-by-value®

when transformed to

F :[n m] < = strict : < n strict : < m e > > .

To address the relationship between inpu t/ou tpu t and computation let us define a

device to be a manipulator of atom streams. A single occurrence of strict is used to

define the behavior of a atom stream consumer:

Display : [c ! S] <t= s tr ic t : < c ! (Display :S) > .

Wc shall make no assumption of temporal order in defining a generic input device:

sNote that u [s not necessarily made fully manifest. For example,
[[strict i « u I « '> v> J converges independent of it and tl' because the list constructor is not
strict.

®Conversely, in call-by-value Interpreters function closures can be used to induce call-by-
name through a dual operation called delay (Landin, 1065; Henderson, 1080).

81

Receive : x <£= < random-atom I (Receive ix) > .

Ideally it is Display th a t brings characters forth in the order they are typed. Imagine a

program th a t converts values into atom streams:

P r in t : L <5 = re c P r in t ' j < L < > > .

w h ere

P rin t ' i [L c] < =

le t [u ! v] = L

In

atom!: L -*■ < L I c > , P r i n t ' : < u P rin t' j < v c > > .

Now consider the expression ([Display : Print t < c I t > Jj. The computation is

ordered, Grst e then c', because Print produces its stream that way and Display con

sumes the stream in order. If e ' diverges, the prefix of the result is still displayed. In

fact, the computation of e ' does not take place until after e ’a value has been transm it

ted. We shall make use of this fact when we attem pt to observe circuits in emulation.

4.4*3. Experimentation with Realizations. Recall tha t the factorial

specification is realized by the circuit description

X ~ x° ! DCR(X)

Y = 1 ! MPY(X, Y)

READY = ZEROT(X)

VALUE = Y

This translates to the Daisy expression

FAC :x0 rec □

w h ere
X = < x 0 I D C R :< X > >

Y — < 1 ! M PY :<X Y > >

READY = Z E R O r:< X >

VALUE = Y.

W hat goes in the box is an expression stating what we choose to observe about the cir

cuit. Let us develop an experiment to display the entire circuit in operation. The obvi

ous first a ttem pt is the expression ([P rin t: < X Y R E A D Y >]], but a display of this

form would cause the signal X to be produced in its entirety. Hence, we would never get

an opportunity to see Y and READ Y, The solution is to look a t finite prefixes of each

82

signal in turn. A transposed version of < X Y READ Y> can be obtained by applying

an identity component to the signal list. The interpreter transposes as a m atter of

course. We get a picture of the circuit in “ time slices". Thus, the experiment we want

is

< Xx.x * > t < X Y READY>

Let us generalize this experiment to work for other realizations. Define a function

called T est th a t transposes any list of signals. In the figures tha t follow, a carriage

return is interposed between time slices:

Test : signal-list rec Form at i ID : signal-list

w h ere

ID = < Xx.x * >
F o rm a t: [u ! v] < cornape-refurn u I Form at : v > .

In the factorial example the desired experiment is

FAC i x Test j < X Y READY> w here,.." .

Figure 4.7 shows an interactive session in which this expression is executed7. As we fully

expect, the first time interval th a t the X-register contains 0, the factorial of the initial

value x° is found in the Y-registcr. In the next cycle the value is destroyed and X dimin

ishes forever. The interpretation program must be interrupted to stop the display.

A similar experiment is run on the FIB realization in Figure 4.8. Again, the desired

value appears as soon as the READ Y signal asserts its presence. It is worth noting th a t

the circuit continues to compute valid Fibonacci numbers afterward.

The GCD realization was

TDaisy is implemented on a Digital Corporation VAX 11/780, under the UNIX9 operating
system. Output from the Daisy sessions shown throughout this dissertation was recorded directly
from the terminal by a host monitor program. These text files have been modified as follows:
some carriage-returns and blank characters are deleted; some blanks are replaced by tab charac
ters to align columns. Daisy source listings are edited to the idealized syntax of Section 4.2; true
source listings for each of the figures is shown in Appendix B, Daisy's prompt is an ampersand,
*&'. The host interrupt character Is EXT, typed control-C, and displayed as *JC'. *

83

X = x° I U

Y = y° 1 SUB(W, U)

U = MUX{V, X, Y)

W MUX(V, Y, X)

V = LT1(X, Y)

READY = EQT:(X, Y)

Execution of tlie above is shown in Figure 4.0. Again the experiment is to trace the sig

nals A', Y, and READ Y in parallel. This time, the circuit becomes completely stable two

clock cycles after R E A D Y becomes true. Furthermore, the desired value of the compu

tation is preserved—a desirable characteristic from the standpoint of integration—

although its value ends up in the Y-register. The experiment has revealed a property of

the realization th a t is not accounted for in its speciGcation. The quality of becoming

stable is in fact not expressible in the specification language as it now stands, since it

implies th a t the GCD circuit computes forever. The closest we can come is to specify an

infinite loop whose formal meaning would be the totally undefined function. Thus, sta

bility, tike the quality of correctness, must be dealt with by some other means. Wc shall

not develop this notion formally for it is not worth the effort. One can always impose

stability on a circuit by using the R E A D Y signal to disable the registers. We return to

the general issue of making assertions about performance in Chapter 7. For now, emula

tion of the circuit has at least given us a chance to discover an unspecified property

without having either to build the circuit or to code it up in a simulation language. This

is a significant practical advantage of our approach.

84

FAC: i = : roc t o Bt:<X Y READY>
whore

X = <x J DCR:<X»
Y = <1 1 MPY:<X Y »
READY = ZER0?:<X>.

k FAC:7
c
(7 1 Cl
C6 7 []
(5 42 []
(4 210 U
(3 840 []
C2 2820 []
(1 6040 []
(0 6040 tru a
(-1 0 []
(-2 0 Cl
(-3 0 Cl
(-4 0 []
(-5 0 Cl) t c

FAC realization

z ° - 7
Tracing X, Y, and READ Y

Value ready

Simulation interrupted

Figure 4.7, Experim ent with the FAC Realization*

85

FIB:x <= r e c te s t:< X Y READY>
T h e r e

X = <x ! DCS: <X»
Y = <1 1 Z>
Z = <1 1 ADD: <Y Z »
READY = ZERO?:<X>.

ft FIB
C

:7

(7 1 []
(6 1 []
cs 2 []
(4 3 []
(3 5 []
(2 8 []
Cl 13 []
Co 2 1 t ru e
C-l 34 []
C- 2 55 []
C-3 80 []
(-4 144 [] tc

FIB realization

i ° — 7
Tracing X, Y, and R E A D Y

Value ready

Simulation interrupted

Figure 4.8. Experim ent with the FIB Realization.

86

* GCD realization
GCD: (x y) <= re c te s t;< X Y READY>

whoro
X = <x ! U>
Y a <y ! SUB:<W U »
U = IF:<V X Y>
W = IF:<V Y X>
V = LT?:<X Y>
READY - EQ?:<X Y>

ft GCD:(15 24) • z° - 15, j f = 84
(• Tracing X , Y, and R E A D Y
(16 24 [])
(16 9 □)
(9 6 [])
(6 3 [])
(3 3 tru e) - Value ready
(3 0 CJ)
(0 3 C3)
(0 3 [3)
(0 3 C))
(0 3 0) tc

' Simulation interrupted

Figure 4.9. Experim ent with the GCD Realization.

5. Design Examples

We now have a language for describing digital circuits and a method to derive cir

cuit descriptions from functional specifications. In this chapter, the method is applied to

a larger example; a circuit is derived for a programming language interpreter. As

descriptions get larger, it becomes necessary to organize them more carefully. We can

"structure*' circuit equations as we structure programs, by decomposing them hierarchi

cally.

Since all of the structural combinations distribute over operator-lifting, we may

arbitrarily package (i.e. give a name to) groups of interconnected combinatorial com

ponents. The instantaneous behavior of the packaged combination lifts to the signal

behavior of the group.

We have already considered specifications th a t use complex da ta types, such as

stacks. However, we have so far avoided building circuits over complex operators, by

deriving equivalent specifications over more primitive types. In this chapter we finally

face the task of implementing circuits over non-primitive signals. In programming, one

hides implementation details by introducing abstract data types* Wc shall do the analo

gous thing a t the behavioral level, introducing abstract components in our circuit descrip

tions. Like its programming counterpart, an abstract component is simply a

specification of the external behavior required by the surrounding circuit.

Implementation of an object th a t has the right external behavior may be left as a

subprobicm. W ith the complex-typed signals factored out of the description, develop

ment of the controlling circuit can continue. As abstract components are factored from

circuit descriptions, instruction signals are introduced to coordinate their behavior.

Coordination of behavior forces us, for the first time, to consider the communicative

qualities of the circuits we describe.

87

88

Hierarchical decomposition of large descriptions is common to all design realms. It

is neither novel nor surprising tha t we do it with circuit descriptions, but is simply a

necessary prelude to our attack of a larger design problem. Section 5.1 introduces some

notation for structuring circuit descriptions. We exercise this notation on a small exam

ple th a t we have seen before. Since our example has to do with “ language driven"

design, we discuss tha t term in Section 5.2. In Section 5.3 we synthesise a circuit th a t

interprets a programming language called L . The derivation is long and has five major

steps. Recall tha t ayntheata means a derivation th a t is not necessarily mechanizable.

Indeed, there are numerous design decisions involved in our development of the L -

circuit. We shall point out the transformations th a t require designer intervention as we

present them.

The derivations th a t follow were done by hand. In Appendix B, the evolving

specification is rewritten in Daisy. Executable versions of the specifications were quite

helpful in debugging the derivation.

5*1. Higher Level Components

In Section 2.4 we used the W and-Friedman transformation strategy to synthesize a

stacking version of the non-linear scheme

F(x) <= p(x) — f(x), h(F(gjx)), F fg /x))),

We arrived at the form

G(x, a) <S= pfx) — R(f(x), a), G fgjx), pxuhfO, puahfgjx), a))) }.

R(v, tr) <£= empty f(tr) -* v,

eqf(topfff), 0) — Gftopfpopfff)), puahft, puahfv, popfpopfaj) }}),

R (h(lop(pop(o}), v), popfpopfc))).

For the purposes of this discussion, we shall separate the recursion stack into two stacks:

r holds actions and <r holds values. Since every recursive call pushes exactly one action

and one value, the modification is trivial. In addition, let us use tru th values {W, f f) to

denote actions, there being only two. The revised specification is

80

Gfx, a, r) <= pfx) — Rfffx), a, r), Gfgjfx), puthfgt(x), a)), putkftt, r)).

Rfv, a, r) <= empty?(r) — v,

topfr) — Gftopfa), puthfv, popfa)), puthfff, popfr))),

R (hftopfa), v), popftr), popfr)).

By the construction of Section 2.4.4 this specification is transformed to a system

with a single function variable symbol. A new control token, w, encodes which of G or

R is in control. The identifier, u, in the definition of the function R is changed to x in

order to give the system a uniform formal argument list.

Hfw, x, a , r) <5=

atffw, a) — fpfx) -+ M fR, J(x), a, r), H(Q, g jx) , puakftt, r), puthfgjx), tr))},

a t f f w R) —► [empty?fr) -* x,

t o p f r) — H f Q , topftx), p u sh fff , p o p f r)) , p u th f x , p o p f tr))) ,
H f R , h f t o p f a) , x) , p o p f r) , p o p f t r))) .

By distributing the conditional, we can turn this equation into an instance of U{. After

a little algebra on the resulting terms we arrive at the equation

Hfw, x, tr, r) andfatffw, R) emptyffr)) —*■ x,

Hf muxfatffw, G) , muxfpfx), R, Q), muxftopfr), Q, R)),

muxfatffw, G), muxfpfx), 1, g jx)) , muxftopfr), hftopfa), x), topfa))),

muxfatffw, G) , muxfpfx), a, pushfgjx), a), muxftopfr), popfa), puahfx, popfa)))),

muxfatffw, G), muxfpfx), r, puthfff, r), muxftopfr), popfr), puthftt, popfr)))),

We shall adapt some familiar structured programming techniques to decompose the reali-

zation of this function.

6*1.1. P a c k a g e d C o m b in a t io n s . Let us introduce a more sophisticated multi

plexor to take advantage of the fact tha t the conditional structure of each inner call is
the same. Define a combined operator tha t does four-way selection.

90

m u zjp , q, r, u, v, w, x) <= muifp, muzfq, u, v), muxfr, w, z)).

We should perhaps call the combination something tike u3-by-4 selector"; the name muz4

is used for brevity. Using muzf we can rewrite IVa defining equation as

Hfw, z, a, r) <£= andfatffw, R) emptyffr)) —*■ z,
H(m u zja lf fw , a), p(z), topfr), R, a , O, R),

muz^fatffw, Q), pfz), topfr), ffz), gjx), hftopfa), z), topfa)),

muz4fatffw, O), pfz), topfr), a, puahfgjx), a), popfa), puahfz, popfa))),

m ux fa tf fw , a) , pfz), topfr), r, puthfff, r), popfr), puskftt, popfr)))).

It is not an accident tha t mux^ fails to absorb all the shared subexpressions. The reason

Is evident when H is transcribed to a circuit description. As before, lifted operations are

written in upper case. Lifted constants are enclosed in square braces ‘[' and ']' to distin-

guisb them from signals and components.

C(uP, z°, a 0, r°) <^=

W = w° I MUX,(U, V, Y, pi], [G], [It], [GJ)

X = z° ! MUX^U, V, Y, F(X), G0(X), H(TOP(E), X), TOP(E))

E = a0 1 MUX4(U, V, Y, E, PUSH(G,(X), E), POP(E), PUSH(X, POP(E)))

T = i* ! MUX4(U, V, Y, T , PUSH([iH, T), POP(T), PUSH([«|, POP(T))).

U = ATI(W, (G|)

V = P(X)

Y = TOP(T)
READY = AND(AT!(W, [R|), EMPTYI(TJ)

VALUE = X

The outputs of the components AT?, P, and TOP are shared by all instances of MUX^.

Had the subexpressions atff t , G) , pfx), and topfr) been incorporated in the definition of

mtiXj, each instance of the multiplexor would have included a duplicate set of the predi

cate components. While duplication is not necessarily a bad thing, we elect to avoid it

here, Combined operation muz4 can be lifted to component MUX^ because muz^ is

01

defined by a trivial expression. By Propositions 3.3-1 through 3.3-4, the combination is

transparent to lifting.

5.1.2. Abstract Components. While circuit C certainly computes the same thing

as H, and hence as the original specification F, it is hard to justify calling it a realiza

tion. Its registers E and T range over stacks, and so there is much yet to do before

going to the laboratory with this circuit description. We should think of stacks

abstractly and bide their implementation details. Let us therefore introduce a "class

object" th a t gives the necessary information about a stack: w hat its top is and whether

the stack is em pty. T h a t is, we shall replace stack object*, to which operations are

applied directly, with stack agents, which can be instructed to apply those operations.

Separate the signals th a t have to do with the two stacks, and rewrite the realization as

C(w°, z ° , u ° , t °) <5=

W = ur® I MUX4(U, V, ZT, [R], [01, [R], [01)

X = z° I MUX,(U, V, ZT, F(X), G0(X), H(ZB, X), ZB)

U = ATT(W, |0 J)

V = P(X)

Z = G,(X)

READY = AND(ATT(W, [Rj), ET)

VALUE = X

E = o ° ! MUX4(U, V, Zr E, PUSH(Z, E), POP(E), PUSH(X, P O P (E)))

= EMPTY?(E)

Zs = T O P(S)

T = r° I MUX4(U, V, ZT, T, PUSH([^, T), POP(T), PUSH([«|, P O P (T))).

Et = EMPTY?(T)

ZT = TO P(T)

Two signals have been added and one name has been changed, in order to bring out the

similarity between the stacking subcircuits. Y has become E r , the “I-am-empty" signal

from the action-stack. The corresponding signal E^ for the value-stack is not used but

92

is included in the description for symmetry. The new signal identifier Z was introduced

because the ability to do the operation G{ should not be ascribed to the behavior of the

stack.

Our next goal is to hide all the pushing and popping inside of a component

definition. We must only ensure th a t the new component’s external behavior, the values

on the signats Z ^ , E ^ , ZT, and E T, is the same as before. As they stand however, the

equations th a t specify these behaviors are too specific, for they inherit their decision

making apparatus from C, The stack agents must be able to (1) push, (2) pop, (3)

replace the top of, or (4) do nothing with the stacks in their care. It should be left to

the surrounding circuit to determine which of these operations to perform. Introduce a

set of instructions, Im t = {NOOP, PUSH, POP, PLOP), and define a component

S T A C K : (Stack X Sight X SigVal) - (SigVal X Si9s$ot)

th a t makes the instructions work.

STACK(a°, INSTRUCTION, VALUE) <=

rec
(T O P (Z) , EM PTY? (11))

where
£ = 0 * 1 operate™(INSTRUCTION, VALUE, £ /

o p e r a t e f i n s t r u c t i o n , va lu e , s ta c k) <5=

c q f (i n s t r u c t i o n , N Q O P) - * <r,
e q f (i n s t r u c t i o n , POP) —* p o p f tr) ,

c q f f i n s t r u c t i o n , PUSH^ -* p u s h (v a lu e , a) ,
e q f f i n s t r u c t i o n , P L O P) — p u s k fv a tu c , p o p f tr)) .

Now if C can be made to generate the right instructions at the right times, STACKs can

be used in place of the signals £ and T . Determination of the appropriate instructions is

easy; it is given by the original signal definitions in C. The STA CK s for £ and T can

share an instruction signal, /.

93

C{ W°, X°, o 0, T °) < =

W = u/> 1 MUX^U, V, z v [R], [a], [R], [a])

X = x° 1 M UX4(U, V, ZT, F(X), a 0(X), H (z s , X), Zj,)

u = ATI(W, |aj)

V = P(X)

z = G^X)

READY = AND(ATt(W, [R]), Et)

VALUE = X

I = MUX4(U, V, ZT, [NOOP], [PUSH], [POP], [PLOP])

(ZE. Ee) = STACK(t r ° , I, M UX4(U, V, ZT, m, Z, ■, X))

(ZT, e t) — STACK(r°, I, MUX4(U, V, ZT, n, [tf], ■, [tt]))

The circuit has been factored into abstract components th a t communicate with

instructions, The factorization is an application of conditional distributivity to opera

tions (Sec. 2.0.3). In more detail, the “ next" value for the stack tr is an expression or the

form

p — [q — tr, puohfu, a)), fr — popftr), puahfv, popftr))J

where p, q, and r are the appropriate propositional terms, Let us “normalize" the opera

tions in order to make way for the factorization. T hat is, introduce combined operations

noop'fx, tr) <= tr. puth 'fi, tr) <5= puahfx, tr).
pop'fx, tr) <= popftr). plop'fx, tr) < = puahfx, popftr)).

W ith the normalized argument the conditionals distribute over operations and operands

alike.

applyf [p — fq -~ noop', puah'),fr — pop', p top 'jf,

/p — ^ «/, A — ■* vJJ>
(p -* l q t r , trj, (r — tr, tr}))

To lift this expression we need to think in terms of a component A P P L Y whose inputs

include the signal

VALUE

READY

■- P

MUX

MUX

MUX

MUX

MUX

Figure 5.1. A Schematic for Circuit C.

96

M U X 4(P, Q, R , [n oop], [puiA], [pop], [p/op])

However, it is counterintuitive to assert tha t operations are legitimate values for a signal
to hold. T he physical interpretation must he tha t the selected operation is encoded as

an instruction to be interpreted by the abstracted subcircuit. Essentially the same prin

ciple is involved when we introduce a control token. It is this technique of factorization

that motivated our decision to model a component as a signal in Section 3.5.

Figure 5.1 gives a schematic version of the circuit description for C. Since we

began with a recursion scheme the realization is a generalization, with components /, g0,

gt, h, and p being variable. The Fibonacci function is an instance of the original non

linear specification

F(x) < = p(z)-+ J(i), h(F (gjz)), F(gt(x))) .

with

p(u) <S= Uf(u, 2).
m

SM 1. - 2e S - -

b(u, v) < = addfu, v).

90(u) < = der(dcrfuj).

g j u) <5= dcr(u).

d c r -----dcr

dcr

The corresponding instance of circuit C, in which these packaged combinations replace
the component variables, realizes FIB provided it halts. (Recall th a t the stack transfor

m a t i o n may have weakened the resulting specification.) The controlling circuit for *

96

specification FIB is

CFIB(uP, / , a 0, i0) <=

W = w° ! MUX,(U, V, Zr [R], [G], [R], [G])

X = x° ! MUX4(U, V, Zr 1 , DCR(DCR(X)), ADD(X, Z£)r ZE)

u =
V =

z =

READY =

VALUE =

ATf(W , [G])

LTT(X, 2)

DCR(X)
AND(ATT(W, [R]), Et)

X

I = MUX4(U, V, ZT, JNOOP], (PUSH], [POP], [PLOP])

(ZE. Ec) = STACK(a 9, 1, MUX4(U, V, ZT, ■, Z, ■, X))

(ZT, e t) = STACK(r°, I, MUXJU, V, ZT, «, [fl, «, [ft]))

Figure 5,2 shows the usual Daisy experiment on CpiB with stacks implemented as lists

(see Appendix B). We have introduced techniques to structure circuit descriptions by

decomposing them into hierarchies of higher level components. Our decompositions fol

low conventional design methods. Packaged combinations such as MUX ̂ serve as mac-

* ros th a t identify repeatedly used connection patterns. Their introduction is valid

because operator combination is transparent to lifting. A bstract components are the

behavioral analog of Hoare's abstract data types (1972). To hide implementation details,

signals over complex values are replaced by agents th a t manage those values. The fac

torization involves the introduction of instructions generated by the surrounding circuit.

While we have not provided a plausible realization for S T A C K components, we have

succeeded in isolating the task and can proceed w ith the refinement of the controlling

circuit.

Deciding how much of the surrounding circuit to incorporate into a higher level

component is non-trivia!. Had MUXf included predicates P and A 77, they would have

been duplicated in every instance of MUX^, and the opportunity to share some of the

computation would have been lost, Had the H -S T A C K description retained its ability to

compute Gj it would have been too specialized to reveal its similarity to the T-STA CIC

97

FIBckt:(wO xO bO tO) <= re c test:<READY X I VI W V2 E2 U V>
whero

W - <wO ! MUX-H:<P Q V2 [R*] [G*] [R*3 [G*]> >
X a <xO ! MUX-H: <P Q V2 [1*] DCR:<DCR:<X» ADD:<X Vl> Vl> >

[VI El] = STACK:<sO I MUX-H:<P Q V2 [??*] DCR:<X> [??*] X »
[V2 E2] = STACK:<tO I MUX-H:<P Q V2 [??*] [<>*] [??*3 [t t *] »

I = MUX-H:<P Q V2 [noop*] [push*] [pop*] [plop*]>
U = AT?:<W [C*3>
V = LT?: <X [2*]>

READY = AND:<AT?:<W [R *]> E 2 > .

MUX-H = [m u x -N *].
mux-N: [p q r u 7 w x] <= m ux:<p m u i:< q u v> n u x :< r w x » .

STACK: [sO I V] <= ro c « top*> :<S> <oiDpby?*>:<S»
whero

S = <sO I <oporato*>:<I V S »
o p o ra to :[i v s] <=

sam e?:<i Onoop> -> s ,
eamo?:<i Qpop > -> p o p :s ,
sarao?:<l Qpush> -> push : < 7 s>,
samo?:<i Oplop> -> p lop : < 7 s » .

F ig u re 5 .2 a . E x p e r im e n t w ith C FIB — S o u rce fo r th e R e a lisa tio n .

(See Appendix B for the implementation of stacks.)

98

f lb : n <= FIBckt:<0 n MTstk MTstk>.

k l i b
C

:4

4 push 7? 0 77 tru e tru e £])
2 push 3 0 [] [] tru e [])
0 noop 1 0 0 [] tru e tru e)
1 plop 1 1 [1 n [] t ru e)
1 noop 1 0 t t [] tru o tru e)
1 pop 1 1 t t [] [] tru o)
2 plop 3 1 [] [] [] [])
3 push 2 0 t t □ tru e [])
1 noop 2 0 tl [] tru e tru e)
1 plop 2 1 [1 [] U tru e)
2 push 1 0 t t [] tru e n)
0 noop 1 0 [] [] t ru e tru e)
1 plop 1 1 [] □ □ tru e)
1 noop 1 0 t t [] t ru e tru e)
1 pop 1 1 t t [] [] tru e)
2 pop 1 1 t t [] [] [3)
3 pop 2 1 t t [] [] £])
5 pop 7? 1 7? tru e □ £])truo

t r u e 73404895/14680979 pop ?? 1 7? t r u e []
t r u e 73404895/14680979 pop ?? 1 77 trU B []
t r u e 73404895/14680979 pop 7? 1 77 t r u e []
t r u e 73404895/14600979 pop 7? 1 7? t r u e []
t r u e 73404095/14680979 pop 77 1 7? t r u o [J

Register setup

Find FIB{4)
Tracing READ Y,

X, I, Vt> w ,
V , E v v , V
(See Figure 5.8a)

Value ready

Value lost.

Simulation
interrupted

Figure 5.2b* Experim ent with CFIB — Record o f an Experiment*

00

5.2. Language Driven Design — Introduction

Let us briefly consider a diUerent instance of the realization C, derived in the previ

ous section. The same circuit description scheme gives an evaluator for arithmetic

expressions, specified by a semantic function similar to the one in Section 2.0.1.

The argument x will range over expressions in a language Exp

expression ;;= atom j (expression + expression)

Assume operations ieft;Exp—* Exp and right.'Exp— Exp tha t return left and right subex

pressions; atom?:Exp~* Boot that distinguishes atomic expressions; fetch?:A to m —* Int

that produces numbers from atoms; and o p n :(In tX ln t)—*Int, an arithmetic operation.

The recursion equation

lEfx) <= atomffx) -* fetchfx), opn(IE(teft(x)), IE(right(x}}).

defines the value of any expression in Exp. Since IEf> defining equation is an instance of

the non-linear specification of the preceding section, the corresponding instance of C

realizes IE.

W = ufi ! MUX((U, V, ZT, [R], [G], [R], IG])

X s / I MUX4(U, V, ZT, FETCH(X), LEFT(X), OPN(ZE, X), Zs)

U = ATf(W, [GJ)

V = ATOM?(X)

Z = RIGHT(X)

READY = AND(ATT(W, |R|), ET)

VALUE = X

I = MUX4(U, V, Zr [NOOP], IPUSIIJ, (POP], |PLOP|)

{ZE, Es) = STACK((t0, I, MUX4(U, V, ZT, ■, Z, X))

(ZT, ET) s = STACk(r°, I, MUX,{U, V, ZT, ■, W , m, | f f |))

The circuit is a “direct interpreter" for a suitably represented language of arithmetic

expressions. It calculates a value by processing the expression itself, saving both inter

mediate results and subexpressions on its stack. Non-atomic expressions are evaluated

100

left-to-right, since th a t was the order imposed by the stacking transformation. A variety

of improvements in the design are possible, of course. We might arrange some form of

look-ahead to keep from stacking some atomic subexpressions. This refinement can be

developed formally by first unfolding IE to expose more tests:

IE(c) atomf(e) —♦ fctch(c),

atomf(left(c)) —* opn(fctchfleftfe)), IE(right(eJ)),

atom?(right(c)) — opn(lE((eft(e}), fetch(right(c)f },

opn(IE(left(e)), IE(ngkt(e))).

and then transforming to circuit form.

A more conventional architecture would not stack text at all, but requires a com*

piler to translate expressions into sequential programs. Wand (1982a, 1982b) develops a

method for deriving compiler/macbine pairs tha t yield more classic stored program

organizations. His derivations lead to iterative machine specifications and can therefore

be immediately extended to obtain circuit descriptions of the machines.

5.3. Application to Language Driven Design

In this section the derivation techniques we have developed so far are used to syn

thesize a realization from a programming language specification. The target circuit is a

direct interpreter for expressions in the applicative language L defined below. The

derivation has six major steps. All but the first are transformations; of the five transfor

mations, two are direct constructions. To varying degrees, the remaining steps involve

designer creativity, and thus are at best semi-mechanizable.

We begin with a format definition of L ’s semantics. This fully abstract

specification is then rewritten as a function on represented expressions. Hence, our first

step is to turn L ’s formal definition into something concrete enough to be regarded as a

program, an L-intcrprctar. Readers uncomfortable with the mathematics can skim the

details on first reading, and take the interpreter specification (Figure 6.4) as the starting

point for synthesis.

The initial specification is non-linear. The second derivation step introduces a

recursion stack to linearize control. As we have mentioned before, this is regarded as a

creative step because recursive calls must be ordered. The resulting interpreter imple

ments an applicative order computation rule for L and is only partially equivalent to the

initial specification.

101

The stack version of the inferpreter is compiled into a loop by encoding the serious

symbols as a control token. We arrive a t a specification tha t could be transformed to a

circuit. However, some refinements are made that lead to a more compact version of the

loop specification. These changes expose some subtle issues in representation, and this

derivation step involves more designer creativity than any of the others.

The refined loop algorithm is then transcribed to a realization. The last step in the

derivation introduces abstract components to factor comptex-typed signals out of the

interpreter's description.

Like most lengthy presentations, this one tells little of what motivated specific

design decisions. The product of the synthesis is described, without discussion of the

blind alleys, or the discovery of features th a t reflected negatively on earlier specifications.

A t each step of the derivation a version of the evolving specification was written in

Daisy. Experimentation revealed Haws in some design refinements, and a number of

typographical errors. The Daisy versions, and some trial experiments, are shown in

Appendix B.

6*3.1, T h e l a n g u a g e L , L is a purely applicative, lexically scoped language with

constructs for programmer-defined functions and self-referential values. Its formal

definition is given in Figure 5.3. All operators and programmer-defined functions are l-

placed. One writes fl(add :n):m |] to add two numerals; the operation add returns a

second operation tha t "adds n " . (Parentheses show how expressions should be parsed.)

Assume th a t the operator set includes {zero?, onef, inc, dcr, Uf, cqf, add, tub, mpy).

The operations associated with these names are held in an initial environment.

Labcl-expressions1 are used to define functions recursively. Our three example

functions are expressed as follows in L:

1 The form Q t <= e | b analogous to the Lisp expression "(LABEL I E)" (McCarthy,
ct.aL, 1065). While any expression may occur to the right of the "assignment" symbol, it Es not
immediately clear what expressions are sensible there. For example the form "x <= inc:x” does
not have the effect of setting x to x +1, but instead diverges. That X-expressions are meaningful
in tabel-expressions depends in part on the fact that they evaluate to cloauret, that is, data struc
tures that incorporate environmental information. (McCarthy's LABEL requires e to be a
LAMBDA-expression.) To allow other non-trivial forms, we need primitive operators that return
closures. A suspending CONS would do nicely.

102

Expression Syntax

Exp ::= Ida | Nml j X i . e J I <= e | e{ : ef j eJ —*■ ef , ea

Domains

Idc (i) iVen/i'yiera

Num (n) numerals

Boot (b) truth valuta

Opn = Val — Baa (o) operations

Err = { uinvalid function”,...} (m) error meaaagca

Exp N expressions

Baa = Num + Bool + Opn + Err M baatc valuea

Val = Baa + Ftn M expreaaable valuea

Ftn = Val— Val (!) functions

Env ~ Ida —* Vat (p) environmenta

Valuation & : Exp -*■ Env — Val

ZL[[n]]p

M ' I p

IL |X i . e]]p

E> H i* <= e]|/»

Q Dp

/LRC,-* c t , e j / i

Auxiliaries

= n

p W
X u. /L([e]| /> [v /t|)

fix (\ t . I L ^ e l p [e/i])

apply (Sj [[e J /» ; (E, J et J\p)

teat(IL^et lp) -* JLflejflp, Z6 Je5flp

p| w/ *1 S= X *. (x = I*; -* V, p(x).
apply — X f v . (f is Opr) — /if , (f isFtn) —► /u , "mtfo/iV /unc/ion

te it — X v. (v itBool) —• fv asBool), Jf.

Figure 5.3. Standard Semantics of the Language L,
*

103

GCD < = \ x .X y ,

(eqf:x); y — x ,

(ltf:x) : y -► (G C D :x): ((sub:y):x), (GCD:y) : ((sub:x):y)

FAC <S= X x . zeroT:x -* 1, (m py:x): (FAC:(dcr:x))

FIB <= X x . (l t f :x) : 2 —► 1, (add:(FIB:(dcr:x))) : (FIB:(dcr:(dcr:x))

These forms are used for the benchmark tests in Appendix B.

5,3.2. An L-Interpreter. We follow W and’s advice to compiler designers (1982a).

Given the semantic function fL : Exp —► Env —► Vat, we seek a machine description, IM,

corresponding to JL. However, while JL acts on abstract entities, IM acts on their

representations. Some notation is helpful. Given a domain, D, let RepD denote a

representation of D. If a is in RepD, denote the thing a represents by a . When a is a

complex expression, we shall write v (oJ.

One of the tasks of a compiler is to produce program representations from

expressed programs. The machine must interpret compiled programs consistently. T hat

is, given a compiler IR : Exp -* RepS tf , and a machine

m ; (R cPe ,p X R c?eJ — R * P w

we require tha t

7 (IM(ZR(cap), env)] = E ,^e xp \en v

Since we are deriving a direct interpreter for L, IR is a trivial translator, and we omit

reference to it by asking instead th a t

7 [IM («p, env)] = & [[exp jjenv.

We will assemble IM'* specification by attem pting to rewrite IL as the analogous

function on concrete representations. Along the way, new objects will be discovered that

require representational counterparts, and some of the properties of these objects will

have to be inherited by their representations. Which properties to preserve are revealed

when we try to prove IM's correctness.

Representations are expressed as records delimited with square brackets, *[’ and

Within the delimiters are a sequence of field names, the first of which is always a tag.

For example, represented expressions (discussed just below) have record structure

104

[tag Ift rgt], W ith each record format there are predicates, field extractors, and record

builders, designated by the associated field name. For example, expressions have field

extractors tag, Ift, and rgt. Since NUM is a possible expression tag, there is a predicate

n u m f th a t tests for th a t tag, and a constructor make-NUM tha t builds numeric expres

sions.

Expression Representation. Of the six kinds of expressions, only the conditional

has more than two subexpressions. Let a represented expression be a record of three

fields, [tag Ift rgt), where tag is one of {NUM, IDE, LAM, LDL, APL, CND, TST}. Define the

translator ZR as follows

ZRflnfl = [NUM nm]

XT? Q i J = [IDE i ■]

ZR |[X i * e j = [LAM i ZR |[e]|]

Zffji <= e]] = [LBL t ZRfle]|]

#1 1 V = [APL ZRlIeJ Z R d e J]

ZR ([ct et , e , J = [CND ZR |[e, [] [TST ZR [[ef 1 ZR (I e, J J]

From now on, we shall suppress unused fields, and write [[[CDE i] Q rather than

[[[IDE i ■]].

Environment Representation. We shall not define a detailed record structure for

Rcp£nr> Instead, ju s t assume th a t operations

find : (We X —1 R ep y j

and

extend : (Rep£„, X RcpVa, X We) - • RepEn¥

exist tha t satisfy

^[findft, ene)] = env(i)

v [extend(ene, val, i)) = env [vaf / i |

A third operation on RepEn̂ called "label", will be added later.

105

V a lu e R e p r e s e n ta t i o n . RepVol*s record format is [tag Ift rgt env], and includes

boolean values (BIT 6], numerals [NUM n], error messages [ERR m], and primitive opera

tions [OPR 0]. Other value-objects which use the rgt and env fields will be added later.

S.3.3. Definition of IM* We define the concrete interpreter IM by cases, according

to expression type. In presenting the definition we first write down IM's intended

abstract value, and then look for an expression in reduced terms th a t has th a t value.

We may have to introduce new objects with special properties to succeed. Existence of

these objects is assumed. The presentation can later be viewed as a proof of IM’s partial

correctness, depending on the existence of the postulated objects.

Numerals. We intend

V[IM([NUM n], env)] = iL [[n]| env = n .

Assuming tha t ^NUM n] = n , define

IM([NUM n], env) = [NUM n].

I d e n t i f i e r s . We intend

V(IM([IDE t], env)) — JIr|[(flenv = cnv(t).

Since we have already assumed that v (find(i, env)] — cnv(i), we should define

IM([IDE i], env) = find(i, env).

X-expresslons. We intend

V[IM([LAM 1 cap], env)] = ZL[]X i \ . exp]] env = X v. JLjexp]| (env[v/i]J

We need something in R epVa(to stand for the right-hand object, Add function closure*

to Repv t with the record form at [FTN t eip env). If we can ensure th a t

^FTN 1 exp env] = X v. IL[exp]] (env[v/i])

then we can define

!M([LAM 1 exp], env) = make-FTN(i exp env).

A function closure adequately represents its abstraction if it produces the right answer

whenever it is applied. We therefore need an agent to do application. Define

APPLY([FTN 1 exp env], vat) = IM («p, extend(envt val, 1)).

Then by earlier assumptions,

100

V[APPLY([FTN i eip env], to/)]
= ^[IMfezp, extendfenv, val, i))J

= ZL[[ejp Jj(v [extend(env, vo/, i)])

= Sj U exp]] (envjvaf/•])

= (\ u. IL j[exp flenv|v/t])va/

as desired.

Label-expresslons* To avoid dealing directly with the fix operation we shall hide it

in the environment specification. Let us modify the original definition of IL.

PROPOSITION 5.3-1. Far a :Env~* Vat,

fix (\ t . Q p [e / t] ; = a (fix (\ p ,.p\c^p, j 11)).

PROOF: (Appendix C).

□

C O R R O L L A R Y 5.3-S. I f IL ’s definition it revised to read

IL Hi <5= e}p = IL De]J (f i x \ p \ p [/L 0 e]]p '/ «])

the resuiting valuation it unchanged.

PROOF: by structural induction on the language L. The valuation is unchanged on

base expressions, that is, numerals and identifiers, On composite expressions we may

assume by induction th a t subexpressions have the same valuation. The only question

able case is |[i< ^ e] j , which holds by Proposition 3.5-1 with a = ZL|[e]).

□

Reading IL's new definition literally (if somewhat purposefully), to evaluate

Qi <= e j we must arrange to create an environment p 't h a t binds i to "the evaluation

of e in p* Hence, a representation is needed for an evaluation. Define an expression

closure to b e a value of the form (SPN exp env]. If we intend V[SPN exp env] to equal

IL] « p flenv , then an agent like APPLY is needed to ensure this relationship. We are in

the process of defining th a t agent right now; it is IM. We also need an operation

A A P P L Y

Induction Hypothesis

Assumption about extend

substitution

107

label : (Ide X R'PEz? X /?cp£J —

that satisfies*

7[label(i, exp, env)] = fix)* p \ c n v \ lL [[c*p ' / *].

The label'operation is correct if the environment it creates binds the right value to every

identifier.

Suppose that find(i, label(i, exp, env)) = [SPN exp Iabel(i, exp, env)]. Modify IM

to test for expression, closures whenever it looks to the environment.

IM([IDE i], env) = COERCE{find(i, env)),

COERCE([SPN exp env*]) — IM(exp, e n v ').

Then

v [IM(t, label(», exp, env))]
= 7 (IM ([SPN exp I a b e l(f , exp, env)], la b e l(» , exp, env))]

= ^[IMfeip, label(i, exp, env))]

= fL[[ezp ||v [label(t, exp, env)]

= IL D exp Nfix X p e n v [(/ L | exp Qp '/•]).

A label, IM

A COERCE

I.H.
intention of label

Therefore, define

)M([LBL i exp], env) = IM(ezp, labelft, exp, env)).

A p p l ic a t io n s . We intend

^[IMtfAPL expf cxpj, env)] = IL | expt i exp^J env

= apply e x p env) {/L|[expf]] env)

We shall implement apply by completing the specification of APPL Y begun earlier. In

case th a t the exp} evaluates to a function closure, we already specified how it should be

applied when we looked at lambda expressions. Presumably, the machine has the under

lying capability to apply operators. That is, assume there is a mechanism, “ apply", such

*The Implementation in Appendix B defines
label(irfe, exp, env) ree x where x = extend(env, muke-SPN(exp, x), ide)).

Thus, we once again build a self-referential representation for the recursive specification. For a
recent discussion of this Issue, see (Wand, 1983).

108

th a t - -

^[apply([O PR o] , v o /)] — o(val).

Any other value produces an error when applied. The following definition of APPLY

accounts for all the cases:

APPLY(/fn, arg) <S=

oprT{//n) -*■ apply {ftn, arg),

ftn T (/fn) -* le t [tag ide exp en v] = f tn
In IM («p, extend(env, ide, va/)),

make-ERR('Vnvo/irf/unction").

The Daisy-like declaration | le t [tag ide exp env] — f tn]] simply states f tn ’» record struc

ture in the case tha t it is a function closure, Subsequent occurrences of the field names

could be replaced by the corresponding field extraction operations.

Conditionals. We intend

V[1M([CND expt [TST expt] = IL] expl -* expf t M p J en v

O n th e r ig h t w e g e t

test (IL d expt $ env) — (& [[expt ^env), (IL [[ezpjflenv).

Assume there is an operation, test : RepVal-+ Boot, th a t satisfies test(vaf) = fejt(vat),

and define

IM([CND exp{ (TST cxpf expa]], env) = testflM teipj, env)) —* lM(eipf , env), JMfezpj, env).

This completes our construction of a concrete specification for the L-interpreter.

Two new types have been added to RepVai: function closures and expression closures.

Thus, the possible value records are:

operator - [OPR o] error message - [EAR m]

numeral - (NUM n] /unction closure - [f2W i exp env]

boolean — [BIT b] expression closure - [S/Weip env]

Figure 5.4 gives the specification of IM from the discussion above. We have postulated

an underlying type th a t includes the representations, representation builders, field

extraction primitives, and operations find, extend, label, apply, and test,

109

le t [tag ift rgt] = exp

in

aum t(e2p) - * exp,
idel(exp) —► COERCE{find(lftt e n v)),

latnT(ezp) —* make-FTN(Ift, rgt, env),

lbl!(exp) —* M(rgt, label(tft, rgt, env)),

aptf(ezp) —> AFPLY(IM(//(, env), M(rgt, e n v)),

cndf(exp) —* le t [tag* Ift' rgt*} — rgt

in test(IM(Ift, env)) —* IM(Ift', env), IM(rgt*, env).

COERCE(val) <*=
opr?(va l)—* val,

□umf(val) —* val,

erri(vo/) —* val,
ftn!{ val) —► val,

spnf(val) —* le t [tag exp ' env'] = val

in IM(exp, env).

A PPLY (/fn, arg) <S=

oprT(f t n) —*■ apply(/in, arg),

ftnf(f t n) —* le t [(op ide exp env] = ftn

in IV1(exp, extcnd(j'rfe, arg, env)),

make-ERB("invalidfunction”).

Figure 5.4. Non-linear Specification for an L>Interpreter

110

5*3.4. Stacking Version of IM. Using the W and-Friedman construction discussed

in Section 2.4.5, IM is now transformed to an iterative specification with a control stack.

The result is shown in Figure 5,5. Since the construction forces us to choose an evalua

tion order for recursive calls, we end up a t a weaker interpreter than the formal

definition demands. In this case an "applicative order" interpreter is derived. For

example, the L-expression |[5 :(x < = x)]] should produce an error message according to

the definition of IL, and does so under the IM of Figure 5.4. However, its interpretation

diverges under the IM of Figure 5.5 (See the last experiment in Appendix B).

In this case, an appropriate version of the control stack is one on which environ

ments and actions can be pushed. Actions are represented by records of the form

{tag ift rgt]. The possible actions are

[HLT] — h a l t the machine

[ARC exp] — evaluate an application's argument

[ACT v a l] — to apply a function

[TST c x p j e i p s] — t e s t a conditional's predicate.

We have allowed the right subfield of a CND-type expression, always something of the

form [TST cipt expt], to serve literally as an action, so our trivial translator IR is some

thing of a compiler after all.

I l l

M(exp, atk, env) <S=

le t [tag Ift rgt] — exp

In num!(exp) —■ RETURN(exp, atk),

ideT(ezp) —* COERCE(find(Ift, env), atk),

lam l(e jp) —► RETURN(make-FTN(///, rgt, env), atk),

lblf(exp) — IM(rgt, atk, label(Ift, rgt, env)),

apll(ezp) -* IM(//(, pusb(make-ARG(rgt), env, efA), env),

cnd!(exp) —► W(lft„ push(rgt, env, atk), env),

COERCE(vat, atk) <±=
le t [tog exp env] = val

In opr?(vat) - RETURN(val, atk),

numt(val) - RETURN(vat, atk),

err!(val) -* RETURN(vat, atk),

ftnl(vo/) — RETURN(vat, atk),

spn!(Vfl/) —* M(exp, atk, env).

RETURN(val, atk) <i=

le t [mt env] = top(ef£)

[tag Ift rgt] = nxt

atk' = pop(a (A)

in bltT(nxt) -* val,

tst!(m i) —» [(tcst(val) —*■ IM(Ift, atk‘, env), IM(rgt, atk', env)],

arg?(nxt) -* EVl(Ift, push(make-ACT(Ift), a , atk'), env),

act?(n x t) —*■ APPLY(Ift, vat, atk').

A PPLY (/(n, arg, atk) < z

le t [tag ide exp env] = ftn

In opr!(f t n) — RETURN(apply{ ftn, arg), atk),

ftn?(/fn) -* IM(exp, atk, extcnd(env, ide, arg)),

RETURN(make-ERR(“invalidfunction”), atk).

Figure 6.6. Stacking Version o f the L*lnterpreter.

112

5 ,3 .6 , Simple Loop for the L-interpreter. We now use the construction of

Section 2.4.3 to compile the IM or Figure 5.5 into the simple loop shown in Figure 5.6.

To prepare for the transformation, all of the serious functions must he defined over the

same state descriptor. The various argument names are combined to a single formal

param eter list, and the defining equations ore altered appropriately. The functions

modify only those parameters they originally depended on, and pass the arbitrary value

■, in the other positions.

A control token e is added to encode which of IM (E, for "EVAL"), COERCE (c),

APPLY (A), or RETURN (R) is in control. In the case th a t c equals R and the action is

a test, the setection of an alternative expression is distributed through the recursive call

to IM. T h a t is, we have changed the clause

tcst(do/) —* IM(E, ■ ,■ ,■ , I f f , atk', old), !M(E, rgt’, atk', old)

to

IM(E, ■, ■, ■, [test(val) — Ift', rgt’}, atk', old).

We are safe in making this local transformation since the system is linear and the condi

tional involves only total operations.

5 .3*6 , Some Refinements In the Loop Version* A little design refinement is

irresistible. Note the following about the machine of Figure 5,6.

1. Unless an identifier is bound to an expression closure, its evaluation results in sim

ply moving its binding to position val and returning.

2. There are only three cases when a type predicate is used in two states, The predi

cate num ? is used a t QVAL and COERCE The predicates opr? and f t n f are used

at COERCE and APPLY

3. When control is a t RETURN, the argument exp is not used.

4. The nrguments f tn and val are unused except when control passes to APPLY, and

in APPLY the arguments exp and val are unused,

W ith these points tn mind, let us now propose th a t expressions, values, and actions

be "superimp osable", like variant records. T h a t is, suppose they are represented in such

a way as to be accessed by the same field extraction primitives. This allows us to do

some register optimization. (The trick of allowing TST-expressions to serve as actions

foreshadows this refinement.) If the tags are kept distinct, we can make several local

113

IM(ctl, fin , arg, vat, exp, atk, env) < =

let
[tage ide fitext fienv] — fin

I tag v*text v*env] — val
[tag tfi rgt] — exp

[nxt old] = top(atk)

[tag tfi' rgt'] = nxt
atk' = pop(atk)

i n

(ctl — E) —*

numT(exp) —* W(R, a, a, exp, m, atk, env),
idet(exp) - * 1M(O , m, m, find(exp, env), m, atk, env),

latnT(exp) IM(R, ■, ■, raake-FTN(tfi, rgt, e n v) , a, atk, env),

lblT(c ip) -*■ IM(E, ■, a, m, rgt, atk, Iabel(tfi, rgt, env)),

aplT(e ip) -♦ IM(E, ■, ■, ■, tfi, push(moke-ARC(rgt), env, atk), env),

cndl(exp) — IM(E, ■, m, m, tfi, push(rgt, env, atk), atk),

(ctl = O) —
errT(val) -*■ M(R, b, a, val, u , atk, env),

numl(val) -* IM(R, a, a, val, n , atk, env),

opr!(val) — IM(R, b , b , val, a, atk, env),

ftnl(val) —► 1M(R, a , b , val, a , atk, env),

spnf(val) -* IM(E, m, m, a , v-text, atk, v-env),

(ctl = R) —

hltf(n*f) —► val,

tst?(nxt) - + IM(E, b , b , a , (teat(vat) tfi', rgt*|, atk*, old),

arg?(n if) IM(E, a, a, a, tfi', pusb(make-ACT(val), a, atk*), old),
actT (nri) —► IM(A, val, tfi', m, m, atk', old),

(ctl = A) —

oprf(/fn) — IM(R, a , b , apply(/fn, orp), B, atk, env),

ftn?(/tn) -* 1M(E, b , a, a, rgt, atk, extend(env', tfi, val)),

Evf(R, a, a, make-ERR(“invalid function”), a, atk, env).

Figure 5.B. Simple Loop for the L-tnterpreter.

114

transformations on IM th a t reduce the sizfe of its specification. The result is an

equivalent version of IM shown in Figure 5.7.

1. Change IM at EVAL in the case th a t exp is an identifier. Place “find(exp, env)"

back in exp. Alter COERCE to test exp ra ther than vol. Since the only overlap is

in the case of numerals, which are handled the same way by COERCE and

EVAL...

2. ...combine COERCE and EVAL into a single cose.

3. Alter every branch to RETURN to place the top action on the control stack in

exp. We are simply "spreading” the stack into an available vacant register. If

none of the action tags equals any of the expression or value tags, we may also

combine the states RETURN and EVAL/COERCE.

4. Use vai and exp to bold the argument and function when going to APPLY.

5 .3 .7 . R e a l iz a t io n o f IM . We now have IM expressed as a simple loop and can

transcribe it into a circuit description according to Theorem 3.3-5. Components are

enclosed in braces to make it easier to discern them from signal identifiers. The entire

conditional structure is distributed across the state descriptor, making IM the outermost

symbol. Figure 5.8 defines a packaged combination, MUXm, tha t implements the

required conditional. Figure 5.0 shows the resulting circuit equation.

6 .3 .8 . R e f in e d R e a l iz a t io n o f IM . The final transformation, shown in Figure

5.10, factors out complex-typed signals by replacing signals S T K and E N V with abstract
components STACK and ENVIRONMENT, defined in Figure 5.8. Both are specialized

to serve this circuit. STACK takes instructions P S I I , POP, and NOP, and saves actions

and environments. ENVIRONMENT takes instructions S E T to change the environment

in effect, H LD to keep the current environment, L A B to produce a labeled environment,

and E X T to extend the current environment. It continually finds a binding for one of its

input signals.

The defining equation for the signal C has been simplified to eliminate one MUXm

component. The circuit goes into APPLY exactly when the expression register holds an

action of type ACT. The resulting realization is the last of our derivation.

116

IM{ c tl , va l , exp , atk, e n v) <±z

le t

[t a g Ift r g t env*] =

[n i t o l d] = t o p (a t k)

s tk ' = pop(a tk)

In

(e</ = E) —

hltf(eip) -* v a l ,

numr(e x p) -* W(E , exp , n x t , atk*, o ld) ,

opr!(eip) -*■ IM(E, exp , n x t , a tk ' , o ld) ,

ide!(eip) -* EVl(E, ■, find(eip, env), atk , env),

Ian»r(e i p) —► 1M(E , m a k e -F T N (Ift, rgt, env), nxt, atk*, env),

lb l l(exp) —► 1M(E , ■ , rgt, atk, labet{ Ift, rgt, e n v)) ,

a p l l (exp) —*■ M(E , ■ , tft, p u sh (m ak e -A R Q (rgt), env, atk), env),

c n d t(exp) — IM(E , ■, Ift, p u a h (rgt, env, atk), env),

f tn f (e i p) —► W (E , exp, nxt, atk', old),

s p n f (e ip) —i► IM(E , ■ , Ift, atk, rgt),

ts tT (exp) — IM(E , ■ , (tea t(v a /) — Ift, r p (| , atk', o /d),

a rg t (e ip) - * IM(E , ■ , Ift, p u sh (m ak c -A C T (val)* ■» atk), old),

a c t l (e ip) —* IM(A, val, Ift, atk*, old),

errT(e i p) —* IM(E , exp, nxt, atk*, old),

(c t l = A) —*

oprt(eip) —* IM(E, apply(eip, v a l) , n x t , atk*, o ld) ,

ftaT(eip) -* IM(E, ■, rg t , atk*, extend(e n v ' , Ift, vo/)),

IM(E, make*ERR(“ in v a l id f u n c t i o n ") , n x t , atk*, o ld) .

Figure 6.7. Refined Loop for the L-lnterpreter*

110

m u x M(c, exp, e-num, e-opr, e-ide, e-lam, e-lbl, e-apl, e-cnd, e-ftn,

e-apn, e-tat, e-arg, e-act, e-err, a-opr, a-ftn, a-err) <S=

(c = E) —►

[n u m lfe z p)—* e-num,oprT(e jp) —► e-opr, Ide?(c2p) —► e*irfe, lam !(ezp)—* e-lam,

lbll(ezp) —*■ e-lbt, apl!(ezp) —» e-apl, cndT(e z p)—• e-cnd, ftnT(exp) — e-ftn,

spnT(exp) — e-apn, tstf(exp) — c-tat, arg?(exp) — e-arg, act!(exp) — e-act,

e rr ! (e ip) -» e-err],

{ e = A) — | oprI(exp) —a-opr, ftnl(exp) — a-ftn, a-err].

E N V IR O N M E N T ^IN ST , X, Y, Z) <= re c ([find](X, ENV), ENV)

w h e re

ENV = env0 I [m ux^IN S T , ENV, X, [label](X, Y, ENV), [extend](X Y Z))

muxE(iW , u, v, w, x) <£=

(tnaf = HLD) —► u,

(iruf = SET) — v,

(i n a t = LAB) —* w ,
(i r t f l - E X T) — x.

ST A C K (IN ST , ACTN, ENV) re c (NXT, OLD)

w h ere

(NXT, OLD) = trauspose([top](STK))

STK = atk0 I [muxsI(INSTt [pushKACTN, ENV, STK), (pop](STK))

m u x s(inat, u, v, w) <=

(inal = NOP) —* u,

(intf = POP) — v,
(inat = PSH) —► w .

Figure S.8. Higher Level Com ponents for the L-reallzatton.

117

M(c°, vat0, exp0, atk0, entP) <= rec □ w h ere

0 - c ° \ [muxMI(C, EXP, [El, [E],

[E], [E],

VAL =val° I [muxMI(C, EXP, EXP, EXP,

ALU = [apply|(EXP, VAL)

ERR — [make-ERR](EXP, C)

EXP =exp° I [muxMl(C, EXP,NXT, NXT, FND, NXT, RG T, LFT, LFT, NXT,

LFT, TST, LFT, LFT, NXT, NXT, RGT, NXT)

LFT = |lft](EXP)

RGT = [rgt](EXP)

TST = [mux]([testl(VAL), LFT, RGT)

CLS = [make-FTN](LFT, RGT, ENV)

FND = [find](EXP, ENV)

STK =atk° 1 [muxM](C, EXP.RTN, RTN, STK, RTN , STK, PSH, PSH, RTN,

STK, STK, PSH, STK, RTN, RTN, STK, RTN)

PSH = [pushl(ACTN, ENV, STK)

RTN = [pop](STK)

(NXT OLD) = (topl(STK)

ACTN = [muxMl(C, EXP, a, ■, ■, ■,

■, ■, ACT, a,
ARG = [make-ARQl(RGT)

ACT = [make-ACTl(VAL)

ENV =entP ! [muxM)(C, EXP,OLD, OLD, ENV, OLD, LBL, ENV, ENV, OLD,

RGT, ENV, ENV, ENV, OLD, OLD, EXT, OLD)

LBL = [label](LFT, RGT, ENV)

EXT = [extend](LFT, VAL, SAV)

SAV = (envl(EXP)

a, ARG, RGT, a,

■, *, ■)

[EJ, [E], [E], [E], [E], [El,

[E], [A], [E], [E], [E], (EJ)

a, CLS, a, a, a, EXP,

a, VAL, EXP, ALU, a, ERR)

Figure 6.0. Realization o f the L-interpreter.

118

M (c°, v a f , t i p 0, »tk°f en < = r e c □ w h e r e

C = c ° \ [mux]{ ACTl(EXP), [E], [A])

VAL = va l° ! [muxM)(C, EXP, EXP, EXP, a, CLS, a , a, a, EXP,

■, a, m, VAL, EXP, ALU, a, ERR)

TST = [muxj([test](VAL), LFT, RGT)

ALU = [applyHLFT, VAL)

EXP = txp° ! [muxM](C, EXP, NXT, NXT, FND, NXT, RGT, LFT, LFT, NXT,

LFT, TST, LFT, LFT, NXT, NXT, RGT, NXT)

LFT = [lft](EXP)

RGT = [rgt](EXP)

SAV = [env|(EXP)

CLS = [make*FTN](LFT, RGT, ENV)

ERR = [make*ERR](EXP, C)

(NXT OLD) = STA C K (S1, S2, ENV)

51 = [muxM](C, EXP,[POP],[POP|,[NOP),[POPl([NOP],[PSHl,[PSHl,|POPl,

[NOP],[NOP], [PSH],[NOP],[POP],[POP],[NOP],[POP])

52 = [muxM](C, EXP, a, a, a , a, a, RGT, ARG, a,

a, a, ACT, a, a, a, a, a)
ARG = |make-ARG](RGT)

ACT = [make-ACT](VAL)

(FND ENV) =s ENVIRONMENT(El, E2, E3, SAV)
E l = [muxM](C, EXP, [SET], [SET],[IILD], [SET], [LAB],[HLD], [HLD], [SET],

[SET],[HLD],[HLD], [HLD], [SET], [SET],[EXT], [SET])

E2 = [muxM](C, EXP, OLD, OLD, LFT, OLD, LFT, a, a, OLD,

RGT, a, ■, m, OLD, OLD, RGT, OLD)

E3 = [muxM](C, EXP, a, a, a, a, RGT, a, a, ■,

a, a , a, a, a, a, VAL, a)

Figure 5.10. Refined L-realization.

119

5.3*9* R e m a r k s . We have derived a description for a machine th a t interprets suit

ably represented expressions in the language L with a call-by-value semantics. In

Appendix 8, each step in the derivation is expressed in Daisy, and a set of trial expres

sions ore interpreted by the various versions of EvL

The executable versions of M ’s specification would eventually serve as an experi

mental vehicle for continued design refinement. For example, a trace of the circuit

shows th a t it wastes cycles testing for expression closures. (See the last experiment in

Appendix D.) We would do better to make tha t test concurrent with evaluation, so that

the presence of an expression closure has the effect of an interrupt. Of course, innumer

able other modifications are possible, and we shall not pursue them here.

The programs in Appendix B were used to debug the derivation. Since the

transformations were carried out by hand, there were a number of errors. Many were

discovered by attem pting to execute the erroneous forms.

In transforming the specification to one having linear control, L 's semantics have

been weakened; there are expressions which converge under the initial specification but

do not on the target machine. We could alter L’s format specification to reflect this

change in its design. Figure 5 .U , giving L’s continuation semantics, is the appropriate

modification. While we took a separate step to introduce the control stack, the transfor

mation is entirely in the spirit of Section 5.3.2. Had we started with L’s continuation

semantics rather than its standard semantics, we would have proposed a representation

for continuations and introduced the appropriate agents and operations for these objects

directly (Wand, 1982a).

120

Domains

Ide r*/ identifiers

Num (n) numerals

Bool N truth values

Opn — Val — Fas M operations

Err — { “invalid function (m) error messages

Exp N expressions

Baa — ZVum + Boo/ + Opn + Err M basic values

Val — floe V- F/n + Spn M expressible values

F/n = Val — Spn (f) functions

Spn = f f - Vo/ (<*) ezpressiori closures

K = V a/-* Vo/ (*) expression continuations

Ent> = Ide — Vo/ (p) environments

Valuation — ZL .* E x p — E n v — / f — V al
ZL [|n]jp« = k n

Ej ([ijp k = c o e r c e (p i) k
ZL[[X I * ejpfc = k (\ v k \ JLdcD (p [v / i]) K *)

Bj d i < = e]jp k - fix (\ e . I L ^ e]] p\cj i])

E> | c t : e#Dp k = Bj \ e ^ p (X /X |[e t \ p (\ v . (a p p ly f v k)))

/E - f l e , — c f l e J J p K = / k f l e j p v * ^

Auxiliaries

p[v f i] = \ j , / i = »V — v, p/ty.
coerce = X ok . fv i t S p n) — ft; «y, f k vj

app/y = \ J a k . (f i i O p r) — k (/ v) , (f i s F t n) —• f v t c , “ in v a l id f u n c t i o n ” ,
t e s t — X o. (v i s B o o l) — a«/7oo(/, ff.

Figure 5.11. Continuation Sem antics for L*

6. Circuit Refinement

Experiments with realizations in Section 4.4.3 and Chapter 5 hare revealed th a t the

derived circuits can be improved. In this chapter we turn to the issue of refining circuit

descriptions. Although a specific refinement task is considered below, the method of

refinement is consistent with the methods developed earlier. A (specialized) set of

transformation rules is used to attain a goal. Since we are concerned with improving cir

cuits and not deriving them, both source and target descriptions will now be connec

tivity expressions. The initial specification describes the instantaneous behavior of a

combined operation. Our transformations yield digital system realizations tha t perform

the same computation as the specification but do it in a serial fashion. Of course this

complicates the timing of the circuit involved.

The task is to modify a large combinatorial system so th a t it has fewer external

connections. This goal is attained by "folding" the system so th a t components, and

hence external leads, are superimposed. Since an individual component cannot simul

taneously produce two results, it is necessary to serialize its behavior. Time is traded

against space, where the latter is measured in terms of a "pin count".

It will be necessary to keep track of individual values produced by the system in

circuit-folding derivations. Since Daisy is fairly useful for this kind of bookkeeping, it is

used as the transformation medium. T hat is, we shall build our algebra of synthesis on

Daisy-like notation, rather than the purely functional or purely sequential languages

used earlier.

121

122

To illustrate the problem, let us consider the following configuration of components.

u.

(1)
- [j]

VJ vt vn
The operation / is applied in parallel and independently to the individual values

ti; ,..., un, producing results vn. Suppose tha t we want to implement a design that

has only one input and one output. The obvious modification is to serialize the u's and

use a single /com ponent:
(-*)

• • • /
• •

U U, till i s vt

The schematic notation above is informal. The series of tokens along a single wire sim

ply illustrates th a t the /-com ponent is acting on each of the u'a. One should not read

too much into this picture; for example, it does not imply th a t wires necessarily store

values. The price for reducing the external connectivity of this system is th a t the sur

rounding circuit must somehow be modified to support the serialization. This is a simple

serialization problem; the u'a can he presented in any order; the v'a are produced in the

same relative order. Now consider a system th a t has internal connectivity:

(i)
u.

V1 vt n
The g ra can be superimposed as before, but in this case the attem pt at folding introduces

feedback. A register1 is needed to synchronize the system internally.

1 This Is a good time to recall that the word "register" was adopted for its brevity and to
note that what is realty meant here Es storage mechanism. How storage is achieved depends on
the fabrication medium.

123

ui ui

C
The surrounding circuit must present the u'« in an order th a t exploits the feedback in

the circuit. There is only one suitable ordering.

In seeking a method of synthesising heat refinements like the ones above, we

should, if possible, account for the changing performance relationship between the sub

circuit and the system th a t surrounds it. We develop a transformation system below in
which, a t some point during a derivation, we elect to identify some fragment of the

evolving description as a signal. Once the identification is made, the content of the sig

nal becomes superfluous in the description. However, this residual information is

retained as a specification of external behavior and can be used as a basis for coordinat

ing the target system with its surroundings.

The order that values are serialized drives the transformation process. While the

examples in this chapter are small enough th a t appropriate orderings can be deduced by

inspection, it will be apparent th a t without guiding heuristics synthesis would be hope

lessly explosive. Gannon (1982) discusses a method to analyze regularly connected data

flow systems to find appropriate orderings. His model assumes connective storage: pro

cess coordination is achieved by storage along connecting paths. Both examples above

accept tokens on such a path, and deliver values to another. Note however, th a t some

of the connective storage is already implemented if the ^-circuit's ou tput is taken from

its internal register:

Having introduced storage we now need a clock. In transforming a combinatorial

subsystem to a synchronous-one, it becomes necessary to determine how the target’s

temporal behavior can be coordinated w ith it surroundings. Cuny and Snyder (1982)
present a model in which autonomous processing elements are specified according to

124

their external communicative behavior, and they address the problem of finding viable

computation rates by which the processors can be interleaved to perform synchronously.

A process is described by a regular expression over sets of transactions. We shall call

such an expression a schedule. In their notation, our second example above initially had

schedule

(The subscripts identify external connections. ‘R ’ means “read” ; lW ’ means “write”. In

the work cited, connections are identified by the names of the surrounding processing

elements. These names are not known here, so port identifiers are used instead.)

The initial system is combinatorial; it does all its transactions a t once. The refined

version is sequential, either

[(R , , RUw v) [l Ru w v))°_ 1 l’
or

[(K.o R„ } [{R0 Wv> I" - 1 IWV}]*

depending on whether or not the internal register is used to buffer output. The residual

byproduct of synthesis mentioned above will be displayed in a form from which such

expressions could be extracted.

The synthesis method developed in the rest of this chapter does not compete with

methods such as Gannon's or Cuny’s and Snyder's, rather it serves as a bridge between

them. On large problems analysis is needed both to guide the construction of solution

circuits and to deal with the increased temporal complexity of the target system. The

method offers a way to maintain correctness while constructing realizations th a t achieve

the goal of serialization. Section 0.1 develops a set of basic transformations on Daisy

expressions. These are generalized in Section 0.2 to a rewriting system th a t we shall use

to attack serialization problems. Section 6.3 presents three examples of “scheduling
derivations” on increasingly complex configurations of components.

0.1. Transformation Axioms

A combinatorial system will be specified in Daisy by a system of value-defining

equations (Sec. 4.2). The left-hand sides of these equations are format expressions:

identifier structures delimited by square braces '[’ and The right-hand sides are
actual expressions: value structures delimited by angle brackets '< * and * > ’. To

125

evaluate these systems, on environment is constructed th a t recursively binds formal

structures to values. For the remainder of this section suppose we are dealing with a

specification

S <= rec e where

* 1 * fli

* n = 3n

where experiment e is an expression over x . Recall th a t S ’s value is
t • «

ffl I e|| Xo'•/..[® 1 < ' / j 1)

where p0 is some initial environment (Sec. 4.3).

Let)a denote the value of a in p '; th a t is, la = JDflaflp'. Then by Daisy's version

of environment extension,

P' = P o U °n / aJ "* I K / * /) '

However, pg can be extended in any order, as long os the x's are distinct, and in fact can

be arbitrarily restructured. W ith this in mind, we propose the following axioms for

transformations on S;

Axiom N: (Vacuous Equations) The equation [[[] = < > Q can be added to S.

Axiom G: (Gluing) The equations [[x = aQ and fly = 6J can be replaced by

H [z ! y] — < a I b>],

Axiom E : (Extraneous Equations) I f the identifier y is free in S then

(i) The equation [[y = 6fl can be added to S, for any expression b.

(ii) The equation Q x — a]) can be replaced by Jx = j/fl and J[y = afl.

Axiom F : /Function F ac to rin g The expression [[< / j a / ... / i a m>]] can be replaced by

H < / . . . / > tE i< O j... am> J, tcAcre S stands for a transposition operation.

AxiomS: (Signal Interpretation) Nil = < u * > .

126

These axioms are all valid in the semantics of Daisy. Axiom N introduces an equa

tion th a t has no effect in S because the formal expression contains no identifiers.

Axioms G and E do not change the value of S because the list constructor is not strict;

adding unused bindings and indirection through extraneous names simply restructures

the environment, Axiom F exploits Daisy’s application combinator, d-apply. The point

of the axiom is th a t operations may be factored out of structures by applying the reduc

tion rule for function-lists in reverse. Axiom S foreshadows our intention to interpret

some finite sequences as signals: the main goal or synthesis in this chapter is to construct

signals by serializing values. Consequently, we shall permit finite sequences to be inter

preted as signals with only finitely meaningful prefixes. This is the only axiom whose

validity cannot be deduced directly from the definition of Daisy in Chapter 4. In fact,

Nil is implemented to satisfy Nil ^ fix \ I . (m , I}, where in Daisy, ■ (don’t-know) is an

all-purpose error message.

6.2. General Transformations and their Behavioral Interpretation

We now combine the axioms of the preceding section into a set of specialized

transformation rules for the serialization probtem. Each definition is followed by a dis

cussion of how the rule makes progress towards a serialized target.

Let the specification S be as before, except th a t it will now be parameterized by a

list of input values:

S:[Uj... u j <= rec e where

Rule P: (Gluing) Let n be a permutation o /{ i , S, ..., n). A ny subset of equations in S

1 <3 <P < *)

may be rewritten as

[x*(t} x*(t) •" xw{P)] = a*(*t "* a*fr)> ’

127

Rule T is valid by repeated use of Axiom G , as its name suggests. It is used to associate

the x's or a'a together in a single structure. Often, this structure is later reinterpreted as
a signal.

Rule A: (Delay) The equation [x = a] may be rewritten at [[y I x] = < ■ I f l> J ,

where y i t any formal expression of identifiers that are free in S.

We obtain the new equation in A through Axioms G and E , by gluing the extraneous

equation Q y = ■]] to [fx = a]]. In the derivations below, y will always be a simple

identifier and z wilt always be a linear sequence. So we will be changing equations of the

form

[xt x f ...J = a

to

[yx i xt .,.] = < ■ ! a > .

Explicit concatenator symbols indicate th a t a register has been added to the evolving

circuit. This register postpones the x's in time, which is why A is called the delay rule.

To avoid making up meaningless names, we sometimes write a ■ for y:

[■ Xt Xt . . .] = < « 1 0 > .

Rule A: (Lifting) The expression |[< f t oj »„ f t on>]] can be rewritten at

H < /* > i3 * < f l j ... an> H, where E it the identity component < A 1 .1*> .

The validity of lifting follows from the meaning of application, as discussed in the previ

ous section under Axiom F, and from the the interpretation of Nil as the everywhere

indeterminate signal. The rule differs from Axiom F in th a t here we regard the Unite

sequence of f ' t to be a component. By Axiom F, | < / t a{ ... f t an> Q can be rewritten as

H < / . . . / > t H : < a / ... a „> I |. Extend |[< / . . . / >]] to the infinite sequence | [< / * > J

and by Axiom S interpret ([< . . . an> J instead as the signal | < o j> J

The result of application is

< / : at ... f t an / :■ / :■ . . .>

128

Assuming / completely strict, this becomes

< f t a t ... / : on ■ ■ . . .>

which by Axiom N we may write as

< /* a, ••• /* «„>

The identity component 3 does a generalised transposition on inputs of any dimension.

This is the same coercion used in the circuit experiments of Section 4.4.3. Rule A is used

to introduce to the evolving description a single component tha t serially computes indivi-

dual values.

Rule M : (Selection) Suppose S contains two equations o f the form

Ix i V** *pl = ■
\yt y , ••• yp \ -

Let | [2; ... zp] {] he a formed expression in which 2 . is one of z. or y. for all i*.

Then there is a selection component M by which

[xJ xg ... zn] = M :<a 6 > .

M is simply a multiplexor with a fixed predicate signal. For example, if we have

*f) = “s>

\y, yt\ - <bt bt>
and wc want a signal of the form [xt yt], then we may may replace these equations with

1*1 ys 1 = M U X :< < tt 5 > < a i at x b i bt> >

We shall denote the fixed predicate signal as a subscript on M, encoded as a string of

bits, with (0 ‘ interpreted os true.

MoiI < < 0 / at > < b t bt »

129

Rule 4>: (Installation) The identifier x it an instance of the value a in S i f either a is m or

the equation [[x ~ a j can be deduced from S. A formal structure it an instance

of an actual structure i f its e/emenfe are eaeA instances o f the correponding e/e*

ments o f the actual structure. A actual value can be replaced by any o f its

instances.

Rule 4* is used to replace values consumed in S with results produced in S, For exam

ple, if S contains the equations

z ~ < a « c >

< abc>
By Rule $, s's defining equation may be replaced by

z = < x t xt xa>

The rule implies th a t ■ is truly arbitrary. T hat is, we must agree th a t any value may

serve where an unknown value Is required. Installation is a restricted form of substitu

tion used to introduce feedback. The equations of S do not immediately admit substitu

tion because they are not identities: their left-hand sides are formal structures and their

right-hand sides are not. For instance, the defining equation Jx = xfl may bind x to the

divergent value2, ju s t as surely as does the equation [[x = x + We must avoid

transformations tha t would lead to such equations.

We shall keep track of value instances by a naming convention. The identifier

[[V]| is by convention an instance of the value a. For example, a name for the parame

te r u can be introduced by Axiom E with an equation of the form [[V = uj],

6.3. Scheduling Derivations

We shall give three examples to show how the rules defined in Section 6.2 can be
applied to the scheduling problem. The first two come from the discussion in the intro

duction to this chapter. The third is a somewhat more complicated combination, a por

tion of a regularly connected network.

awhich is the minima/ fixed point of the equation. The use of defining equations as identities
to reason about Lucid programs leads to the same "glitch" (Ashcroft and Wadge, 1077).

130

6*3*1* C i r c u i t F* Consider the simple serialization problem for n — 3. The com

binatorial system is specified

a 6 c
• • •

»> [|] [£ i £
x y s

Si[a b c] re c □ w h ere

x = f :< a >

y = f :< b >

z — f :< c >

From S we may derive

x ~ f :< a >

y = f :< b >

z = f :< c >

Given

[x y z] = < f : < a > f :< b > f : < c > >

[x y z] = < f * > : H : < < a > < b > < c > >

[x y z] = < f + > : < < a b c > > meaninp of H

The final step above is a symbolic transposition of the argument to < f * > . We are

turning the individual arguments to < f* > into a signal. To emphasize that we are now

thinking of S as a digital circuit, let us identify its signals.

V = < f * > : < U >

[x y z] = V

U = < a b c >

/rfen/iTicafiort

of signals

131

THc derived circuit applies the combinatorial component < f* > to its input signal U and

produces output signal V. If a, b, and c are presented in order on U then the results x, y,

and then z ore delivered on V. We shall rephrase this interpretation as a schedule

specification; the deGning equations for V and [x y z] state the external characteristics of

the circuit.

SCHEDULE

Input O utput
fat lime) fat ttme)

0 1 S 0 1 2

U: a b c V: x y z

6 .3 .2 . C i r c u i t G . Define S for the simple feedback problem, again with n — S.

d a b e
• • • •

x y

S:[d a b c] <$= re c □ w h ere

x ~ g : < a d >

y = g i< b x >

i = g : < c y >

We begin by superimposing the g's in the only reasonable order.

x = g :< a d >

y = g t< b x >

i = g i< c y >

Given

132

[x y z] = < g : < a d > g : < b x > g i < c y > >

[x y z] = < g * > :5 i< < a d > < b x > < c y > >

[x y z] = < g * > : < < a b c > < d x y > >

Note tha t j is produced at “ time 0" but is consumed a t “time 1" by < g * > . We shall

have to delay this instance of x if the circuit is to use it.

[i x y z] = i I < g * > i < < a b c > < d x y > >

Let us invoke our interpretation of M7 as the totally indeterminate signal and write

Nil[■ x y z] = ■ 1 < g * > i < < a b c ■ > < d x y ■ > >

Our next goal is to separate the sequence < d x y ■ > into two sequences tha t segregate

internally computed values from externally provided values. Add an extraneous instance

of d and do some gluing.

Axioms E, G

[■ x y z] - ■ I < g * > : < < a b c ■ > < d x y ■ > >

Now by the Selection Rule, the system can be rewritten

[*d* x y z] = M011,z< < d ■ ■ ■ > V >

V = * 1 < g * > : < < a b c ■ > < d x y ■ > >

[■ x y z] = V

M

133

Since 'd' is an instance of d and z is an instance of ■, we may rewrite this system as

[‘d’ x y i] = M0I11:< < d B B « > V >

V = ■ ! < g * > : « a b c * > < ‘d ’x y i > >

[■ x y i] = V

❖

If we name the rest of the signals we get

V

W

[■ x y z]
U

D

■ t g*:<U W >

M0U.:< D U >

V

< a b c ■ >

< d ■■■>
Identification

of signals

We have derived a description of a circuit of two inputs and one output

m

SCHEDULE

O utput

134

6 .3 .3 . C i r c u i t H . The final example is a portion of a combinatorial array discussed

by Gannon (1982).

S*[a b c d e] < = rec < r s t u v >

w h ere

[r x] = h :< c b >

[y v] = h :< d x >

[s z] — h :< y a >

[t u] = h :< e r >

As usual, we shall a ttem pt to superimpose certain external leads, namely a with b, and d

with e. One possible derivation follows:

[rx] — h :< c b >

[y v] = h :< d x >

[s z] = h :< y a >

(t u] = h :< e z >

given

[[rx][s z]] = < h :< c b > h :< y a > >

[[y v] [tu j] = < h :< d x > h :< e z > >
P, twice

[[rx][sz]] = < h * > : < < c y > < b a > >

[[y v][t u]] = < h * > : < < d e > < x z > >
A, twice

136

[[r s ■][x z ■]] = H :< h * > :< < c y ■ > < b a ■ > >

[[y t][v uj] — 2 : < h * > : < < d e > < x z > >

E, Nil

[[r 3 ■][x z ■]] = 2 : < h * > : < < c y ■ > < b a ■ > >

[[y t][v u]] = 2 : < h * > : < < d e > < x z > >

[■ y ‘t ’J = ■ ! < y t >

[V ■ ■] = < c ■ ■ >
[V y V] = M0il: < < c ■ ■ > <■ y V > >

WAi O
(8) Axiom E

M (!) and (8)

[[r a i][x z ■)] = 2 : < h * > : < < ‘c’ y ‘t ’> < b a « > >

[[y t][v u]J = 2 : < h * > : < < d e » > < x z ■ > >
[m y 't '] = ■ ! < y t >

fc* y *t’] = m o u i < < c ■ ■ > < ■ y *t’> >

*

Nil

[IJ] = 2 :< h * > :< K N >

[L M] = 2 : < h * > : < 0 J >
p = ■ I L

K = Mon:< Q P >

[r s -] = I

[x z ■] = J

M = L

[uv] = M

(■ y ‘t ’] = P
f c ’ y ‘t ’] = K

N = < b a ■ >

O = < d e ■ >

Q = < c • ■ >

Identification

of signals

These equations describe a circuit with external input signals N, O, and Q; external out

put signals I, M, and P\ and internal signals I, K, and L, The schematic and schedule

specification are:

13S

muz

Input

SCHEDULE

O utput

6.4. Remarks

This chapter demonstrates th a t the algebraic framework we have developed to

obtain circuit descriptions is also useful for refining them. We introduced a set of axioms

and rules tha t are tailored to a particular problem. The implication is th a t by similar

specialization, a transformation system would evolve to deal with local changes in a

design as well as the global generation of one.

The reader may have noticed tha t in the schedule for Circuit H the stored value I is
available earlier if the combinatorial ou tput L is used instead of P. Hence, this circuit

can execute its function in two cycles if the register is used sotey for internal synchroni

zation. However, even if the delayed occurrence of t is used, the circuit’s schedule can be

overlapped.

137

N: a1 b* a3 b3 a* b* • ••

O: d 1 e1 d* e3 d3 e3 ♦ l*

Q: c1 ■ c3 ■ c3 ■ *•*

I: r 1 s1 r3 s* r 3 s3 til

M: V1 u 1 vs u3 v3 u3 fit

P: N ■ t l ■ t 1 ■ t 3

A single additional cycle is needed to capture the last f. The schedule specifies Circuit H

In terms of its external communication. Using the overlapping shown above, its input-

output characterization in the Cuny-Snyder notation is

<r n r 0 r , w , w m> [{r n r „ w , WM) {R„ r g r „ w , w m W p}]*{Wp)

White each step in these example derivations is a valid transformation on

specification text, it is not immediately clear what drives the derivation toward a circuit

realization. Our heuristics were to segregate internal from external values, and to intro

duce delays to align component inputs with component outputs. However, since we arc

free to introduce delays of any duration, and since some value orderings are inadmissible,

a transformation strategy based on those simple heuristics could easily go awry.

In Circuit H one can see th a t if inputs a and 6 are serialized, b should precede a

because 6 is needed to produce i , x is needed for y, and y is needed when a is used.

However, even with analysis the small configuration in Circuit H can be folded in

numerous ways, into a circuit of one, two, or three components. Even with some prun

ing a blind transformation strategy is explosive.

7. Conclusion

7.1. Review

This dissertation shows th a t the discipline of applicative style is a Biting basis for

digital hardware design because the abstraction of functionality, upon which applicative

style is predicated, is also fundamental to digital design. Functional specifications and

digital realizations are given in virtually the same notation. Moreover, the transition of

interpretation from instantaneous operation to sequential behavior, lifting, is transparent

to the basic techniques of this approach. This transparency erases the discontinuity that,

typically results when design moves from an abstract specification notation to a concrete

realization notation.

The design method is to specify an algorithm in a purely functional notation,

without regard to representation or contralt and then to derive from th a t specification a

description of an equivalent digital/synchronous system. I have focused on transforma

tion methods, a form of synthesis in which the engineer is simply “doing algebra" on the

formulation of a design. Notation is manipulated by such rules as folding, unfolding,

combination, and symbolic simplification, with the goal of reaching a syntactic form that

Gts the implementation realm.

7*1.1. I t e r a t i o n . The secondary notation of a Qowcbart or finite state machine,

which is often used in conventional circuit design, does not arise in this method. How

ever, it should be emphasized th a t this is merely an occlusion of syntax. A major step in

each of the examples was to find an iterative version of the specification. Iterative form

characterizes sequential control (i.e. flowchartability); thus, this approach gives the

engineer a notation to develop a quality th a t is intrinsic to other notations, such as

138

130

flowcharts. In th a t sense a t least, a functional specification language is more abstract,

hence less constraining, than a procedural one. It leaves the way open to develop reali

zations according to other strategies than the linearization of control.

A simple loop can always be constructed from an iterative specification by introduc

ing a param eter th a t serves os a control token. Simple loops are essentially realizations:

Theorem 3.3-5 yields a circuit description immediately by lifting. The elementary func

tional recursion of the loop transposes to the signal reflexivity of a connectivity descrip

tion. At the same time, the method admits prevailing structured design techniques.

Hierarchical decomposition, through macros (packaged combinations) and representation

abstraction (abstract components), are transparent to lifting.

7 .1 .2 . C i r c u i t S y n th e s is . A signal is a mapping from time to values th a t sub

sumes the recurrence relation by which digital systems are usually described. I avoid

explicit mention of time by modeling a signal as a sequence and a circuit as a fixed point

in the domain of signals. Since behavior is discrete (and since feedback loops always

pass through registers), constructing the fixed point is equivalent to inductively solving

the corresponding recurrence. This model unifies the mathematical treatm ent of

specification and realization languages and also results in an experimental vehicle for

synthesis: Daisy. Daisy's application operator interprets “function-lists" in a manner

consistent with (in fact it motivated) the definition of component application in Section

3.5. The choice to model a component as signal of operations—rather than as an opera

tor an signals—is of tittle consequence in a basic behavioral model because primitive com

ponents are constants in tha t interpretation. However, when circuits are factored Into

communicating abstract components, the residual instruction signal is consistently

viewed as a component whose operation varies. The factorization distributes the condi

tional across application, then distributes application over behavior; os usual, everything

lifts.

Experimentation served two purposes in this investigation. It provided the means

both to observe circuit behavior and also to certify derivations empirically. In a few

instances, observation revealed qualities of performance th a t are not addressable in the

specification language. The "discovery" in Section 4.4 tha t the GCD circuit stabilizes

was an illustration th a t formal specifications do not account for every quality th a t a

realization might have. The lengthy derivation in Section 5.3 was done entirely by

band, although a number of the steps could be automated using published techniques. A

140

Daisy version of each stage of the derivation was written and executed (Appendix B) on

a representative set of inputs. At the very least, this reduced typographical errors, but

it also raised the level of our confidence in the derivation. A proof need not be com

pletely correct to be useful (Lipton, et.al. 1079); a circuit description m ust be.

Automated synthesis systems are likely always to have gaps th a t m ust be bridged empir

ically, for they free the engineer to think ever more abstractly. The ability to construct

and carry out experiments is a significant advantage, if not a necessity, all the more so if

it can be done directly in the notation of the synthesis system.

7*1*3. C i r c u i t R e f in e m e n t* Through Chapter 5 the emphasis in synthesis is on

manipulation of specifications. If this area is not fully understood, it is at least well

charted by research in program synthesis. In passing from specification notation to reali

zation notation the concerns of the designer should become more local, for it is at th a t

point that the monolithic view of the developing description disintegrates, from a simple

loop into a system of interconnected but otherwise autonomous components. This in no

way implies th a t all design decisions can be made on the specification-side. As an exam

ple of local refinement strategies Chapter 0 presented a “special purpose" transformation

system. The specific goal was to use serialization to trade space, measured by the

□umber of external connections, against time. Correct realizations were constructed

through a small set of rewriting rules. The derivations introduced registers to implement

serialization and therefore also complicated the timing of the circuit. However, they also
spawned a schedule, for target behavior th a t could be used to coordinate it with the sur

rounding system.

7.2. Limitations of the Approach

If one seeks to appraise the realization language in terms of “ typical" circuit

designs, one can readily see tha t it falls short of its fundamental purpose: to “ portray

implementations" (Chapter 1). The notation makes it difficult to express bidirectional

ity in signals; whether the difficulty is due to shortcomings in syntax or semantics should
be considered carefully. This dissertation only touches on the issue of communication;

an im portant question to consider in judging this approach is how it extends to account

for external and independent signals.

141

7.2.1. B id ire c t io n a l i ty * Since the specification language is purely functional, it is

not surprising tha t an applicative realization language suffices as a target for synthesis.
As defined here, circuit descriptions state connectivity using applicative terms th a t

require a distinction between input and output. Consequently, my realization language

is inadequate for describing components, such as some memories1, whose input and out

put leads arc physically identical. Milner overcomes the problem by using a notation far

connectivity tha t does not depend on the inpu t/ou tpu t distinction (Milner, 1073). The

realization language 1 have adopted translates easily to Milner's notation. W hat emerges

is a relational model of behavior; functionality is a special case. Of course, directionality

(perhaps “causality” is a better word) is also obscured in the resultant semantics. Rela

tional specification languages, such as Prolog (See for example Clark and Gregory, 1981),

might be used to confront bidirectionality directly. On the other hand, directionality

(functionality) is the preferable abstraction and should not be lightly discarded. One

finds evidence for this thesis by looking a t how circuit design has evolved away from its

natural basis (analog components in equilibrium) to an artificial digital basis th a t forces

a circuit to behave os a function on its state. Bidirectional wires rarely2 serve simultane

ously as both input and output; rather, they are a physical unification of conceptually

distinct entities. T h a t point notwithstanding, physically identical parts of an object

should surely be identified in the description of th a t object, and in the case of bidirec

tional leads this is a problem for the applicative realization language adopted here.

7.2.2. Digital Asynchrony, Communication, and Integration. My exam

ples all deal with closed specifications and consequently I was able to develop circuit

descriptions in a uniform temporal framework. 1 employed standard techniques to

decompose architecture, but said little about decomposition of control. How standard

control factorizations (procedures, coroutines, etc.) are lifted merits study. When a

designer breaks a problem down in this fashion he incurs a liability in the form of a com

munication problem and m ust develop a protocol by which autonomous controllers coor

dinate their activity.

Digital asynchrony is discrete autonomy. The interval between meaningful external

events is an unknown but always integral number of clock cycles. The first law of

'See (Mead and Conway, 1980, p. 161, Fig. 5.10) for another fine example.

Counterexamples are wholeheartedly Invited.

142

structured digital design is to "latch11 truly asynchronous signals and thereby ensure

th a t, from the point of view of the system, they occur at opportune moments.

The subject of digital asynchrony has been broached several times in this disserta

tion. For example, one way to introduce autonomous processes is to designate them as

operations. T h a t is, assume that they behave in negligible time and deal with coordina

tion separately. In the L-circuit of Chapter 5, the ENVIR ONM ENT instructions EXT,

FND, and LBL, were presumed to result in trivial operations. However, it is barely credi

ble to assume th a t extend, find, and label are trivial1. To complete the realization of the

L -interpreter it will likely be necessary to introduce protocols for waiting, in order to

intergrate the autonomous abstract components. In the meantime, a natural strategy

for control decomposition is to carry out design-as-usual while treating certain serious

symbols as though they were trivial. Some conventional design techniques, for example

self-timing strategies (Mead and Conway, 1980), would support this strategy.

A circuit that is party to a communication (and this includes many circuits) cannot

be specified in closed form. Its description must account for externally generated signals,

and the operator/value based specification language used here m ust be extended to

express inpu t/ou tpu t. The single-putter discussed by Winkel and Prosser (1980, pp.

183-180) is a nice example because its computation is minimal in relation to its commun

ication.

Problem S tatem ent, We have a debounced pushbutton, with the down position
meaning on (true) and the up position off (false). Devise a circuit to sense the depression
of the button and assert an output signal for one clock pulse. The system should not al
low additional assertions of the output until after the operator has released the button.

A solution, below, presumes not only that the button is debounced but also th a t it is

latched. The specification for the single-pulser m ust take into account th a t some of the

identifiers change according to external stimuli. Let us introduce pseudo-operations get

and puf tha t express this. Assume that a depressed button and pulse assertion are both

implemented by high voltage. The authors' flowchart specification, expressed as an

30'DonDell's associative architecture (1981,1983) can perform these operations in unit time if
some restrictions are made. The question is not whether such things can be done, but whether
they wilt be done in a particular design endeavor. A conventional implementation, using off-the-
shelf components, would certainly require several cycles to implement these operations.

iterative specification over type D ig (Sec. 2.1), becomes1

143

FINDfb, p) <S= highf(b) -* W AIT(getfb), ptit(high) },

F IND f getfb), putftow) J.

W AlTfb, p) <Z= k ig h ffb)—* WA1T(gct(b), putflow)),

F IND f getfb), put(low)).

W ith binary control token c representing W AITjFIND os high/low, a realization is

C = ■ 1 MUXt(B, C, [high], (feu), [high], [/om])

B = GET(B)

P = PUT(MUX2(B, C, [high], (Zoo;), [four), [tom|)

where m u ijb , e, w, z, y, z) <= highf(c) ~*fhigh?fb) —► w, zj,

fhighffb) - y, z}.

Analysis of the conditionals leads to a refined realization:

C = ■ ! B

B = GET(B)

P = PUT(AND(B, N O T (C)))

Put and get are coercions from external signal to value; they become redundant when

lifted. If they are simply eliminated we arrive at the authors’ solution circuit.

C = ■ ! B

P = AND(B, NOT(C))

Note th a t since there must be some voltage on every signal at every time the

‘'Since this specification has ao base clauses it does not converge, Unless we are careful about
the meaning of put, its minimal solution is the undefined function.

144

specification reads and writes on every iteration. Admittedly, this is a clumsy way to

introduce external communication to the specification language, but a t least it is direct.

A ttem pts to isolate a less verbose applicative construct for external communication have

lead to a number or proposed constructs for indeterminacy. Filman and Friedman sur

vey the variety of approaches in their text (1983). The issue was addressed as early as

1963 by McCarthy, through his AMB operator (1003a). Keller (1078) discusses indeter

minacy using K ahn’s process semantics as a starting point. There does not appear to be

a consensus on th a t topic a t this time. Along the lines of the research reported here,

Johnson (1082) shows one way to specify asynchronous systems using the indeterminate

constructor of Friedman and Wise (1979, 1080, 1081). This constructor is implemented

in Daisy, but was not exploited in this dissertation.

7.3. Prospects for Research

This discussions of the previous section ask basic questions about the foundations

of functional style. There are, as well, many refinements to the method presented here

th a t are worthy of investigation.

7 .3 .1 . M u l t ip h a s e C lo c k in g . My schematics depict registers as boxes th a t are

governed by a universal clock. The notation and terminology call to mind a printed-wire

fabrication medium, where the qualities of a storage component are consistent with the

pictures. In other media storage elements can be less physically imposing, and can also

give rise to other synchronization strategies. In VLSI designs, for example, storage is

sometimes implemented with pass transistors and synchronized by alternating clacking
signals (Mend and Conway, 1980). Multiphase clocking could be expressed in my realiza

tion language through a partitioning of storage elements (the term "register" becoming

counterintuitive at this point) according to the phases they serve. One might obtain a

canonical 8-phase system in a form like ^ Z — z^o I :*t I GfZ)^ and then proceed to

make refinements. How a properly phased realization can be synthesized merits study;

and may also be a key to addressing the bidirectionality problem (Section 7.1.1).

145

7 .3 .2 . T h e R e a l iz a t io n L a n g u a g e a s a F o r m a l S y s te m Aschroft and Wadge

(1670) present Lucid as a formal system in the tradition of Hoare’s (1606). (I noted the

similarity between my realization language and Lucid in Section 1.2,1.) A Lucid

speciGcation can be viewed as a set of axioms, used to deduce assertions about behavior.

The works just cited address correctness; hence, description tex t is used to generate

veriGcation conditions. Although I have adopted synthesis os a means for dealing with

correctness, in the course of experimentation other kinds of observations were made

about circuit behavior. Aschroft and Wadge point out th a t Lucid can be used to

address other properties, and it would be interesting to explore how the realization

language might be used to generate "performance conditions’* about stability, power

consumption, fault tolerance, and so on. Hafner and Parker (1683) do ju s t tha t; they

use a behavioral description language, syntactically similar to mine, to synthesize timing

requirements.

There is also the intriguing possibility th a t with appropriately redeGned base opera

tions, realizations themselves might construct performance characterizations or fabrica

tion data. For example, since recursion corresponds directly to connectivity in realiza

tions, a graphics data base could be established by evaluating a realization in an

environment where the ground symbols are bound to graphics primitives.

7 .3 .3 . O t h e r T o p ic s . This dissertation gives additional motivation for the contin

ued study of transformability among recursion schema, and other general problems sur

rounding the automation of synthesis. Research is needed not only to formalize seman

tics but also to address the nature of interaction in synthesis systems. If one stipulates a

component of human creativity in computer-aided design, then it is not enough simply

to require of the human all that the computer cannot or has not yet been programmed

to do.

It was noted in Section 1.1 tha t design is dualistic: it is characterized as an inter

play between the selection of an algorithm and the selection of a representation in which

that algorithm executes. This holds in software and hardware alike, and this disserta

tion makes only modest inroads into the problem area of choosing a representation.

This is an open area for research, but the question that follows from this investigation

can be stated simply: "which methods lift?"

146

7.4. Final Remarks

I prefer the game of 0 0 to the game of CHESS. It stimulates me more, although

differently. Since I am a master of neither game, my preference is hardly authoritative;

but even if I were a master of both my preference would not make 0 0 a better game.

I did not set out to prove in this dissertation tha t applicative methods are better

than others for the design of circuits. The question I asked myself was whether the con*

straints of the the style would allow one to describe circuits, and if so, are there any

advantages in using the style for that purpose. That one can describe circuits in a

purely applicative way, though perhaps moderately surprising at first, says nothing

about the practicality of doing it. However, tha t one can derive a realization by "doing

ordinary algebra" indicates that the approach is indeed a promising basis for engineer

ing. This inference depends on the reader’s agreement, first, tha t the target notation

achieves its concretely descriptive purpose (I believe tha t to be self evident); and second,

tha t the specification language is a suitable notation for expressing ideas. The second

point is a premise of this work; to conclude here tha t the approach is superior to conven

tional methods would be to beg the question. Still, I think th a t those who are familiar

with digital design will, in retrospect, find substantial benefit in applicative style.

For those already predisposed to M cCarthy’s basis, this dissertation has something

further to say about its appropriateness and its relationship to programming. It is addi

tional positive evidence presented in a more neutral (i.e. less von Neumann) setting. To

compare functional languages to procedural ones is, to a large extent, to compare

specifications to their realizations, or for th a t m atter, GO to CHESS. If, nevertheless, one

is resolute to make a comparison, it should be done on the basis of an independent ta r
get language. Digital systems seem more suitable than, say, machine code for this pur

pose. I think I have shown applicative methods to be competitive in th a t realm, and i

hope tha t the evidence herein is sufficient to provoke futher investigation. I also hope
tha t CHESS players who would follow the progress of th a t investigation try a few games

of CO,

Selected Bibliooravhv

Ashcroft, Edward A. and William W. Wadge, Lucid, a nonprocedural language with
iteration. Comm . ACM, 20(7):519-52G (July, 1977).

Auslander, Marc A. and H.R. Strong, Systematic recursion removal. Comm. ACM,
21(2):127-133 (February, 1978).

Backus, John, Can programming be liberated from the von Neumann style? Comm.
ACM, 21(4):fll3“ 641 (August, 1978),

Backus, John (1981a), The algebra of functional programming: function level reasoning,
linear equations, and extended definitions. Proc. of the Symposium on Functional
Languages and Computer Architecure, eds. B. Nordstrum, A. Wikstrom, and Soren
Holmstrom, Goteborg, Sweden, June, 1981, 408-450.

Backus, John (1081b), Function level programs os mathematical objects, Proc. of the
1981 ACM Conference on Functional Programming Languages and Computer Archi
tecture, (ACM order no. 550810), 1—10.

Backus, John, F.L. Bnur, J. Green, C. Katz, J. McCarthy, P. Naur, A.J. Perils,
H. Rutihauscr, K. Samelson, B. Vauquois, J.J. Wegstcin, A. van Wijngaarden, and
M. Woodger, Revised report on the algorithmic language ALGOL 60. Numer. Math.
4:420-453 (1903). Also published in Comm. ACM, B (l):l-17 (January, 1903).

Brainerd, W alter S. and Lawrence H. Landweber, Theory o f Computation, Wiley and
Sons, New York, 1974.

Burstall, Rod M. and John Darlington, A transformation system for developing recursive
programs, J. Assoc. Comput, Mack., 24(l):44-67, (January, 1977).

Burge, William H., Recursive Programming Techniques, Addison*Wesley, Reading, Pa.,
1975.

Cardelli, Luca, An Algebraic Approach to Hardware Description and Verification, Ph. D.
dissertation, Univ. of Edinburgh, 1982.

Cardelli, Luca, Analog processes. Proc. o f the Ninth Symposium on Mathematical Foun
dations of Computer Science, Lecture Notes in Compter Science, No. 88, Springer,
New York, 1980, 181-193.

Chandra, Ashok K., Efficient compilation of linear recursive programs. Stanford
Artificial Intelligence Memo AIM* 169, Technical Report STAN-CS*282, Dept, of
Computer Science, Stanford University, April, 1972.

Cheatham, Thomas E., Jr., Glen H. Holloway, and Judy A. Townley, Symbolic evalua
tion and the analysis of programs, IEEE Trans. Software Engrg., SE-S(4):402— 417,
(July, 1979).

147

148

Clark, Keitli L., and Steve Gregory, A relational language for parallel programming.
Proc. o f the 1081 ACM Conference on Functional Programming Languages and Com*
puter Architecture, (ACM order no. 556810), 171-178.

Cohen, Norman Howard, Sowcc-to-aource Improvement of Recursive Programs, Ph.D.
dissertation, Harvard Univ., Cambridge, Mass., 1080.

Cooper, David C., Bohm and Jacopini's reduction of flow charts. Comm. ACM,
10(8}:403, 473 (August, 1967).

Cuny, Janice E. and Lawrence Snyder, Conversion from data-flow to synchronous execu
tion in loop programs. Report for the BLUE CHiP Project, Purdue University
Department of Com puter Sciences, West Lafayette, Indiana, 1082.

Darlington, John and Rod M. Burstall, A System which automatically improves pro
grams. Acta Informat., 0:41-60, 1976.

De Millo, Richard A., Richard J. Lipton, and Alan J. Perlis, Social Processes and proofs
of theorems. Comm. ACM, 22(5):271—280, (May, 1979).

Filman, Robert E. and Daniel P. Friedman, Coordinated Computing: Tools and Tech
niques for Distributed Software, McGraw-Hill, New York, 1983.

Friedman, Daniel P. and David S. Wise, An approach to fair applicative multiprogram
ming. in Semantics o f Concurrent Computation, ed, G. Kahn, Lecture Notes in
Compter Science, No. 70, Springer, New York, 1979 203-226.

Friedman, Daniel P. and David S. Wise, Aspects of applicative programming for flle sys
tems. Proc. AC M Conf. on Language Design for Reliable Software, AC M SIG PLAN
Notices, 12:41—55, (March, 1977).

Friedman, Daniel P. and David S. Wise (1978a), Aspects of applicative programming for
parallel processing. IEEE Trans. Comput., C-27(4):289—296, (April, 1978).

‘ , Friedman, Daniel P. and David S. Wise (1976a), CONS should not evaluate its argu
ments. in Automata, Languages and Programming, eds. S. Michaelson and R.
Milner, Edinburgh Univ. Press, Edinburgh, 1976, 257-284.

Friedman, Daniel P. and David S. Wise, Fancy ferns require tittle care. Proc. of the
Symposium on Functional Languages and Computer ArcAitecure, eds. B. Nordstrum,
A. Wikstrom, and Soren Holmstrom, Goteborg, Sweden, June, 1981, 124-156.

Friedman, Daniel P. and David S. Wise (1978b), Functional combination. Computer
Languages, 3(l):31-35, 1978.

Friedman, Daniel P. and David S. Wise, An indeterminate constructor for applicative
programming. Conf. Rec. 7th AC M Symposium on Principles of Programing
Languages, (January, 1980), 243-250.

Friedman, Daniel P. and David S. Wise (1976b), O utput driven interpretation of recur
sive programs, or writing creates and destroys data structures. Inform. Process.
Lett., 5(0):155-16O (December, 1976); Erratum: 9(2):101 (August, 1979).

140

Friedman, Daniel P. nod David S. Wise (1076c), Unbounded computational structures,
Software - Practice and Experience, 8:407-416 (1976).

Friedman, Daniel P., David S. Wise, and Mitchell Wand, Recursive programming
through table lookup, erf. R.D. Jenks, Proc. 1976 ACM Symposium on Symbolic
and Algebraic Computation, 85-89.

Gannon, Dennis, Pipelining array computations for MIMD parallelism: a function
specification. Proc. of the 198S /n/ernofionaf Conference on Parallel Processing,
IEEE (order no. 421), 1982, 284—286.

Garland, Stephen J. and David C. Luckham, Translating recursion schemes into pro
gram schemes. Proc. o f an AC M Conf. on Proving Assertions about Programs, Los
Cruces, New Mexico, January, 1972, published as SIG PLAN Notices 7(1) and
SIG A C T News No. 14., (January, 1972), 83-96.

Gordon, Michael J.C., The Denotational Description o f Programming Languages, An
Introduction, Springer, 1979.

Gordon, Michael J.C., The denotational semantics of sequential machines. Inform. Pro•
cess. Lett., 1 0 (l) :l-3 , (February, 1980).

Gordon Michael J.C. (1681a), A model of register transfer systems with applications to
microcode and VLSI correctness. Corrected version of Dept, of Computer Science
Internal Report CSR-82-81, Univ. of Edinburgh, 1081.

Gordon Michael J.C. (1981b), A very simple model of sequential behavior of nmos,
Proc. o f the VLSI 81 International Conference, Edinburgh, August, 1981.

Greibach, Sheila A., Theory of Propram Structures: Schemes, Semantics, Verification,
Lecture Notes in Compter Science, No. 36, Springer, New York, 1975.

Hafer, Louis J., and Alice C. Parker, Automated synthesis of digital hardware. IEEE
Trans. Comput., C-31(2):93-109 (February, 1981).

Hafer, Louis J., and Alice C. Parker, A formal method for the specification, analysis, and
design of register—transfer level digital logic. IEEE Trans, on Computer - aided
Design of Integrated Circuits and Systems, CAD-2{1):4-18 (January, 1983).

Harel, David, On folk theorems. Comm. ACM, 23(7):379-389 (July, 1980).

Henderson, Peter, Functional Programming: Application and Implementation, Prentice-
Hall, Englewood Cliffs, 1980.

Henderson, Peter, and James H. Morris, Jr., A lazy evaluator. Conf. /fee, Third AC M
Symposium on Principles o f Programming Languages, 1976, 95—103.

Hill, Fredrick J. and Gerald R. Peterson, Introduction to Switching Theory and Logical
Design, (third ed.), Wiley and Sons, New York, 1968.

Hoare, C.A.R, An axiomatic basis for computer programming. Comm. ACM,
12(10):576-580,583, (October, 1969).

150

Hoare, C.A.R., Proof of correctness of n data representation. Acta Informat., 1:271-281
(1072).

Johnson, Steven D. Circuits and systems: implementing communication -with streams.
Proc. 10th IMACS World Congress on Systems Simulation and Scientific Computa
tion, Vol. 5, eds. W.F. Ames and R. Vichnevetsky, Montreal, August, 1082.

Kahn, Gillcs, A preliminary theory for parallel programs. R apport de Recherche n* 0.
IRIA Laboria, (January, 1073).

Kahn, Gilles, and David MacQueen, Coroutines and networks of parallel processes. IF IP
77, North-Holland, 1077, 033-038.

Keller, Robert M., Denotational models for parallel programs with indeterminate seman
tics. in Forma/ Description o f Programming Concepts, ed. E .J. Neuhold, (Proc. of
the IFIP Working Conference, August, 1977) North-Holland, 1078, 337-365.

Kleene, Stephen C.r Introduction to Metamathematics, North Holland, New York, 1052.

Kohlstaedt, Anne T .r Daisy 1.0 reference manual. Technical Report No. 119, Indiana
Univ. Computer Science Dept., Bloomington, Indiana, November, 1081.

Landin, Peter J., A correspondence between ALGOL 60 and Church's lambda notation —
part I. Comm. ACM, 8(2):89-101, (February, 1085),

McCarthy, John (1083a), A basis for a mathematical theory of computation. Computer
Programming and Formal Systems, eds. P. Braffort and D. Hirschberg, North-
Holland, Amsterdam, 1903, 33-70.

McCarthy, John, Recursive functions of symbolic expressions and their computation by
machine, part I. Comm. ACM , 3(4):184-195 (April, 1960).

McCarthy, John (1963b), Towards a mathematical science of computation. Proc. of the
IFIP Congress ’68, ed. C. M. Popplewell, North-Holland, Amsterdam, 1083, 21-28.

McCarthy, John, P.W, Abrahams, D.J. Edwards, T .P . Hart, and M.I. Levin, Lisp 7.5
Programmer’s Manual, The MIT Press, Cambridge, Mass., 1973.

Manna, Zohar, Mathematical Theory o f Computation, McGraw-Hill, New York, 1974.

Manna, Zohar, and Richard J. Waldinger, Synthesis: dreams = > programs. IEEE
Trans. Software £ ’ngrg.,*SE-6(4):294-328 (July, 1979),

Manna, Zohar and Richard J. Waldinger, Towards automatic program synthesis.
Comm. ACM, 14(3):151-105, (March, 1971).

Mead, Carver and Lynn Conway, Introduction to VLSI Systems, Addison-Wes ley, Read
ing, 1980.

Meyers, Thomas J., Infinite Structures in Programming Languages, Ph.D. dissertation,
University of Pennsylvania, Philadelphia, 1980.

Milne, George and Robin Milner, Concurrent processes and their syntax. J. Assoc.
Comput. Mach., 2B(2):302-321, (April, 1979).

161

Milne, Robert and Christopher Strachey, A Theory o f Programming Language Semantics,
Chapman and Hall, London, 1070.

Milner, Robin (1980a), A Calculus of Communicating Systems, Lecture Notes in Compter
Science, No. 98, Springer, New York, 1980.

Milner, Robin, Processes: a mathematical model of computing agents. Proc. Logic Cot-
log. ’73, eds. Rose and Shepherdson, North-Holland, 1973.

Milner, Robin (1980b), On relating synchrony and asynchrony. Technical Report No.
CSR-75-80, Univ. of Edinburgh, Edinburgh, 1980.

Morris, James H., Jr., and Benjamin Wegbreit, Subgoal induction. Comm. ACM,
20(4):200-222, (April, 1977).

Mycroft, Alan, The theory and practice of transforming call-by-need into call-by-valuc.
Proc. o f the Fourth International Symposium on Programming, ed. B. Robinet, Lec
ture Notes in Compter Science, No. Iff, Springer, New York, 1980, 269-281.

O'Donnell, John, A Systolic Associative LISP Computer Architecture with Incremental
Parallel Storage Management, Techical Report No. 81-5, Department of Computer
Science, University of Iowa, 1981.

O'Donnell, John, (1983) personal communication,

Paterson, Michael S. and Carl E. Hewitt, Comparative scbematology. in Pecorrf of Pro
ject M AC Conference on Concurrent Systems and Parallel Computation, Association
for Computer Machinery, New York, 119-128, (December, 1970).

Scott, Dana S., Data types as lattices. SIA M J. Comput., 5(3):522-587, (September,
1976).

Scott, Dana S., Domains for denotational semantics, corrected and expanded version of
a paper presented a t IC A LP 88, (July, 1982).

Scott, Dana S., Logic and Programming Languages. Comm. ACM, 20{9):634-641, (Sep
tember, 1977).

Steele, Guy L., Jr. and Gerald J . Sussman, The revised report on Scheme: a dialect of
Lisp. MIT Artificial Intelligence Laboratory Memo 452, January, 1978.

Stoy, Joseph E., Denotational Semantics: The Scott-Strachey Approach to Programming
Language Theory, MIT Press, Cambridge, 1977.

Strong, H.R., Jr., Translating recursion equations into flow charts. J. Comput. System
Set., 5(fl):254-285, (June, 1971).

Tennent, Robert D., The denotational semantics of programming languages. Comm.
ACM, 19(8):437—453 (August, 1976).

Vuillemin, Jean, Correct and optimal implementations of recursion in a simple program
ming language. J . Comput. System Set., 9(3):332-354, (March, 1974).

W adsworth, Christopher, Semantics and Pragmatics of Lambda-catculus, Ph.D. disserta
tion, Oxford, 1971.

152

Wand, Mitchell (1080a), Continuation based program transformation strategies. J.
Aasoc. Comput. Much,, 27 (1):164— ISO, (January, 1080).

Wand, Mitchell (1082a), Deriving target code as a representation of continuation seman
tics. AC M Trana. Programming Languages and Systems 4(3):496-517

Wand, Mitchell (1080b), Different advice on structuring compilers and proving them
correct. Technical Report No. 05, Computer Science Department, Indiana Univer
sity, Bloomington, September, 1080,

Wand, Mitchell, Induction, Recursion, and Programming, North Holland, New York,
1080.

Wand, Mitchell, Loops in Combinator-Based Compilers. Conf. Ree. 10th A C M Sgmp.
on Principles o f Programming Languages 1083, 100-106,

Wand, Mitchell (1082b), Semantics-directed machine architecture, Conf. Rec. 9th A CM
Symp. on Principles o f Programming Languages (1082), 234—241.

Wand, Mitchell, and Daniel P. Friedman, Compiling Lambda-expressions using con
tinuations and factorizations. Computer Languages, 3:241-203, (1078).

Winkel, David and Franklin Prosser, The Art of Digital Design, Prentice-Hall, Englewood
Cliffs, New Jersey, 1980.

Wise, David S., Interpreters for functional programming. Functional Programming and
Us Applications, eds. J . Darlington, P. Henderson, and D.A. Turner, Cambridge
University Press, Cambridge, 1082, 186-195.

Wise, David S., A powerdomain semantics for indeterminism, m prcpara/ion.

APPENDIX

A. True Syntax of Daisy

At tlie time of this writing a parser for Daisy's proposed syntax (Figure 4.1) has
not bccu fully implemented. This appendix gives the present version of the language.

Further documentation can be found in Kohtstaedt's programmer's manual (1082),

which also cites published research tha t inspired development of the language. Appen

dix IB shows the Daisy source actually used for examples in this dissertation. The

present syntax of the language is given in Figure A-l.

Examples of conversions between present syntax and proposed notation are shown in

Figure A.2,

The conditional phrase structure is made unnecessary by the fact that the list con

structor is noil-strict. There is a 3-place operation, if, th a t selects an alternative based

on the tru th value of its Grst argument. The Boolean coercion function in Figure 4-4b

describes the implementation of if accurately. Recursive and lexically scoped systems

expression « t
■ • Q expression | atom | fern | application] abstraction

atom ■ »
* * (Vent(Tier | numeral j operator

fcrti m »
* • { i h t) | < list > | { l i s t}

list I • ̂ 0 [expression * | expression 1 expression | expression fist

application * •
* * expression : expression

abstraction * t«
• • \ (expression . expression)

definition expression — expression | identifier i expression = : expression .

Figure A.X. Present Daisy Syntax

164

155

Daisy stylised teit

0 i © i

(x y) l*y]
(x ! y) [x l y]

(x *) \ x * \

<a b> < a b >
<a 1 b> < a I b >

<a *> < a +>

{a b>
{a 1 b>

{ a b }

{ a lb }

f : a f : a

\ (x , o) X x . e

i f :< p a q b c> p — a, q — b, c

lo b :(x a o) le t x = a in e
lob:(C x y) <a b> a) l e t x = a y = b tn e

ro c :(x a o) r e c e w h e r e x = a

f : x =: a, Fix < = e.

Figure A.2. Conversions to Present Daisy Syntax.

itrc built, by pseudo operations rec and let.

A fern is a “ list specification’1, the salient properties of a list being its content and

its order. Tbe tbrec fern delimiters express progressively weaker stipulations about

them. The delimiters have been changed to '[...j1 in tbe Idealized language because

parentheses will eventually be reserved for parser direction. Ferns of tbe form ‘[...j1

denote phrc lists, a form of structural quotation stating content and order literally.

Ferns of the form denote value lists, whose content depends on the current

environment, but whose order is fixed. Value lists are an abbreviation of Lisp’s LIST

operation. Ferns of the form '{...}’ denote lists of values, but do not specify an order.

The construct is used to address indeterminacy.

150

Comments in Daisy programs are delimited on tbe left by a vertical bar, and on

the right be a carriage return. Comment lines are used to mimic the proposed notation.

For example, the factorial realisation

X =x° 1 D CR(X)
Y - l ! 2

2 - 1 \ M PY(Y, 2)

R E A D Y - 2 E R 0 f (X)

is implemented in idealized Daisy as

F I B : x <= r e c t e s t : < X Y READY>
w h e r e
‘ X = <x I DOR: < X »

Y = <1 I Z>
Z = <1 I ADD: <Y Z »

READY = ZERO?: <A>.

The true source for the experiment is

F I B : x = : r o e : ((X Y Z READY)
< <x ! D C R :< X »

<1 I Z>
<1 1 ADD: <Y Z »

ZERO?: <X> >
t o s t K X Y READY>)

With mi in icing comments added the source file used was

F I B : x = : r o c : C (X Y Z READY)
<f X =

<x ! D C R :< X »
I Y =

<1 ! Z>
I Z =

<1 1 ADDKY Z »
I READY =

ZERO?: <X>
> I in

t e s t : < X Y READY>)

B. Daisy Trials

This appendix contains listings of tbe Daisy source for experiments of Section 4.4.4

and listings for experiments with the //-in terpreter derivation in Chapter 5. Appendix

A gives the conversion between the idealized version of Daisy used in the body of this

dissertation and the present syntax of the language as reflected here.

The program source listings were printed from the source files used for experimen

tation. The execution listings were recorded from the actual trial runs, but have been

manually modified to clarify the output. In some listings, blank lines were deleted for

vertical compression and blank spaces were added to align columns. Repetitive setup

commands and responses were deleted from the execution record. Other modifications of

the listings are noted where they occur. Included in this appendix are:

• implementations of frequently used components and experimentation aids;

• realisations of the iterative specifications for the factorial, Fibonacci, and

greatest-common-diviaor functions, discussed in Section 4.4;

• the realization of the stacking version of the Fibonacci specification, discussed in

Section 5.1;

• the specifications and realizations generated in the derivation of the //-interpreter

circuit in Section 5.3;

• trial forms th a t were used to test the evolving //-in terpreter descriptions; and

• experiments with the //-realization.

Each listing is accompanied by a brief explanation including references to relevant

figures and discussions in the body of the dissertation.

157

158

ADD = (a d d *) .
DCP. = (\ ((x) . d c r : x) *) .
DIV = (d i v *) ,
EQ? = (e q ? *) .
I F = (i f *) .
I lie = (\ ((x) , i n c : x) *) .
LT? = (I t ? *) .
MPY = (m p y *) .
SUB = (s u b *) .
ZERO? = (\ ((x) . e q ? : < x 0 >) *) .
MID = (a n d *) .

Dfticv C o m p o n e n ts . Discussion: Section 4.4.1. Compare with Figure 4.0.

t e s t : x = : f o r m a t : t r a n s p o s e : ! . 1 P r i n t s i g n a l s i n p a r a l l o l
1

t r a n s p o s e = (\ (x . x) *) .
1
1 - t i m e s l i c e s
1

f o r m a t : (c I S) = : <CR c 1 f o r m a t : 5 > .
1
I - i t o r l e a v o c a r r a i g o c o n t o l

CR = 1 : p a r s e : (()) .
1
I - c a r r a i g o c o n t r o l c h a r a c t e r

E x p e rim e n ta l A ids. Discussion: Section 4.4.3. Tlie assignment for OR is a way to

obtain the carrnign-rctitrn character (ASCII OD, hexadecimal), which is not available by

unme in Daisy.

160

FAC:* = : r o c : (C X Y READY)
<1 X =

<x I DCR: < X »
I Y =

<1 r MPY: <X Y »
I READY =

ZERO?:<X>
>1 i n

t e s t : < X Y READY>) .

F I B : i = : r o c : C (X Y Z READY)
<1 X =

< x t DCR:<X>>
I Y =

<1 1 Z>
I z ~

<1 I ADD: <Y Z »
I READY =

ZERO?: <X>
>1 i n

t e u f c K X Y READY>) .

C C D :(i y) = : r o c : ((X Y U W V READY)
<1 X =

< i 1 U>
I Y =

<y ! SUB: <W U »
1 U =

I F :< V X Y>
I V =

I F :< V Y X>
I V =

L T ? : <X Y>
I READY =

E Q ?: <X Y>
>1 i n

t e s t K X Y READY>) .

D a i s y S o u r c e f o r t h e E x a m p l e R e a l i z a t i o n s . T h i s is s o u rc e fo r e x p e r i m e n t a t i o n

w i th t h e r e a l i z a t io n s o f t h e i t e r a t i v e sp e c i f ic a t io n s fo r factorial (F i g u r e 4 .7) , Fibonacci

(F i g u r e 4 .8) , a n d greatest common divisor (F ig u r e 4 .0). E x e c u t i o n s o f t h e s e d e s c r ip t i o n s

a r c s h o w n in t h e figures .

160

e v l s t : p a r s e : d e k i : Q * / u s i u / s d j / P h D / t h e s i s / c o m p l i b
o Y l s t : p a r s e : d s k i : 0 ’ / u s i u / s d 1 / P b D / t h e s i s / t o o l s

M T stk = (? ? *) .

e m p t y ? : (c) s a m a ? : < s M T stk > .
t o p : (Ct I s)) = : t ,
n o o p : s ~ : s .
p o p : (b 1 s) = ; s .
p u s h : (v s) = : <v ! s > .
p l o p : t v (t 1 s)) = : < v I b> .

o p e r a t e : (i v s) = :
i l : < s a m e ? : < i On oop > b

s a m o ? : < i Qpop > p o p : s
s a n e ? : < l Op u sh > p u s h : < r s >
s a m o ? : < i O p l o p > p l o p : < v s » .

STACK:CsO I V) = : r e c : (S
I S =

<sO I < o p o r a t o * > : < I V S »
I in

« t o p * > : <S> < e m p t y ? * > : < S ») .

L i s t r e p r e s e n t a t i o n T o r s t a c k s .
Em pty s t a c k
S t a c k o p e r a t i o n s :

empty:STACK — > BQDL
top :ST A C K — > VALUE

noop:STACK — > STACK
pop:STACK — > STACK

push:VALUE x STACK - - > STACK
push:V A LU E x STACK — > STACK

I n s t r u c t i o n d e c o d e r .

I l i g h a r L e v e l S t a c k C o m p o n e n t ,

STACK:[sO I V] <=
r e c <TOP:S EMPTY?:S>
w h e r e S = sO ! OPERATE:<1 V S > .

S t a c k R e p r e s e n t a t i o n . S t a c k s a r e r e p r e s e n t e d a s l is ts fo r t h e s t a c k i n g r e a l i z a t io n o f

t h e Fibanerei sp e c i f ic a t io n in S e c t io n 5.1, T h e r e is a d i s c u s s io n o f t h e a b s t r a c t c o m

p o n e n t S T A C K t o w a r d t h e e n d o f t h a t s e c t io n . Id e a l iz e d s o u r c e fo r t h e e x p e r i m e n t is

g iv e n in F i g u r e 5 .2 (a) ; a n d th e e x p e r i m e n t I tse lf is s h o w n in F i g u r e 5 .2 (b) . T h e f i r s t tw o

lines o b t a i n c o m p o n e n t d e f in i t io n s a n d e x p e r i m e n t a l a id s f ro m files n a m e d “ c o m p l i b ”

a n d “ to o ls .” R e a d th e a t o m '? ? ’ as ■ . T h e e m p t y s t a c k is a n in f in i te l is t o f d o n ' t - k n o w s .

D e f in i t io n s o f a b s t r a c t o p e r a t i o n s a r e s t r a i g h t f o r w a r d [e.g. p u s h is c o n s) , e x c e p t p e r h a p s

fo r t o p , w h ic h h a s a d d i t i o n a l f o rm a l a r g u m e n t s t r u c t u r e b e c a u s e i t will he u se d in a

c o m p o n e n t (see t h e d i s c u s s io n in S e c t io n 4 .4 .1) . T h e f u n c t io n o p e r a t e s e rv e s a s a n

i n s t r u c t i o n d e c o d e r in t h e a b s t r a c t c o m p o n e n t .

101

MUX-i*' = (m u x - l i*) . I H i g h e r L e v e l M u l t i p l e x o r
mux-11: (p q r u v tr x) I

i f : < p i l : < q u v> i f : < r w x > > . I
I S t a c k i n g v e r s i o n o f F i b o n a c c i

F I D c k t : (1 0 xO sO t o) I
r o c : (C L X (V I E l) (V2 E2) I P Q READY)

< |L =
<10 I MUX-H:<P Q V2 <1*> <0*> <1*> < 0 * » >

IX -
<x0 I MUX-tl: <P H V2 <1*> D C R :< D C R :<X » ADDKX V l> V l> >

1 [VI E l] =
STACK:<s0 I MUX-N.‘ <P Q V2 (' # *) DCR:<X> (' # *) X »

I [V2 E2] =
STA CK :<t0 I MUX-M: <P Q V2 (’ # *) « > * > C’ If*) < Q t t * > »

11=
MUX-N:<P Q V2 (n o o p *) (p u s h *) (p o p *) (p l o p *) >

|P =
E Q ?: <L < 0 * »

|Q=
L T ? : <X < 2 * »

IREADY=
AIJD: < EQ ?: <L < 1 * » E2>

> I i n
to s tK R E A D Y X I VI L V2 E2 P Q>) .

f i b : n = : F I B c k t : < 0 n M T s tk M T s tk > .

S ta c k in g R ea liza tio n o f F IB . The packaged component M U X -N is called MU. i n

Section 5.1. The help function fib initializes registers for experiments. Execution of this

description is shown in Figure 5.2(b),

102

n u m ? : (t g I f r t) *5 * • s a m e ? : < t g CNUM>.
i d o ? : (t g I f r t) “ * » s a m e ? : < t g QIDE>.
l a m ? : (t g I f r t) • »» s a m e ? : < t g QLAM>.
l b l ? : (t g I f r t) «• *t s a m e ? : < t g 0LBL>.
a p l ? : (t g I f r t) “ * s a m e ? : < t g 0APL>.
e n d ? : (t g I f r t) = : s a m e ? : < t g 0CHD>.
t s t ? : (t g I f r t) • *™ « s a m e ? : < t g 0T S T > .

b i t ? : (t g I f r t) ** • s a m e ? : < t g 0B IT > .
e r r ? : (t g I f r t) “ * ■ s a m e ? : < t g QERR>.
o p r ? : (t g I f r t) “ * ■ s a m e ? : < t g OOPR>.
f t n ? : (t g I f r t) “ * » e a m e ? : < t g 0FTN>.
f i x ? : (t g I f r t) “ ** s a m o ? : < t g 0 F I X > .

a r g ? : (t g I f r t) “ < s a m o ? : < t g 0ARG>.
a c t ? : (t g I f r t) “ « * s a m o ? : < t g 0ACT>.
h i t ? : (t g I f r t) ■ s a m e ? : < t g 0HLT>.

raake-FTJI: c l o s u r e = : <0FTH ! c l o s u r e > .
m a k o -E R R :m e s s a g e = : <CERR m e s s a g e > .
m a k o - A C T ; a c t i o n = : <0ACT a c t i o n > .
m a k e -A R G :a rg u m e n t = : <0ARG a r g u m e n t > .
t a g : C C t 1 r o)) = : t .
l i t : C (t 1 r o)) = : 1 .
r g t : ((t i r e)) = : r .
e l s : ((t 1 r e)) = : e .

h a l t = <0HLT>.
??? = <0???*>.

L - m a c h i n e t y p o p r e d i c a t e s
E x p r e s s i o n t y p e s .

N u m e ra l
I d e n t i f i e r
L a m b d a - e x p , \ I d e . E x p
R e f l e x i v e - e x p , I d a <= Exp
A p p l i c a t i o n , Exp : E xp
C o n d i t i o n a l , Exp - > E x p ,E x p

r g t - p a r t o f c o n d i t i o n a l

V a l u e p r e d i c a t e s
B o o l e a n
E r r o r m e s s a g e
O p e r a t o r
F u n c t i o n c l o s u r e
E x p r e s s i o n c l o s u r e

A c t i o n t y p e s
s a v e f u n c t i o n , e v a l u a t e a r g
a p p l y f u n c t i o n
h a l t

C o n s t r u c t o r s a n d e x t r a c t o r s
f u n c t i o n c l o s u r e
e r r o r m e s s a g e
a p p l y a c t i o n
e v a l u a t e - a r g u m e n t a c t i o n

i
C o n s t a n t s

i n i t i a l c o n t i n u a t i o n
d o n ' t - c a r e s i g n a l

R e p re se n ta tio n o f th e U n d erly in g T y p e fo r th e L - ln te rp re te r . Discussion: Sec*

tion 5.3.2. All concrete types are represented as lists. Continued on the following two

pages.

163

P r i m i t i v e C o n d i t i o n a l
t e s t : (p c a) = :

l e t : ((p * - t a g p - v a l) p
i f : < b i t ? : p i f : < p « - v a l c a> < ») .

P r i m i t i v e a p p l i c a t i o n
a p p l y : C (t a g 1 o p) o p n d) = : o p i o p n d .

S t a c k o p e r a t i o n s
p u s h : (a c t a o n v s t k) = : < a c t n e n v 1 e t k > .
p o p : (a c t n e n v ! s t k) s t k .
t o p : (a c t n e n v t s t k) < a c t n e n v > .

C o m p o n e n ts
I F = < i f * > . ■

AND = < a n d * > .
ACT? = < \ ((x) . a c t ? : x) * > .
t r a n s p o s e : ! = : (i d *) : x .
i d : i = : x.
TOP = < \ { (x) . t o p : x) * > c o m p o n e n t v e r s i o n o f t o p
POP = < \ ((x) , p o p : x) * > c o m p o n e n t v e r s i o n o f p o p
HAKE-ACT = < \ C (x) . m a k e - A C T : x) * > c o m p o n e n t v e r s i o n o f make-ACT
MAKE-ARG = < \ ((x) . m a k e - A R G : x) * > c o m p o n e n t v e r s i o n o f mako-ARC

M ain m u l t i p l e x o r

s l o t : (c t l e x p e -n u ra e - o p r e - l d e e - l a m
e - l b l e - a p l e - c n d e - f t n
o - f i x e - t s t e - a r g e - a c t
e - e r r a - o p r a - f t n a - e r r) = :

i f : < s a m e ? : < c t l 0EVL>
i f : < n u n ? : e x p e -n u m o p r ? : e x p e - o p r i d o ? : e x p e - i d o l a m ? : e x p e - l a m

l b l ? : e x p e - l b l a p l ? : e x p e - a p l e n d ? : e x p e - c n d f t n ? : e x p e - f t n
f i x ? : e x p e - f i x t s t ? : e x p e - t s t a r g ? : e x p e - a r g a c t ? : e x p e - a c t
e r r ? : e x p e - e r r >

s a m o ? : < c t l 0APL>
i f : < o p r ? : e x p a - o p r f t n ? : e x p a - f t n a - e r r » ,

SLCT - (s l c t *) .

R e p re se n ta tio n o f th e U n d e rly in g T y p e fo r th e L - ln te rp re te r (c o n t'd) .

S L C T is the main multiplexor for the realization (c / Fig. 5.8),

104

f i n d : ((t a g i d s) e n v) = : e n v : i d s .

e x t e n d : (i d e v a l e n v) = :
\ (x . i f : < s a m o ? : < x i d o > v a l e n v : x >) ,

l a b o l : (i d e e x p e n v) = :
r o c : (r h o

o x t o n d : < i d o <0FIX e x p r h o > onv>
r h o) .

i n i t e n v = l e t : (e r r o r m a k e - E R R : (n o n n u m o r i c o p e r a n d)
\ (i . i f : <

s a m e ? : < i 0 z e d ? > <0DPR ! \ (v . i f : < num ?: v <0BIT e q ? : C 2 : v 0 » e r r o r >) >
s a m e ? : < i 0 o n e ? > <OOPR ! \ (v . i f : < num ?: v <0BIT e q ? : C 2 : v 1 » e r r o r >) >
s a m e ? : C l O in c > <00PR ! \ (v . i f : < n u m ? : v <0NUM i n c : 2 ; v> e r r o r >) >
sau te? :< 1 O d e r > <00PR 1 \ (v . i f : < num ?: v <0HUM d c r : 2 : v > o r r o r >) >

s a m e ? : < i Q l t ? > C60PR ! \ C u . i f : < n u m ? : u
<0QPR 1 \ (v . . i f : < num ?: v

. e r r o r >)
COBIT
>

l t ? : C 2 : u 2 : v » e r r o r >) >

s a m e ? : < i C eq? > <G0PR 1 \ (u . i f : < n u m ? : u •

<Q0PR 1 \ C v . i f : < n u m ? : v
e r r o r >) >

COBIT e q ? : C 2 : u 2 : v » o r r o r >) >

s a m e ? : < i Qadd > C00PR I \<U. i f : < n u m ? : u
<00PR ! \ (v . i f : < num ?: v

e r r o r >) >
COHUM a d d : C 2 : u 2 : v » e r r o r >) >

s a m a ? : < i O sub > <00PR ! \ C u . i f : < n u m ? : u
<00PR ! \ C t . i f : < num ?: r

e r r o r >) >
COHUM s u b : c 2 : u 2 : v » e r r o r >) >

s a m e ? : < i Ompy > CQOPR 1 \ C u . i f : < num ?: u
<00PR 1 \ C v . i f : < n u m ? : v

e r r o r >) >
COHUM m p y :C 2 :u 2 : v » e r r o r >) >

make-ERR CQUHBOUltD i> ») .

Representation of the Underlying Type for the L-interpreter (cont’d).
In lten v is a function th a t initially maps operator symbols to operations. Operations are

function closures, tagged as type OPR. Binary operations Tor L are implemented as ear

n ed versions of Daisy's operations.

I E n v i r o n m e n t o p e r a t i o n s
I
1
I
I
I
I
I
I
1
I I n i t i a l e n v i r o n m e n t

166

M :(o x p o u t) = :
l e t : ((t a g l i t r g t) e x p
i f :<

c u m ? : o x p e x p
i d e ? : e x p C O E R C E ;f in d :< e x p env>
l a m ? : e x p m a k a - F T I I : < l f t r g t onv>
l b l ? : o x p M : < r g t l a b e l ; < 1 1 1 r g t o n v »
a p l ? ; e x p APPLY:< M : < l f t e n v > M : < r g t e n v »
e n d ? : e x p . l e t : ((r g t ^ t a g r g t « - l f t r g t * r g t) r g t

t e G t : < M : < l f t e n v > M : < r g t « - l f t e n v > l l : < r g t « - r g t e n v > >)
» .

C O ER C E:val = : i f : <
o p r ? : v a l v a l
n u m ? : v a l v a l
e r r ? : v a l v a l
f t u ? : v a l v a l
f i x ? : v a l l e t : ((v a l « - t a g v a l« -e x p v a l« - e n v) v a l

M :< val« -oxp v a l - o n v >)
>.

A P P L Y : (f t n a r g) = :
i f :<

o p r ? : f t n a p p l y : < f t n a r g >
f t n ? : f t n l e t : ((f t n * - t a g f t n * - i d e f t n ^ e x p f tn * - e n v) f t n

U ;< fbn**exp e x t e n d : < f t n * - i d e a r g f t n * * e n v »)
m a k e - E R R : (i n v a l i d f u n c t i o n)
>.

t r y : e x p = : M :< ex p i n i t e n v > .

C o n c re te N o n -lin ea r Specification fo r th e L - ln te rp re te r . This specification was

derived in Section 5.3*2, and appears in Figure 5.4. This and all of the following

specifications are accompanied by a help function try th a t properly initializes the state

for “ top level" evaluation.

166

M :(o x p s t k e n v) = :
l e t : ({ t a g 1 f t r g t) e x p
i f :<

n u ra ? :o x p . RETURN:<e x p B tk>
i d e ? : e x p C O E R C E :< f in d :< e x p e n v > s t k >
l a m ? : e x p R E T U R N :< m ak e -F T H :< lf t r g t env> s t k >
l b l ? ; e x p H : < r g t s t k l a b e l : < l f t r g t e n v »
a p l ? : e x p M : < l f t p u s h : < n a k o - A R C : r g t e n v s t k > onv>
e n d ? : e x p M : < l f t p u s b : < r g t e n v s t k > env>

».
C O E R C E :(va l s t k) = :

l o t ; ((t a g e x p e n v) v a l
i f :<

o p r ? : v a l RETURN:<val s t k >
n u n ? : v a l RETURN:<val s t k >
e r r ? : v a l RETURN:< v a l s t k >
f t n ? : v a l RETURN:<val s t k >
f i x ? : v a l M :< ex p s t k onv>

>) .

R E T U R N :(va l s t k) = :
l e t : ((n x t e n v) t o p : s t k
l e t : ((t a g l f t r g t) n x t
l a t : (s t k p o p : s t k
i f :<

t s t ? : n x t M : < t e s t : < v a l l f t r g t > s t k env>
a r g ? : n x t M : < l f t p u s h : < m a k e - A C T : v a l <> s t k > e n v >
a c t ? : n x t A P P L Y : < l f t v a l s t k >
h i t ? : n x t v a l

»)) .

A P P L Y : (f t n a r g s t k) = :
l e t : ((t a g i d e e x p e n v) f t n
i f :<

o p r ? : f t n RETURN: < a p p l y : < f t n a r g > s t k >
f t n ? : f t n M :< o ip s t k e x t e n d : < i d e a r g onv>>
R E T U R N :< m a k e -E R R :(in v a l id f u n c t i o n) s t k >

>) .

t r y : e x p M :< ex p < h a l t > i n i t e n v > .

Stacking Version o f the L-interpreter* Discussion: Section 5.3.4 (cf. Fig. 5,5).

167

1.1: (c t l f t n a r g v a l e x p s t k e n v) = :
l e t : ((f * - t a g f « - id e f« -exp f * e n v) f t n
l e t : ((v * t a g v * e x p v«-env) v a l
l o t : ((o « - t a g l f t r g t) e x p
l e t : ((n x t o l d) t o p : B t k
l e t : ((n « - t a g a * * l f t n * r g t) n x t
l e t : (s t k * p o p : s t k
i f :<

s a m e ? : < c t l GEVL>
i f : <

n u m ? : e x p M:<0RTN <> <> e x p <> s t k env>
i d e ? : e x p M:<QCRC <> <> f i n d : < e x p e n v > <> s t k env>
l a m ? : e x p H:<0RTH <> <> r a a k e - F T N : < l f t r g t e n v > <> s t k env>
l b l ? : e x p M:<QEVL <> <> <> r g t s t k l a b e l : < l f t r g t e n v »
a p l ? : e x p M:<0EVL <> <> <> l f t p u s h : < m a k e - A R G : r g t e n v s t k > env>
e n d ? : e x p M:<0EVL <> <> <> l f t p u s h : < r g t e n v s t k > e n v >
>

s a m e ? : < c t l 0CRC>
i f :<

e r r ? : v a l U:<ORTN <> <> v a l <> s t k

A5o

o p r ? : v a l MKORTN <> <> v a l <> s t k env>
n u m ? : v a l MKORTH <> <> v a l <> s t k env>
f t n ? : v a l M:<0RTN <> <> v a l <> s t k env>
f i x ? : v a l M: <0EVL <> <> <> v«-oxp s t k v*-onv>
>

s a m o ? : < c t l 0RTH>
i f :<

h i t ? : n x t v a l
t s t ? : n x t M: <QEVL <> <> <> t o s t :< v a l n « - l f t n * - rg t> s t k ' o l d >
a r g ? : n x t H:<QEVL <> <> <> n « - l f t p u s h : < m a k o - A C T : v a l <> s t k ' > o l d >
a c t ? : n x t H:<0APL n * * l f t v a l <> <> s t k ' o l d >
>

s a m e ? : < c t l 0APL>
i f :<

o p r ? : f t n M:<ORTN <> <> a p p l y : < f t n a r g > <> s t k env>
f t n ? : f t n M:<0EVL <> <> <> f« -exp s t k e x t e n d : < f 4' i d e a r g f * * o n v »

M:<QRTN <> <> m a k e - E R R : (i n v a l i d f u n c t i o n) <> s t k env>
>

»))))) .

t r y : e x p = : M:<OEVL <> <> <> e x p p u s h : < h a l t <> < » i n l t o n v > . ____________________

First Loop Version o f the L>interpreter. Discussion: Section 5.3.5 (ef. Fig. 5.6).

108

v a l e x p s t k e n v) = :
l e t : C (t a g l f t r g t e n v ') e x p
l e t : ((n x t o l d) t o p : s t k
l e t : (s t k ' p o p : s t k

i f : < s a m o ? : < c t l 0EVAL>
i f :<

h i t ? : oxp v a l
n u m ? : e x p M:<0EVAL e x p n x t s t k * o l d >
o p r ? : e x p M:COEVAL e x p n x t s t k ' o l d >
i d e ? : e x p M:<0EVAL <> f i n d : <e x p e n v > s t k env>
l a m ? : e x p MKQEVAL m a k e - F T H : < l f t r g t e n v > n x t s t k ' o l d >
l b l ? : e x p M:<QEVAL <> r g t s t k l a b e l : < l f t r g t e n v »
a p l ? : e x p M: <0EVAL <> l f t p u s h : < m a k o - A R C :r g t e n v s t k > e n v >
e n d ? : e x p M:<0EVAL <> l f t p u s h : < r g t e n v s t k > env>
f t n ? : e x p M:COEVAL e x p n x t s t k * o l d >
f i x ? : e x p H:COEVAL <> l f t s t k r g t >
t s t ? : oxp M:<0EVAL <> t e s t : < v a l l f t r g t > s t k env>
a r g ? : e x p M:<0EVAL <> l f t p u s h : < m ake-A C T: v a l <> s t k > env>
a c t ? : e x p M: <0APPLY v a l l f t s t k env>
o r r ? : oxp M: COEVAL e x p n x t s t k 1 o l d > ,

s a m e ? : < c t l 0APPLY>
i f :<

o p r ? : e x p HKOEVAL a p p l y : < e x p v a l > n x t s t k ' o l d >
f t n ? : e x p MKOEVAL <> r g t s t k e x t e n d : < l f t v a l e n v * »
M:<0EVAL m a k e - E R R : (i n v a l i d f u n c t i o n) n x t s t k ' o l d >

»)) . •

t r y : o x p = : M:<0EVAL <> e x p p u s h : < h a l t <> < » i n i t e n v > .

R efined L oop fo r th e L -m ach in e . Discussion: Section 5.3.0 (c/. Fig. 5.7).

169

ENVIRONMENT: (I1ISTR ARG-1 ARG-2 ARG-3) = : I
r o c : ((F H D EHV) I

<1 FHD = I
< X in d * > :< A R G -l ENV> I

I EHV = I
< i n i t e n v I SLCT-E:<IN STR EHV

ARG-1
< l a b e l * > : < A R G - l ARG-2 EMV>
< o x te n d * > :< A R G - l ARG-2 A R G - 3 > »

>1 l a
<FND EH V >).

SLCT-E = < s l c t - o * > .
s l c t - e : (i vO v l v 2 v 3)

i f : < s a j n e ? : < i Q h ld > vO
s a j n e ? : < i O s e t> v l
s a m o ? : < i O f ix > v2
s a m o ? : < i Q e x t> t 3 >.

STACK:(INSTR ARG-1 ARG-2) = :
r e c : ((S T K (NXT OLD))

< | STK =
« h a l t < » i S L C T -S :< IN 5T R STK < p u s h * > :< A R G - l ARG-2 STK> P O P :< S T K > »

I [IJXT OLD] =
t r a n s p o s e) : TOP: <STK>

>1 i n
<HXT O LD >).

SLCT-S = < s l c t - s * > .
s l c t - s : (i vO v l v 2) = :

I X :< s a m e ? ; < i Onop> vO
s a m o ? : < l Opsh> v l
s a m e ? : < i Opop> v2 > .

A bstract Com ponents for the Realisations. Discussion: Section 5.3,8 (c/. Fig, 5.8).

STACK'S
i n s t r u c t i o n d e c o d e r .

ENVIRONMENT'S
i n s t r u c t i o n d e c o d e r .

170

M : (c t l 0 v a lO expO s t k O e n v O) = :
r o c : ((C T L EVL APL

VAL ALU FTH ERR
EXP FHD TAG LFT RGT SAV TST
STK CNXT DLD) STK' PSH ACTN ARG ACT
EHV F IX EXT)

C o n t r o l r e g i s t e r
V a l u e r e g i s t e r
E x p r e s s i o n r e g .
S t a c k r e g i s t e r
E n v i r o n m e n t r e g .

CTL =
< c t l O t S L C T :< CTL EXP EVL EVL EVL EVL EVL EVL EVL EVL

EVL EVL EVL APL EVL EVL EVL E V L »
EVL =

<OEVL*>
APL =

<OAPL*>
VAL =

< v a lO I SLCT:< CTL EXP EXP EXP ? ? ? FTH ? ? ? 7 7 ? ? ? ? EXP
? ? 7 7 7 ? 7 7 ? VAL EXP ALU 777 ERR »

ALU =

FTH =

ERR =

EXP =

FHD =

TAG =

LFT =

RGT =

SAV =

TST =
< t o s t* > :< V A L LFT RGT>

-= > (c o n t i n u e d)

< a p p ly * > :< E X P VAL>

< m ak e-F T H * > : <LFT RGT EHV>

< m a k e - E R R : (i n v a l i d f u n c t i o n) *>

<expO I SLCT:< CTL EXP HXT HXT FND HXT RGT LFT LFT HXT
LFT TST LFT LFT HXT HXT RGT HXT »

< f in d * > :< E X P EHV>

< t a g * > : <EXP>

< l f t * > : < E X P >

< r g t + > : <EXP>

< c ls * > :< E X P >

First L-roallzatton. Discussion: Section 5.3.7 (c/. Fig. 5,6), Continued, next page.

171

I (c o n t i n u e d) < = -
I
I STK =

<st!cO I SLCT:< CTL EXP STK* STK' STK STK' STK PSH PSH STK'
STK STK PSH STK STK* STK' STK STK' »

I [HXT DLD] =
t r a n s p o s e : TOP: <STK>

I STK' =
POP:<STK>

I PSH =
<push*>:<A C TN EHV STK>

I ACTN =
SLCT:<CTL EXP 7 7 ? 7 7 ? ? ? ? ? ? ? ? ? ? ARG RGT ? ? ?

77 7 7 7 ? ACT 777 7 7 ? 777 777 777 >
I ARG =

MAKE-ARG:<RGT>
I ACT =

MAKE-ACT: <VAL>
I
I EHV =

<onvO f SLCT:< CTL EXP OLD OLD EHV OLD FIX EHV ENV OLD
RGT EHV ENV ENV DLD OLD EXT OLD »

I F IX -
< l a b e l * > : < L F T RGT ENV>

I EXT =
< e x te n d * > :< L F T VAL SAV>

> I i n
m o n i to r :< C T L VAL EXP HXT>).

m o n i t o r : ((l a ! I d) (v a l v d) (e a l e d) (t a l t d)) = :
< l a v a e a t a c r I i i : < b l t ? : e a <> m o n i t o r : < l d v d e d t d > » .

t r y : e x p = : M:<OEVL <> e x p p u s h : < h a l t <> < » i n i t e n v > .

F ir s t L -rea liz a tio n (c o n t’d). The help function m o n ito r traces registers CTL, VAL,

EXP, and NXT, and terminates the trace if the Ae/Z-action shows up in EXP.

172

M : (c t l O v a lO expO) = :
r e c : (C C T L s t a t e l a b e l

VAL ALU FTH ERR v a l u e s
EXP TAG LFT RGT SAV TST e x p r e s s i o n
(NXT OLD) S I S2 ARG ACT s t a c k
(FND ENV) EO E l E2)

i
e n v i r o n m e n t

<1 CTL =
< c t l O 1 I F : <ACT?: <EXP> <OAPL+> < O E V L *»>

1 VAL =
< v a lO 1 SLCT:< CTL EXP EXP EXP ? ? ? FTH ? ? ? 7 7 ? 7 7 ? EXP

? ? ? ? ? ? ? ? ? VAL EXP ALU 7 7? ERR »
1 ALU =

< a p p l y * > : <EXP VAL>
1 FTH =

<raake-F T N *> :<L F T RGT E!IV>
1 ERR =

< n a k o - E R R : (i n v a l i d f u n c t i o n) *>

I EXP =
<oxpO ! SLCT:< CTL EXP NXT HXT FND HXT RGT' LFT LFT NXT

LFT TST LFT LFT NXT NXT RGT NXT »
I TAG =

< t a g * > : <EXP>
t LFT =

< l l t * > : < E X P >
I RGT =

< rg t* > :< E X P >
1 SAV =

< c le * > :< E X P >
I TST =

t
< t e s t* > :< V A L LFT RGT>

i
t -= > (c o n t i n u e d)

R efined L -re a liz a tlo n . Discussion: Section 5.3.8 {ef. Fig. 5.10). Continued, next page.

173

I (co n tin u ed)<=-
I
I[HXT OLD] =

STACK:<S1 S2 EUV>
1 SI =

SLCT:< CTL EXP <Opop*> <Opop*> <Onop*> <Opop*>
<Qnop*> <Q psh*> <0peh*> <Opop*>
<Onop*> <Qnop*> <OpBh*> <Qnop*>
<0pop*> <Opop*> <0nop*> <Opop*> >

I S2 =
SLCTKCTL EXP 7 7 ? 7 7 ? 7 7 ? 7 7 ? 777 ARG RGT 777

7 7 ? 7 7 ? ACT 7 7 ? 7 7? 7 7 ? 7 7 ? 7 7 ? >
t ARG =

MAKE-ARG: <RGT>
I ACT =

MAKE-ACT:<VAL>
I
I [FHD ENV] =

ENVIRONMENT:<EO E l E2 SAV>
I EO a

SLCT:<CTL EXP < 0 e e t * > < O s e t* > < 0 h ld * > < G s e t* >
<O hld*> <O hld*> < O ce t* >

<0BQ t*> <O bld*> <O hld*> < 0 h ld * >
< 0 s e t * > < Q s e t* > < Q ex t*> < 0 s e t * > >

SLCT: <CTL EXP OLD OLD EXP DLD LFT 7 7 ? 7 7 ? OLD
RGT 7 7 ? 7 7 ? 77? OLD OLD LFT OLD >

SLCT:<CTL EXP 7 7 ? 777 7 7 ? 7 7 ? RGT 7 7 ? 7 7 ? 7 7 ?
7 7 ? 7 7 ? 7 7 ? 777 7 7? 777 VAL 7 7 ? >

> I i n
n o n i t o r : < C T L VAL EXP NXT>).

m o n i t o r : C (c a l c d) (v a l r d) (e a l e d) (n a l n d)) = :
< c a v a e a n a c r ! i f : < h l t ? : e a <> m o n i t o r : < c d v d o d n d » > .

t r y : e x p = : M:<GEVL <> e x p > .

R efined L-reallz& tlon (c o n t’d). The help function m o n ito r traces registers CTL,

VAL, EXP, and NXT, and terminates the trace if the halt-action shows up in EXP.

174

I
I f o r m - 5
I

t s t l = (HUM 5) .
I
I f o r m - (\ i . i) : 6
I

t s t 2 = (APL (LAM I (ID E I)) (HUM 5)) .
I
I f o r m - o n e ? : 0 - > e r r , z a r o ? : 0 -> 0 , a r r
I

t s t 3 = (CHD (APL (ID E o n a ?) (HUM 0)) (TST (ERR 0)
(CND (APL (ID E z o d ?) (HUM 0))

(TST (HUM 0) (ERR 1)))))
I
I f o r m - C (\ f . (\ a . f : a)) : (\ x . i n c : x)) : 6
I

t s t 4 = (APL (APL (LAM F (LAM A (APL (ID E F) (ID E A))))
(LAM X (APL (ID E i n c) (ID E X) »)

(HUM 5)) .
I
1 f o r m - F <= \ X . \ Y . (e q ? :X) :Y - > x ,
1 (l t ? : X) :Y - > (F : X) : ((s u b : Y) : X) ,
1 (F : Y) : ((s u b : X) : Y) .

t s t l = (LBL F
(LAM X
(LAM Y
(CND (APL (APL (ID E e q ?) (ID E X)) (ID E Y))

(TST (ID E X)
(CHD (APL (APL (ID E I t ?) (ID E X)) (ID E Y))

(TST (APL (APL (ID E F) (ID E X))
(APL (APL (ID E s u b) (ID E Y » (ID E X)))

(APL (APL (ID E F) (ID E Y)>
(APL (APL (ID E s u b) (ID E X)) (ID E Y))>

))))) » .

g c d : (x y) = : t r y : <0APL <QAPL t s t l <0HUM x » <QHUM y » .

Trial Form s for L-lnterprater Experim entation. Continued, next page.

175

I
J f o r m - F <= \X . o a o ? ; X - > X, (m p y :X) : (F : (d c r : X)) .
I

t s t L = (LBL F
(LAM X

(CHD (APL (ID E o n e 7) (ID E X))
(TST (ID E X)

(APL (APL (ID E mpy) (ID E X))
(APL (ID E F) (APL (ID E d c r) (ID E X))))))) } ,

f a c : i = : t r y : < 0 A P L t s t L <0NUM z » .

I
I f o r m - F < - \ X . z o d ? : X - > 1 ,
I ono?:X -> 1 , (a d d : (F : (d c r : x))) : (d c r : (d c r : X)) .
I

t s t H = (LBL F
(LAM X
(CHD (APL (ID E z a d ?) (ID E X))

(TST (HUM 1)
(CHD (APL (ID E o n e ?) (ID E X))

(TST (NUM 1)
(APL (APL (ID E a d d)

(APL (ID E F)
(APL (ID E d c r) (ID E X))))

(APL (ID E F)
(APL (ID E d c r)

(APL (ID E d c r) (ID E X)))))
)))))) .

f i b : i = : t r y : < 0 A P L tsfcH <QHUM i » .

T r i a l F o r m s f o r L - l n t e r p r e t e r E x p e r i m e n t a t i o n (c o n t ’d) . T h e f o rm s t s t l , t a t L ,

a n d t s t N d e f in e t h e greateat-common'divisor, factorial, a n d F ib o n a c c i f u n c t io n s . T h e

h e lp f u n c t io n s g e d , f a c , a n d f ib b u i l d a p p l i c a t i o n s fo r r e p e a t e d te s t in g ^

176

k f i l e : Q / u s i u / s d j / P h D / t h a s i s / L / r e p , d L o a d representations.

Cnura? i d o ? I a n ? I b l ? a p l ? e n d ? t e t ? b i t ? o r r ? o p r ? i t a ? i i x ? a r g ? a c t ?
h i t ? raake-FTH m ake-ERR make-ACT make-ARG t a g l i t r g t e l s h a l t ? ? ? t e s t a
p p l y p u s h p o p t o p f i n d e x t e n d l a b e l i n i t e n v s l c t SLCT I F AND ACT? t r a o s p
o s o i d TOP POP MAKE-ACT MAKE-ARG)

k f i l e : 0 / u s i u / s d j / P h D / t h o s i s / L / i o n a s . d *-[L o a d tr ia l form a.
C C t s t l t s t 2 t s t 3 t s t 4 t s t l g e d t s t L f a c t s t N f i b)

k f i l o : Q / u s i u / s d j / P h D / t h o s i s / L / U . R , d ■ N o n l in e a r specification
CM COERCE APPLY t r y) (Fig. 5 .4)

k t r y ; t s t l
Trials -

■ F orm : 5
(HUM 5)

k t r y : t s t 2 ■ F orm : (X l . i) i5
(HUM 5)

k t r y : t s t 3 ■ F orm : o n e ? t O —*■ e r r ,
(HUM 0) z e ro T iO —► 0 , e r r .

t t r y : t s t 4 ■ F o rm : ((\ f . \ a . f : a) :

(MUM 6) (\ x . l n c o c)) t 5

k g e d : (2 3) ■ G reatest C om m on
(HUM 1) D ivisor

k f a c : 4 ■ F actor ia l
(HUM 2 4)

k l i b ; 3 ■ F ib o n a c c i
(HUM 3)

k End-of.filc

DSI e x i t .
on this trial.

A n n o ta te d L isting o f T r ia l R u n s on th e V a rio u s In te rp re te r s . The first trial

tests the non-tincar specification of the L*interprctcr. All trials are on the expression

forms defined on the preceding pages. Trials are continued on the following three pages.

177

k 111o:0 /u s iu /sd j/P h D /th e s is /L /M . S . d
<M COERCE RETURN APPLY try) (Fig. 5.5)

k t r y : t s t l
(NUM 5)

- 5

k t r y : t s t 2
CHUM S)

4* • (\i.!):5

k t r y : t s t 3
(HUM 0)

- one?:0 -*■ e r r , zero?:0 —♦ 0 , e r r

k t r y : t s t 4
(NUM 6)

4- ■ ((\f .\a ,f :a) :) \x .in c ix)) :5

k g e d :(2 3)
(HUM 1)

4* • Greatest Common Divisor

k ia c :4
(NUM 24)

■ Factorial

k l i b '.3
(NUM 3)

4- ■ Fibonacci

k
)
DSI e x i t .

- End-of-Jile on this trial,

(Initialization Deleted)
k 2 ile :0 /u B iu /s d j/P h D /th e s is /L /U .I I .d

CM t r t ry)

k t r y : t s t l
(NUM 5)

k t r y : t s t 2
(NUM 5)

k t r y : t s t 3 ’ -
(HUM 0)

i t r y : t s t 4
(NUM 6)

k g e d :(2 3)
(NUM 1)

k Ia c :4
(NUM 24)

k f i b : 3
(NUM 3)

k
)
DSI e x i t .

(Initialization Deleted)
Stacking specification.

F t n t loop version.
(Fig. 5.6)

5

(XU):5

one?:0 —► e r r , zero?:0 -*■ 0 , e r r

((\f.\a .f:a):)\x ,inco t)).*5

Greatest Common Divisor

Factorial

Fibonacci

End-of-jUc on this trial.

Trial Runs (cont’d).

178

k f i lo tO /u s iu /s d j/P h D /th e s is /L /M .12 ,d
(M try) (Fig. 5.7)

k t r y : t s t l
(NUM 5)

■ 6

k t r y : t s t 2
(NUM 6)

• (XU):S

k t r y : t s t 3
(NUM 0)

■ one?:0 —► e r r , zero?:0 -*■ 0, e r r

k t r y : t s t 4
(NUM 6)

* ((\f .\a .f :a) :) \x .in c sc)) :5

k g e d :(2 3)
(NUM 1)

- Greatest Common Divisor

k fa c :4
(NUM 24)

* Factorial

k f ib :3
(NUM 3)

• Fibonacci

k
)
DSI e x i t .

- End-ofifile on this trial.

(Initialization Deleted)
k I i l e : O /u s iu /sd j/P h D /th e sis /L /M , C l. d
k CM m onitor t ry)

k t r y : t s t l
(NUM 5)

k t r y : t s t 2
(NUM 5)

k t r y : t s t 3
(NUM 0)

k t r y : t s t 4
(NUM 6)

k g e d :(2 3)
(NUM 1)

k fa c :4
(NUM 24)

k f ib :3
(NUM 3)

k
)
DSI e x i t .

(Initialisation Deleted)
Refined loop.

First realization.
(Fig. 5.9)

6

(X!.i)t5

one?tO —► err, zero?:0 —► 0, err

((\f.\a.f:a):)\x.incoc)):5

Greatest Common Divisor

Factorial

Fibonacci

End-of-file on this trial.

Trial Runs (cont’d).

179

{Initialization Deleted)
Refined realization.

(Fig. 5.10)

5

(XU):5

o n e ? : 0 —* e r r , z e ro T tO —► 0 , e r r

((\f.\a .f:&)t)\x .incsc))tS

Greatest Common Divisor

Factorial

Fibonacci

End* of*file on this trial.

T r ia l R u n s (con tM). In the realization trials, the help function t r y is redefined to

return the content of the VAL register as soon as the halt action appears in the EXP

register.

k £ile :6 /u B iu /sd j/P h D /th e s is /L /U .C 2 .d
(M m onitor s l c t - e SLCT-E ENVIRONMENT
s l c t - s SLCT-S STACK'try)

k t r y : t s t l
(NUM S)

k t r y : t s t 2
(NUM 6)

k t r y : t s t 3
(NUM 0)

k t r y : t e t 4
(NUM 6)

k g e d :(2 3)
(NUM 1)

k fa c :4
(NUM 24)

k f ib :3
(NUM 3)

k
)
DSI e x i t .

180

k f i l e : 0 / u s i u / s d j / P h D / t h e s i s / L / U . R . d
(U COERCE APPLY t r y)

k t r y : (APL CAPL (ID E a d d) (1IUM 2)) (HUM 2))
(ERR (i n v a l i d f u n c t i o n))

k
)
DSI e x i t .

k f i l e : O / u s i u / e d j / P h D / t h e s i s / L / M . C 2 . d

(M m o n i t o r s l c t - e SLCT-E ENVIRONMENT
s l c t - s SLCT-S STACK t r y)

k t r y : (A P L (HUM 6) (LBL X (ID E X)))

(EVL Cl (APL (NUM 5) (LBL X (ID E X))) (HL
EVL ? ? ? (NUM 6) ARG (LBL X (ID E
EVL (HUM 5) (ARG (LBL X (ID E X))) (HLT)
EVL ? ? ? (LBL X (ID E X)) (ACT (NUM 5)
EVL 7 7 ? (ID E X) (ACT (NUM 5)
EVL 777 (F IX (ID E X) b e t a) (ACT (NUM 5)
EVL 777 (ID E X) (ACT (NUM S)
EVL 777 (F IX (ID E X) b o t a) (ACT (NUM 5)
EVL 777 (ID E X) (ACT (NUM 5)
EVL 777 (F IX (ID E X) b e t a) (ACT (NUM 5)
EVL 7 7 ? (ID E X) (ACT (NUM 5)
EVL 777 (F IX (ID E X) b e t a) (ACT (NUM 5)
EVL 7 7 ? (ID E X) (ACT (NUM 5)
EVL 777 (F IX (ID E X) b e t a) (ACT (NUM 5)
EVL 7 7 ? (ID E X) (ACT (NUM 5)
EVL 7 7 ? (F IX (ID E X) b e t a) (ACT (NUM 5)
EVL 7 7 ? (ID E X) (ACT (NUM 6) 1C,

Afort-/t'near specifiation
Load interpreter

Evaluate 5 : (x < = x)
Interpretation con

verges to an
error message.

Circuit realisation
Load interpreter

Evaluate 5 : (x < = x)
Tracing C TL, VAL,

EXP, and NXT.

«-* Evaluator loops

Daisy interrupted.

D e m o n stra tio n th a t th e R e a lisa tio n Is f a r t i u i . The literal b e ta is Daisy’s symbol

for a (non*printnble) function closure. Here the object is the environment field of an L-

function closure. The realisation diverges because the derived interpreter is applicative

order.

181

Load

Teat
form

Try it.

SPN?

SPN?

SPNI

S P N f
(cont'd)

E x p e rim e n t w ith th e R ea liz a tio n . Q (F < = (Xx. zero? ! x —*■ x , F : (d c r t x))) : 2]|

is evaluated to show cycles wasted in testing Tor expression closures. Signals CTL, VAL,

EXP, and NXT are traced, The symbol appears in place of output text tha t was
manually deleted. Useless closure tests are indicated by the annotation S P N f" .

t f i l o : O / u s i u / s d j / P h D / t h e s i s / L / M . C 2 . d
CM m o n i t o r s l c t - e SLCT-E ENVIRONMENT

S l c t - s SLCT-S STACK t r y)
t t s t

(APL (LBL F
(LAM X

(CND (APL (ID E z e d ?) (ID E X))
(TST (ID E X)

(NUM 2))
(APL (ID E F) (APL (ID E d c r) (ID E X)))))))

& t r y : t s t

(EVL [] (APL (LBL F - * -) (NUM 2 » (HLT)
EVL ? ? ? (LBL F (LAM X - * -)) (ARG (NUM 2))
EVL ? ? ? (LAM X -*■0 (ARG (NUM 2))
EVL (FTN X - * -) (ARG (NUM 2)) (HLT)
EVL ? ? ? (NUM 2) (ACT (FTN X b e t a))
EVL (NUM 2) (ACT (FTN X b e t a)) (HLT)
APL (NUM 2) (FTN X ■ b e t a) (HLT)
EVL ? ? ? (CND (APL - * -) - * -) (HLT)
EVL ? ? ? (APL (ID E z e d ?) (ID E X » (TST - * -)
EVL ? ? ? 1 (ID E z e d ?) (ARG (ID E X))
EVL ? ? 7 (OPR - * -) (ARG (ID E X))
EVL (DPR - * -) (ARG (ID E X)) (TST - * -)
EVL ? ? ? (ID E X) (ACT (OPR - * -))
EVL ? ? ? (HUM 2) (ACT (OPR - * -))
EVL (NUM 2) (ACT (OPR - * -)) (TST - * -)
APL (NUM 2) (OPR - * -) (TST - * -)
EVL (B IT []) (TST (ID E X) (APL - * -)) (HLT)
EVL ? ? ? (APL (ID E F) (APL - * -)) (HLT)
EVL ? ? ? (ID E F) (ARG (APL - * -) >
EVL ? ? ? (F IX (LAM X - * - b e t a) (ARG (APL - * -)) *

EVL ? ? ? (LAM X 0 (ARG (APL - * -))
EVL (FTN X - * - > (ARG (APL - * -)) (HLT)
EVL ? ? ? (APL (ID E d c r) (ID E X)) (ACT (FTH X b e t a))
EVL ? ? ? (ID E d c r) (ARG (ID E X))
EVL ? ? ? (OPR - * -) (ARG (ID E X))
EVL (OPR - * - > (ARG (ID E X)) (ACT (FTN X b e t a))

182

EVL ? ? ? (ID E X) (ACT (OPR - * -))
EVL ? ? ? (HUM 2) (ACT (OPR - * - >)
EVL (HUM 2) (ACT (OPR - * -)) (ACT (FTN X

APL (HUH 2) (OPR - * -) (ACT (FTN X - * ~

EVL (HUM 1) (ACT (FTH X b e t a)) (HLT)
APL (HUM 1) (FTH X ■ b e t a) (HLT)

EVL 7 7 ? (CHD (APL - * - > (TST - * -)) (HLT)
EVL ? ? ? (APL (ID E z e d ?) (ID E X)) (TST - * -)
EVL ? ? 7 (ID E z e d ?) (ARG (ID E X))
EVL ? ? ? (OPR - * -) (ARG (ID E X))

EVL (OPR (ARG (ID E X)) (TST - * -)
EVL 777 (ID E X) (ACT (OPR - * -))
EVL 777 (NUM 1) (ACT (OPR - * -))
EVL (HUM 1) (ACT (OPR - * -)) (TST - * -)

APL (HUM 1) (OPR - * -) (TST
EVL (B IT []) (TST (ID E X) (APL - * -)) (HLT)
EVL 7 7? (APL (ID E F) (APL - * -)) (HLT)
EVL 777 (ID E F) (ARG (APL - * -))
EVL 7 7? (F IX (LAM X) b e t a) (ARG (APL - * -))
EVL 7 7? (LAM X 0 (ARG (APL - * -))
EVL (FTH X - * -) (ARG (APL - * -)) (HLT)

EVL 7 7? (APL (ID E d c r) (ID E X)) (ACT (FTN X
EVL 7 7? (ID E d c r) (ARG (ID E x »
EVL 7 7? (OPR - * -) (ARG (ID E X))
EVL (OPR - * -) (ARG (ID E X)) (ACT (FTN X
EVL 777 (ID E X) (ACT (OPR - * -))
EVL 777 (HUM 1) (ACT (OPR - * -))
EVL (HUM 1) (ACT (OPR - * -)) (ACT (FTN X
APL (HUM 1) (OPR - * -) (ACT (FTN X
EVL (HUM 0) (ACT (FTH x b e t a)) (HLT)
APL (HUM 0) (FTH X ■ b e t a) (HLT)
EVL 7 7 ? (CHD (APL - * -)) (TST - * -) (HLT)

EVL 7 7 ? (APL (ID E z e d ?) (ID E X)) (TST - * -)

EVL 7 7 ? (ID E z e d ?) (ARG (ID E X))

EVL 7 7 ? (OPR - * -) (ARG (ID E X))

Experim ent with the Realization (cont’d).

fcont'd)

SPN?

SPN?

5/WF

<- • SPN!

- • SPNF

- - SPN?

- • SP iV f
(cont *d)

183

EVL (OPR - * -) (ARG (ID E X)) (TST - * -)
EVL ? ? ? (ID E X) (ACT (OPR - * -))
EVL ? ? ? (NUM 0) (ACT (OPR - * -))
e v l (m m 0) (ACT (OPR - * -)) (TST - * -)
APL (MUM 0} (OPR - * -) (TST - * - }
EVL (B IT t r u e) (TST (ID E X) - * -) (HLT)
EVL ? ? ? (ID E X) (HLT)
EVL ? ? ? (HUM 0) (HLT)
EVL (HUM 0)

)
t
) DSI e x i t .

(HLT) #

(cant’dJ

S P N f

S P N f

Experiment with the Realization (cont'd).

C. Proofs

COROLLARY 2.3-2.

Let FIB and G be defined by

FIB(x) <£= (x < 1) 1, F I B (z - S) + F I B f x - 1)

Gfx, y, s) <5= (x = 0) —■ y, G (x -1 , z, y + z).

Then for all a >0 , FIB(a) = Gfa, 1, I).

PROOF: Using induction hypothesis “If a < k +1 then FlB(a) — G(a, 1, l) n.

Base Step.

FIBfO) = 1 = GfO, 1, I)

FIB(l) = I = GfO, I, 2) = Gfl, 1 ,1)

A FIB, A G

A FIB, v , AG

Induction, Suppose 0 < a < k + 1 implies FIB(a) = Gfa, 1, I), Then

FIBfk + 2) - FIB(k) + FIBfk + I)

= Gfk, 1 , 1) + G f k + l , 1 ,1)

= Gfk + 2, 1, 1)

A FIB
I.H., used twice

Proposition 2.3-1

COROLLARY 2.3-5.

Let FAC and G be defined by

FACfx) <= (x —0) —* 1, x * FACfx —1).

Gfx, y) <=■ (x - 0) — y, G f x - I , x *y).

Then for all a >0 , FAC(a) — Gfa, 1).

184

185

PROOF: by structural induction on Int.

Bant. FAC(O) ~ 1 - GfO, 1)

Induction. Suppose FACfk) = Gfk, I). Multiplication is commutative and associative,

and the equation for G is an instance of the recursion scheme of Proposition 2.3*3.

Hence

FA Cfk + I) - fk + 1) ♦ FACfk)
- (k + 1) * Gfk, 1)

— Gfk, fk +1) * I)

= Gfk +1, 1)

A F A C and fk + 1) ^ 0 .

I.H.
Proposition 2.3-3

y G and fk +1) &0

PROPOSITION 2.4-3.

Consider the linear recursion scheme:

Ffx) <= pfx) — ffx), hfFfgfx))

and the iterative system

Gfx, y) <= pfx) — Hfy, ffx)), Gfgfx), y).

Hfx, y) <t= pfx) — x, Hfgfx), hfy)).

For alt a, Ffa) = Gfa, a).

PROOF:

CLAIM I: I f pfa) is false then for all a and b, Hfa, b) — hfHfgfa)), b),

PROOF: By subgoal induction on H. Since pfa) is false, Hfa, 6) = Hfgfa), hfb)).

Now if pfgfo)) is true then

Hfgfa), hfb)) = hfb) = hfHfgfa), b))

Otherwise, by induction

Hfgfa), hfb)) = h(Hfgfgfa)), hfb)) = h(Hfgfa), b))

This proves Claim I.

CLAIM IL If pfb) is false then Gfa, b) = hfGfa, gfb)).

PROOF: By subgoal induction on G. If pfa)\s true then Gfa, b) = Hfb, ffa)), which

by Claim I equals h(Hfgfb), ffa))), since pfb) is assumed false. Under the premise

tha t pfa) is true, this folds to hfGfa, gfb))).

186

If pfa) is false then Gfa, b) — Gfgfa), b) = h(Gfgfa), gfb))) by induction. How

ever, if pfa) is false, this also folds to hfGfa, gfb))). This proves Claim II.

PROOF of the PROPOSITION: To show that for all a, Gfa, a) — Ffa), we proceed by

subgoal induction on G. If pfa)U true then

Gfa, a) = Hfa, f fa)) = ffa) = Ffa).

Otherwise,

Gfa, a) - Gfgfa), a)

~ HGfgfa), gfa)))

= bfFfgfa)))

= Ffa)

A G

Claim II

I.H.
y F

T H E O R E M 2.4-6 .

Let F be defined by

Ffx) <= pfx) — ffx), hfx, Ffgfx})}.

and consider the specification.

Gfu, v, x, y, :) <±= pfx) — Lfu, a, u, ■, fx),

Gfu, a, gx, m, m).

Lfu, v, x, y, z) <= pfx) —> s, Mfu, gx, gx, u, z).

Mfu, v, x, y, z) < = pfx) — Lfu, a, v, a, hfy, z)),

Mfu, v, gx, gy, :).

For all a, Ffa) - Gfa,*, a, m, •) .

DISCUSSION: Let j" denote the rt-fold composition of g with itself. Observe tb a t if F

converges on a, the result is of the form

hfa, hfga, ..., hfg(n~lU, fgna)...))

(Some parentheses have been suppressed.) We adopt the following strategy for comput

ing this term iteratively:

(I) Compute fgna and call it z.

187

(2) For i* = n - 1 0, compute y = p'a and set z to hfy, z).

The problem is to perform the loop in step (2) -without the benefit of a counter. This is

done by noting tha t n is precisely the number of times g must be applied to x in order to

make p true. The strategy is implemented by introducing a ‘'trailer'* identifier tha t lags

behind the computation of g nx by i steps, so th a t when g nx becomes true, the trailer

contains g(n’*h. This value makes it possible to reconstruct the i 1* outer call. The solu

tion scheme uses five identifiers

u - the initial value of the argument

v — a restart value for the next pass through step (2)

j — the value tested by p.

y - the trailer identifier

; — a value accumulator

As the statem ent of the theorem asserts, an iterative equation for F is

Gfu, v x, y, *) <t= pfx) Lfu, m, u, m, fx),
Gfu, m, gx, m,

Lfu, v, x, y, *) <= p f x) - * :, Mfu, gx, gx, u,

Mfu, v, xi Ut *) <*= pfx) — Lfu, m, v, ■> hfy, :)),
Mfu, v, gx, gy, s).

G computes the inner term f g nx, then resets x to its initial value for the first pass

through the loop. L advances x by one step, saves th a t value for the next pass through

the loop, and sets the trailer to x*s initial value. M computes by advancing x and

y in tandem.

CLAIM I: I f pfb) ia false then Mfa, b, c, d, e) = hfa, Mfga, gb, c, d, e)).

PROOF: By subgoal induction on M, depending on the value of pfc) and pfgb). If

pfe) is false, then

188

l.h.s. = Affa, b, gc, gd, e)

= hfa, Mfga, gb, ge, gd, e))

= r.h.s

AM ; ~'p(c)

I.H.; -'p(b)

VA/; ^p(c)

Otherwise, if p(c) is true, then

l.h.s. — Lfa, m, b, m, k(d, e))

= Mfa, gb, gb, a, hfd, e})
AM; pfc)

A L ; ~>pfb)

and

r.h.s — hfa, Lfga, m, gb, a , hfd, e)) | AM ; pfe)

Now if pfgb) is true, both sides reduce to hfa, hfd, e)). If not, then

l.h.s. — hfa, Mfga, ggb, gb', a, hfd, e}))

- hfa, Mfga, ggb, ggb, ga, hfd, e}))

= hfa, Lfga, m, gb, n, hfd, e)))

= r.h.t.

I.H.; -'pfgb)

AM ; ->pfgb)

\?L; ->p(gb)

This proves Claim I.

CLAIM II: I f pfa} is false, then Gfa, m, c, m, u) — hfa, Gfga, u, c, a , u)).

PROOF: By subgoal induction on G; the case depends on the value of pfe).

CASE 1 fpfe) is false).

l.h.s. — Gfa, a , gc, m, m)

= hfa, Gfga, m, ge, m, »))

— r.h.s.

A G

I.H.

V G

CASE 8 fpfe) is true).

l.h.s — Lfa, m, a, m, fc)

= Mfa, ga, ga, a, fc)

A G

A L ; i >p(a)

And on the right,

180

r.h.a = hfa, Lfga, m, ga, m, fc}) | A G

Now if p/j/a/ is true, both sides reduce to hfa, fc)\ so suppose p(ga} is false. Then

l.h.a = Mfa, ga, gga, ga, fc)

- h(a, Mfga, gga, gga, ga, fc)}

= h(a, Lfgat m, ga, m, fc})

— r.h.a.

A AY; -'p(ga)

Ciaim I

s?L; -'p(ga)

V < ?

This proves Claim II.

PRO OF of the THEOREM: To show th a t for all a, Gfa,u, a,m,m) = Ffa), we proceed

by subgoal induction on F. In case pfa) is true, both sides reduce to ffa). If pfa) is false,

then

Gfa, m, a, ■, ■ / = Gfa, m, ga, n, m) AG ; ^p(a)

- hfa, Gfga, m, ga, m,m)) Claim If

- hfa, Gfga)) y G ; ^p(a)

~ hfa, Ffga)) l.H.

~ Ffa) V ^ ; - 'P W

a

EXAMPLE 2.4-8

Let us introduce notation to abbreviate the stack operations. For values a and b,

and stack a , let the expression [/a b t o }\j be an abbreviation for ftpuahfa, puahfb, &))l.
Take the format parameter [[/u v f o ‘JQ to mean that the identifiers u and v name the

top two elements of the current stack and tr ' names the current stack, understood to be

called <r, with u and (/removed.

Applications of 1-place operations are abbreviated by suppressing parentheses

around the argument. For example, we shall write g j x) simply as g0x.

The initial specification is

ISO

Ffa) <*= pfa) — c, h f Ffaz), F(glx)),

The first step of the transformation introduces the stack and a return function R .

F fa a) <S= R((p(x) — c, h fF fgQz), F(gtxj)), a).

R f a a) <= empty?fa) —* v, □ □ □ .

Use rule (2) to distribute R through the conditional.

F fa cr) <S= p(x) — rt/c, o-;, rtf' h f F(gQz), Ffg{x)), a).

Rfa, a) <5= empty f fa) —* u, □ □ □ .

Define c ' = /ifyJ(F(yt)); r — Ffgjz); and t — g{z. Allocate an action value, a = 0. By

rule (3), transform S f to

F f a tr) p(z) R f a a), R f F(g^), [0 gtx ! a)).

R f a (w z I a'}) < = empty f fa) -* v,

atffw, 0) — R f hfv, Ffa)), o'), □ □ □ .

By rule (I) we can get rid of the second call to R In the equation for F.

Ffa, <t) pfa) — Rfa, a), F(ggX, (0 gfx I a)).

Rfa, fw s I o'\) <= empty f fa) -* v,

atffw, 0) —* R f hfa, Ffa)), <r’), □ □ □ .

Let e ' = k(yl , y j ; r = F(:); and t — v. Make the final transformation according to

step (3), with new action value a — 1.

191

F(x, tr) < = p{:z) — Rfc, a), F (g01, (0 gtx I <rj }.

Rfv, (w z Itr'j) <S= empty?(a) —* v,

atffw, 0) —* Ffs, (1, v i a ’]}

atffw, 1) —* R f hfv, z), a ‘).

P R O P O S IT IO N 4.2-1

For alt environmenta p, and all exprcttiona'c and e ‘,

ZD [[(X [h l t] . h) : < e ! e ' >]|p = ID 5 cjp

and

ID[I (X [h l t] * t) : < e l e '>]]p = ZDQe'jp

PROOF: Both assertions have simitar proofs, differing only in the last few steps. Only

the second proof is given here.

I D l (X [h 1 1] . t) : < e t e ' >]]p

= d-apply f/DQX [h I t] . t ^p) (ID [[< e I e ' > JjpJ

= d-apply f X v . ZD[[t]]p[v / [h it] \) {/D|[el|p , JZ?|[e'Jp}

= f \ v . © [It0p[v f [Hit]]y {ZD|I eflp , ZD[|e']|p)

= p[<®IIeD/>. ®Oe'l<’) / (h i t]] ^ ;

= / h \ (t)

= / t] (t)

= B le'Ip

AID

AZD, /trice

Arf*app/y

iu6iit/o(iOfi

A ZD

A Env. extension

A Em .

A Env.

192

PROPOSITION 5.3-1

For a : Env -*■ Val, fix { X < . a < / t]) = a (fix (X p \p[a p ' / i \))

P R O O F : Let pg = fix \ p ' . p [a p * f i], and define vQ — apg. Since pg is a fixed point,

P0 = P ^ P o / *] - p \ vo / *1 (*)

Hence,

u/ “ a P0 = a P[vo / { \

and so vg is a fixed point of (X(. a p [t f i]). Let vf be any other fixed point, and define

p t — p[vt l i\. Then since is a fixed point, consider

Thus, pt is a fixed point of \ p \ p [a p * / **}; hence pg C p^ By (*) we have

* K / »] = Pa £ #’/-# » (v, / * \

Since pg and p{ only differ a t i, it must be th a t

P\ v0/ *U0 ~ vo ^ vt ~ p \ vi ! * W

T hat is, v^is the minimal fixed point. Therefore,

fix(\ t .ap[t (i) ; = v / ^ a p / ^ a (fix (\ p ‘.p[ap‘/ i] }).

□

D. Symbols

a, 6, c — constant symbol, 17

i, y, z - identifier, 17

p, q - predicate symbol or propositlonat expression, 17

r, s, t - term or expression, 17

e - expression, 17

F, G, H - function variable symbol, 17

p —- r, 4 - conditional expression, 18

F(x)<£s r. - recursive function definition, 10

■ - inderterminate, or “ floating” value, 16

I - register initializer, 51

• - value token in a schematic, S3

0 - component counterpart to an operation symbol, 51

[T] - register, 53

E - identity component, 127

[[...]] - syntactic quotation, 17

A + B - separated sum domain, -12

A X B - product domain, 42

A —► B - continuous function domain, 42

J : A —*B - / E A-+B, 43

(...J - pairing operation, 43

*10, ~ projection for domain pairs, 43

*aaA, *ittD — inspection, restriction, and injection for domain sums, 43

E - domain element designator, 41

C - approximation ordering, 41

193

194

X - minimal approximation, 41

\ x. t — abstraction of t by x, 42

X[u v | .e - \ x . e (x \0)(x \l) , 44

s - strongly equivalent, 71

SigD - the domain of signals over D, 02

d 00 - constant signal, 02

A F - “by unfolding F ’a definition1’, 21

y F - “by folding F ’s definition", 22

!.H. — “by induction hypothesis", 27

- verification condition for F, 25

x° — initial value of signal X, 55

A'®" - behavior of signal X at time n, 52

Kx — constant operation, 31

n - projection operation, 31

f g — serial combination of operations, 31

< . . .> - parallel combination of operations, 31

r f i i
el - a substitution, 21

x i >'"> Zn

T - translator from applicative terms to combined operations, 32

2T, ID, ILt - a valuation function, 46, 70-75, 102

R - L compiler, 104

Repy - a representation for K, 103

exp, T[...] - abstract value of, 103

[tag ...] - represented value, 103

INDEX

180

Index

A

A bstract component, 13, 87, 01-08, 140
Accumulator, 0, 37
Action, 38-30, 88, 110
Actual expression, 124
Application

—, Daisy, 71
—, of a com ponent,__

Applicative
— premise, 1
— s ty le , 1
— language, 05

apply, 44
— compouent, 03

Approximation ordering, 41
Autonomous processes, 142
Axioms, for serialization (tee acriattzatio

B

Bnckus-Naur notation, 40
Balanced format, 20, 33
Behavior, 3, 52, 62-03
Behavioral equivalence, 52
Bidirectionality, 141—142
Bool, 41
Branched conditional format, 25, 20

c
Cnll-by-nnmc, 05-07
Calt-by-value, 05-07
Carrier, 10
Circuit

— description, 52
—, in Daisy, 79
— F, 130-131
— G, 131-133
— H ,133-137

Clock, 50
Closure, 11, 00, 105-107
Combinator, 40
Combinatorial component, 51
Combined operation, 31-32

Communication, 03, 142-144
Compilation, 2, 100
Component, 5, 10, 63

—, in Daisy, 79-80
Computation rule, 00, 139
Conditional expression, 18
Connective storage, 123-124
Constant, 16

— combinator, 44
— operation, 31
— signal, 62

Continuation, 12, 46—48, 119
Continuous, 41
Control

— algorithm, 7
— token, 34, 37, 89, 112, 139

Convergent term, 23
Creativity, 28, 145
Cuny-Snyder model, 123-124, 137
curry, 44

D

Daisy, 4, 65, 139
—, kernal language, 69
—, standard semantics, 69-78

D ata recursion, 10, 78
Data-flow, 123
Defining equation, 19
Delay rule, 66
Demand driven, 65-60
Device, 80-81
D ig, 10, 143
Digital asynchrony, 142
Digital circuit design, 1
Digital system, 5
Direct interpreter, 99
Distributivity

— of conditionals, 29-31, 48-49, 93-94
— of lifting, 50-59, 91, 138

Domain, 41-42
Don't-care, 16
Don't-know, 16

E

Engineering, 2
Environment, 21, 65

— in Daisy, 70-71, 125
—, representation in L, 104

Experiment, 08-60, 81
—, in Daisy, 81-86, 90-98

Expression, 18

F

FAC, 19, 22-23, 27, 37, 45, 60, 08, 81-84
Fcedbnck, 2
FIB, 19, 37, 00, 08, 82-85, 05-97
FP programming, 8 -9
fix, 44, 106
Fixed point, 44
Flo web art, 138

— in circuit design, 5, 138—130
Flo web art ability, 3, 36
Folding, 21

— circuits, 13, 121-122
Formal expression, 124
Formal parameter, 17
Function variable symbol, 17
Function, 3
Functional, 44

G

GCD, 10, 61-02, 08, 82-86, 139
yd, 143
Global identiGers, 19
Gluing, 125-120
GO, 140
Ground term or expression, 19

H

Higher level components, 88—08
History (of values), 5, 8

I

Ide, 41
Identifier, 17, 41
Identity component, 127

Indeterminate constant, 16
Induction, 24-27

—, structural, 24-25
—, subgoal, 25-27

Infinite sequence (in Daisy), 78-79
Injection, 43
Input-output assertion, 25
Inspection, 43
Instance (of a scheme), 20
Instantaneous behavior, 51
Instruction, 13, 39, 87, 92, 140
In t, 17
Iterative, 3, 15, 20, 27—28, 138

J, K

Kernel language, 69-77

L

L (language), 12-13, 88, 100-120
—, continuation semantics of, 120
—, interpreter for, 101—103
—, standard semantics of, 101—103

L j, 18
Lr , 18
Ls , 51
Lt , 18

—, as a da ta type, 45
Lambda abstraction, 42
Language driven design, 99-100
Lazy evaluation, 66
Lifting, 6, 53, 138
Linear specification, 6, 20
Linearization, 37, 46
Lisp, 8, 65, 71
Lucid, 9

M

M , 105-144
Message, 69
Metalinguistic variables, 17
Multiphase clocking, 144
Multiple valued operations, 49
Multiplexor, 30
mux, 30-31

108

N

n-placc, 16
Nml, 41

o

Operation, 16
O utput driven, 79-81

P

Packaged combination, 13, 87, 89—91, 95,
114, 140

Padding, 29, 33
Pairing, 43
Parallel combination, 31, 44
Partinl correctness, 2, 26
Predicate, 16
Probe, 71
Process, 10, 63
Program, 4 -5 , 27
Projection
— combinator, 44
— operation, 31
Prolog, 141
Propositiona] expression, 18
put, 143

Q, R
Rank, 17
READY, 55
Realisation, 2

— language, 12, 50-53
— of a specification, 56

Recurrent, 18
Recursion, 44-45

—, data, (see rejlexivity)
— equation, 2, 16-23
— scheme, 15, 20

Reduction, 21
Reflexivity, 10, 45
Register, 5, 50-53
Representation, 103—105

-r problem, 145
Restriction, 43
Rules, for serialization (tee Serialization)

s
Satisfy a definition, 20
Schedule, 124, 140

— derivation, 124, 129-137
— specification, 131

Schematic, 4—5, 53
Scott-Stracbey notation, 4, 7, 16, 40-45,

139
Selection, 30
Self-timing, 142
Serial combination, 31, 44
Serialization, 121-123, 140

— axioms N , G , E , F , S , 125
— rules T, A, A, M, I, 126-129

Serious, 18, 39
Signal, 9, 50, 6-632, 139

— equation, 52
— expression, 50-51

Simple loop, 6, 12, 59-61, 139
Simplification, 21
Single-pulser, 143-144
Solution

—, as a fixed point, 45
—, of a specification, 22
Specification, 2 -4 , 12, 15—19

— of control, (see
Stability (in circuits), 83, 139
Stack, 38

— component, 92
Standard semantics, 45-47
State, 9
Stream, 10-11
Strict, 23, 128

—, Completely, 23
ttrtct, 80
Structured

— digital design, 7, 13
— programming, 7

Substitution, 20
Suspension, 11, 66
Synthesis, 2

— of iterative form, 36-40

199

T

Tag, 103-104
Terra, 18
Transformation, 2, 138
Transparency, (see diatributivity
(rau-ipose, 03
Translator (7"), 32, 58-59
Trivial, 18

U

U,, 28, 33-30, 54
UL, 35
uiiciirry, 44
Underlying type, 5, 15—10
Unfolding, 21
Universal schemes, 35
Universal type, 15

V

val, 21-23
VALUE, 55
Valuation, 20-23
VeriGcation condition, 25, 145

w
W and-Friedman construction, 38—40, 88,

110

X , Y , Z

Vita

Steven Dexter Johnson received n B.A. in Mathematics and Rus
sian from Depauw University in 1970. He completed an M.A. in
Mathematics at Indiana University in 1972 and an M.S. in Com
puter Science in 1977. From 1977 to 1979 he was a Member of
Technical Staff at Bell Telephone Laboratories, Holmdel, where he
was involved in the development of design and manufacturing aids
for hardware.

Since 1979 he has been a Research Assistant and then Visiting
Lecturer a t Indiana University. He is a member of the Association
for Computing Machinery and of the IEBE Computer Society,

