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Abstract

Synthesis o f D igital Designs from  Recursion Equations, by Steven Dexter Johnson

The discipline of applicative program design style is adapted to the design of digit at 

(sometimes called synchronous) systems. The result is a powerful and natural methodol

ogy for engineering correct hardware implementations. This dissertation presents a 

method to develop digital/synchronous system descriptions from recursive specifications; 

offers a prototype genera] purpose modeling language th a t supports this design task; and 

makes a formal connection between functional recursion and component connectivity 

th a t is pleasantly direct, suggesting tha t applicative notation is the appropriate basis for 

digital design.

Design is a translation of notation from an abstractly descriptive speciTieafton to a 
concretely descriptive realization. Recursion equations are used as a specification 

language. The realization language is another form of recursion in which variables 

denote sequences (rather than functions) that represent digital component behavior. 

Self-rcfcrence in realizations corresponds to feedback in a physical implementation.

Synthesis is a method for constructing realizations tha t are guaranteed to meet 

their speciGcations. It is a synonym of “engineering" peculiar to computer science, 

where the concern is not only with methods but also with their automation. This term 

suggests a factor of human guidance, as opposed to compilation which does not. Realiza

tions can, however, be compiled from iterative speciGcations. Even for the case of non

iterative speciGcations, synthesis of an iterative version is the primary tactic here. This 

tactic formalizes the conventional digital design technique of decomposing a circuit into 

an architecture and a Gnitc state controller.

The formal setting for a discussion of this topic is the calculus of Scott and Stra- 

chey. A speciGcation denotes the Gxed point of a functional; a realization denotes a 

Gxed point in a domain of sequences. This approach to synthesis, then, is yet another 

application of modeling "function recursion" with “data recursion", or reflexivity. An 

interpreter has been implemented for Daisy, a dialect of the Scatt-Strachey notation. 

Any description expressed in Daisy can be directly executed at successive steps in its 

evolution. Thus, the natation that serves as the medium of engineering serves also as a

iv



vehicle Tor experimentation. This is im portant to the practice of design because the 

engineer can explore some aspects of performance without expensive constructions of 

hardware prototypes, or risky recadings in a simulation language.

Two examples follow, A non-trivial exercise in language-driven design, derivation 

of a controller for an applicative language interpreter, reveals tha t powerful global struc

turing techniques, such as hierarchical decomposition and da ta  abstraction, are inherited 

immediately from the functional style of description. ExecutabiUty of the current 

description at each stage of the derivation provides a model for testing representation 

decisions and trivial modifications. Next, a specialized algebra is developed to address a 

typical local refinement problem: reducing external connections by means of serialization. 

Thus, local as well as global design problems yield to the applicative method.

Applicative notation is especially suitable for digital circuit description because the 

basic algebra is the same in both realms. Even though the underlying symbols are inter

preted differently (f.e. operations vs. components; values vs. signals) the manner of com

bining them (e,Q composition/construction vs. serial/parallel wiring) is identical. Hence, 

recursion equations, M cCarthy’s mathematical basis for the science of computation, is 

fitting for hardware design because it so well reflects the pkyttcal basis of computation: 

digital electronics,
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1. Introduction

Advocates or applicative "programming" style claim th a t it is somehow closer to the 

intuitive process of conceiving an algorithm, and is, therefore, the proper notation for 

the development of computations. Since few deny the need for better programming 

methods, this "applicative premise" has received a good deal of scrutiny over the past 

twenty years. Much of this research demonstrates th a t the approach is viable; tha t is, it 

shows tha t the discipline can be used successfully to attack problem classes that a t first 

glance nppenr to be beyond its capabilities.

The research reported here began as a test of the applicative premise in a funda* 

mental and difficult problem area: the design of hardware. The original approach was to 

make an earnest attem pt a t denial of the premise by showing th a t it was not an 

appropriate basis for addressing the problem of circuit description. The attem pt failed, 

for I found thut a purely functional notation is quite viable for digital circuit design, and 

is in some ways preferable to conventional engineering. The substance of this investiga- 

tion lies in the design method th a t evolves from strict adherence to applicative style.

The main conclusion here is th a t hardware designers can be comfortable with this 

method because they hnvc been thinking appHcativcly all along. By adopting a digital 

implementation technology the designer orients a circuit in time and thinks of it as n 

function (on state) rather tbnn as a feedback system in equilibrium. This temporal con

straint on product behavior reflects an abstraction from, and a simplification of, the phy

sical elements of electronics. The abstraction is made in order to attain a tractable intel

lectual basis for organizing behavior. Of course, abstraction is a quality of any design 

discipline; hut the correlation between the motives of digital design and applicative style 

is not merely superficial; the means of abstraction—functionality—is the same.

1



2

Automation of circuit design—and automation is an eventual goal of this work— 

entails Gilding a representation for circuits, This appears to be a profound obstacle to 

applicative style, for it necessitates building a data structure th a t describes feedback, a 

manifestly circular physical quality. It is not immediately obvious how to construct cir

cular data in a notation th a t prohibits expressed side effects. The solution is to use 

recursion (i.e. reflexivity through fixed point constructions) to describe connectivity. In 

doing so, one simultaneously obtains a description of the product and a model of its 

behavior.

Design is viewed as a translation of notation, starting with a specification and end

ing with a realisation. The specification language should be abstractly descriptive; its 

main purpose is to convey thought. The realization language should be concretely 

descriptive in the sense th a t it portrays an implementation accurately enough to serve as 

a starting point for fabrication. Specifications will be systems of typed recursion equa

tions expressed in the style of McCarthy (1003). The realization language is a linear 

form of circuit schematic in which the connectivity of the circuit’s components is 
expressed by equation rather than a drawing of boxes and lines.

Manna defines synthesis to be "the theory for constructing programs [read: realiza

tions] tha t arc guaranteed to be correct [with respect to their specifications] and there

fore do not require debugging or verification” (1974, p. 219), It is a synonym for 

enyineeriny tha t is peculiar to Computer Science, which is concerned not only with 

methods but also their automation. It is used here to suggest a system th a t employs 

human guidance to produce realizations (as opposed to compilation, which does not). 
However, I do not present a mechanized system here; synthesis is carried out by hand, 

although some of the steps clcnrly can be automated. An essential feature of synthesis is 

that the meaning of the specification is preserved, or at worst, altered in a perceptible 

way. For example, realizations may be acceptable even though they are only partially 

correct; tha t is, they produce the correct answer whenever they “halt” but sometimes 

diverge when the specification does not. The designer may prefer to strengthen the 

specification, rather than reject the realization, according to some ulterior motive (such 

as a presupposed architecture). The process of synthesis gives a context for this kind of 

decision making.

The method of synthesis used here is transformation, A collection of correctness 

preserving rewriting rules is used to derive realizations. Burstall and Darlington (1077,
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p. 46) characterize this method as "an inference system in which the sentences are recur

sion equations.” Transformation is a relatively direct form of synthesis, a formalization 

of step-wise refinement. Other forms generate realizations as a byproduct of some other 

activity, such os the proof of a theorem1 (Manna and Waldinger, 1071, 1070).

The conventional approach to digital design centers on the development of a 

sequential algorithm to control the architecture of the circuit. The controller is usually 

presented as a finite state machine, flowchart, or imperative (i.e. statement-oriented) 

program. Various methods exist to translate this abstraction of control into hardware. 

The control algorithm serves as a basis for making representation decisions about the 

architecture. The approach presented here is fundamentally similar although it is car

ried out in a functional notation. The initial objective of transformation is to find a ver

sion of the specification tha t is in iterative form. From there, construction of a circuit 

description is straightforward. Since iterative form characterizes “ flowchartability,” its 

synthesis has been studied as a means to derive programs. The fruits of this research 

are directly applicable to circuit synthesis.

Use of a functional specification style must be justified partly as a m atter of prefer

ence. It is an attem pt to cast design in a clean mathematical setting. If, as is the case 

here, the principal goal is correctness, then an unambiguous meaning for source and ta r

get notations is a necessary starting  point. Functional style has additional advantages 

as a basis for digital hardware design. The fun c tio n a l programmer” and the digital 

designer have similar vocabularies. The ubiquitousness of the word "function” in their 

discourse is testimony to that similarity. To the programmer however, “function" is 

more a noun; to the circuit designer it is more a verb. The programmer deals with 

operations and values; the designer deals with components and signals. In the latter case 

a notion of orderly activity over time is implicit: a component bchavca. T h a t is, the pro

grammer and the designer think in the same sentences but with a different semantics. 

Nevertheless, they use the same algebra, manipulating basic symbols by such rules as 

composition (wiring in series), structural combination (wiring in parallel), and the use of 

selection (multiplexing) to achieve a function (functioning). I exploit this commonality 

to nebieve a basis for design.

'What constitutes a specification or realization is relative. In the synthesis system cited here, 
recursion equations serve as the realization language.
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Specification and realization meanings are unified in the functional stylist's 

metalanguage: the calculus of Scott and Strachey, This language bos a computable 

semantics, and an interpreter is presented for a crude dialect called Daity. Daisy could 

serve as a medium for transformation, but its role in this investigation is onty as a vehi

cle for experimentation. Direct executability of the descriptive notation bos three practi

cal benefits, The evolving design can be demonstrated without prototyping or transla

tion to a simulation language. Gaps in the automation of synthesis can be bridged 

empirically (Mere the gap is quite large since none or the synthesis is yet automated). 

Most important, emulation of target behavior can reveal properties of performance that 

arc not addressed formally, either because they are not describable in the specification 

language or because they are not worth establishing through formal means.

The early chapters tha t follow make the formal connection between specifications 

and realizations. Later, this foundation is applied to two non-trivial design tasks: a con

troller for n programming language interpreter is synthesized, and a specialized transfor

mation system is defined to address a problem in local circuit refinement. It is shown 

that various standard structured design techniques arc reflected naturally in this metho

dology (Section 1.3 expands this prospectus),

1.1. Summary

The following expressions are substantially equivalent:

Ffa) w here  F(x) <5= pfx) — f(x), F(y(x)). (S)

x  :=  a {

w hile  -'ji(x) do x :=  ij(x}\ (P)

* : = / (x)

X -  a ! <j(X)

READ Y -  p(X) (C)

VAL UE =  f(X )

Specification S  defines its value as the output of a recursive function F, whose defining 

equation has the structure generally associated with the program P. The system C  is a
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linear description of the schematic2 for the register transfer circuit

R E A D Y

VALUE

The component |J] is a clocked storage element that for brevity 1 shall call a register, A 
synchronizing signal is common to all registers and, like the power supply, is suppressed 

in the schematic. The token (•) indicates that the register has been initialized with the 

value a, or more generally that the circuit is now in a state in which its register contains 

a. Id S  and P  the ground symbols p, f, and g are primitive operations, part of the voca

bulary or a fixed (but often not otherwise specified) underlying type for making 

specifications. The circuit components [FJ, and [7] are counterparts of operations, 

hut it is understood that they operate over time, continually producing a value tha t is a 

function of their present input. The register synchronizes the system and makes it possi

ble to assume that component behaviors arc discrete.

Each of S, P, and C is a canonical representative of its realm. If the underlying 

type is powerful enough, any partial recursive function can be transformed to a single 

repetition, and it follows that any program can be expressed as a loop3. A schematic 
similar to C often accompanies an introduction to digital/synchronous systems (e.g. 

Mead and Conway, 1080, pg. *221; Hill and Peterson, 1008, pg. 250). It exhibits the 

characteristic property tha t nil closed signal paths pass through a register.

The correspondence between P  and C is the basis for conventional structured 

hardware design. A standard formalism for describing a flowchart schema is to define 

the “ value history" of its state (e.g. Manna, 1974; Greibach, 1075). The history is the

3Left-right (low Is used in schematics wherever possible, so that a component's inputs are on 
the left. Schematics are informal notation, and will always be accompanied by systems like C 
that state the input-output relationship explicitly.

3Thc heredity of this “folk theorem" is explored by Hera] (1080), Sis essentially Kleenc nor
mal form (Kleenc, 1050, pg, 288), although the use of repetition rather than minimization suggests 
(Brainerd and Landweber, 1074, Corollary 5.7).
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sequence of values the state  will acquire, expressed as a first order linear recurrence rela

tion depending on the current state  and the current label (which can be given as part of 

the history). If the monolithic state history is decomposed into individual variable his

tories the result is a simultaneous first order recurrence relation. It is also a register 

transfer description, describing how each stored value in the circuit will change as a 

funct ion the present register content.

My approach is to derive individual histories from (systems of) recursion equations 

rather than from flowcharts. Since an essential step in the process is to place the equa

tions into iterative form, the passage from specification to realization will only sublimi
nal)}* construct a flowchart. In the circuit description C above, the natation suppresses 

the recurrence. This is valid because the dependency Is fixed by the nature of com

ponents, and worthwhile because a concise description of connectivity emerges. Thus, 

the crucial transition between specification and realization notations changes the 

interpretation of the primitive symbols. I refer to this transition in meaning as lifting.

The formal connection between source and target languages is made on the basis of 

the forms S  and C above. Consequently, synthesis decomposes into a subtask of 

transforming an initial specification to an instance of S, followed by a sequence of 

refinements to the corresponding instance of C. I shall show that much of the transfor

mational algebra used to obtain S  is transparent to (i.e. distributes over) lifting. Hence, 

a less succinct class of specifications, called simple hops, are immediately realizable and 

yield more informative schematics.

In theory any system of recursion equations can be expressed as a simple loop, but 

to obtain it one must assume th a t the underlying operations are powerful enough to 

implement recursion. For example, if arithmetic is available, an encoding can be used to 

represent a control stack. If such computational power is not assumed—as may well be 

the case in digital design—then not all specifications can be directly realized. Varying 

the ‘‘ground rules" about what is admissible as au operation induces a complex hierar

chy of transformability on the class of all specifications. Under a minimal set of assump

tions simple loops can be constructed from any linear specification {i.e. one without 

nested recursive calls). Recursive linearity characterizes flowchartability, and translation 

of recursion equations into flowcharts has been widely studied. The results arc all appli

cable to our principal strategy of circuit design.
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Separation of control and representation is a common theme in algorithmic design, 

independent of the implementation realm. Compare Hoare's remark on structured pro* 

gramming (1972)

In the development of programs by stepwise refinement ..., the programmer is en
couraged to postpone the decision on the representation of his data until after he has 
designed his algorithm, and has expressed [t as an 'abstract' program operating on his 
'abstract1 data. He then chooses for the abstract data some convenient and efficient con
crete representation in the store of a computer; and finally programs the primitive opera
tion required by his abstract program in terms of this concrete representation.

to th a t of Winkcl and Prosser concerning structured digital design (1980, p. 131).

One of the first steps of a top-down design is to partition the design into (a) a control al
gorithm and (b) an architecture that will be controlled by this algorithm. The top-down 
analysis will suggest a rough preliminary version of the system architecture, involving 
abstract building blocks such a registers, memories, and data paths...

Next, we work out the details of the control algorithm at an abttracl level. The 
control algorithm is in many cases surprisingly independent of the hardware,..

In the functional specification style, this separation of aspect entails postulating a type 

on which the specification will operate. To proceed in this way it is clearly desirable to 

start in a fully abstract setting, but with the knowledge tha t once a type emerges it is 

certain to have a computable representation. A fully abstract functional language exists 

in the notation of the Scott-Strachey calculus (Stoy, 1977). In addition to serving os a 

most-abstract starting point for design, the Scott-Strachey calculus is also used as a 

metalanguage through which the meanings for specifications and realizations are unified. 

The metalanguage has a computable semantics, and through interpretation can also 

serve os a vehicle for experimentation.

1.2. Related Research

The fact that the formal language used for mathematical models also has a comput

able meaning (cads to some difficulty in classifying the bearing of other research on this 

presentation. It makes the useful distinction between formal and operational models 

somewhat hazy, since there is tha t sense in which a mathematical formulation can be 

considered a program. The confusion is nowhere better illustrated than in the vanguard 

work of McCarthy, a founder of the functional specification style, who proposed using 

recursion equations os a basis far the specification of computations (1903) and
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simultaneously provided an interpreted language, Lisp (McCarthy, ct.aL 1005), for 

experimentation. Both of M cCarthy’s contributions are influential to this investigation. 

The problem is tha t Lisp’s interpreter is often confused with the underlying mathem at

ics? Thus, the division of the review below into formal models and operational aspects of 
modeling is for the most part artificial. Most of the researchers cited are involved in 

both areas.

1 .2 .1 . S e q u e n t ia l  F o r m a l  M o d e ls .  In Chapter 3 a notation is defined for the 
description of digital behavior. Two equivalent definitions are given for the meaning of 

the natation: the first associates each ground symbol with a function on the natural 

numbers; in the second definition each symbol denotes a sequence. The first definition 

should be familiar to hardware designers, for it corresponds to the usual interpretation of 

a circuit's state as a first order linear recurrence relation. The restatement of the model 

in terms of ’‘value histories” gives a domain formulation of the same model. It is essen

tially the same formulation as Kahn's (1073) and was foreseen as early as 1005 by Lan- 

din. It is introduced as a prelude to the implementation of the model in Chapter 4.

As noted in the summary above, any characterization of computation in terms of 

discrete value histories can be construed as an approach to digital design. Extraction of 

histories is frequently used to formalize or analyze programming constructs. Texts by 

Manna (1074) and lecture notes by Greibach (1075) employ this approach to describe 

flowchart schema. Each goes on to develop formally the relationship, first noted by 
McCarthy (1003), between flowchart and recursion schema. They therefore establish, 

albeit indirectly, the basis of our approach to digital design.

The symbolic evaluator of Cheatham, Holloway, and Townley (1070) derives “ the 

recurrence relations tha t describe the behavior of loop variables,” as a means for the 

analysis and verification of imperative programs; but they have at the same time pro

duced a digital circuit assembler and optimizer according to our model.

The notion th a t functional style employs same algebraic framework as digital 

designer is perhaps best illustrated in the FP programming movement (Backus, 1078, 

1081a, 1081b). An algorithm can be expressed in a purely combinatorial form that 

corresponds to how circuits are physically wired. The FP style goes beyond my goal

*Stoy (1077, p. 182) gives a very clear discussion of this point.
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however, by promoting variable-free programming5, and thereby suppressing a quality 

th a t I shall eventually emphasize: state. By suppressing state, one rids one's self of a 

mathematically clumsy concept. However, FP languages invariably have a construct for 

iteration [e.g. Backus's intert operator) and therefore retain the computationally neces

sary concept of an accumulator (read: register). The description a digital system th a t 

implements an algorithm eventually centers on register behavior; hence, to construct 

such a description this behavior must be identified. The identifiers correspond exactly to 

the program variables of the recursive specification.

In his dissertation, Cohen (1080) also uses an iteration construct os a basis for 

transforming recursion equations into programs. He also gives a  fairly thorough review 

of research in the compilation of recursion equations. The circuit synthesis techniques 

presented here extend many of these results to a different implementation realm.

Iterators often carry an implicit termination condition, reflecting the program m ers 

preoccupation with tha t property. However, termination is not a quality enjoyed by cir

cuits if they arc modeled in terms of their temporal behavior. The more natural abstrac

tion is th a t of infinite behavior which occasionally notifies the outside world th a t mean

ingful events arc taking place. Ashcroft and Wadge (1077) present a formal system 

called Lucid  in which non-finite histories are implicit. Lucid is also suggested as a pro

gramming language tha t incorporates iteration in a "mathematically respectable way." 

The circuit description C, above, is easily recognizable os a simple Lucid program, and in 

fact has the appropriate semantics. The use of circuit description text as a formal sys

tem to support inference is briefly discussed in Chapter 7. In his dissertation, Meyers 

(1080) also investigates the use of non-finite structures in programming. While the pro

perties of non-finite, especially sequential, objects arc central to the development below, 

their use as a programming construct is not. R ather, they are used to model the proper

ties of electronic components and serve as a target language for synthesis.

The preferred format setting is the functional calculus of Scott and Strachey. A 

domain formulation of behavior, presented here in Section 3.5, here was proposed by 

Kahn (1073, Kahn and MacQueen, 1077). The set of signals over a set of primitive 

values is defined by the domain isomorphism

sBackus does not prohibit the use of variables in expressing algorithms, but seeks to reduce 
their influence on conceiving algorithms. See (Backus, 1031).
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Signal — Value X Signal

(Kahn uses the domain of sequences, Value'*, which is the essentially the same domain). 

That is, a signal is an infinite sequence of values. Components are (simple) processes 

tha t produce and consume signals.

Milner has developed a robust mathematical foundation for describing process 

semantics (Milner, 1073, 1080a; Milne and Miluer, 1070; Gordon, 1080), in which my 

model can easily be embedded. He characterizes process behavior as a point in the 

domain

Behavior =  In p u t— (Output X Behavior)

A component gives rise to a function from signals to signals. Given a process behavior 

and an input signal it is a trivial coercion to construct the right output signal. The 
basic difference here is that components arc defined as higher order signals; th a t is, as 

sequences of operations. Application is generalized to deliver the induced signal-to-signal 

function. This is merely a technical adjustm ent in light of the fact th a t the only com

ponents 1 will allow arc constant sequences. This constraint is temporarily relaxed in 

Chapter 5 to introduce communication.

Gordon (1081a, 1081b), Cardelli (1080, 1082), and Milner (1080b) use process 

semantics in microcosm to address circuit behavior. Their goal is descriptive; they 

develop a mathematically attractive notation for circuit analysis and verification. For 

this purpose their notation is clearly superior to the applicative notation used here 

because it can describe a wider class of circuits. However, the purpose here is synthetic, 

and a purely applicative target language is sufficient to realize purely functional 

specifications. We return to this point in the conclusion.

1.2.2. Operational Aspects of Modeling. My approach to synthesis maps 

(fixed points in) a domain of functionals to (fixed points in) a domain of signals; it takes 

self-reference in the guise of recursion to self-reference in the guise of fecdbnclc. Imple

menting recursion with "rcflcxivity" is commonplace in programming. Compilers use 

program pointers to manage control; reduction interpreters use shared text to optimize 

substitution.

More overt forms of “data recursion” arc often presented os advanced functional 

programming techniques {e.g. Friedman, Wise, and Wand, 1070; Burge 1075; Henderson, 

1080). The earliest example is Landin's use of otreame in conjunction with his effort to
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give an applicative operational description of ALGOL 80 (Landin, 1905), It is worth not* 

lag that he introduced streams as a modeling construct to factor (index) variable his* 

torics out of loop statem ents, but immediately observed th a t the same mechanism 

“would be used to model input-output if ALGOL 00 included such". He elected to 

represent histories as lists, and had to confront the possibility tha t non-terminating 

loops would produce infinite histories. He could not directly express infinite da ta  struc

tures in his “call-by-vnlue" modeling language, and used function closures os a delay 

mechanism to defer the possibly divergent, and anyway untimely, construction.

In 1070, Friedman and Wise proposed tha t this closure trick be incorporated into 
the primitive da ta  space operations so that all computation is deferred until it becomes 

timely. A simitar mechanism was independently presented by Henderson and Morris 

(1070), and suggested earlier by Vuillimen (1074) and Wadsworth (1071). The eflect on a 
conventional reduction interpreter is profound, for a suspending constructor induces an 

outermost reduction rule. Under reasonable assumptions about the underlying opera

tions, outermost reduction is consistent with the formal meaning of an expression as a 

least fixed point. Moreover, non-finite data structures can be built and manipulated as a 

m atter of course; constructs like Landin’s streams become transparent. The interpreter 

for Daisy is implemented on a virtual list multiprocessor tha t uses suspending construc

tion. It Is therefore possible to express specifications and realizations without fear that 

they will be compromised by on overly strict interpreter.

1 .2 .3 . O t h e r  M o t iv a t io n s .  Between 1978 and 19S0 Friedman and Wise published 

several articles (1970c, 1977, 1078a, 1978b, 1070) promoting a purely applicative 

specification style and showing tha t it could be applied to “systems programming" prob

lems. Since a circuit is a system, it seemed evident th a t the approaches they were sug

gesting would be a promising basis for hardware design.

I owe much to W and's work in compiler generation (1080a, 1080b, 1982n), as might 

be inferred from the choice of example in Chapter 5, and the style in which it is 

developed. He gives a decidedly small set of generalized combinators that captures the 
code-structurc of conventional programming languages, and develops a formidable s tra

tegy to decompose a semantic definition into a compiler/machine pair. The machine 

“factor" is in iterative form, and it follows from this investigation that it can be used to 

construct special purpose hardware for the direct execution of compiled code. In the 

example just mentioned, however, W and's elegant factorization is omitted since its goal
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is not really at issue here; a direct interpreter is derived instead. The reader who is 

uncomfortable with the resulting machine is urged consult W and's work for insights into 

how f might have arrived at a more conventional implementation.

1.3. Outline o f the Presentation

Chapter 2 reviews the language of typed recursion equations tha t I refer to as 

apecijicationa. Basic methods for reasoning in and about this language are summarized. 

The chapter serves not only to state  preliminary results, but also to give an introduction 

to readers who are unfamiliar with the description style. Three examples, representing 

iterative, linear, and non-linear specifications, are presented and subsequently used to 

follow the development through Chapters 3, 4, and 5. A series of extensions to the 

specification Innguage are made, starting with the incorporation of structural combina

tion and a selection primitive, and ending with the admission of stacks to the underlying 

type as a means to implement recursion. The extensions make it. possible to transform 

vnrious structural classes of specifications into aimptc hops. The final sections of the 

chapter review the notation of the Scott-Strachey calculus, which is used to address 

issues tha t arise later in the presentation. Among the issues discussed arc the 

specification of semantics, which will be the starting point for a lengthy synthesis exer

cise in Chapter 5; and the use of continuations to specify control.

Chapter 3 defines a realization language for describing the logical behavior of digi

tal circuits, and makes the fundamental connection to the specification language. It is 

then established tha t the functionals used to combine operators may also he used to 

combine components. As a result, simple loops arc shown to be essentially realizations, 

lacking only a lifting of the interpretation of ground symbols. The digital model is res

tated in the terms of the Scott-Strnchey calculus, as a prelude to an implementation of 

the model in Daisy.

A direct semantics for Daisy is defined in Chapter ‘I, along with a brief summary of 

its implementation. Bnsic programming techniques for circuit experimentation arc 

defined. The chapter concludes with a series of experiments on the example 

specifications. In one case, observation of the derived circuit's behavior reveals an 

interesting property of performance tha t is not addressed in the specification.

Most of Chapter 5 is devoted to a non-trivia! design exercise: the synthesis of an 

intcrpreter-circuit for an applicative programming language called L. To attack larger
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design tasks, we must of course adopt structured design techniques. The transparency 

of structural combination to lifting makes possible the hierarchical decomposition of real

izations into packaged components, the behavioral analog to the programmer's "m acro". 

The technique of information hiding also lifts, resulting in a factorization of abstract 

components. This decomposition leaves a residue signal of instructions, and forces us to 

confront the issue of overt communication for the first time.

The ^-interpreter's derivation begins with a formal definition of the language, 

which is a non-linear, fully abstract specification. Of the six major steps in the transfor

mation, two require substantial designer creativity. The first step is to propose a more 

concrete specification of L nnd hence is mainly concerned with finding an underlying 

type for interpretation. Once a type has been found, construction of a simple loop ver

sion of L is straightforward, although to reach a linear version some control decisions 

must be made. I pause to do some register optimization, presented as a creative task. 

An improved loop is transcribed to a circuit description, from which abstract com

ponents arc then extracted. In Appendix B, the successive descriptions are given in 

Daisy and executed to show the logical behavior of the evolving design.

Chapter 0 suggests an approach to circuit refinement. A specialized set of transfor

mation rules is tailored to address a complexity problem in large scale design. The task 

is to "fold" a combinatorial system with many external connections into a synchronous 

system in which computation is serialized. The derived circuit is a data-flow element in 

which some of the connective storage is realized. The transformation process produces 

as a byproduct a computation schedule that can be used to coordinate the refined circuit 
with the surrounding computation.

Chapter 7 reviews the presentation, discusses some of its shortcomings, and sug

gests areas for further investigation.

The language Daisy is presented in a somewhat idealized form in Chapter 4. 

Appendix A gives the present syntax. Appendix B shows the Daisy source for running 

examples throughout the presentation. Appendix C contains proofs of some of the pro

positions in the body of the dissertation. Appendix D is a table of symbols used in the 

body of the dissertation.

The primary motive of this study was to extend McCarthy's "mathematical basis 

for the science of computation” (1063a, 1063b) in the direction of its physical basis. 

This area is an excellent test bed for the discipline of applicative style, but its goal
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should uot be taken as the description of all hardware. In electing digital implementa

tion technologies hardware designers have already adopted functionality as their funda

mental abstraction and can profit further from a design methodology tha t stems from 

the same foundation. It is my hope th a t those familiar with conventional digital design 

methods will see in this presentation a fitting basis for their craft. However, the pro

found formal foundation and rich notation th a t have evolved from M cCarthy’s basis can 

be a hindrance. It is hardly reasonable to expect the “uninitiated" reader to absorb all 

the principles without first perceiving a payoff. The reader who i3 unacquainted with 

functional style should consider reading this material in two passes, first to see its direc

tion and then to fill in the details. On first reading, one might do well to skip Sections

2.5, 2.(1, 3.4, 4.3, 5.3.2, and 5.3.3, for it is in these sections th a t I formally address Issues 

tha t are cither on the fringe of the subject a t hand or are intuitive to anyone already 

familiar with the design of computations.



2. The Specification Language

A recursion equation is an equation whose variables range over functions. A 

specification is a system of recursion equations. Any specification has a canonical solu

tion; it is the set of minimally defined functions tha t simultaneously satisfy the 
definitions. Hence, the specification language is unambiguous. This chapter reviews 

basic facts about recursion equations and ways to reason about and manipulate them. A 

thread of fncts is established th a t leads to a connection with the realization language to 

be defined in Chapter 3. The thread unwinds through a sequence of extensions to the 

notation, making it possible to transform larger and larger classes of specifications into 

iterative form. Iterative form is a characterization of “sequential control", and thus 

coincides with the class of specifications th a t, under a minimal set of assumptions, can 

be associated with a flowchart description of a computation. Just os flowcharts arc a 

frequently used basis for digital design, iterative specifications are so used here.

Specifications are made in terms of an underlying typet a collection of ground sym

bols th a t denote values and operations from which more complicated things arc built. It 

is the designer's “ implementation realm". If the realm is TTL logic, for example, the 

underlying type would have two voltage levels and a parts catalog of components. In 

practice, specifications will always be typed. However, some transformations on 

specifications are valid no m atter what the underlying type is. Hence, we shall often be 

dealing w ith recursion schemes or recursion equations over unintcrprcted ground sym

bols. Finding generally valid transformations is obviously desirable, since they are appli

cable in any realm.

There exists a “universal type” in which all others can be embedded. A rather 

sophisticated notation has evolved around its use. We shall refer to this notation as the

15
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Scott-Strachey language. It represents one limit to which our specification language 

might be extended. The language allows for the description of highly abstract entities, 

such os function-valued functions, and is in a sense too abstract for our purpose of syn

thesis. In using Scott-Strachey notation os a starting point for a design, the first step 

will always be to propose a representation—that is, a suitable underlying type—for a 

more concrete specification.

McCarthy is generally acknowledged as a founder of the functional specification 

style. The basic syntax of the spcciGcation langunge is simitar to the language he uses in 

enrjy articles (McCarthy, 1903a, 1903b). Much of the our basic vocabulary comes from 

an introductory tex t by Wand (1980). Manna's text (1074) and Griebach's lecture notes 

(1975) are good introductions to the relationship between recursion equations and 

flowchart schema. Both cite the landmark works in this area.

2.1. Typed Recursion Equations

A design will be implemented from basic components, and in making a 

specification, this vocabulary is usually fixed in advance. This set of “ building blocks" is 

called the underlying type of the specification.

D EFINITIO N S. 1-1. .4 type D  conaiata of 

t. A carrier act, D, of vatuea. 

it. A act of constants, C C D .  

ill. A finite aet of total operations, f:D n 

iv. A finite aet o f total predicates, p:Dn

An operation f :D n—*D is said to be an n-place operation. C and D are often equal, 

but when containment is proper, D will always be inductively defined from C. T hat is, 

D will be the smallest set containing C and closed under the operations of D . An 

indeterminate constant ■ is sometimes appended to C, and the set of tru th  values may 

likewise be extended. Depending on the co n tex t,!  is either unknown (don’t-know) or its 

value doesn't m atter (don’t-care).

An example of a type is D ig, for digital logic, with carrier Dig =  {high, four), 2- 

place operation

—► D for varioua n.

—* (true, false), for varioua n.
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nandfx, y )  =
low if  x — y — high 

high otherwise.

and 2-place predicate high? =  { (high, true), (low, false)}* D ig  can be extended by intro

ducing ■ to its carrier1: nand(m, y) — nandfx, m) — u ; a n d  kighf(n) — ■.

Most of the examples in this chapter are arithmetic; they have underlying type In t  

of integers, with carrier Int =  {••—£, —1, 0, 1, constants Int; 1-place operations

inc and der (increment and decrement); 2-ptace operations add, sub, tnpy, and div (add, 

subtract, multiply and divide); 1-place predicate zero? and 2-place predicates U? and 

eq? (test for zero, less-than, and equal). I n t  is more primitively defined as having con

stan t set { 0 ), operations tnc and der, and predicate sero?. Int is inductively defined as 

the smallest set containing { 0 } that is also closed under me and der,

A set of symbols is associated with the underlying type and serves to represent it in 

the specification language. When it is necessary to make a distinction between symbols 

and their abstract counterparts, symbols are either underlined or enclosed in the quota

tion delimiters * (J1 and ']]’. For In t  the symbol set includes inc. der. eg?, m, etc.; and a 

numeral for each integer.

The letters u, v, w, i ,  y, and : are identifiers; they serve as formal parameters in 

function definitions.

- Strings of upper case letters, such os 'F A C  and lGCD\ arc function variable sym 

bols, which arc defined by equation. The letters F, G and H  are the function variable 
symbols usually used. The rank of F  is the number of formal parameters it requires.

In discussions where the underlying type is not explicitly mentioned, the 

metalinguistic variables /, g, and h will range over operations; p and q will range over 

predicates; a, 6, and c will range over constants; F, G, and H  will serve as function vari

able symbols; and x„ z3, ... will stand for identifiers.

Specifications are built from applicative expressions involving ground symbols and 

the special character set

'Depending on the implementation technology, it may be more appropriate to define 
tiandflow, m) = nandfm, low) = high (Mead and Conway, 1980, p. 15).
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DEFINITION 2.1-2. The language L T of terminal terms »  defined inductively by: 

t. c G L j f o r  constant e♦

iV. x G E T for identifier x.

in. I f  f  is an n-ptace operation and t{, tg tn are terminal term*, then

 ̂r*
The language LR o f recurrent terms is defined inductively by:

i. l t q l r

ii. I f  F  is a function variable symbol of rank n and t[f tg fn are recurrent 

terms, then F  £  tf A ... A tn J_ G LR.

The language L£ o f expressions is defined inductively by:

i. l r c l e .

iV. I f  f  is an n-place operator symbol and e|f eg en are expression*, then 

fL et i  eg a — i e„ l 6 
iiV. If F  is a function  van a We symbol of rank n and eJ( e;  en are expressions, 

then F  £  e{ ± eg A ... ± en G LE.

iv. I f  p is an n-place predicate symbol and I, r, e/f e; efl are expressions, then 

the conditional expression p A eg A ... ± en ^  — L  r g

The substring to the left of the ^  in a conditional expression is called a  proposi- 

tional expression. UnqualiGed, the word “ term" means "recurrent term ” . Our interests 

center on the function variable symbols and w hat they denote. Hence, they arc called 
serious symbols; all other symbols arc trivia/. Terms and expressions inherit the quali

ties of their components.

D EFINITIO N 2,1-3.

A term (expression) is called serious i f  it contain* a function variable symbol. Of/ier- 

wise, it is trivial.

A term (expression) over identifiers xf xn is one that contains no identifiers other 

than ij , ..., xn.
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A  ground term (expression) it one that eontaint no identifiers.

We can now define a specification to be a system of function-defining equations. 

The left-hand sides of these equations are “calling patterns" consisting of a function 

name and a format param eter list. The right-hand sides are defining expressions, stating 

what the functions do when called, Two additional special symbots, < =  and A are 

needed.

DEFINITION A recursion equation hat the form

F  [ x f j. xf  A ... A zJ l <S= e

where F  is a function variable symbol o f rank n, and e it a expression over xJ} xg ,,,,, zn. 

This equation is said to be F's defining equation. A specification is a finite set o f recur

sion equations, each defining a unique function variable symbol.

Note th a t tfie definition prohibits “global" identifiers. T h a t is, a function’s defining 

expression involves only identifiers in the function’s param eter list. The following exam

ples of specifications in I n t  will be used to illustrate the ideas of this chapter and the 

next*.

GCD(z, y)  <*= eq?(x, y) — z, ^  j

ttffx, y) -* GCD(x, subfy, x)), GCD(y, subfx, yj).

FAC(x) zerof(x) —► 1, mpyfx, FAC(dcr(x)) ). (S.)

FIB(x) <=  Uffx, S) -* l,add( FIB(der(dcr(x))), FIBfdcrfx)) ). ( S J

Intuitively, specification S t defines a greatest common divisor function, S t  defines a fac

torial function, and the function defined by S3 returns the xlh clement of the Fibonacci 

sequence: i ,  1, 2, 3, 5, 8. . . .  Two of these specifications are ambiguous; neither 5, nor Sf 

states what the function it is describing should return on a  negative argument. This

‘It is standard practice to switch to the more familiar infix notation for operations in Int. I 
will occasionally make the switch when doing so clarifys the presentation (in Section 2.3 for exam
ple). However, when making "official" specifications, 1 shall continue to use prefix, notation, and
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ambiguity will be resolved in the next section.

The three specifications differ in their structure. In $t the function variable sym* 

bols are outermost in all serious terms. In St  tl  > is a t most one function variable sym

bol in any recurrent term. S a has neither of thes*. qualities.

DEFINITION 2.1-5. A  recurrent term is

linear -  i f  it contain* a single function variable symbol.
iterative -  i f  it is linear and its /u  net ton variable symbol is left-most in the term.

/I conditional expression [Jp (^ , f ., tn) — r ,  s j  is linear (iterative)  i f  each t. is a ter

minal term and both of Us 6 ranc/i«} r and s, are either terminal or linear ^iterative/, A 

recursion equation is linear (iterative) i f  its defining expression is. A specification is 

linear (iterative) if  each of its defining equations is,

The recursive structure of a specification is of interest in itself, and will sometimes 

be considered independently of the underlying type. A recursion scheme is a recursion 

equation in which the ground symbols are left unintcrpreted. A recursion scheme S ' is 

called an instance of recursion scheme S  if some or all of the unin ter prctcd symbols of S  

have been consistently replaced by specific symbols to get S'. For example, specification 

S} above is an instance of the nonlinear recursion scheme

F(x) <S= p(x)-*  c, h( F(g(g(x))), F(g(x)) ).

2.2. Solutions to Specifications

The ground symbols in an expression denote the entities th a t they represent in the 

underlying type. Thus, the value assigned to any trivial term is simply the value of its 

abstract counterpart. Function variable symbols denote functions th a t satisfy, or arc 

consistent with, their defining equations. To make the notion of consistency precise, wc 

shall define a relation called valuation between specification tex t and meanings. Applica

tion of a serious function is interpreted as a textual replacement, called a substitution.

beg the reader's Indulgence, since In later chapters I would have to revert to prefix anyway.
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DEFINITION 8.8*1. Let t  be an expression over identifiers z{ ,..., xn. and let tt tn be 

arbitrary expressions.
*/ V

Zt Xn

denotes the expression obtained by substituting t{for each occurrence of x. in e.

A specification gives a context for substitution in a valuation.

DEFINITION 8.8-8. Let S  be a specification over a type with carrier D. Let c be a con

stant, f  an n-ptace operator «ym6 o/, and p an m-ptace predicate symbol. Let F  be a func
tion variable symbol defined in S  by the equation ^F(xt ,..., x j  <S= SF. [), where 6F is an 

expression. The /unction val maps ground expressions to values in D as follows: 

val H cU =  c

v a t y { t t , ... , t j f l  ~  f(va l I t t \ ,  ..., t r o / j t j , /

t ia /[ |p ( t |(  ... , f m) r, s I| =
unf Brfl, if  pfval Q v a / | t n ]|y m true

vat 5 J ] ,  if  pfval [[ vat is false

 <.>1 -  ..... '”] D
x ,i "•> x n

■ The function vat can be extended to a function over arbitrary expressions by pro* 

viding nn environment tha t gives values for free idcntiGcrs. T hat is, given a function 

p : Ide — D, where Ide is the set of identifiers, add the clause "un/fli]] =  p(x)n to vaFs 

definition.

Given a specification, the value of a ground term can be derived by reduction; th a t 

is, through symbolic manipulation of the expression according to the rules of Definition

2,2-2. If a step in a reduction is justified by known properties of the underlying type, we 

shall call it a simplification. A step justified by the substitution rule is called an unfold

ing if the rule is applied from left to right. The inverse of unfolding is folding. We shall 

write “A F "  to mean "by substitution according to F ’s defining equation" (unfolding),
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and “ v ^ ” ' t 0  mean "the abstraction of common subexpressions by identification, 

according to F ’s defining equation." (folding).

Recall the recursion equation

FAC(x) xcrof(x) —» 1, mpt/f x, FACfdcrfx)) ).

which we claimed earlier to specify a factorial function. Using Definition 2.2*2 and some 

simplification we can readily show th a t the expression FA C(2) reduces to Si

FAC(S) ~  :erof(2l -» I . mmtfS, FAC/dcrfSl)

— tnpfifB, FACfdcrfSI)

=  mpy(S, FACfl})

=  ttipyfS, hero9(1) —► 1. mpyfl. FACfdcrfl))})

— mpyfSt tnptjfl, FA C/0))

— mpy(S, mpyfJ, zerof/O) —* 1, mpu/O. FACfdcrfO)))) 

= tnpy(S, mpyfl, I f )

— 2

A  F A C

conditioned (—*) 

simplification

A F A C

— simplification 

A F A C

simplification

Numerous mechanical steps have been omitted, as has any explicit mention of the valua

tion function. We simply allude to val by underscoring text. The coercions between 

trivial tex t and its meaning will be omitted henceforth.

By the reduction above, any function tha t satisfies F A C ’s defining equation must 

map 2 to £/. On the other hand, the expression §FAC(—lf§  cannot be reduced to a 

value using the rules of Definition 2.2-2; val^FAC f-1)§  is undefined. The solution to a 

specification is taken to be the set of minimally defined functions that satisfy their 

definitions. Minimality insures uniqueness and makes the specification language unambi

guous. A forma] development of this subject can be found in M anna’s text (1074). The 

solution to F A C ’s defining equation is the function factorial: Int —- Int



i n !  if n >  0
faetorial(n) =

undefined otherwise

Since solutions are unique we need not distinguish function variable symbols from the 

functions they represent. The name FA C rather than the name factorial can serve to 

identify F A C ’s solution.

Although we have now made subliminal any distinction between symbols and their 

denotations, we did not institute a formal connection between notation and its meaning 

merely to discard it in the next paragraph. We shall return to the definition of val when 

we discuss the mechanical reduction of expressions in Chapters 4 and 5.

There is ample tem ptation to be clever when performing reductions. The third step 

of the reduction above produces the subterm mpy(l, FA Cfdcrfl))). It is intuitively rea

sonable to replace this term by FACfO), since 1 is a multiplicative identity. However, 

reducing mpyfO, FA C f - 11) to 0 is suspect, since one of the subterms is undefined. While 

such "optimizing" simplifications make sense in computer arithmetic, we shall prohibit 

them by requiring tha t simplification only be applied to convergent terms, th a t is, to 

terms tha t arc guaranteed to reduce to values.

DEFINITION 8.2-3. An operation (or predicate) f  is strict if  it is undefined whenever 

any of its arguments is undefined. Strict operations that also respect n, so that 

ff..., u ,...) — n as long as no arguments are undefined, are said to be completely strict.

It is always assumed that the operations and predicates are strictbut not always com

pletely strict. The assumption implies tha t tex t cannot be "thrown away" through 

simplification in a reduction. The conditional reduction rule is therefore crucial, since by 
it aione may divergent subexpressions be discarded.

2.3. Reasoning about Recursion Equations

We shall mainly use induction to reason about specifications. The methods used 

most are structural induction and subgoat induction, illustrated below. The examples in 

this section are based on recursion schemes or on recursion equations over In t. Infix 

notation for the arithmetic operations and predicates is used in order to make the exam

ples easier to follow. Later, we shall revert to prefix notation.
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2 .3 .1 . S t r u c t u r a l  I n d u c t io n  Structural Induction is the familiar technique for 

proving a proposition over an inductively defined set. To show a proposition P  is true 

for nit elements of a set S, one gives a proof “ tem plate” for a parameterized version of P, 

Pfs). In a 6a«e step, P(a) is proven directly for a subset of minimal elements in S. In an 

induction step, the assumption of P(o) is shown to imply P fs ') where s ‘ is any “next” 

element of S. For example,

PROPOSITION 3.3-1. Let G be defined at follows over Int:

Gfx, y, :)  <=  (x =0) — y, G(x — 1, y -h s).

Then for all a > 0  and for alt b and c, G(a + 8, b, c) =  G(a, b, c) + :G(a +1, b, c).

PROOF: By induction on Int. Let P(k) be

“F or all b and c, Gfk + 8, b, c) — Gfk, b, e) + G(k +1, b, c). ”

Base step fP(0)).

G{2, b, c)  ~  G(l, ct b -he)
-  GfO, b -he, b + 8c)

=  b-he

=  GfO, b, c) + G(0, c ,b -h e )

— GfO, b, c) -h Gfi, b, c)

A G

A G

A G

y G ,  twice 

y G

Induction step fP fk) D Pfk - h i ) ) .  Assume G(k + 8, b, c) — Gfk, b, c) + Gfk +1, b, cJ.

Gfk + 3, b, e) =  Gfk + 8, c, b -h c)

=  Gfk, e ,b  + e) -h Gfk + 1, c, b + c)

= Gfk + 1, b, e) -h Gfk -h 8, b, c)

AG, k + 3 * 0  

Induction Hypothesis, Pfk) 

y G ,  k + i * 0

The following corollary to Proposition 2.3-1 is used later.

C O R O L L A R Y  8,3-8. Let FIB and G be defined by
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FIBfx) <£= (x < 1 ) ~  l t F IB fx - 2 )  + F IB (x- 1 )

0(x, y, :) <= fx =0) — y, G fx -1 ,  z, y  + z).

Then for  ail a > 0 , FIB fa} =  G(a, 1, I f

PROOF: The proof is by induction on Int using induction hypothesis nI f  a <  k +1 then 

FIB(a) — Gfa, 1 , 1}". The details are given in Appendix C.

a

2*3.2* S u b g o a l  I n d u c t io n .  Subgoal induction is an induction over the “depth" of 

recursion. The proof style, introduced by Morris and Wegbreit (1977), is natural because 

it uses the specification text as a proof generator. Hence, it emphasizes the notion that 

in writing a specification, the designer is in fact formulating a proof. Assume that all 

defining expressions are in branched conditional format:

F( xt x j  <*= Pj -  rJf p , -  pm -  rm

where the propositional expressions p. are mutually exclusive and exhaustive, and each r. 

is a recurrent term. An mpwf-oulpuf assertion ^ F fxi >•••* * „ / s) is associated with each 

function variable symbol, relating its arguments x. to its result z. Each branch of F ’s

defining equation generates a verification condition of the form3 P & I D R, P  is the 

premise that the predicate for the branch is true, I  is the inductive assumption tha t all 

serious functions used in the branch satisfy their input-output assertions. The conclu

sion R  states tha t the input-output assertion is true on this branch.

PROPOSITION 2,3-8, l e t  R  be defined by

Efz)  <=  (z - 0 )  — x,

(x &0) —* E(x —1) + 2x — l ,

Then for ait x, E(x) ~  i*

PROOF: by subgoal induction on E, E ’« input-output assertion is

3A third premise Is sometimes needed, stating that F  produces equal outputs on equal Inputs, 
This condition is not used in any of our proofs.
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VE ( x ; z )  =  “z = zs ”

E's defining equation generates two verification conditions 

t. (x =0) 3  V E(z ; x)

t't. [(x *0 ) & E( x —1 ;  :)j D "l?E (t ; : + S x - l )  

For verification condition (i),

2 =  0  

0 -  Or
m

2 - 1 *

premise P  

arithmetic fact 

substitution of equals

For verification condition fii),

z * 0  

Z -  ( x - l f  

z =  x: -  Bx + 1 

z?=  s + S x—1

premise P

premise I, that is V E( z - 1 ; :)

arithmetic

more arithmetic

The last line is 'I• E fx ; z + Sx ~ l )  with z — E(x —1). T h a t is, if x & 0 then E(x) =

E (x—1) + 2z — l =  x:. Since the predicates are exhaustive, the two cases establish the 

desired result.

□
Nate tha t by subgoal induction the undefined function [[ G ( x ) ^  true-* G(x).§ 

satisfies any input-output assertion. The function E  in the example above docs not meet 

its input-output assertion if it is given a negative argument, since it diverges. Subgoal 

induction is a partial correctness method; the functions involved satisfy their input- 

ouput assertions whenever they are defined. To show total correctness a separate termi

nation proof may be given, or a well-founded measure may be included in the input- 

output assertion.

Subgoal induction is often used when not enough is known about the underlying 

type to support a structural induction. Hence, it useful for reasoning about recursion 

schemes, as the following proposition illustrates.
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PROPOSITION 2.3*4. Let g be a commutative, ataociative, 2-place operation (i.e. for alt 

x and y, gfx, y) =  g(y, x) and g(x, gfy, z}) =  g(g(x, y), :)). Let G be defined by

Gfx, y) <= p(x) -*  y, -p fx )  — G(b{x), gfx, y)).

Then for all a, b, and c, G (a, gfb, c)) — gfb, G fa, c)).

PROOF: by subgoal induction on G.

Case 1. If pfa) is true, then by G*a defining equation,

Gfa, gfb, c)) =  gfb, c) ~  gfb ,Gfa, c)).

Case 2. Assume that pfa)\s  false, and by induction th a t for all 6 ' and c \  

Gfhfa), g f b c ' ) )  =  gfb',Gfhfa), c'))

Gfa, gfb, c)} =  Gfhfa), gfa, gfb, c)))

=  Gfhfa), gfb, gfa, c)))

=  Q(b, Gfhfa), gfa, c)))
=  gfb, Gfa, c))

AC?, -p fa}

g is commutative and associative

I.H.; b‘ =  b, and c ' =  gfa, c) 

V G , -p fa )

Proposition 2.3*4 also has a useful corollary.

COROLLAR Y  2,3-S. Let F A C  and G be defined by

FA Cfx) <*= fx =0) — 1, x * FACfx -1 ) .

Gfx, y) <=z fx =0) -*  y, G f x - i ,  x * y). 

Then for all a > 0, F A C  fa) =  Gfa, J).

PROOF: by structural induction on Int. See Appendix C.
□

2.4. Transformations on Recursion Equations

This section presents the central issue of this chapter; the translation of 

specifications from one form to another. For our purposes, the goal is to find a target 

specification th a t is in iterative form. Iterative form is of interest in general because of 

its correspondence to sequential control algorithms (i.e. programs) (McCarthy, 1003a;
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Patterson and Hewitt, 1070; Manna, 1074; Grcibach, 1075). Since digital circuits are 

also sequential in nature, many of the results of research in compilation of recursion 

equations are also or use in the synthesis of circuits. The compilation problem bas been 

studied widely; Cohen gives a survey of relevant papers in his dissertation (1080).

We embark on a scries of extensions to the specification language tha t make it pos- 

sible to find iterative “ versions'* of certain recursion structures. The first extensions arc 

utterly reasonable; they express ways th a t basic components might be physically com

bined. Later extensions force us to make assumptions about the computational power of 

the underlying type; they yield iterative versions through constructions th a t implement 

recursion.

W ith modest extensions to our notation we demonstrate tha t any iterative 

specification can be transformed to an instance of the “ universal iterative scheme"

F(x) < =  p(x) -*  f(x), F(g(x)J. (U})

The initial connection between specifications and circuit descriptions is mode on the 

basis of Ur

A collection of results is reviewed below, showing tha t any linear specification has 

an iterative version, although it may not compute in the same way as the original1.

The simple extensions are not enough for more complex cases. Non-linear 

specifications exist for which no iterative version can be found, unless further assump

tions arc made about the underlying type. Corollary 2.3-5 is an example. It gives an 

efficient iterative version of the factorial specification, but the transformation depends on 

the algebraic properties of multiplication. As stronger assumptions are made about what 

can be computed by the underlying type, larger classes of specifications become 

transformable. It is not the purpose here to explore these relationships in detail. We 

shall simply stipulate th a t transformation is a creative design task th a t is partly 

automntable. Obtaining a specification with n particular structure is a heuristic by 

which engineering proceeds.

4This is a fuzzy qualification at best, since no measure of performance has been assigned to 
the specification language. Strong (1071) develops a formalization of operational tranelatabiiitg to 
address this issue.
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2 .4 .1 . G r a m m a t i c a l  T r a n s f o r m a t io n s .  We shall refer to afiy “preprocessing" 

translation of a specification os a grammatical tram  formation. Such transformations are 

used to place specifications into a  normal form in order to apply a general construction. 

Such translations exploit Definition 2 .2-2  by symbolically folding or unfolding defining 

expressions, New definitions may be introduced into the system so th a t existing 

definitions can be folded into a simpler form. We shall see examples of this process in 

later derivations {e.g. in Section 2.4.4).

B r a n c h e d  C o n d i t io n a l  F o r m a t .  In Section 2.3, recursion equations were assumed 
to have the form

F( j t x j  <*= pt -  rt, pt  -  rt ,..., pm -  rn

Translation to this form would introduce additional function calls to replace r. if it were 

a not a term, and modify the propositional expressions to make them mutually 

exclusive.

B a la n c e d  F o r m a t .  A specification is balanced if each defining expression in the sys

tem is a recurrent term , or a  conditional whose alternatives are either both trivial or 

both serious. Extraneous function definitions can be used to balance alternatives. If the 

initial system is linear (iterative), a linear (iterative) balanced version can always be 

found (Greibnch, 1975, pp 7—12).

A r g u m e n t  P a d d in g .  In constructions th a t follow it will be necessary to alter 

specifications so tha t each defining equation uses the same formal param eter list. The 

translation involves changing identifier names in a consistent fashion, and possibly 

adding unused formal parameters. By convention, the don't-care value is supplied as an 

argument when the corresponding formal param eter is padding.

2 .4 .2 . D i s t r l b u t iv l t y  o f  t h e  C o n d i t io n a l  a n d  M u lt ip le x o r s .  The conditional 

construct distributes through application. For instance, the expressions 

[[p — f(r, s ) , f( t ,  u) |  and y (  (p — r, tj, [p — s, uj ) fl are equivalent, even if /  is 

replaced by a function variable symbol5.

^provided the function depends on one of its parameter. Consider ( F(xJ <= c .|. If 
Bp — F(a), F(b)\ = \F (  fp — a, bf JJ, then it reduces to c, whether p is defined or not. 
Definition 2 .2-2  suggests that conditionals should be undefined if their propositional expressions
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While the non-strictness of the conditional is crucial to expression valuation, it is 

desirable to introduce a selective operation to replace conditional expressions when 

strictness isn 't an issue. A multiplexor is a strict version of the conditional expression.

DEFINITION 2>4-L Let p be a propotitional expression. The operation mux is defined 

as follows

b i f  p is true
undefined if p, b, or c is undefined 
e i f  p is false.

muxfp, b, c) —

Giving mux the status of an operation raises several technical problems. One of its 

operands is a propositional expression, which must now be adm itted as a possible term. 

This forces tru th  values into the underlying type, and the remaining operations must be 

extended to handle them. We may assume either tha t the underlying type "adm its 

selection", perhups through an encoding of tru th  values in the carrier, or th a t the valua

tion function has been patched with a special case for multiplexors. In any event, the 

issue is not crucial because multiplexors arc only used here to replace conditionals.

Transforming Qp —» r, a]] to Hmuxfp, r, is tantam ount to an assertion th a t r 

and s both converge. For example, replacing

F(x) <=  pfx) — / fx), f(F(x)).

by

F(x) <=  ffmuxfp(x), i ,  F(x)).

is invnlid because in the second form, the defining expression always diverges, whereas 
the first does not. The following criteria are sufficient to guarantee that replacement by 

multiplexors is harmless:

1. r and s arc trivial expressions.

2. The surrounding specification is linear.

The conditions insure tha t r  and s will be ground terms in any reduction, and will there

fore always converge. If the surrounding specification is linear, p must be trivial by 

Definition 2.1-3. By condition (1) r and s contain no serious subexpressions, and

are.
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divergence cannot be introduced through unfolding the recursion equation in which they 

occur. Condition (2) implies tha t no prior substitution has introduced a serious expres

sion.

2*4*3* Combined Operations* The notation is now extended to permit groups of 

operations to be expressed as a single combined operation.

Constanta. For each constant c introduce a constant-operation with symbol K c.

K e(s) - c .

identifiers. For each coordinate of the state, introduce a projector, jr..

n ;(x ,> xt  >-"> XJ  ~  xr  

Serial combination. Operator composition is expressed by juxtaposition.

! qN  =  I(qM ) ‘

Parallel combination. A sequence of operations enclosed in angle brackets denotes 

ubrondca3t1' of the argument.

!•“ > / n-> (: )  =  ( I i ( : )  >-"> f n(2)  )'

These extensions make sense in terms of circuitry. As their names indicate, parallel and 

serial combination suggest ways th a t components are physically wired together. Projec

tion is a “ tic into a bus". A constant-operation corresponds to a fixed source.

The goal is to rewrite any terminal term over the identifiers z , ,..., xn as something 

of the form mt(x{ ,..., xnJ, where 7  is a combined operation. In the process, individual 

identifiers are replaced by their coordinate addresses in an argument vector. The com

bined term may be written simply as 7 (z), where the identifier z stands for the state of 

the compulation.
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PROPOSITION 8.4-8' Define a trantlator 7, taking terminal terms to combined opera

tions, as follows

T l c l = K '

T II*,*11 =  Wf

T l f { l t fJD  = / < T  |I T l t ^ >

For any terminal term t over the identifiers x{ i n

w i | I r l I < K « / , . . , « J I  =  I .
Xt >'"> Sn

PROOF: The proof is a straightforward structural induction on L v  but requires a for

mal definition of substitution. Several similar proofs may . be found in W and’s text 

( 1080).

P

Combined operations will be introduced exclusively by the translator . The under

lying type is not necessarily closed under arbitrary combinations, for if it were, they 

could be used to build data structures. As with multiplexors, the use of combinations is 

limited to cases where they can be dealt with syntactically by an enhanced valuation 

function. They serve simply as “macros”.

Notice th a t the term |\ f(e ) \  translates to |/< /C * > ]]. But by the definitions above 

of serial and parallel combination,

/ <  /<* >  (z) =  f(i?{z})  =  f tC (z)

Although the translator encloses all argument lists, even those of length one, in a parallel 

combination, we shall suppress the brackets in the case of l-place function combinations 

for the sake of legibility®. Thus $f< K*>  D is written [[//Cjl.

8A quite elegant approach to programming results from the algebra of combinations in which 
this transformation is an elementary rule (See Backus, 1078, 1081). The use of combined opera
tions is transitory in this presentation; it lasts until Section 3.4.
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2 .4 .4 . U n iv e r s a l  S c h e m e s . Specifications can be classified by a collection or 

representative schemes to which they can be transformed. Using grammatical transfor

mations, multiplexors, and combined operations, there is a construction by which any 

iterative specification can be transformed to an instance of the scheme

Ffx) <*= pfx) — f(xj, Ffgfx)). (U{)

The construction is straightforward, and is roughly the same os Cooper's version (1007) 

of the folk theorem: "Every looping structure can be transformed to a single while—loop" 

(H ard, 1080). However, it is carried out in a functional notation. We will make do with 

a small example, itself a generalization th a t shows how to construct iterative versions of 

certain linear specifications. Consider the recursion scheme:

L(x) pfx) — ffx), h(Lfgfx))

and the iterative system

L returns hnJgnfx), where the superscript denotes rt-fold composition, and rt is the 

number of times g must be applied to x in order to make p true. Intuitively, G computes 

f g n(x) and passes it to //, along with the initial value of x. H  uses p to recompute rt, and 

applies A that many times, It is not difiicult to show th a t

PROPOSITION S.4-3. For all a, L(a) =  Gfa, a).

. PROOF: (Appendix C).

Wc shall now construct an instance of Ut from specification R Q. The construction 

requires the initial system to be in balanced form (Sec. 2.4.1). To balance our example, 

we need only replace the z in H's defining equation with a dummy function call. Fa 

defining equation is padded to make its formal parameter list conform to the others.

Gfx, y)  <=  pfx) — Hfy, ffx)), Gfgfx), y). 
Hfx, y) <*= pfx) — x, H(gfx), hfy)).
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Gfx, y) <t= pfx) — Hfy, ffx)), Gfgfx), y). 

Hfx, y) pfx) — Ifx, m), Hfgfx), hfy)).

?(z, V) <=  *•

The next step iutroduces a new param eter to record which function is “ in control", 

and rewrites the system os a single recursion equation. It m ust be assumed th a t the 

encoding can be represented in the underlying type. Let control token w range over the 

values { Q, II, 1} and let the predicate a tf  be a test for one of these values. Transform 

R t into a single deGning equation for function F:

R ;

Ffw, x, y) <£= atffw, I ) - *  x,
atffw, G) -> [pfx) — FfU, y, ffx)), F(G, gfx), y)], 

[pfxy-*  Ff I, x, m), FfU, gfx), hfy})].

The propositions distribute. We Grst push p inside the call to F; since the scheme is 

linear, multiplexors can be used for selection.

Ffw, i ,  y) <=■ 

atffw, \) —► x,

atffw , a / - *  Ffinuxfpfx), II, G), muifpfx), y, gfx)}, mxtxfpfx), Jfx), y}}, 

Ffmuxfpfx), I, H), muxfpfx), x, gfx}}, muifpfx), a, hfy))).

D is ir ib ut io n  o f  n / f  y ie lds

R.

Ffw, i ,  y) atffw, i) — x,

F f  muxfatffw, Q), muxfpfx), II, Q), muxfpfx), I, 11)), 

muxfatffw, Q), muxfpfx), y, gfx)}, muxfpfx), x, gfx}}), 

m it xfat ffw, G), muxfpfx), ffx), y), muxfpfx), ■, hfy)}}.

The operations of R^ arc structurally combined to get the desired instance of U Let
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p ' =  at?<irt K !>

r  = *t

g ' ~  <  m u x< a t? < K J K ° >  m ux< pjrt  1<H !<?> m ux< p jr t K t K H> >  

mvtz<at?<7Tt K ° >  m u x < p n t na gn f> mux<,png Kf  gjrg> >  

m u x < a t f< ir t K ? >  m u x < p n gf x g ns> m u x < p n g K m 

Using these combined operator symbols we arrive at the desired instance of

The construction preserves the meaning of the initial specification. It can be shown by 

subgoal induction on F  tha t for all a and 6

F f a ,  a, b) =  Gfa, b),

F(H, a, b)  =  Hfa, b), and 

F f  I, a, b) =  Ifa, b).

Hence by Proposition 2.4-3, F f a ,  a, a) — Lfa), where L  is defined by the linear equation 

we began with,

The construction can clearly be generalized to arbitrary iterative systems, and a 

generalized construction yields a universal linear scheme.

THEOREM S.4'4• f f  multiplexors and combined operations are allowed then

i. Any  iteratiue specification can be transformed to an instance of the scheme U{:

Ffx) < =  pfx) -* ffx), Ffgfx)). 

it. A n y  linear speciyfeafton can be transformed to an instance of the scheme UL t

Ffx) <=  pfx)  — ffx), hfx, Ffgfx))).

PROOF; Each scheme is a special case of a construction presented by Cohen (1080, pp. 

030-043), who cites Chandra as the originator of (it) (Chandra, 1072).
□

Patterson and Hewitt (1072) also note the universality of U^ when they present a

F(z) < =  pY'•> -  I ’M , F ( g W -
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flowchart schema equivalent to any linear specification. The following theorem restates 

their result as an assertion about transformability to iterative form.

THEOREM Let F  be defined by U^, and consider the specification.

Gfu, v, x, y, z) < =  pfx) — Lfu, m, u, m, fx),
G(u, m, gx, m, m).

Lfu, v, x, y, z) <Z= pfx) -* z, Mfu, gx, gx, u, :).

Mfu, v, x, y, z) < =  pfx) -*  Lfu, m, v, u, hfy, :)),

Mfu, v, gx, gy, z).

For all a, Ffa} =  G(a,m, a,m,m).

PROOF: fAppendix C).

The extensions allowed so far are not powerful enough to yield iterative versions of 

arbitrary specifications. The following well known example is due to Patterson and 

Hewitt (1072):

THEOREM B.J-6. I f  multiplexors and structural combination are all that is allowed, there 

is no general transformation that yields an iterative version of

Ffx) <= pfx) -* ffx), h f  Ffgt(x), F fg /x )) ).

DISCUSSION: The usual statem ent of the theorem is that the scheme is not "flowchart- 
able". Its proof depends on formalizations we have not introduced and so it is omitted. 

The strategy is to show tha t the iterative version would need an unbounded number or 

identifiers to produce the right value in an arbitrary underlying type. For details see 

(Patterson and Hewitt, 1072), (Manna, 1974), or (Greibnch, 1075).
□

2 .4 .5 . S y n th e s is  o f  I t e r a t i v e  F o r m  Specifications in iterative form correspond 

with the notion of sequential control associated with flowcharts; a program statem ent is 

a function on the program's state. We have assembled enough notation to permit any 

linear specification to be translated to iterative form and hence to an instance of the
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scheme Uf . So far, we have made simple stipulations about the computational qualities 

of the underlying type. It must admit selection and certain forms of combination. It 

must be robust enough to represent a finite number of control tokens and have a test for 

equality. The review included the negative result th a t not alt specifications have itera

tive versions.

On the basis of recursive structure alone, it is not decidable whether a non-linear 

specification has an iterative equivalent (see for instance Greibach, 1075, Theorem 7.0). 

However, in the course of our discussions we have managed to find iterative versions of 

all of our example specifications, Corollary 2.3-5 shows that by introducing an “accumu

lator", the factorial specification

FACfx)  <=  zero f f x ) - *  1, mpyfx, FACfdcrfx))).

has iterative version

Gfx, y) <£= zero f f x ) —* y, Gfdcrfx), mpyfx, y)).

This version is intuitively better than the construction of Theorem 2.4-5 because it is 

faster; but its validity depends on the algebraic properties of multiplication.

Corollary 2.3-3 shows th a t the Fibonacci specification:

FIBfx) Uffx, 2 ) —* 1, addf FIBfdcrfdcrx)), FIBfdcrfxf) ).

Has iterative version

Gfx, y, z) < =  rcro f fx)  — y, Gfdcrfx), z, addfy, z)).

Hence, not all instances of the troublesome non-linear scheme of Theorem 2.4-0 resist 

translation.

Cohen (1080) reviews efforts to address the translation problem. The work gen

erally fallows two lines, both of which ore forms of synthesis. Darlington and Qurstall 

(1077) describe “an inference system in which the sentences are recursion equations" 
where human guidance adds information th a t makes transformation succeed. A 

specification is transformed algebraically by folding, unfolding, and the application of 

previously established transformation rules, until an improved specification emerges. 

The other approach is to assume that explicit operations exist or can be implemented in 

the underlying type, in effect supposing it can be used to implement certain recursion 

patterns. More powerful operations permit wider specification classes to be linearized.
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Having looked at the transformation-system approach let us now consider the 

recursion-implementing strategy. Suppose that the underlying type contains operations 

th a t are powerful enough to implement w ith stacks. T hat is, assume that a value e; 

completely stric t combinations called push, pop, and top; and propositional combination 

empty?; all exist th a t satisfy

empty f(c) =  true emptyfpuskfu, v)J =  false

topf t j  =  ■ popft) =  ■
topfpushfu, v)) — u popfpushfu, v)J =  v

If these powerful operations are available, then general methods exist to linearize arbi

trary  specifications. The construction below, due to W and and Friedman (1078), is used 

in Chapter 5. It introduces a “run time stack” and a new serious function to handle 

“return jum ps". The specification is then repeatedly refined so th a t control is linearized.

CONSTRU CTIO N 2.4-1. (Wand and Friedman, 1978)

For simplicity, assume that in the initial specification all functions are defined over 

the same set of identifiers.

^ <̂ = 

t

FJ X1 <=

Designate a set of action values, at } where A will be determined by the time the

transformation is complete, and rewrite each equation as

F { Zn’ 1

The new parameter o  names the recursion stack. Add a new function variable symbol 

ft, for “return” , whose defining equation is constructed as we go along. Its general form 

will be
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' R(v, a )  <=  empty ?(a) —► v,
eq?(top(cr), a J  —* do-aamethiny-wilh'V-and’restorc-a,

eq?(top(tr), a j  -* do-sometking-with-v-and-reitore^a,
*

♦

eqf(topfa), a j  —* do'3ometking-with~v*and-re3torC'tT.

Arbitrarily select a serious expression of the form R(e, <j )  and transform the system as 

follows

1. (Tail*recursive call) If e is of the form F.(tt t j ,  and each tj is trivial, 

change R(e, a)  to

Fj (tj tn, a).

2. (Decision) If e is of the form p(tf 1^ - *  r, j ,  and each t. is trivial, change 

R(e, a )  to

p (^i t '" t  t^} —*■ R( f ,  (t), R  (st tr),

3. If e is not in any of the forms above, then find an expression e 'o v c r unused 

identifiers yt ym\ a serious expression r; and trivial expressions t , f n ; 

such that

.  =  « ' f p’  '"1
lyr yg , - > y j

If c is a conditional, choose r from its propositiona] expression if possible. 

Obtain an unused action value a, and replace Rfe, tr) by

R (r , puiltfa, puah(tf push(tm, a}...) )  

and add to R  *s defining equation the clause

eq?(top(ir), a )-*  R (  e*\ * ' * '  m] , popm( a ) )
y j

where «. stands for the term the term [[ topfpop'ftr)}^.

In words, step (3) says to pick a serious term to call recursively. Any trivial values 

needed on the return may be computed now and saved on the stack. By the time the 

transformation is complete the stack parameter will have been introduced to all serious 

calls, and the specification will be in iterative form.
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EXAM PLE 8.4-3. If the W and-Friedman construction is applied to the specification

F(x) < =  p(x) -* €, h( F(gjx)), F fg jx ))  ). 

one possible target specification is

F(x, a )  <£= p(x) — R(e, a), F( g jz j ,  puah(0, puahfgjx), a})).

R(v, a )  <=  empty f  (a) —» v,
atf(topfa), 0} — F (  top(pop(a)), puahfl, puah(vt popfpopfa))}) ) ,  

at?(top(a), j ; — R(h(top(pop(tr))t v), popfpopfa)) ) .

The derivation is shown in Appendix C.

This construction does not state how to choose which serious term to call. In the 

example, the strategy was to evaluate arguments left-to*right. The obvious criterion is 

to choose an expression tha t is known to be needed. Mycroft (1080) gives an algorithm 

that makes this determination under certain conditions. If the choice is wrong, the ta r

get specification may errantly diverge. Since partially correct target specifications are 

sometimes acceptable, we shall leave this choice to the designer’s discretion.

2.5. The Scott-Strachey Notation

This section is a brief review of the "type free" notation of Scott and Strachey. It 

is a language defined over a universal type in which any "reasonable" (i.e. computable) 

type can be embedded. It is therefore the limit to which we might extend our 

specification language. W hat the language does not do is say anything concrete about 

representation. Any use of the Scott-Strachey notation as a starting point for design 

synthesis entails an initial subgont of choosing an appropriate type over which a more 

concrete specification can be made. The Scott-Strachey style has been used with partic
ular success to describe the semantics of programming languages. The rather rich nata

tion th a t has evolved out of this area is used throughout this dissertation. Tennent 

(1076), Gordon (1079), and Scott (1977, 1982) each give a casual introduction to the 

notation and its use. The standard tex t on the subject is by Stoy (1977). The two 

volume work of Milne and Strachey (1976) is a comprehensive example of the use of the 

theory to describe a programming language.
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For our purposes Scott’s is a theory of data types, which he calls domains. One 

may think of a domain as a set of descriptions, or answers th a t might be printed by a 

program. Some descriptions are better than others, in the sense th a t they are more com

plete; some arc incomparable because they ore not intended to describe the same thing.

A domain then, is a  set D with a reflexive, transitive relation called approximation 

and expressed by the symbol *C\ Membership in D is expressed by the symbol * E \ D 

must satisfy certain axioms w ith respect to It must contain a  minimal7 (or empty, or 

divergent) description *XD' that approximates every other description. T h a t is,

for a t l d B  D , X £  d.

Intuitively, any sequence of successively better elements in D must converge to a limit 

th a t is also in D. Operations on domains are required to be continuous, tha t is, to 

preserve limits8,

2.5.1. Flat Domains. A basic, or flat, domain meets the minimal requirements:

1 E V ~  -L or x — y>

Examples:

Truth values Boot =  {ff, jf, JL).

Integers Int — {..., -2, -1, 0, 1, 2, ...} U {_L}.

Numerals N m l  — [strings over {'O', *1',..., *9')] U {_!_}.

Identifiers Ide =  {±, u, v, w, x,

The conventional ordering on these sets (e,g, <  on the set of integers) is not the domain 

ordering: a program th a t is supposed to print *5' may diverge and produce no descrip

tion, or it may print 'S', but if it prints '4' then it is not an approximation. Bool and 

Int arc semantic domains corresponding to the carriers of our underlying types. Nml and

7 A maximal (or overdcflncd, or contradictory) description, denoted 'T^', may also be as

sumed. It docs not enter into any of the discussions in later chapters, so I shall ignore it in this 
review.

'Continuous functions preserve limits over a wider class of sets than those that arc mono
tone, Monotonicity can be generalized to “dlrectedness" (Stoy, 1977). The real concern is not 
with individual descriptions, but with neighborhoods: collections of approximations to the same 
ideal. Scott has recently rephrased his formal presentation in these terms (Scott, 1982).
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Ide arc syntactic domains wherein wc have defined our specification languages. We shat) 

sec later th a t the distinction is subjective.

2 .5 .2 .  N o n - f l a t  D o m a in s  Complex domains are built by combining domains in 

various standard ways. Given domains A and B, wc will have need for the following 

domain constructors:

A X B The (coalesced) product domain is the set {(a, b)[ aEA and 6 Efl} with 

ordering

(a, bj (a% b') iff a Q a' and b C K

=  serves consistently as the minimal clement.

A +  B The (separated) jum  domain is the set A U B U  (XA+q} with approxima

tion ordering

* E A+BV*ir* = ± A+B o r x C A y o r z  C g y.

A —1 B The /unction domain is the set of continuous functions from A to B, with 

approximation ordering

/  g i f f z B  A implies f(z) g(x).

A“ The n-ary product domain is a generalisation of the product domain con

struction to n*tuples, for a given n.

Let e be an expression, possibly including the identifier x, and suppose th a t when

ever some element flEA is substituted for z  in e, the result is a unique element of B. 
Hence, substitution induces a function from A to B. The abstraction of e by z, written 

flX x. e [), denotes the function just described. If e is suitably expressed, then this func

tion is continuous; th a t is ( \ z . t ) B A —*B, Applicative expressions tike §f(z)\|, abstrac

tions themselves, and conditional expressions

p — a, b
a i f  p = it 
b i / P = jr  
x i / P = x

are all suitable for abstraction. The nesting of X-expressions gives rise to identifier 

conflicts, and so the substitution rules must be refined to replace only free identifiers— 

those tha t are not in the scope of an interior X-expression.
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There are several conventions for abbreviating this simple but verbose language. 

Since parentheses serve only to state the scope of an expression, they are often 

suppressed, One may write l/n f l rather than Application associates to the left,

so th a t [I/pa]] means \(S g )o \ .  (Note tha t this differs from our convention for serial 

combination.) The function-domain constructor associates to the right to be consistent 

with this convention. T hat is, HA —* B — C]] means QA —► (B —► C)Q. When the con

text allows it, membership in a function-domain is expressed with a colon rather than 

the membership symbol * E \ Thus, f l / ;A —*-B]] mimics the mathematical notation for 

saying “/ i s  a partial function from A  to B.u

The scope of a X-cxpression extends as far to the right as possible, generally to the 

end or a line, or to the first unbalanced *)'. QX uv . ej] abbreviates QX uX is. e |.  We will 

sometimes write ^Ffx)  <=  e.Q instead of [[F =  Xx.cjj; and |[e where x ~  f J instead of 

l ( \ x . e ) ( t ) $ .

2 .5 .3 . D o m a in  O p e r a t io n s .  For flat domains, continuous versions of basic opera

tions may be assumed. There are standard operations to go with complex domain con

structions. These operations are expressed with special notation.

P r o d u c t s .  Let D — A X B, aE A , and i E B. There is a  pairing function {*, *) E

A—*B—*Dt and there are projectors * \0  E  D—*A and * jJ  E  D-*A  th a t satisfy®
(a, 6}J0  =  a (a, 6) j i  =  b

This notation may be extended to n-ory products.

S u m s . . Let D — A + B  and let o ' E D and b* E  D be elements that came from a E  A

and b E B  respectively. Operations E £) — Bool (inspection), *inD E A — D

(I'n/ec/ton), and *atA E  D —* A (restriction) exist tha t satisfy

=  “  ainD  =  a ' » ' « * = •
6 'itfA =  f f  b'asA —

The corresponding operations itB, asB, and inB exist for the summand B.

’Usually, *11 and *12  arc used Instead.
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2 .5 .4 . F u n c tio n a ls *  Functions qualify as data types, and there are a number of 

higher level functions-on-functions, or functionals, tha t arc useful. Among these are the 

structural combinators (e/. Sec. 2.4.3):

I C - X s . c

n,j =  (  X z.  z\0)t jrf — ( \  r . r )  I), etc.

serial =  X f g . f  ^ z . f ( g z ) )

parallel — X/^ »•*/„ • (  X s z ,..., f n s'1))

The following standard functionals are used later.

apply :(A-*B)  — A — B  takes a function and an argument and returns the correct answer 

for th a t function on th a t argument.

apply — X /c . / a

curry: ((AX B)—*C) —* (A— B— C) takes a 2*place function and returns a 1-place func

tion tb n t must be applied twice to get the desired Yatuc.

curry =  X/.X  u.X tu f ( u , v).

For example, if a dd: (Int X  I n t ) —- I n t  is the 2-place addition function, then 

(curry add)(8) returns the function th a t adds two to its argument, and (curryadd)(8)(8) 
=  add(8, flj. There is an inverse to curry th a t “ unwraps" argument tuples.

uncurry =  X /. ( \  x . f ( x \0 ) ( x \ l )  )

Uncurry is expressed implicitly by enclosing formal parameters in square brackets,

[X [u, v | . c j.

2.5.5* Recursion* If f ; D —*Dt then rfED is called a Jiied point of /  if d — f(d). 
The function fix;(D —*D) —* D returns the minimal fixed point. T h a t is, (fix J) — f f f ix j ') 

and for all fixed points d of /, fixff) £  d. Fix is continuous and expressible in X- 

notation10.

If D is itself a function domain, then fix yields the solution prescribed by Definition

2.2-2. For example, let D — Int  —* Int  and take /  to be

*°One version is the Y combinator: Y  = X/.f X x.f(xx))( X x.f(xx)}. For a discussion, see 
(Stoy, 1077).
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X £. ( \  n . (n  =0) -*■ 1, n *(£(n -1 ) }  }, f

Note that /  has the required functionality, D —* D. If FAC  =  fixff) then FAC  =  J(FAC). 

T hat is,

FAC -  ( \ n . ( n  =0) — 1, n (FAC)
=  X n . (n —0) —* 1, n*  (FACfn -  I))

by substitution. Since fix gives the minimal solution we are justified in writing the equa

tion above as

FAC(n}<±= (n~0) — 1, n*(F AC fn—1)}.

On the other band, this discussion shows th a t we can avoid self-reference in our 

specifications by using fix  in writing

FAC  =  f i x f  \ ( . ( \ n . ( n = O j  —► 1, n *({(n - t ) }  J )

2 .5 .0 .  R e f le x iv ity .  Fixed points can be defined over any domain, and fix is aiso 

used to define self-referential, or refiexivc data  types. For example, the domain of “s- 

cxpressions":

Sexp =  Atom  +  (Sexp X Sexp)

describes Lisp's da ta  space (McCarthy, 1000); an s-expression is cither atomic or consists 

of a pair of s-expressions.

2 .0 . O t h e r  I s s u e s

The additional power of the Scott-Strachey notation, the facilities to describe data 

structures and to manipulate functions, make it possible to attack aspects th a t are 

difficult to address in the more concrete typed language. Issues such as the specification 

of meaning (the original motive of Scott's and Strachcy's work) and the formalization of 

“control" yield quite gracefully to the calculus. These topics and a few others are 

reviewed in this section, partly to exercise the rather extensive notation tha t has been 

introduced so far. Each of the issues discussed here arises later in the investigation.

2.6*1* Specifying the Specification Language. Wc give a brief example to 

demonstrate the use of Scott-Strachey notation to describe semantics. Consider the 

language of terminal terms defined in Section 2 .2  (Definition 2.1-2). Suppose for simpli

city tha t all operations take exactly two operands. The syntax of L T can be defined as a 

reflexive d a ta  type
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Term  =  N m t + Ide + Apl 

Apl =  Opr X Term X Term

Terms are built from atoms Id the flat domains of numerals and identifiers and a collec

tion of operation symbols. A domain Apl of applicative terms is recursively constructed 

by pairing an operation symbol with two operand-terms. Numerals denote integers and 

operators denote 2-place functions on integers. These meanings are also domains, 

namely Int and Opn — (Int X Int) —* Int; let them be given by semantic functions 

Af:Nmt —* Int and IK:Opr — Opn. A  mapping from identifiers to tbcir meanings is also 

needed, and will be in the domain of environments Env =  Ide —* Nml.

We are now ready to define a semantic function 2T: Term —* Env —* Int th a t 

specifies the meaning of a term:

2T =  X t p . (t iaNml) -* N (t  asNml),

(t is Ide) — JN(p (t aside)), help ( t as Apl) p.

help =  X ap .(IK (a[0)) (W(a[ l )p  , T£(a\8)p ).

The auxiliary function kelp simply makes the definition easier to read. Help could be 

eliminated by expanding its definition in the equation for 2T; and so it serves as a 

"macro". Expressions like kelp, which have no free variables and can therefore always 

be eliminated by substitution, are called combmators.

Additional abbreviations make these definitions easier to read. A Backus-Naur 

style is used to describe syntactic domains and to document concrete syntax. Valuation 

functions are written as a set of identities in the style of Definition 2.2-2. Elementary 

coercions are suppressed through the use of naming conventions. The revised definition 

is given in Figure 2.1. The figure gives a standard semantics for Term; it says nothing, 

for example, about the order of argument evaluation or error recovery. Stoy (1077) gives 

methods for addressing such issues, one at which is introduced in the following section. 

Language specifications in this style will be made in Chapters 4 and 5.

2.6.2. Specifying Control. A continuation is a formalization of control in the 
domain Vat — Ana. A function in this domain takes a value produced in the present 

and states what is to be done with tha t value to produce an answer. One can linearize a 

non-linear specification by using continuations to describe a calling order. For example,
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Syntactic Domains

Ide 

Nml 

Opr

Term Nml  | Ide | Opr ( Term t Term )

Semantic Domains

Opn — (Ini X  Int) —* Int 
Env — Ide — Nml

Valuations

IK : Opr —* Opn 

i V ;  Nml — Int 
IT : Term —» Enu -* /nl

Z T M p  =  N(n)
T T l Q p  =  JV/p i)

Figure 2.1. A  Standard Semantics for Terminal Terms.

consider the following proposition:

PROPOSITION 2.6-1. Let F  and G be defined as follows 

P M  <= PM  — c, h( F(g0(x}), F(gtfx))  ).

Gfx, n)  <i= p(x) — k(c)j G(gjx), /X u . C/ff/iA v .n h (u t v) j ) J ).

Then for all a and 7 , C7/a, 7 /  =

PROOF: by subgoal induction on F. If p(a) is true then both sides reduce to 7  (c). O th  

erwisc,

(i) identifiers 

(n) numerals 

(0)  operators

(t) terminal terms

operations 

(p) environments
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=  G(gja), I \ u . G ( g t(a), [ \ v . - f k f u ,  v)]) j ) A G

=  / X  u .  G(gx(a), / X  v, yh fti ,  v)J) j  )(F(g0(a))) I.H.

~ 0 (g t(a)t / X u . 7 h(F(g0(a)}, v)J) eubatitution

=  / X  11. 7 V F(90{a)), vJKFfgJa})) LH.

-  7  h (  Ffgja)), Ffgjaj )  ) aubatitution

= 7  F(a) V F

□
A more palatable version of G results if we introduce names for its continuations,

G(x, k)  <=■ p(x) — it(c), G(g0(x), DoG(gJx) k)  )  

where

DoG{xt k )  <£= X v. G(x} DoRfv, k)).

DoR(xt k)  <5= X v . nhf x ,  v)>

in words, G "sends" e to its continuation, k, if pfx) is true. Otherwise it computes gj x )  

with a modified continuation, DoG, The new future of G is to save the result of the 

present computation white G computes gf(x), DoR applies k to the two results before 

resuming the original continuation.

These continuations inherit values from the present and record obligations for the 

future. They express the qualities of a control stack in a form suitable for reasoning. 

Wand (1080a) suggests th a t when seeking ways to implement recursion it is preferable to 

look for ways to represent continuations rather than to search a catalog of stack optimi

zations,

2 .0 .3 . D l s t r i b u t iv i t y  o f  th e  C o n d i t io n a l ,  R e v is i te d .  In Section 2.4.2 condi

tional selection was allowed to distribute over operands. By the following sleight-of- 

hand, we can conclude that distributivity applies to operations as well:



p  —  J(z)> g (y ) =  p - >  apply(ft *), oppiyfg, y )  A  apply

=  a pp lyf (p - *  f , g j , [p —  x ,  y } )  d ittr ib u tiv ity

-  b - *  I, g l  ( p - * * > v )  A  apply

(t is by no means clear that apply has a concrete counterpart in the typed specification 

language, for this would imply th a t operations exist tha t produce operations as values. 

The assumption of “ functional operations", strains intuitive correlation between the 

underlying type and the designer's component catalog, much more so than the admission 

of structural combination. However, we shall see in Chapter 5 th a t this factorization 

can be meaningfully interpreted as a metaphor for communication.

2 .6 .4 . M u l t ip le  V a lu e d  F u n c t io n s .  To describe circuits, we must eventually deal 

with objects that have several “output leads". Our development extends routinely to 
permit multiple valued operations, as we have already done by introducing parallel com* 

bination. However, the presence of multiple valued operations can lead to considerable 

confusion in detail. Whereas before we might appeal to the rigidity of the term transla

tor T (Prop. 2.4-1) to guarantee tha t all the nrities match correctly, it now becomes 

necessary to keep track of aritics explicitly. For example, of only one coordinate of a 

many valued operation is used, a projector must be introduced to access it. This m atter 

of “ typing" arises in several guises in the course of this presentation.



3. The Realization Language

A digital circuit description bos two principal properties to specify: what com

ponents arc in the circuit and bow they are connected to each other. A number of 

assumptions are made concerning the nature of components. They are perceived as hav
ing physically distinct inputs and outputs. As a direct consequence, the model defined 

below cannot address such issues os the relational (as opposed to functional) qualities of 

fundamental electronic elements1, and the bidirectional use of signal paths often found in 

physical implementations. The model is expressed in a language tha t describes logical 

behavior and physical connectivity, but not physical requirements such as power supply. 

Most im portant, the notation docs not refer directly to timing. Component behavior is 

coordinated by storage elements called registers, whose behavior in turn  is governed by 

an external synchronizing agent, or clock.

Since a component's inputs and outputs are distinct, its connectivity can be 

described by an applicative expression. The realization language is built from signal 

expressions, which are terminal terms th a t are sometimes annotated with an initializa

tion clause. A signal expression denotes a signal, or history of values acquired over 

discrete time. T hat is, a signal is a non-terminating sequence of "instantaneous" values, 

and is modeled by the reflexive domain SigD — D X Sig^. The semantics of a circuit 

description will eventually be given as a fixed point in this domain. However, the first 

concern is not so much with signals as with the values tha t occur on them. In particular

lA resistor is a constraint, such as 5ft = OHM n  {{v, i, r) I r =5} where OHM = {(v, i, r) I 
n = i*  r). To Introduce a resistor as a component, one would have to choose between 5ft = 
( X v .5  * t) and 5ft = ( \ i . v  -i-5), That is, either current or voltage would have to be free In a 
description involving resistors.

50
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we .would like to know whether a signal produces a specified value a t some time. Hence, 

it is appropriate a t the outset to invoke the ordinary interpretation or a sequence as a 

function from integers (i.e. time) to values. In Sections 3.1 through 3.4 a signal expres

sion is defined to denote such a  function; in Section 3.5 the meaning of the realization 

language is restated in terms of sequences, where the obvious coercion, 

behavior :St'gD —* (Int —* D), relates the alternate semantics.

Under the functional interpretation, a realization defines a first order liuear 

recurrence, a conventional formalism for digital behavior (See for example Hill and 
Peterson, 1008, Sec. 0.7), We shall later settle on the sequential interpretation because it 

leads to an experimental basis for design synthesis. Section 5.5 is a prelude to the imple

mentation of realizations in the modeling language presented in Chapter 4.

3.1 Digital Circuit Descriptions

The computational aspects of a circuit are denoted by a set of components whose 

instantaneous behavior is tha t of an operator in some type.

DEFINITION 3,1-1. A combinatorial component is an operator or predicate symbol in 

an underlying type.

The symbol J_ is reserved to denote storage in a manner described below. Storage 

components are informally called registers, although this term should not be taken 

literally. We shall build realizations from a language of signals, which express the 

behavior of components or groups of components.

DEFINITION S.t-S. The language Ls  of signal expressions contains terminal terms and 

terms of the form  [[c t Sfl, where c is a constant and S  is a signal expression.

For the next two sections, components are enclosed in boxes to distinguish them 

from ordinary operators. Thus ladd l is a component and [2] is a primitive signal 

expression over the integers. Behavior, defined just below, is a mapping from signal 

expessions and integers to values. T hat is, given a  signal expression and a “time",
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behavior is tlie value oa the expressed signal at th a t time, the symbol l@’ is abbreviates 

this relation.

DEFINITION S.1-3, Let Ls  be the language of signal expressions over a type with carrier 

D;  and let w denote the non-negative integers. The /unction :L G X w - * D  defines 

the behavior 0/ ground term s 6  Ls at any time n as

i. {T]®" =  c, for all n, where e g / ? .

»V. If  e 6  D and s 6  Ls

(e 1 sj®° =  c, and 

(c 1 s}°(n + >) =  i ° n.

Hi. If  f  is on m-ptace operation and s} ,..., are in Ls, then for alt n,

Definition 3.1>4 accounts only for ground expressions. The behavior associated 

with an identifier behavior is defined by equation, and a circuit description is a system of 

equations.

DEFINITION 3.1-4. A  signal equation has the form  “X  3  5 "  where X  is an identifier 

and S  is a signal. X  satisfies its defining equation if  and only i f  A'**” =  S Qn for all n. A 

circuit description is a system of signal equations, each defining a unique signal name.

Identifiers arc capitalized in circuit descriptions since they have became the serious 

symbols. The cqunlity symbol denotes behavioral equivalence, or equality of value at all 

times, which is obviously an equivalence relation. Consider the circuit description

A" =  1 I fm pFlf r .  X)

r =  1 i Y)

It can easily be shown by induction that for all n, K®" — n + 1 and ,Y®" =  n t .
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A circuit description is a linear form of circuit schematic. The identifiers name 

component outputs, and the equations specify connectivity. The description above is 

expressed graphically as

Schematics such os the one above serve as an informal notation and will always be 

accompanied by a equations! circuit description. The component [T] is a generic clocked 

register, but reference to the clock is omitted. The tokens {•) assert th a t at “ time zero" 

the circuit is in a state  where the registers contain the indicated values.

3.2 Translation to Circult-Descrlptlon Form

The central result of this chapter is th a t the correspondence between operations 

and components extends in a natural way to a correlation between the terms of an itera

tive specification and the signals of its realization. We shall refer to the change in 

interpretation of a term from its “ instantaneous" value to its behavioral counterpart as 

lifting. It is of course no accident th a t circuit descriptions are generated by the same 

language of terms used to develop recursion schemes. Our first goal is to establish a 

relationship between the universal iterative scheme and its register transfer counter

part. Let us establish some preliminary facts.

LEMMA 3.S-1. For constant a, signal S, and 1-ptace operation/,

\B (a  I S )  = 1(a) 1 HfSj.

P R O O F : By definition 3.1-3,

m t a  ! S)1«  = 1(a) = (1 (a ) ! fflfSj ( -
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and

! S))*<n+t) =  fffa ! S } ^ n i' 1̂ ) = f ( S ° n)  =  /£ ]W 7 ® n =  fffa) ! \J ] ( S } j^ n+i)

□

LEMMA S.8-8. Let f  be a 1-place opcra/ton and let

X = a  I \R {X )

U = a  ! K

T/ien A* id 6cAaw'ora//y e^ui'ea/erif fa £/.

PROOF: (by induction on n): Definition 3.1-3 shows X oa — a = U®°. Suppose that 

A'0n =  f/®n. Then by Definition 3.1-3 and induction,

jy O fn  + tj _  y £ y O « y  — — y ® n =  £ /® fn

□
The connection between the specification and realization languages is made on the 

basis of the universal iterative scheme U^

THEOREM 3.S'3. Le t F  be defined by the recursion scheme

F(z) <= P M  — I N ,  E(g(x)). 

and let X  be defined by the signal equation

X =  a I

Then i f  F  converges on a, there is an n fo r  which the following three statements hold:

11. p ( X Gn) is true.

it. p ( X Qk) is false for all 0 < k <  n.

Hi f(X*>n)  =  F(a).

PROOF: by subgoal induction on F. If p(a) is true then (t-iiV) hold for n — 0. Other

wise, Ffa)  =  Ffgfa)). By inductive hypothesis, there is an JVsuch tha t (t-iYt) bold for
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v =  tW i E f f l
By Lemma 3.2-1 V =  W\(a  1 V). If p(a) is false, statem ents ( i-m ) hold for the signal

V -  a I V

when n =  i f  V*i. By Lemma 3.2-2, X  — U and therefore statem ents (i-ttV) also hold for 

-V.
□

Theorem 3.2-3 affirms the assertion made in Chapter 1 th a t the universal iterative 

scheme U{ is related directly to the universal register transfer schematic.

•
! X

9 j

Here x° stands for the appropriate initial value on the signal X. We shall not address 

the question of how registers are initialized. To the basic feedback loop we may add two 

additional components, one to compute the terminal call, and one to represent the predi

cate. The component [7] eventually produces a value equal to the specified function's 

result; the component p produces a signal th a t indicates when a result is available.

R E A D Y

VALUE

Expressed os a circuit description, this schematic translates to

X  = x° i [F] (X)

VALUE  =  \J](X)

R E A D Y  =

Since circuits do not converge to values, but rather “arrive a t” them , we shall require a 

circuit th a t meets its specification to contain a signal th a t indicates when the specified 

value is present.
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DEFINITION S.S-j. A circuit description realises a specification i f  and only if  it has a 

signal R EAD Y, that states when the specified value is present, and VALVE, that contains 

the specified value.

3*3 Decomposition of Combined Components

Since any linear speciGcation can be transformed to an instance of Uf) the circuit 

description above is a realisation for all iterative specifications so long as combined 

operations are allowed in the underlying type. However, it does not have a very infor

mative schematic; wc should like to know what is going on inside those boxes. When 

structural combination was introduced in Section 2.4.3 it was claimed th a t it "made 

sense" in terms of circuit connectivity. We shall now justify th a t claim by showing that 

the packaging of operations in combined form is transparent to (i.e. distributes over) 

lifting. A given instance of the universal circuit description can always be decomposed 

into a more detailed schematic by reversing the transformation steps th a t combined 

operations.

To expose more details about the inner workings of a circuit, we must extract sig

nals corresponding to individual registers within the state. If a combined operation is 

decomposed according to the propositions th a t follow, it is reduced to base terms that 

are cither constants or projections. If projections are replaced by the identifiers from 

which they originated, they name signals tracing state-coordinate behavior. Consider a 

specification with formal parameter list (u, v), tha t has been translated to an instance of 

U{, and is therefore defined over a "monolithic" state identifier Z. Intuitively, if the 

behavior of Z  is a sequence of pairs:

m  ( : ! ]  : : : ]

Z  is decomposed by applying a lifted projector.

u  = \ n l ( x )  

v =  H E W

The following propositions establish the "local" transparency of structural combination 

to lifting. For serial combination (composition), by Definition 3.1-3, for all n,
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lM (z ) Ia'  = (f 11(2“’I = ffe(zaV) = W B W 'i  = /E k E O T 4" ■
Hence

p r o p o s i t i o n s .s -L  U B ( z )  =  U \( \a l ( z ) h

□
Since signal-tuples have not been directly defined, there is no immediate correspon

dence between the forms like I < /  g >  I fZ) and (0 (Z ) , 0 (2 ) ) *  However, when serial and 

parallel combination ore used in conjunction, as is always the cose when generating com

binations, the result is transparent.

PROPOSITION 3.3-8. If< g i. . .Q m >  \(Z) -  U ] ( \ g i \ ( Z ) \ g ^ \ ( Z i l

PROOF: By Proposition 3.3-1,

| / < g f . . . g m >  [ (Z )=  E l  ( I < g / . . . g m >  | (Z)).

By Definition 3.1-3, the meaning of parallel combination, and for all n,

l \ i < g i . . . g m > \ (Z )l« *  = 0 / H < S i - H - >  \ IZ II*"1

= IK i , ... t>m>(zaV)

=  tJZ*V)

=  / r / E W / # V » . [ G a l f f l l * ’)

□
By similar arguments,
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PROPOSITION 3.8-3. \ir i<gi...gm> \ /Z) =

PROPOSITION 3.3-4• For anV constant c, |AT \ (Z) — PH.

□
To deal with identifiers, we must look a t lifting in the context of a defining equa

tion. Consider the recursion scheme

F(xj ZjJ p * r, F(tj t^).

where propositional expression p, expression r, and all t. are trivial. Under translator T, 

F's transformation to an instance of U{ yields

G(:) T m N - * n r \ N , G « T l t l \ . . . T \ t ii\> {z)).

The identifier : is now understood to name the state descriptor (xt x j .  Our goal is 

to conclude th a t for any trivial term f,

w m m  =  i (•)

where the interpretation of t on the right is, of course, lifted. By Proposition 3,3-4, this 

equation holds if t is a constant; by Propositions 3,3-2 and 3.3-3, and structural induc

tion over the language of terms, behavioral equivalence holds if / is a trivial application. 

The only remaining question is whether (*) holds for identifiers. Since 7"| ar.J =  jr., we 

must have \iri\fZ) — x. to support the induction. Let us therefore introduce a signal 

equation

.v( = d O  f f l

for each identifier in F*s defining equation. Now by Theorem 3.2-2 the circuit realization 

far G defines

Z  -  S° y| < rg f /D . . . rn | (21 

If Z  is replaced by its defining equation in each X (’s signal definition, we get
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= 1 [e J] f  l<rH il.»TH nl> I(Z)) Lemma 3.S-1

=  irf ( ia)  I { n U U fZ)

= *? I /. by the argument above

Props. 3,3-1 to 3.3*4

This establishes the fallowing:

THEOREM 3.3*5. Let p be a trivial propositionat cjprestion. Let r, fn be trivial

ezpressions. The iterative recursion scheme

F f t j  ,..., x j  p  ~~* r, Eft j t^J. 

is realized by the circuit equation

That is, if the registers that produce signals X t X n are iniiia/ijerf with x°{ ,..., 2° 

respectively, VALUE will contain Ffx® x°t ) the first time R E A D Y  is true.

R E A D Y  =  p
VALUE ~  r

□

3.4 Circuit Synthesis

We shall call instances of the scheme in Theorem 3.3-5 simple loops. A realization 

is obtained immediately from any simple loop by a transcription to circuit description 

form. The transcription indicates a change in the interpretation of the terms in the 

specification; they have been lifted. Because its realization is immediate, a principal 

method of circuit synthesis will be to find a simple loop version of a specification.
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Let us bring our examples up to date, For concrete underlying types, the com* 

poncnt counterpart of an operator or predicate wilt henceforth be written in upper case. 

Thus, ADD  denotes I add | .

F a c t o r i a l .  The initial specification for the factorial function was 

FACfx)  <=  zeroffx) —* 1, mpyfx, FAC(dcr(x)) ).

By Corollary 2.3*4 the simple loop

Gfx, y) zeroffx) — y, G(dcr(x), mpyfx, y)).

gives the same answer when y  is initialized to i .  T h a t is, FACfx0)  — Gfx0, 1) for all 

non*negative x°. G*a defining equation translates to the circuit description

X  -  x° I DCR(X)
Y -  1 I M PYfX, Y)

R E A D Y -  Z E R O ffX )

V A L V E -  Y

By Theorem 3.3-5 the first time true appears on the READ Y signal, VALUE  will contain 

(*°)!-

Fibonacci. The initial specification was

FIBfx) <=r ttffx, 8) -* 1, addf FlBfdcrfdcrfx)), FIBfdcrfx)) ).

By Corollary 2.3*2 an equivalent simple loop is

Gfx, y, z) <= U?fx, 8) — y, G f dcrfx), z, addfy, z) ).

That is, for all x°, FIBfx0)  =  Gfx0, J, 1). Hence, a circuit th a t computes the Fibonacci 

function is described by

X  -  x° t DCR(X)

Y =  1 ! Z  

Z =  1 1  ADDfY, Z)

R E A D Y  =  ZE R O ffX )

VALUE -  Y

When A' arrives at zero, Y  will contain FIBfx0).
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G r e a t e s t  C o m m o n  D iv is o r .  We began with

GCD(x, y) <=  cqffx, y) — x,

tiffx, y) -* GCD(x, subfy, z)), GCDfy, subfx, y)).

The Uf-test must be distributed to get a simple loop. Since the specification is linear,

the test can be implemented with a multiplexor:

Gfx, y) <= eqffx, y}~* x, G(muxfUffx, y), x, y),

muxfUffx, y), subfy, x), subfx, y)) ) .

Arbitrarily push the conditional once more, inside the call to sub. We notice below a 

common subexpression tha t results.

Gfx, y) <*= eqffx, y) — x, G(muxfUffx, y), x, y),

subfmuxfltffx, y), y, x), 

muxfUffx, y), z, y)) ) .

This leads to the realization

X  -  z° I M U X fLT ffX , Y), X, Y)

Y -  i f  \ SU BfM U XfLTffX , Y), X, Y), MUXf LTf f X,  Y), Y, X ))

READ Y  =  E Q 9 (X ,Y )

V A L U E -  X

VALUE  contains G G D f x y ° )  as soon as R E A D Y  arrives a t true. Of course, common 

subexpressions can be ideutified:

A' =  x° I U 

r  =  y° I SUBfU, W)

U -  M U X (V ,X , Y)

W  =  MUXfV, Y, X }

V -  LT t f X ,  Y)

R E A D Y  =  E Q f f X , Y }

VALUE  =  X

A schematic for the GGD realization can be drafted from its signal equations:
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VALUE

R E A D Y

3 .S  A  D o m a in  M o d e l o f  B e h a v io r

In tbia section the behavior model is restated io the Scott-Strachey notation, The 

motive for the translation will become apparent in Chapter 4 where an interpreter is 

presented for a version of the metalanguage. The restatement not only unifies the 

semantics of specifications and realizations, but wilt be used later os an intcrpretable 

basis for experimentation.

Signals have already been described informally as “value sequences” , and it is 

clearly appropriate to model them as such. Let D be a flat domain of values th a t a sig

nal can hold. A signal is in the domain of infinite sequences

SigD =  D X SigD

For dBD, the constant signal Q[j Is modeled as

d 00 =  / i x X a . ( d , a )

Given tB S ig D and dBD,  the register |[d ! i j  is expressed simply as the p a ire d , a).

Behavior is given by a function behavior: SigD —* Int —*■ D, where Int is the domain 

of integers (Sec. 2.5.1).

behavior ~ \ s n . ( n  = 0j —* (s{0), behavior(s[I)(n — 1)

By the fixed point property, behavior(d°°, n) — d for all n; behavtorf (d, a), 0) =  d; and 

behaviorf (d , a), (n + 1))  =  behavior (a, n). Hence, cases ( i)  and (it) of Definition 3.1-3 

are satisfied in the model.
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A 1-plaee component must give rise to a function in St‘gD — SigD. However, we 

shall not take components themselves to be those functions, but rather define a com* 

ponent to be an operation-valued signal. T h a t is,

ComD ~  S i g ^

For iustancc, 0  — / “ • Until Chapter 5 only these constants in ComD will be needed.

Application is generalized to deal w ith signals. Component application becomes 

coordiniilc-wisc application of instantaneous operations to instantaneous values. For I- 

place operations an app/p-lifting functional like,

maptiat =  X f  s - {apply (f\0) (a\0) , mapliat ( f [l )  (a[ljj.

suffices. IT the goal were to be a formal study in this model, it would be best to assume 

that nil operations are unary, or perhaps currg’d, However, since our purpose remains to 

provide a notation tha t depicts implementations, we shall introduce a mechanism that 

admits n-nry (and u-valued) operations. There is a problem with structures: application 

of an u-placcd component to n signals cannot be achieved by a simple mapping func

tional like mnpliat, for at each instant the operation expects its argument to be a tuple. 

An additional combinntor is needed th a t, in effect, transposes a tuple-of-signals into a 

signal-of-tuples. If f;Dn —*■ D, the combinator needed to apply Z00 is

tran*po«cn =  X a , . . .an-(((»t W ,..., (*nW )  , (tranapoaejat \ l ) ... (aR\ l ) ) ) .

A generalized combinator, transpose, can be written to handle all dimensionalities. We 

arrive at the following definition of component application which we will denote with an 

infix colon. If / E  S * g p n _ p  and s E  Sigpn then

I / j  *1 =  maptiat // 'transpose a).

In the domains of signals and components, the meaning of a circuit description can 

now expressed as the Gxed point. T hat is, a circuit description {X. — S . } has meaning

This model of behavior is essentially tha t of Kahn (1973) who also uses and equa- 

tional signnl-dcfinition style. It is easily related to Milner’s simple process behavior 

model (1073) os presented by Gordon (1080). Minor variations are due to differences in 

emphasis, Milner’s model is more generally descriptive. He defines the domain of 

proceaaea as follows;
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Proeeaa =  Input —► (Output X Proceaa}

T hat we have modeled components instead as higher order signals is a technical point, 

since only constants in ComD are permitted. This restriction Is relaxed slightly and only 

temporarily in Section 5.1, as a means to introduce communication. Milne and Milner 

(1070) present an algebra of connectivity th a t covers a wider class of concurrent 

behavior than we attem pt here, We shall return to this point in the conclusion.
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Daisy is an interpreted language in which both specifications and realizations can 

be implemented. It is a descendant of Pure Lisp (McCarthy, ct.at, 1005) and to a lesser 

extent of Scheme (Sussman and Steele, 1078). Its interpreter executes in a d a ta  space of 

binary list cells and uses graph reduction to solve recursive equations. Daisy’s syntax is 

similar to many contemporary applicative languages (Burge, 1975) (Henderson, 1080); it 

is a language or expressions with no explicit sequential control constructs. Computation 

is demand driven, making interpretation yield "call-by-name” semantics. Consequently, 

specifications in Daisy are entirely consistent with the valuation function or Definition 

*2.2*2. Moreover, circuit descriptions can also be computed even though representation of 
behavior involves infinite da ta  structures. We will take a brief look a t Daisy’s imple

mentation and then give a formal definition or a subset of the language. The remainder 

of this chapter is devoted to dem onstrating how Daisy might be used to support circuit 

synthesis.

4.1. Operational Semantics — a Summary

Functional language interpreters can be classified in terms of string reduction, 

although few actually work th a t way. Instead, they use graph reduction to reduce dupli
cation of substituted text. The necessary bookkeeping is implemented by a hidden data 

structure called an environment, which represents a mapping from identifiers to values 

(see Sec. 2.2). Substitution steps are emulated by adding new bindings for formal 

parameters in this da ta  structure.

Recall from Definition 2.2-2 tha t the value of an expression depends in p a rt on the 

substitution of actual arguments for formal parameters according to function definitions. 

In reasoning about reduction we could arbitrarily unfold serious terms. However,

e s
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mechanical evaluators must have a computation rule by which they deterministically 

select which terms to unfold. A leftmost-innermost rule is most often used: the interpre

tation algorithm unfolds the Erst iterative term it encounters reading left to right, makes 

a substitution, then simplifies. This reduction strategy is referred to os call-by-vatue 

interpretation, since it mimics th a t operational argument evaluation protocol as defined 

in ALGOL 00 (Backus, et. a /., 1 0 63).

Daisy's computation rule is leftmost-outermost, meaning th a t the corresponding 

string reduction interpreter expands the Grst function variable symbol it encounters. 

This is analogous to passing text rather than values to subprograms and so is called a 

catt’by-name computation rule.

The advantage of calt-by-vnlue is its relative efficiency on conventional architec

tures. However, call-by-name is a stronger rule: it produces results more often. The 

difference is illustrated by a simple example. Consider the system

Ffx,  u) <S=

Gfz)  <*= Ffx, G(z)).

and suppose that the ground term G(a) is to be evaluated. Let —* and -* indicate 

reduction according to the definitions of F  and G respectively. The reduction sequences 

under t he two computation rules are

G (a } ~  Ffa, Gfa))^* a fcall-by-name}

G(a) — Ffa, Gfa))^* Ffa,  Ffa, Gfa)}) ... (call-by-valuej

This reduction clearly diverges under the call-by-value computation rule. If underlying 

operations are assumed to be strict, then call-by-name interpretation converges whenever 

a vnluc is defined (Manna 107-1, p. 388).

Daisy inherits its computation rule from the mechanisms it uses to manipulate its

data space. When a new record is built, each of its fields is filled with a suspension, or

expression closure, which contains the information needed to compute the value of th a t 

field. The computation does not take place unless and until the field is accessed. Once 

access occurs, and if the suspension converges, the referent field is updated with the 

result, so that subsequent access need not recompute it. This basic model of computa

tion has many names including lazy evaluation (Henderson and Morris, 1070), delay rule 

(Vuillcmin, 1074*), and demand driven (Ashcroft and Wadge, 1077; Kahn and MacQucen,
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1077). The East of these will be used here. Two consequences of demand driven compu

tation are of consequence here:

1. Since environments are suspended, argument evaluation is deferred untit identiGer 

bindings are sought. In the absence of other side effects, the deferral yields the 

call-by-name characterization of interpretation, with some improvement in efficiency 

because redundant reductions are shared (Friedman and Wise, 1070a),

2 . Non-finite data structures can be built from finite descriptions1. Only those por

tions of such structures th a t are needed are actually brought into being. (Friedman 

and Wise, 1070b, 1070c; Friedman, Wise, and Wand, 1070), In particular, the sig

nals tha t are modelled as infinite sequences in Section 3.4 can be readily expressed 

and manipulated in Daisy.

Daisy is a vehicle to state specifications and realizations in executable form. 

Specifications arc not compromised by the in terpreters evaluation strategy because the 

call-by-name semantics are consistent with their formal meanings. The facility to mani

pulate infinite objects implies th a t the logical description of circuits can be explored 

through direct emulation. If it is granted tha t the realization language is an adequate 

starting point to fabricate an implementation, its direct interpretation is a way to 

observe logical behavior without physical prototypes,

4.2. The Language

Figure 4.1 gives an idealized definition of Daisy's syntax. (The parser for tht'a 

grammar has not been fully implemented; Appendix A gives a description of the current 

syntax.) The stylized syntax is used from this point on in examples, since it more 

closely reflects the notation we have developed so far. Actual source for the running 

examples is shown in Appendix B. The alternate forms of conditional and body have the 

same meanings; which to use is a m atter of preference or style. For example, if p, c, and 

a arc lexically small, it is probably better to write [[p —* c, <t|| rather than [[If p th en  c 

else a]] since the keywords in the second version visually dominate the text.

Function definitions are similar to the notation of Chapter 2, except for the explicit 

application operator and the use of a list specifier to construct arguments. The three

‘This is a simplification since descriptions are themselves data, It is only required that the 
description be finitely dcscribable, and so on.
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expression » *  " ( expression ) | 0  expression

atom | fern  | application | a ttra c tio n  j conditional | system

atom •  * identifier | numeral | operator

fern * * 
•  • [ list ] | <  list >  | { l i s t}

h'tl * 1 P 4
•  » A | expression * | expression I expression J expression list

application * •
*  •  * * expression t expression

abstraction *  * 
•  • X expression . expression

conditional •  « 
•  * If expression then expression eke expression 

expression —► expression , expression

system •  *
■ * body | rec body

body •  • let specification in expression [ expression where specification

specification •  t  B
•  *  » » A | definition speai/icatton

definition •  * M  
4 » « ■ expression —  expression | identifier i expression <£= expression .

Figure 4.1. Daisy Expression Syntax.

example rune lions might be defined as follows in Daisy: 

rec  □  w h ere

FAC ix  zeroT sx —• 1» FAC td c n x  .

F IB ix  If ItT s < x  2 >  th en  1

else add t <  F lB td c n d c n x  F IB id c n x  > .

GCD :x  < =  le t [ u v ] =  x 

in

if eq? :x th e n  u

else if  It! :x  th e n  GCD t < u  su b : < v  u >  >

else GCD t < v  sub i < u  v >  > .

The box (□ ) would contain some ground expression to be evaluated according to this 

specification. We shall usually display specifications in the context of some “expcri-
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m eat" tike this2. The somewhat contrived version of GCD illustrates Daisy’s lack of 

emphasis on argument structure. Although GCD takes two arguments, its formal 

parameter does not name them. It is the inner specification, [ l e t  [ u v ] =  x ...Q that 

idcntiGes z ’i  coordinates. The "2-place" operations eqf  and It? can be applied directly 

to z, since it will have the required structure.

4 .3 . F o r m a l  S e m a n t ic s  o f  a  S u b s e t  o f  D a is y

The language deGnition in this section omits some features of Daisy th a t are not 

used in this investigation. There is a construct for indeterminacy (ferns of the form 

H{ ... }fl ) which has only recently been formalized (Wise, 1083). Operational discus

sions of this construct have been published by Friedman and Wise (1070, 1080, 1081) 

and Filmnn and Friedman (1083). As in Lisp, expression tex t is indistinguishable from 

ordinary da ta  in Daisy’s data space, and programs can be written to produce other pro

grams. However, Daisy’s program .representation is rather involved; discussion of it is 

omitted since program builders arc not presented here.

The figures referred to in this discussion appear at the end of the section. Figure 

‘1.2 is a simplified language th a t will be used for Daisy’s formal definition. W ith the 

exceptions already mentioned, expressions in the full language can easily by converted to 

this "kernel’* language, Some examples of the conversion are shown in Figure 4.3. Fig

ure 4.4 gives a standard semantics for the kernel language.

D o m a in s  (Figure 4.4a). Opr is a set of identifiers reserved to denote primitive opera

tions on Daisy’s underlying type, Vai Some of Daisy’s operators are summarized in Fig

ure 4.5. The structure of formal. arguments, given by the domain equation for Arg, 

comes into play in defining environment extension. Included in Val are the primitive 

syntactic types and a set of messages tha t are returned when expressions are found by 

the interpreter to be erroneous or meaningless. Operations also produce messages; for 

example, an arithmetic operation returns an error message on non-numeric operands. 

The non-flat summands of Val arc Clst a domain of function closures, and Lstt the 

domain of value pairs. Env is the usual domain of environments, th a t map identifiers to 

their bindings. The primitive valuations for numerals and operators ore left unspecified.

2In the implementation, functions may be directly defined at top level os though the 
operator’s programming environment had been initiated in a "recD  where...”.
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S e m a n t ic s  (Figure 4.4b). The interpreter Is specified by the valuation function ID, 

with auxiliary combinators as defined in Figure 4.4c, Numerals, operators, and quoted 

identifiers evaluate to themselves; the empty fern  evaluates to Nil. Unquoted identifiers 

evaluate to their bindings in the current environment. Value pairs arc expressed by list 

concatenation. Abstractions are closed in the environment in which they are evaluated 

(making Daisy a lexically scoped language), Conditional expressions and recursive 

definitions have standard meanings. The interpretation of application is discussed below 

when the auxiliary combinator d-apply is introduced.

A u x i l ia r ie s  (Figure 4.4c). The environment extension combinator binds structures to 

values. The formal argument is used as a pattcrm  by which the value is accessed; 

identifiers are bound to their corresponding locations. If the formal argument is a simple 

list, the effect is the same os a call-by-name param eter passing protocol. As the GCD 

example above indicates, the formal argument may be used to name arbitrary pieces of 

the actual argument. The implied principle is tha t all functions are monadic, and that 

formal arguments serve as a kind of record declaration. However, the interpreter does 

not check for a pattern  match at binding time, as to do so would introduce strictness. A 

list membership operation Member? might be defined1:

M em ber!: x <£= le t [ a 1 1st ] =  x 

le t [ e ! 1s t '  ] =  1st

in

if  null! ;ls t th e n  < > ,  

else if  samel :x  th en  Q true, 

else Member! t <  a I 1st *>.

The let-definition gives names to the components of the formal argument, x. The 

“ binary** operation tame?  is applied to x  because it happens tha t its first two elements 

arc the ones tha t need to be compared. As is the case with all such operators in Daisy, 

tame?  docs not require th a t its argument be of length two. The head and tail of the 

list 1st are named a  and 1st', even though 1st might be empty. Again, this is valid in 

Daisy because there is an intervening nuffP-test before 1st' is used.

3This example, like the GCD definition, u  meant to illustrate a point about blading in Daisy, 
and is not put forward as an example of good programming stylet
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Application is orthogonal, meaning tha t the evaluator renders an interpretation for 

any value th a t appears in the function position. This is shown in the definition of auxi

liary function d-appty. Numerals, for example, are taken to denote list probes returning 

the element at the appropriate coordinate of the argument. If the function-part is a list, 

its elements arc applied coordinate-wise on the transposed argument. This choice of 

interpretation for list application comes out of the investigations by Friedman and Wise 

(1076c, 1078a) of systems programming, but it is also consistent with the circuit 

behavior model of Section 3.4.

The function predicate assigns an interpretation of tru th  to every value; as in Lisp, 

NU is the only instance of falsity. The Boolean inteprctation of a  message is erroneous. 

On valid values predicate’s result is a branch-like operation tha t selects an alternative, 

by coercing one of the values in a pair. The reader can check th a t the conditional is 

non-strict in its alternatives.

We shall say no more about the implementation of Daisy except to note the impor

tan t fact since the list construction primitive is suspending th a t list concatenation is not 

a strict operation. By the definition of ID, it is straightforward to show

PROPOSITION 4.2-1. For all environments p, and all expressions e and e't 

ZD fl ( X [ h l t ] . h ) i < e l  e ‘>  j|p =  ID J e]]p

and

ZD [[ ( X [ h I t  ] . t )  : <  e l  e '>  Jp =

PROOF; (Appendix C).

a
These equivalences hold even if c o r  « ' diverges, and are maintained by Daisy’s imple

mentation. Hence, the pairing and projection functions of the Scott-Strachey tangugc 

can be implemented by

pair ! y > .

head i [ H l ]  <S=: A . 

ta i l :[ A 1 (]  < =  t .



The required axioms:

head : pair i <  e e ' >  s  e 

arc satisfied in the implementation.

ta i l : pair : <  e e ' >  s  e '

expression :;=  0  identifier | { expression )

atom [ fern  J application [ abstraction ] conditional j system

atom ::=  identifier | numeral | o p e r a / o r  

fern  ::=  <  >  | <  e x p r e s s i o n  1 e x p r e s s i o n  >  

application expression : expression

abstraction X a r g u m e n t » expression

argument [] | identifier | [  argument I a r g u m e n t ]  

conditional I f  expression t h e n  e x p r e s s i o n  e l s e  e x p r e s s i o n  

system r e c  argument =  e x p r e s s i o n  I n  expression

Figure 4.2* D aisy’s Kernel Syntax.
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Let e be any expression, t any identifier, and x any argument.

©e — not permitted unless e is an identifier

I - } — not permitted

\ e . a — not permitted unless e is an argument

< e  « '> < e  ! < e ' ! < > > >

[ * * ' ] — [ * 1 1 *'  * n i l

< e * > (X 1.  rec  j  =  <  1 ! j > l n j ) : e

I n r ] <  0 i  1 Ot* >  (N.B. As a value, only)

F : x < =  e . F  =  ( X x . e )

e w h ere  x — e ' (X x . e ) : e '

le t x =  e i* — e ' I n  □ - * (X [ x  i ' | . P ) K e e >

e -* e' t e " — if  e th en  e 'e ls e  e "

rec  le t  □ *—■ re c  P

Figure 4.3. Conversions to the Kernel Language.
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Syntactic Domains

Ide (0 identifiers

Nml (n) numerals

Opr (o) operator symbols

Arg =  M7.+ Ids + (Arg X Arg) (*) formal arguments

Exp N expressions

Semantic Domains

Int integers

Nil nuMary value

Opn =  Val —*■ Vat operations

Vat — Nil + Ide + Nml + Opr + Mag + Cla + Lat fv) values

Mag =  { “Invalid function”, ...} (m) messages

Cls = ( Val -> Val) (I) function closures

Lat -  (Val X Val) ft) lists

Ertv — fde -* Vat (P) environments

Valuations (see Figure 4.4b)

IV: Nml —* Int Numeral meanings — unspecified

IK: Opr —'* Opn Operator meanings — unspecified

ID : Exp —» Val Expression evaluation

Figure 4.4a* Daisy's Standard Semantics — Domains*
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ZD : Exp —* Env —*■ Vat

ZDR n ]p  =  n 

ZD(| © t ]] p =  i 

ZDR a J/) =  o 

m i  <  >  }p  =  M7 

zd R * D /» — p(0

m i  <  et \ et > i p  = ( I D i e ^ p  , JZ? | [Qp )

m i  et : e# 1 P =  rf*app/y /ZD R ej py /ZDflef Rp;

ZDR X « .  c ]]p =  Xt i .ZDRef lp[v/*J  

ZD R if then ef else e, D P -  /predicate/ZD R e; R p/J (ZD Ref ]] p , ID R e^J pj 

ZDR rec j  — e, In  ef  Jp  =  ZDRef R ( f i x \ p ‘ . p [ Z D R e J p ' / x ])

Figure 4.4b. Daisy's Standard Semantics — V aluation.
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Environment Extension, {*{ */*]): Env Vat —* Arg —* Env

p[ v j  x \  -  \  i , (x isNU) — p(i),
(x islde) -*  ((x =  i) —'► vt p(i)J, p \ t l  v j  x \ t \ \ h d  v f  x J0 ]

d-apply: Vat -* Val —*• Val 
d ' a p p l y  =  \ f a . f f  i s M s g )  —► "/nuafid Fun eft on"

( f  islde) —» “Undefined Function Symbol — 

ff “ Opry — (B< f)(a), 
f f  isNil) — Nil,

( f  isNml) — probe (IN J) a,

(fisCls) — fa ,

(f  t'sLst) —*>  ̂ f ) f/ic/i d-apply(tl/ ) (tls a)}.

predicate: Vat — (Lot -*  Vat)

predicate — X e . —►/’X /. "Bad proposition"),

( v i s N i i ) ^ ( \ t . i \ i ) ,  ( \ U [ o ) .

probe: Int —* Val —» Val

probe — X n / . f n  =  ff/-*  /A dI), probe(n —l)( tl l) .

hd, tl, hds| i/«,* Vaf —* Ko/

hd =  Xu. (v isLst) —* vlO, "Invalid hd'Oceess”.

// =  X u.^u -* v[l ,  "Invalid tl-access

hds — v .(v  isNil) —* Nil, { Arf/Arfu^ Ada (tl v) J

ffa =  v. (v isNil) —* Nil, ( t l (h d v ) , tls (tl v) )

Figure 4.4c. Daisy’s Standard Semantics — Auxiliaries.
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Reference comparison

sam e? -  reference equality
Type Predicates

n u l l ?  -  teat for  nil n o t  -  not null l i s t ?  - non*nutl list

n m b r ?  -  numeral9 l t r l ? -  literal atom? a t o m ?  - numeral or literal

Numeric Comparisons

z e r o ?  — test for zero

I t ?  — less than eq? — equal g t ?  - g r e a t e r  tA an
l e ?  — at most n e ?  -  not equal g e ?  - a t  l e a s t

Unaru Numeric Operators {Numbers are represented in Rational form)

s g n  -  sign (-1 , 0, 1) i n c — increment d c r  - decrement

n e g  — negate n u m  — numerator d e n  - denominator

l n v  — i n v e r t q u o  — quotient m o d  — remainder
Binarp Numeric Operators

a d d  — addition s u b  — subtraction

m p y  — multipliction d i v  — division

C o n s t r u c t o r *  and Probes

c o n s  -  (X [h t | .  < h  t t > ) f r o n s  -  (X [h t ] . { h  1 1})

f i r s t  -  (X [h ! t  ] . h ) r e s t  -  (X [h ! t  ] .  t )
List Operators

I f  — cztcndcd eonrfiVi'ona/, as in (pt —* vt, p{ — P,* ~ * VJ
I n ?  -  list membership

s i g m a  -  n u m e r a l  summation pi — numeral product

a n d  -  alt true o r  — not alt null

Input/ O u t p u t
c o n s o l e  — prompt'character —► character-stream-from~keyboard

s c r e e n  — e A a r a e f e r - i t r e a m  —* terminal display

d s k l  — host-fUe —* e A a r a c t e r  j t r e o m
d s l e o  — character'strcam —* host-file

p a rs e  — c A a r a c t e r - s t r e a m  —* ciprcssion-stream

e v l s t  — ezpressian-stream -* valuc'Stream

I s s u e  — value~stream —► character'Stream

Figure 4.5. Some Daisy Operations.
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4.4. Circuit Emulation

It bos already been noted tb a t specifications can readily be transcribed into Daisy 

to get executable versions. Realizations are ju s t as easily transcribed, as is demonstrated 

later in tbis section. The formal model of components and signals as infinite sequences 

may be implemented by constructing infinite lists to represent them . Since dependencies 

among signals are well behaved, there is no difficulty in building and manipulating their 

representations. It is ultimately our need to observe these objects tha t brings them into 

existence. The m anner in which the observation is made determines how computation 

takes place. After a discussion of this issue, we return  to our examples to observe their 

behavior through emulation in Daisy.

4 .4*1. Non-finlte Data Structures. The function

K ic  <S= < c  1 (K:c)  > .

produces a list whose head is c 'j  value and whose tail is also such a list. In fact, for any 

positive numeral n, the expression J n  : K : cj] returns c's value; the list is infinite for all 

intents and purposes. The definition

K : c re c  L w h e re  L =  < c  ! L > .

yields the same result since it specifies that L  must be a list whose bead is the value of c 

and whose tail is also such a list, There is a special symbol in Daisy to express constant 

sequences like this. One may define

K : c <£= < c  * > .

The asterisk is meant to be suggestive of a Kleene star, and should be taken to mean 

“arbitrarily many c 's ."

The function

N : c <=  < c  1 (N :add:<c 1 > )  > .

produces a list of increasing numerals. A'can also be described by “data recursion"

N : c <±= re c  L 

w h ere

L =  < c  I (< a d d  * > ; <  < 1 * >  L > )  >

Let e =  5. The computation of |[< a d d  * > : <  < ! * >  L >]] can be pictured as a pro

gressing sum, with each element of L  resulting from the previous value:
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<1 *> = t 1 1 1 1 1 1 ...
L — 2  3 4 ■ ■ ■ ■

< ad d  * >  =  3 4 5 ■ ■ ■ ■ ...

The translation from circuit description to Daisy expression is straightforward. It

follows the model of component behavior defined in Section 3.4:

signal or feeAatior Daisy

component semantics expression

B c« <  c * >

p ) ( D  t < p , - P ) < f  * >  t < □  . . .□ >

c ! □ (c .O ) < c  1 □ >

Wc will retain the convention of using operator symbols written in upper case to 

refer to components. The example above would use ADD , defined as < add *>. An 

adjustm ent is required to make components out of Daisy’s monadic operations, which 

arc applied directly to their operands and not to 1-tuples. For example, one writes4 

[[inc i n j  rather than [[inc : < n >  jj to increment a numeral. This does not fit with the 

usual transformation strategy, for while one is tem pted to write R < inc * >  : < 5  *>]] 

to get a stream of 0’s, the argument < 5  * >  cannot he transposed; it is not a signal of 

tuples. On the other hand, the expression < < 5  * > >  transposes to < < 5  >  * >  to get 

a uniform stream of 1-tuples. To increment this stream , inc should expect an argument 

list of length one. We therefore define the component version of a monadic operation os

INC =  <  (X [ n ] . inc : n ) * >

Figure 4.0 gives component versions of the Daisy operations used later.

4.4.2. Output Driven Computation. In a purely demand driven model, compu

tation is caused by the need for a result. Ultimately, need is determined by the device 

th a t displays tha t result. One can build and manipulate non-finitc data structures in

4so as to avoid expressions like Qinc t < inc t <inc s 5 > >  >  j).
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ADD =  < a d d  *>

DCR =  <  (X [ x ] . dcr i x ) * >  

DIV =  < d iv  * >

INC =  <  (X [ x ] . inc : x ) *>

l t ? =  < itr  * >

MPY =  < m py * >

MUX =  < i r * >
SUB =  < su b  * >

ZERO! =  <  (X [ x ] . zero! i x ) * >

Figure 4.0. Daisy Component Implementations.

Daisy as long as care is taken about how they arc displayed (Friedman- and Wise, 

1070b), This relationship can be specified by introducing a causal operation called strict 

whose convergence depends on the existence of a value. Thus, [[jlr ic f: < t i  v > |  

returns v la value after u has converged1.

Through judicious use of strict, call-by-valuc interpretation can be imposed in 

Daisy. For example, function F  defined by {F s (  n m ] <5= e j becomes call-by-value® 

when transformed to

F :[ n m ] < =  strict : <  n strict : <  m e >  > .

To address the relationship between inpu t/ou tpu t and computation let us define a 

device to be a manipulator of atom streams. A single occurrence of strict is used to 

define the behavior of a atom stream consumer:

Display : [ c ! S ] <t= s tr ic t : <  c ! (Display :S) > .

Wc shall make no assumption of temporal order in defining a  generic input device:

sNote that u [s not necessarily made fully manifest. For example, 
[[strict i « u  I « '>  v> J converges independent of it and tl' because the list constructor is not 
strict.

®Conversely, in call-by-value Interpreters function closures can be used to induce call-by- 
name through a dual operation called delay (Landin, 1065; Henderson, 1080).
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Receive : x <£= <  random-atom I (Receive ix) > .

Ideally it is Display th a t brings characters forth in the order they are typed. Imagine a 

program th a t converts values into atom streams:

P r in t : L <5 = re c  P r in t ' j < L  <  >  > .  

w h ere

P rin t ' i [ L c ]  < =  

le t [ u ! v ] =  L 

In

atom!: L -*■ < L  I c > ,  P r i n t ' : < u  P rin t' j < v  c >  > .

Now consider the expression ([Display : Print t < c I t  >  Jj. The computation is 

ordered, Grst e then c', because Print produces its stream that way and Display con

sumes the stream in order. If e ' diverges, the prefix of the result is still displayed. In 

fact, the computation of e ' does not take place until after e ’a value has been transm it

ted. We shall make use of this fact when we attem pt to observe circuits in emulation.

4.4*3. Experimentation with Realizations. Recall tha t the factorial 

specification is realized by the circuit description

X ~  x° ! DCR(X)

Y =  1 ! MPY(X, Y)

READY =  ZEROT(X)

VALUE =  Y

This translates to the Daisy expression

FAC :x0 rec  □  

w h ere
X =  < x 0  I D C R :< X > >

Y — <  1 ! M PY :<X  Y > >

READY =  Z E R O r:< X >

VALUE =  Y.

W hat goes in the box is an expression stating what we choose to observe about the cir

cuit. Let us develop an experiment to display the entire circuit in operation. The obvi

ous first a ttem pt is the expression ([P rin t: < X Y R E A D Y > ]], but a display of this 

form would cause the signal X  to be produced in its entirety. Hence, we would never get 

an opportunity to see Y  and READ Y,  The solution is to look a t finite prefixes of each
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signal in turn. A transposed version of < X  Y READ Y>  can be obtained by applying 

an identity component to the signal list. The interpreter transposes as a m atter of 

course. We get a picture of the circuit in “ time slices". Thus, the experiment we want 

is

<  Xx.x * >  t < X Y  READY>

Let us generalize this experiment to work for other realizations. Define a function 

called T est th a t transposes any list of signals. In the figures tha t follow, a carriage 

return is interposed between time slices:

Test : signal-list rec  Form at i ID : signal-list 

w h ere  

ID =  <  Xx.x * >
F o rm a t: [ u ! v ] <  cornape-refurn u I Form at : v > .

In the factorial example the desired experiment is

FAC i x Test j < X  Y READY> w here,.." .

Figure 4.7 shows an interactive session in which this expression is executed7. As we fully 

expect, the first time interval th a t the X-register contains 0, the factorial of the initial 

value x° is found in the Y-registcr. In the next cycle the value is destroyed and X dimin

ishes forever. The interpretation program must be interrupted to stop the display.

A similar experiment is run on the FIB  realization in Figure 4.8. Again, the desired 

value appears as soon as the READ Y  signal asserts its presence. It is worth noting th a t 

the circuit continues to compute valid Fibonacci numbers afterward.

The GCD realization was

TDaisy is implemented on a Digital Corporation VAX 11/780, under the UNIX9  operating 
system. Output from the Daisy sessions shown throughout this dissertation was recorded directly
from the terminal by a host monitor program. These text files have been modified as follows: 
some carriage-returns and blank characters are deleted; some blanks are replaced by tab charac
ters to align columns. Daisy source listings are edited to the idealized syntax of Section 4.2; true 
source listings for each of the figures is shown in Appendix B, Daisy's prompt is an ampersand, 
*&'. The host interrupt character Is EXT, typed control-C, and displayed as *JC'. *
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X =  x° I U

Y =  y° 1 SUB(W, U)

U =  MUX{V, X, Y)

W MUX(V, Y, X)

V =  LT1(X, Y)

READY =  EQT:(X, Y)

Execution of tlie above is shown in Figure 4.0. Again the experiment is to trace the sig

nals A', Y, and READ Y  in parallel. This time, the circuit becomes completely stable two 

clock cycles after R E A D Y  becomes true. Furthermore, the desired value of the compu

tation is preserved—a desirable characteristic from the standpoint of integration— 

although its value ends up in the Y-register. The experiment has revealed a property of 

the realization th a t is not accounted for in its speciGcation. The quality of becoming 

stable is in fact not expressible in the specification language as it now stands, since it 

implies th a t the GCD circuit computes forever. The closest we can come is to specify an 

infinite loop whose formal meaning would be the totally undefined function. Thus, sta

bility, tike the quality of correctness, must be dealt with by some other means. Wc shall 

not develop this notion formally for it is not worth the effort. One can always impose 

stability on a circuit by using the R E A D Y  signal to disable the registers. We return  to 

the general issue of making assertions about performance in Chapter 7. For now, emula

tion of the circuit has at least given us a chance to discover an unspecified property

without having either to build the circuit or to code it up in a simulation language. This 

is a significant practical advantage of our approach.
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FAC: i = : roc t o Bt:<X Y READY>
whore

X = <x J DCR:<X»
Y = <1 1 MPY:<X Y »
READY = ZER0?:<X>.

k  FAC:7
c
(7 1 Cl
C6 7 []
(5 42 []
(4 210 U
(3 840 []
C2 2820 []
(1 6040 []
(0 6040 tru a
( -1 0 []
( -2 0 Cl
(-3 0 Cl
(-4 0 []
(-5 0 Cl ) t c

FAC realization

z °  -  7
Tracing X, Y, and READ Y

Value ready

Simulation interrupted

Figure 4.7, Experim ent with the FAC Realization*
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FIB:x <= r e c  te s t:< X  Y READY> 
T h e r e

X = <x ! DCS: <X»
Y = <1 1 Z>
Z = <1 1 ADD: <Y Z »  
READY = ZERO?:<X>.

ft FIB 
C

:7

(7 1 []
( 6 1 []
cs 2 []
(4 3 []
(3 5 []
( 2 8 []
Cl 13 []
Co 2 1 t ru e
C-l 34 []
C- 2 55 []
C-3 80 []
(-4 144 [] tc

FIB realization

i °  — 7
Tracing X, Y, and R E A D Y

Value ready

Simulation interrupted

Figure 4.8. Experim ent with the FIB Realization.
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* GCD realization
GCD: (x y) <= re c  te s t;< X  Y READY>

whoro
X = <x ! U>
Y a <y ! SUB:<W U »
U = IF:<V X Y>
W = IF:<V Y X>
V = LT?:<X Y>
READY -  EQ?:<X Y>

ft GCD:(15 24) • z° -  15, j f  = 84
( • Tracing X , Y, and R E A D Y
(16 24 [] )
(16 9 □ )
(9 6 [] )
(6  3 [] )
(3 3 tru e ) - Value ready
(3 0 CJ )
(0 3 C3 )
(0 3 [3 )
(0 3 C) )
(0 3 0  ) tc

' Simulation interrupted

Figure 4.9. Experim ent with the GCD Realization.



5. Design Examples

We now have a language for describing digital circuits and a method to derive cir

cuit descriptions from functional specifications. In this chapter, the method is applied to 

a larger example; a circuit is derived for a programming language interpreter. As 

descriptions get larger, it becomes necessary to organize them more carefully. We can 

"structure*' circuit equations as we structure programs, by decomposing them  hierarchi

cally.

Since all of the structural combinations distribute over operator-lifting, we may 

arbitrarily package (i.e. give a name to) groups of interconnected combinatorial com

ponents. The instantaneous behavior of the packaged combination lifts to the signal 

behavior of the group.

We have already considered specifications th a t use complex da ta  types, such as 

stacks. However, we have so far avoided building circuits over complex operators, by 

deriving equivalent specifications over more primitive types. In this chapter we finally 

face the task of implementing circuits over non-primitive signals. In programming, one 

hides implementation details by introducing abstract data types* Wc shall do the analo

gous thing a t the behavioral level, introducing abstract components in our circuit descrip

tions. Like its programming counterpart, an abstract component is simply a 

specification of the external behavior required by the surrounding circuit.

Implementation of an object th a t has the right external behavior may be left as a 

subprobicm. W ith the complex-typed signals factored out of the description, develop

ment of the controlling circuit can continue. As abstract components are factored from 

circuit descriptions, instruction signals are introduced to coordinate their behavior. 

Coordination of behavior forces us, for the first time, to consider the communicative 

qualities of the circuits we describe.

87
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Hierarchical decomposition of large descriptions is common to all design realms. It 

is neither novel nor surprising tha t we do it with circuit descriptions, but is simply a 

necessary prelude to our attack of a larger design problem. Section 5.1 introduces some 

notation for structuring circuit descriptions. We exercise this notation on a small exam

ple th a t we have seen before. Since our example has to do with “ language driven" 

design, we discuss tha t term in Section 5.2. In Section 5.3 we synthesise a circuit th a t 

interprets a programming language called L . The derivation is long and has five major 

steps. Recall tha t ayntheata means a derivation th a t is not necessarily mechanizable. 

Indeed, there are numerous design decisions involved in our development of the L -  

circuit. We shall point out the transformations th a t require designer intervention as we 

present them.

The derivations th a t follow were done by hand. In Appendix B, the evolving 

specification is rewritten in Daisy. Executable versions of the specifications were quite 

helpful in debugging the derivation.

5*1. Higher Level Components

In Section 2.4 we used the W and-Friedman transformation strategy to synthesize a 

stacking version of the non-linear scheme

F(x) <= p(x) — f(x), h( F(gjx)), F fg /x ))  ),

We arrived at the form

G(x, a) <S= pfx) — R(f(x), a), G fgjx), pxuhfO, puahfgjx), a))) }.

R(v, tr) <£= empty f(tr) -* v,

eqf(topfff), 0) — Gftopfpopfff)), puahft, puahfv, popfpopfaj) }} ), 

R (  h(lop(pop(o}), v), popfpopfc)) ).

For the purposes of this discussion, we shall separate the recursion stack into two stacks: 

r holds actions and <r holds values. Since every recursive call pushes exactly one action 

and one value, the modification is trivial. In addition, let us use tru th  values {W, f f )  to 

denote actions, there being only two. The revised specification is
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Gfx, a, r) <= pfx) — Rfffx), a, r), Gfgjfx), puthfgt(x), a)), putkftt, r) ).

Rfv, a, r) <= empty?(r) — v,

topfr) — Gftopfa), puthfv, popfa)), puthfff, popfr)) ), 

R (  hftopfa), v), popftr), popfr) ).

By the construction of Section 2.4.4 this specification is transformed to a  system 

with a single function variable symbol. A new control token, w, encodes which of G or 

R  is in control. The identifier, u, in the definition of the function R  is changed to x in 

order to give the system a uniform formal argument list.

Hfw, x, a ,  r )  <5=

atffw, a )  — fpfx) -+ M fR, J(x), a, r), H(Q, g jx ) , puakftt, r), puthfgjx), tr) )}, 

a t f f w R )  —► [empty?fr) -* x,

t o p f r )  — H f Q ,  topftx), p u sh fff ,  p o p f r ) ) ,  p u th f x ,  p o p f tr ) ) ) ,  
H f R ,  h f  t o p f a ) ,  x ) ,  p o p f r ) ,  p o p f t r ) ) ) .

By distributing the conditional, we can turn  this equation into an instance of U{. After 

a little algebra on the resulting terms we arrive at the equation

Hfw, x, tr, r) andfatffw, R )  emptyffr)) —*■ x,

Hf muxfatffw, G ) ,  muxfpfx), R, Q), muxftopfr), Q, R) ),

muxfatffw, G), muxfpfx), 1, g jx)) , muxftopfr), hftopfa), x), topfa) )), 

muxfatffw, G ) ,  muxfpfx), a, pushfgjx), a), muxftopfr), popfa), puahfx, popfa)) )), 

muxfatffw, G), muxfpfx), r, puthfff, r), muxftopfr), popfr), puthftt, popfr)) )),

We shall adapt some familiar structured programming techniques to decompose the reali- 

zation of this function.

6*1.1. P a c k a g e d  C o m b in a t io n s .  Let us introduce a more sophisticated multi

plexor to take advantage of the fact tha t the conditional structure of each inner call is 
the same. Define a combined operator tha t does four-way selection.
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m u zjp ,  q, r, u, v, w, x) <= muifp, muzfq, u, v), muxfr, w, z )  ).

We should perhaps call the combination something tike u3-by-4 selector"; the name muz4 

is used for brevity. Using muzf  we can rewrite IVa defining equation as

Hfw, z, a, r) <£= andfatffw, R) emptyffr)) —*■ z,
H( m u zja lf fw , a ), p(z), topfr), R, a , O, R),

muz^fatffw, Q), pfz), topfr), ffz), gjx), hftopfa), z), topfa)  ),

muz4fatffw, O), pfz), topfr), a, puahfgjx), a), popfa), puahfz, popfa)) ),

m ux fa tf fw , a ) ,  pfz), topfr), r, puthfff, r), popfr), puskftt, popfr)) )).

It is not an accident tha t mux^ fails to absorb all the shared subexpressions. The reason 

Is evident when H  is transcribed to a circuit description. As before, lifted operations are 

written in upper case. Lifted constants are enclosed in square braces ‘[' and ']' to distin- 

guisb them from signals and components.

C( uP, z°, a 0, r°) <^=

W  =  w° I MUX,(U, V, Y, pi], [G], [It], [GJ)

X =  z° ! MUX^U, V, Y, F(X), G0(X), H(TOP(E), X), TOP(E))

E =  a0 1 MUX4(U, V, Y, E, PUSH(G,(X), E), POP(E), PUSH(X, POP(E)) )

T  =  i* ! MUX4(U, V, Y, T , PUSH([iH, T), POP(T), PUSH([«|, POP(T)) ).

U =  ATI(W, (G|)

V =  P(X)

Y =  TOP(T)
READY =  AND(AT!(W, [R|), EMPTYI(TJ)

VALUE =  X

The outputs of the components AT?, P, and TOP  are shared by all instances of MUX^. 

Had the subexpressions atff t ,  G ) ,  pfx), and topfr) been incorporated in the definition of 

mtiXj, each instance of the multiplexor would have included a duplicate set of the predi

cate components. While duplication is not necessarily a bad thing, we elect to avoid it 

here, Combined operation muz4 can be lifted to component MUX^ because muz^ is
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defined by a trivial expression. By Propositions 3.3-1 through 3.3-4, the combination is 

transparent to lifting.

5.1.2. Abstract Components. While circuit C  certainly computes the same thing 

as H, and hence as the original specification F, it is hard to justify calling it a realiza

tion. Its registers E and T  range over stacks, and so there is much yet to do before 

going to the laboratory with this circuit description. We should think of stacks 

abstractly and bide their implementation details. Let us therefore introduce a "class 

object" th a t gives the necessary information about a stack: w hat its top is and whether 

the stack is em pty. T h a t is, we shall replace stack object*, to which operations are 

applied directly, with stack agents, which can be instructed to apply those operations. 

Separate the signals th a t have to do with the two stacks, and rewrite the realization as

C(w°, z ° ,  u ° ,  t °  ) <5=

W =  ur® I MUX4(U, V, ZT, [R], [01, [R], [01)

X =  z° I MUX,(U, V, ZT, F(X), G0(X), H(ZB, X), ZB)

U =  ATT(W, |0 J)

V =  P(X)

Z =  G,(X)

READY = AND(ATT(W, [Rj), ET)

VALUE = X

E = o °  ! MUX4(U, V, Zr  E, PUSH(Z, E), POP(E), PUSH(X, P O P (E )))

=  EMPTY?(E)

Zs  =  T O P(S)

T  =  r° I MUX4(U, V, ZT, T, PUSH([^, T), POP(T), PUSH([«|, P O P (T ))). 

Et  =  EMPTY?(T)

ZT =  TO P(T)

Two signals have been added and one name has been changed, in order to bring out the 

similarity between the stacking subcircuits. Y  has become E r , the “I-am-empty" signal 

from the action-stack. The corresponding signal E^ for the value-stack is not used but
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is included in the description for symmetry. The new signal identifier Z  was introduced 

because the ability to do the operation G{ should not be ascribed to the behavior of the 

stack.

Our next goal is to hide all the pushing and popping inside of a component 

definition. We must only ensure th a t the new component’s external behavior, the values 

on the signats Z ^ , E ^ , ZT, and E T, is the same as before. As they stand however, the 

equations th a t specify these behaviors are too specific, for they inherit their decision 

making apparatus from C, The stack agents must be able to (1) push, (2) pop, (3) 

replace the top of, or (4) do nothing with the stacks in their care. It should be left to 

the surrounding circuit to determine which of these operations to perform. Introduce a 

set of instructions, Im t  =  {NOOP, PUSH, POP, PLOP), and define a component

S T  A C K : (Stack X Sight X  SigVal)  -  (SigVal X  Si9s$ot)  

th a t makes the instructions work.

STACK(a°, INSTRUCTION, VALUE) <= 

rec
( T O P (Z )  , EM PTY? (11 ) )  

where
£ = 0 * 1  operate™(INSTRUCTION, VALUE, £  /

o p e r a t e f i n s t r u c t i o n ,  va lu e ,  s ta c k )  <5= 

c q f ( i n s t r u c t i o n ,  N Q O P ) - *  <r, 
e q f ( i n s t r u c t i o n ,  POP)  —* p o p f tr ) ,  

c q f f i n s t r u c t i o n ,  PUSH^ -*  p u s h  (v a lu e ,  a ) ,  
e q f f i n s t r u c t i o n ,  P L O P )  —  p u s k fv a tu c ,  p o p f tr ) ) .

Now if C can be made to generate the right instructions at the right times, STACKs  can 

be used in place of the signals £  and T . Determination of the appropriate instructions is 

easy; it is given by the original signal definitions in C. The STA CK s  for £  and T  can 

share an instruction signal, /.
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C{ W°, X°, o 0, T °)  < =

W = u/> 1 MUX^U, V, z v  [R], [a], [R], [a])

X = x° 1 M UX4(U, V, ZT, F(X ), a 0(X), H (z s , X), Zj,)

u  = ATI(W, |aj)

V = P(X)

z  = G^X)

READY = AND(ATt(W, [R]), Et )

VALUE = X

I = MUX4(U, V, ZT, [NOOP], [PUSH], [POP], [PLOP])

(ZE. Ee ) = STACK( t r ° ,  I, M UX4(U, V, ZT, m, Z, ■, X  ))

(ZT, e t ) — STACK( r°, I, MUX4(U, V, ZT, n, [tf], ■, [tt]))

The circuit has been factored into abstract components th a t communicate with 

instructions, The factorization is an application of conditional distributivity to opera

tions (Sec. 2.0.3). In more detail, the “ next" value for the stack tr is an expression or the 

form

p — [q — tr, puohfu, a)), fr — popftr), puahfv, popftr))J

where p, q, and r  are the appropriate propositional terms, Let us “normalize" the opera

tions in order to make way for the factorization. T hat is, introduce combined operations

noop'fx, tr) <= tr. puth 'fi, tr) <5= puahfx, tr).
pop'fx, tr) <=  popftr). plop'fx, tr) < =  puahfx, popftr)).

W ith the normalized argument the conditionals distribute over operations and operands 

alike.

applyf [p — fq -~  noop', puah'),fr — pop', p top 'jf,

/p — ^  «/, A — ■* vJJ>
( p -* l q t r ,  trj, (r — tr, tr}) )

To lift this expression we need to think in terms of a component A P P L Y  whose inputs 

include the signal



VALUE

READY

■- P

MUX

MUX

MUX

MUX

MUX

Figure 5.1. A  Schematic for Circuit C.
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M U X 4(P, Q, R , [n oop ],  [puiA ], [pop], [p/op] )

However, it is counterintuitive to assert tha t operations are legitimate values for a signal 
to hold. T he physical interpretation must he tha t the selected operation is encoded as 

an instruction to be interpreted by the abstracted subcircuit. Essentially the same prin

ciple is involved when we introduce a control token. It is this technique of factorization 

that motivated our decision to model a component as a signal in Section 3.5.

Figure 5.1 gives a schematic version of the circuit description for C. Since we 

began with a recursion scheme the realization is a generalization, with components /, g0, 

gt, h, and p being variable. The Fibonacci function is an instance of the original non

linear specification

F(x) < =  p(z)-+ J(i), h( F (gjz)), F(gt(x))) .

with

p(u) <S= Uf(u, 2).
m

SM 1. - 2e S - -

b(u, v) < =  addfu, v).

90(u) < =  der(dcrfuj).

g j u )  <5= dcr(u).

d c r -----dcr

dcr

The corresponding instance of circuit C, in which these packaged combinations replace 
the component variables, realizes FIB  provided it halts. (Recall th a t the stack transfor

m a t i o n  may have weakened the resulting specification.) The controlling circuit for *
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specification FIB is

CFIB( uP, / ,  a 0, i0 ) <=

W  = w° ! MUX,(U, V, Zr  [R], [G], [R], [G])

X =  x° ! MUX4(U, V, Zr  1 , DCR(DCR(X)), ADD(X, Z£)r ZE)

u  =
V =

z  =

READY = 

VALUE =

ATf(W , [G])

LTT(X, 2)

DCR(X)
AND(ATT(W, [R]), Et ) 

X

I = MUX4(U, V, ZT, JNOOP], (PUSH], [POP], [PLOP])

(ZE. Ec ) = STACK( a 9, 1, MUX4(U, V, ZT, ■, Z, ■, X ))

(ZT, e t ) = STACK( r°, I, MUXJU, V, ZT, «, [fl, «, [ft]))

Figure 5,2 shows the usual Daisy experiment on CpiB with stacks implemented as lists 

(see Appendix B). We have introduced techniques to structure circuit descriptions by 

decomposing them into hierarchies of higher level components. Our decompositions fol

low conventional design methods. Packaged combinations such as MUX  ̂ serve as mac- 

* ros th a t identify repeatedly used connection patterns. Their introduction is valid 

because operator combination is transparent to lifting. A bstract components are the 

behavioral analog of Hoare's abstract data types (1972). To hide implementation details, 

signals over complex values are replaced by agents th a t manage those values. The fac

torization involves the introduction of instructions generated by the surrounding circuit. 

While we have not provided a plausible realization for S T A C K  components, we have 

succeeded in isolating the task and can proceed w ith the refinement of the controlling 

circuit.

Deciding how much of the surrounding circuit to incorporate into a higher level 

component is non-trivia!. Had MUXf  included predicates P  and A 77, they would have 

been duplicated in every instance of MUX^, and the opportunity to share some of the 

computation would have been lost, Had the H -S T A C K description retained its ability to 

compute Gj it would have been too specialized to reveal its similarity to the T-STA CIC
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FIBckt:(wO xO bO tO) <= re c  test:<READY X I VI W V2 E2 U V> 
whero

W -  <wO ! MUX-H:<P Q V2 [R*] [G*] [R*3 [G*]> >
X a <xO ! MUX-H: <P Q V2 [1*] DCR:<DCR:<X» ADD:<X Vl> Vl> >

[VI El] = STACK:<sO I  MUX-H:<P Q V2 [??*] DCR:<X> [??*] X »
[V2 E2] = STACK:<tO I MUX-H:<P Q V2 [??*] [<>*] [??*3 [ t t * ] »

I = MUX-H:<P Q V2 [noop*] [push*] [pop*] [plop*]>
U = AT?:<W [C*3>
V = LT?: <X [2*]>

READY =  AND:<AT?:<W [R * ]>  E 2 > .

MUX-H = [m u x -N * ].
mux-N: [p  q  r  u  7  w x ]  <= m ux:<p m u i:< q  u  v> n u x :< r  w x » .

STACK: [sO I  V] <= ro c  « top*> :<S>  <oiDpby?*>:<S» 
whero

S = <sO I <oporato*>:<I V S »  
o p o ra to :[ i  v s] <=

sam e?:<i Onoop> -> s ,  
eamo?:<i Qpop > -> p o p :s , 
sarao?:<l Qpush> -> push : < 7  s>, 
samo?:<i Oplop> -> p lop : < 7 s » .

F ig u re  5 .2 a . E x p e r im e n t w ith  C FIB — S o u rce  fo r  th e  R e a lisa tio n . 

(See Appendix B for the implementation of stacks.)
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f lb : n  <= FIBckt:<0 n MTstk MTstk>.

k  l i b  
C

:4

4 push 7? 0 77 tru e tru e £] )
2 push 3 0 [] [] tru e [] )
0 noop 1 0 0 [] tru e tru e )
1 plop 1 1 [1 n [] t ru e )
1 noop 1 0 t t [] tru o tru e )
1 pop 1 1 t t [] [] tru o )
2 plop 3 1 [] [] [] [] )
3 push 2 0 t t □ tru e [] )
1 noop 2 0 tl [] tru e tru e )
1 plop 2 1 [1 [] U tru e )
2 push 1 0 t t [] tru e n  )
0 noop 1 0 [] [] t ru e tru e )
1 plop 1 1 [] □ □ tru e )
1 noop 1 0 t t [] t ru e tru e )
1 pop 1 1 t t [] [] tru e )
2 pop 1 1 t t [] [] [3 )
3 pop 2 1 t t [] [] £] )
5 pop 7? 1 7? tru e □ £] )truo

t r u e  73404895/14680979 pop ?? 1 7? t r u e  []
t r u e  73404895/14680979 pop ?? 1 77 trU B  []
t r u e  73404895/14680979 pop 7? 1 77 t r u e  []
t r u e  73404895/14600979 pop 7? 1 7? t r u e  []
t r u e  73404095/14680979 pop 77 1 7? t r u o  [J

Register setup

Find FIB{4) 
Tracing READ Y, 

X, I, Vt> w ,
V ,  E v  v , V
(See Figure 5.8a)

Value ready 

Value lost.

Simulation
interrupted

Figure 5.2b* Experim ent with CFIB — Record o f an Experiment*
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5.2. Language Driven Design — Introduction

Let us briefly consider a diUerent instance of the realization C, derived in the previ

ous section. The same circuit description scheme gives an evaluator for arithmetic 

expressions, specified by a semantic function similar to the one in Section 2.0.1.

The argument x will range over expressions in a language Exp

expression ;;=  atom j ( expression +  expression )

Assume operations ieft;Exp—* Exp and right.'Exp—  Exp tha t return left and right subex

pressions; atom?:Exp~* Boot that distinguishes atomic expressions; fetch?:A to m —* Int 

that produces numbers from atoms; and o p n :( In tX ln t)—*Int, an arithmetic operation. 

The recursion equation

lEfx) <=  atomffx) -* fetchfx), opn( IE(teft(x)), IE(right(x}} ).

defines the value of any expression in Exp. Since IEf> defining equation is an instance of 

the non-linear specification of the preceding section, the corresponding instance of C 

realizes IE.

W =  ufi ! MUX((U, V, ZT, [R], [G], [R], IG ])

X s  /  I MUX4(U, V, ZT, FETCH(X), LEFT(X), OPN(ZE, X), Zs ) 

U =  ATf(W, [GJ)

V =  ATOM?(X)

Z =  RIGHT(X)

READY =  AND(ATT(W, |R|), ET)

VALUE =  X

I =  MUX4(U, V, Zr  [NOOP], IPUSIIJ, (POP], |PLOP|)

{ZE, Es ) =  STACK((t0, I, MUX4(U, V, ZT, ■, Z, X ))

(ZT, ET) s =  STACk(r°, I, MUX,{U, V, ZT, ■, W , m,  | f f |  ) )

The circuit is a “direct interpreter" for a suitably represented language of arithmetic 

expressions. It calculates a value by processing the expression itself, saving both inter

mediate results and subexpressions on its stack. Non-atomic expressions are evaluated
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left-to-right, since th a t was the order imposed by the stacking transformation. A variety 

of improvements in the design are possible, of course. We might arrange some form of 

look-ahead to keep from stacking some atomic subexpressions. This refinement can be 

developed formally by first unfolding IE to expose more tests:

IE(c) atomf(e) —♦ fctch(c),

atomf(left(c)) —* opn( fctchfleftfe)), IE(right(eJ) ), 

atom?(right(c)) — opn( lE((eft(e}), fetch(right(c)f }, 

opn( IE(left(e)), IE(ngkt(e)) ).

and then transforming to circuit form.

A more conventional architecture would not stack text at all, but requires a com* 

piler to translate expressions into sequential programs. Wand (1982a, 1982b) develops a 

method for deriving compiler/macbine pairs tha t yield more classic stored program 

organizations. His derivations lead to iterative machine specifications and can therefore 

be immediately extended to obtain circuit descriptions of the machines.

5.3. Application to Language Driven Design

In this section the derivation techniques we have developed so far are used to syn

thesize a realization from a programming language specification. The target circuit is a 

direct interpreter for expressions in the applicative language L  defined below. The 

derivation has six major steps. All but the first are transformations; of the five transfor

mations, two are direct constructions. To varying degrees, the remaining steps involve 

designer creativity, and thus are at best semi-mechanizable.

We begin with a format definition of L ’s semantics. This fully abstract 

specification is then rewritten as a function on represented expressions. Hence, our first 

step is to turn L ’s formal definition into something concrete enough to be regarded as a 

program, an L-intcrprctar. Readers uncomfortable with the mathematics can skim the 

details on first reading, and take the interpreter specification (Figure 6.4) as the starting 

point for synthesis.

The initial specification is non-linear. The second derivation step introduces a 

recursion stack to linearize control. As we have mentioned before, this is regarded as a 

creative step because recursive calls must be ordered. The resulting interpreter imple

ments an applicative order computation rule for L  and is only partially equivalent to the 

initial specification.
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The stack version of the inferpreter is compiled into a loop by encoding the serious 

symbols as a control token. We arrive a t a specification tha t could be transformed to a 

circuit. However, some refinements are made that lead to a more compact version of the 

loop specification. These changes expose some subtle issues in representation, and this 

derivation step involves more designer creativity than any of the others.

The refined loop algorithm is then transcribed to a realization. The last step in the 

derivation introduces abstract components to factor comptex-typed signals out of the 

interpreter's description.

Like most lengthy presentations, this one tells little of what motivated specific 

design decisions. The product of the synthesis is described, without discussion of the 

blind alleys, or the discovery of features th a t reflected negatively on earlier specifications. 

A t each step of the derivation a version of the evolving specification was written in 

Daisy. Experimentation revealed Haws in some design refinements, and a number of 

typographical errors. The Daisy versions, and some trial experiments, are shown in 

Appendix B.

6*3.1, T h e  l a n g u a g e  L , L is a purely applicative, lexically scoped language with 

constructs for programmer-defined functions and self-referential values. Its formal 

definition is given in Figure 5.3. All operators and programmer-defined functions are l- 

placed. One writes fl(add :n ):m |] to add two numerals; the operation add returns a 

second operation tha t "adds n " . (Parentheses show how expressions should be parsed.) 

Assume th a t the operator set includes {zero?, onef, inc, dcr, Uf, cqf, add, tub, mpy). 

The operations associated with these names are held in an initial environment.

Labcl-expressions1 are used to define functions recursively. Our three example 

functions are expressed as follows in L:

1 The form Q t <= e |  b analogous to the Lisp expression "(LABEL I E)" (McCarthy, 
ct.aL, 1065). While any expression may occur to the right of the "assignment" symbol, it Es not 
immediately clear what expressions are sensible there. For example the form "x <= inc:x” does 
not have the effect of setting x to x +1, but instead diverges. That X-expressions are meaningful 
in tabel-expressions depends in part on the fact that they evaluate to cloauret, that is, data struc
tures that incorporate environmental information. (McCarthy's LABEL requires e to be a 
LAMBDA-expression.) To allow other non-trivial forms, we need primitive operators that return 
closures. A suspending CONS would do nicely.
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Expression Syntax

Exp ::= Ida | Nml j X i . e J I <=  e | e{ : ef  j eJ —*■ ef  , ea

Domains

Idc (i) iVen/i'yiera

Num (n) numerals

Boot (b) truth valuta

Opn =  Val — Baa (o) operations

Err =  { uinvalid function”,...} (m) error meaaagca

Exp N expressions

Baa =  Num + Bool + Opn + Err M baatc valuea

Val = Baa + Ftn M expreaaable valuea

Ftn = Val— Val (!) functions

Env ~  Ida —* Vat (p) environmenta

Valuation & : Exp -*■ Env — Val

ZL[[n]]p

M ' I p

IL  |X  i . e]]p 

E> H i* <= e]|/»

Q Dp

/LRC,-* c t , e j / i

Auxiliaries

=  n

p W
X u. /L([e]| /> [v /t| )  

fix ( \ t .  I L ^ e l  p [e/i]) 

apply (Sj [[ e J /» ; (E, J et J\p) 

teat(IL^et lp) -* JLflejflp, Z6 Je5flp

p| w/ *1 S= X *. (x =  I*; -* V, p(x). 
apply — X f v .  ( f  is Opr) —  /if , (f  isFtn) —► /u ,  "mtfo/iV /unc/ion 

te it — X v. (v itBool) —• fv asBool), Jf.

Figure 5.3. Standard Semantics of the Language L,
*
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GCD < =  \  x .X y  ,

(eqf:x ); y  — x ,

(ltf:x) : y  -► (G C D :x): ((sub:y):x), (GCD:y) : ((sub:x):y)

FAC <S= X x . zeroT:x -* 1, (m py:x): (FAC:(dcr:x))

FIB <= X x . ( l t f :x ) : 2 —► 1, (add:(FIB:(dcr:x))) : (FIB:(dcr:(dcr:x))

These forms are used for the benchmark tests in Appendix B.

5,3.2. An L-Interpreter. We follow W and’s advice to compiler designers (1982a). 

Given the semantic function fL : Exp —► Env —► Vat, we seek a machine description, IM, 

corresponding to JL. However, while JL acts on abstract entities, IM acts on their 

representations. Some notation is helpful. Given a domain, D, let RepD denote a

representation of D. If a  is in RepD, denote the thing a  represents by a . When a  is a

complex expression, we shall write v (oJ.

One of the tasks of a compiler is to produce program representations from 

expressed programs. The machine must interpret compiled programs consistently. T hat 

is, given a compiler IR : Exp -* RepS tf , and a machine

m  ; (R cPe ,p X R c?eJ  —  R * P w

we require tha t

7 (IM(ZR(cap), env)] =  E ,^e xp \en v

Since we are deriving a  direct interpreter for L, IR is a trivial translator, and we omit 

reference to it by asking instead th a t

7 [IM («p, env)] =  &  [[ exp jjenv.

We will assemble IM'* specification by attem pting to rewrite IL as the analogous 

function on concrete representations. Along the way, new objects will be discovered that 

require representational counterparts, and some of the properties of these objects will 

have to be inherited by their representations. Which properties to preserve are revealed 

when we try  to prove IM's correctness.

Representations are expressed as records delimited with square brackets, *[’ and 

Within the delimiters are a sequence of field names, the first of which is always a tag. 

For example, represented expressions (discussed just below) have record structure
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[tag Ift rgt], W ith each record format there are predicates, field extractors, and record 

builders, designated by the associated field name. For example, expressions have field 

extractors tag, Ift, and rgt. Since NUM is a possible expression tag, there is a predicate 

n u m f  th a t tests for th a t  tag, and a constructor make-NUM tha t builds numeric expres

sions.

Expression Representation. Of the six kinds of expressions, only the conditional 

has more than two subexpressions. Let a represented expression be a record of three 

fields, [tag Ift rgt), where tag is one of {NUM, IDE, LAM, LDL, APL, CND, TST}. Define the 

translator ZR as follows

ZRflnfl =  [NUM nm]

XT? Q i J =  [IDE i ■]

ZR |[X i * e j  =  [LAM i ZR |[ e]| ]

Zffji <=  e]] =  [LBL t ZRfle]| ]

#1 1 V  =  [APL ZRlIeJ Z R d e J]

ZR ([ ct et , e , J =  [CND ZR |[ e, [] [TST ZR [[ ef  1 ZR (I e, J J ]

From now on, we shall suppress unused fields, and write [[ [CDE i] Q rather than 

[[ [IDE i ■ ]].

Environment Representation. We shall not define a detailed record structure for 

Rcp£nr> Instead, ju s t assume th a t operations

find : (We X —1 R ep y j

and

extend : (Rep£„, X RcpVa, X  We) - •  RepEn¥

exist tha t satisfy

^[findft, ene)] =  env(i)

v [extend(ene, val, i)) =  env [ vaf /  i |

A third operation on RepEn̂  called "label", will be added later.
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V a lu e  R e p r e s e n ta t i o n .  RepVol*s record format is [tag Ift rgt env], and includes 

boolean values (BIT 6], numerals [NUM n], error messages [ERR m ], and primitive opera

tions [OPR 0 ]. Other value-objects which use the rgt and env fields will be added later.

S.3.3. Definition of IM* We define the concrete interpreter IM by cases, according 

to expression type. In presenting the definition we first write down IM's intended 

abstract value, and then look for an expression in reduced terms th a t has th a t value. 

We may have to introduce new objects with special properties to succeed. Existence of 

these objects is assumed. The presentation can later be viewed as a proof of IM’s partial 

correctness, depending on the existence of the postulated objects.

Numerals. We intend

V[IM([NUM n], env)] =  iL [[n ]| env =  n .

Assuming tha t ^NUM n] =  n , define

IM([NUM n], env) =  [NUM n].

I d e n t i f i e r s .  We intend

V(IM([IDE t], env)) — JIr|[( flenv =  cnv(t).

Since we have already assumed that v (find(i, env)] — cnv(i), we should define

IM([IDE i], env) =  find(i, env).

X-expresslons. We intend

V[IM([LAM 1 cap], env)] =  ZL[]X i \ .  exp]] env =  X v. JLjexp ]| (env[v/i]J 

We need something in R epVa( to stand for the right-hand object, Add function closure* 

to Repv t with the record form at [FTN t eip env). If we can ensure th a t

^FTN 1 exp env] =  X v. IL[exp ]] (env[v/i])

then we can define

!M([LAM 1 exp], env) =  make-FTN(i exp env).

A function closure adequately represents its abstraction if it produces the right answer 

whenever it is applied. We therefore need an agent to do application. Define

APPLY([FTN 1 exp env], vat) =  IM («p, extend(envt val, 1)).

Then by earlier assumptions,
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V[APPLY([FTN i eip env], to/)]
=  ^[IMfezp, extendfenv, val, i))J 

=  ZL[[ejp Jj(v [extend(env, vo/, i)])

=  Sj U exp ]] (envjvaf/•])

=  ( \  u. IL j[ exp flenv|v/t])va/

as desired.

Label-expresslons* To avoid dealing directly with the fix operation we shall hide it 

in the environment specification. Let us modify the original definition of IL.

PROPOSITION 5.3-1. Far a :Env~* Vat,

fix ( \ t  . Q p [ e / t ]  ;  =  a  (fix ( \ p ,.p\c^p, j  11 )).

PROOF: (Appendix C).

□

C O R R O L L A R Y  5.3-S. I f  IL ’s definition it revised to read

IL Hi <5= e}p =  IL De]J ( f i x \ p \  p [/L 0 e ]]p '/ «]) 

the resuiting valuation it unchanged.

PROOF: by structural induction on the language L. The valuation is unchanged on 

base expressions, that is, numerals and identifiers, On composite expressions we may 

assume by induction th a t subexpressions have the same valuation. The only question

able case is |[ i< ^ e ] j , which holds by Proposition 3.5-1 with a  =  ZL|[e]).

□

Reading IL's new definition literally (if somewhat purposefully), to evaluate 

Qi <=  e j  we must arrange to create an environment p 't h a t  binds i to "the evaluation 

of e in p* Hence, a representation is needed for an evaluation. Define an expression 

closure to b e a value of the form (SPN exp env]. If we intend V[SPN exp env] to equal 

IL ] « p  flenv , then an agent like APPLY is needed to ensure this relationship. We are in 

the process of defining th a t agent right now; it is IM. We also need an operation

A A P P L Y  

Induction Hypothesis 

Assumption about extend 

substitution
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label : (Ide X R'PEz? X /?cp£J  —

that satisfies*

7[label(i, exp, env)] = fix)* p \ c n v \ lL  [[ c*p ' /  *].

The label'operation is correct if the environment it creates binds the right value to every 

identifier.

Suppose that find(i, label(i, exp, env)) =  [SPN exp Iabel(i, exp, env)]. Modify IM 

to test for expression, closures whenever it looks to the environment.

IM([IDE i ], env) =  COERCE{find(i, env)),

COERCE([SPN exp env*]) — IM(exp, e n v ').

Then

v [IM(t, label(», exp, env))]
=  7 (IM ([SPN exp I a b e l( f ,  exp, env)], la b e l(» , exp, env))]

=  ^[IMfeip, label(i, exp, env))]

=  fL[[ezp ||v [label(t, exp, env)]

=  IL D exp Nfix X p e n v [ ( / L  |  exp Qp '/• ]).

A label, IM 

A COERCE  

I.H.
intention of label

Therefore, define

)M([LBL i exp], env) =  IM(ezp, labelft, exp, env)).

A p p l ic a t io n s .  We intend

^[IMtfAPL expf cxpj, env)] =  IL | expt i exp^J env

=  apply e x p env) {/L|[expf ]] env)

We shall implement apply by completing the specification of APPL Y  begun earlier. In 

case th a t the exp} evaluates to a function closure, we already specified how it should be 

applied when we looked at lambda expressions. Presumably, the machine has the under

lying capability to apply operators. That is, assume there is a mechanism, “ apply", such

*The Implementation in Appendix B defines
label(irfe, exp, env) ree x where x = extend(env, muke-SPN( exp, x), ide)).

Thus, we once again build a self-referential representation for the recursive specification. For a 
recent discussion of this Issue, see (Wand, 1983).



108

th a t - -

^[apply([O PR  o ] , v o /) ]  — o(val).

Any other value produces an error when applied. The following definition of APPLY 

accounts for all the cases:

APPLY(/fn, arg) <S=

oprT{//n) -*■ apply {ftn, arg),

ftn T (/fn ) -*  le t [ tag ide exp en v ] =  f tn
In IM («p, extend(env, ide, va/)), 

make-ERR( 'Vnvo/irf/unction").

The Daisy-like declaration |  le t [ tag ide exp env] — f tn  ]] simply states f tn  ’» record struc

ture in the case tha t it is a function closure, Subsequent occurrences of the field names 

could be replaced by the corresponding field extraction operations.

Conditionals. We intend

V[1M([CND expt [TST expt  ] =  IL ] expl -* expf t  M p J  en v  

O n  th e  r ig h t w e g e t

test (IL d expt $ env) — (&  [[ expt ^env), (IL [[ ezpjflenv).

Assume there is an operation, test : RepVal-+ Boot, th a t satisfies test(vaf) =  fejt(vat), 

and define

IM([CND exp{ (TST cxpf expa]], env) =  testflM teipj, env)) —* lM(eipf , env), JMfezpj, env).

This completes our construction of a concrete specification for the L-interpreter. 

Two new types have been added to RepVai: function closures and expression closures. 

Thus, the possible value records are:

operator -  [OPR o ] error message -  [EAR m ]

numeral -  (NUM n ] /unction closure -  [f2W i exp env]

boolean — [BIT b ] expression closure -  [S/Weip env]

Figure 5.4 gives the specification of IM from the discussion above. We have postulated 

an underlying type th a t includes the representations, representation builders, field 

extraction primitives, and operations find, extend, label, apply, and test,
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le t [tag ift rgt ] =  exp 

in

aum t(e2p ) - *  exp, 
idel( exp) —► COERCE{find( lftt e n v )), 

latnT(ezp) —* make-FTN( Ift, rgt, env), 

lbl!( exp) —* M( rgt, label( tft, rgt, env) ), 

aptf(ezp) —> AFPLY(IM(//(, env), M( rgt, e n v )),

cndf( exp) —* le t  [tag* Ift'  rgt*} — rgt

in  test(IM( Ift, env)) —* IM( Ift', env), IM( rgt*, env).

COERCE( val) <*= 
opr?( va l)—* val,

□umf( val) —* val, 

erri( vo/) —* val, 
ftn!{ val) —► val,

spnf( val) —* le t  [tag exp '  env'] =  val 

in IM( exp, env).

A PPLY (/fn, arg) <S=

oprT( f t n ) —*■ apply(/in, arg),

ftnf( f t n ) —* le t [(op ide exp env ] =  ftn

in  IV1( exp, extcnd( j'rfe, arg, env)),

make-ERB( "invalidfunction”).

Figure 5.4. Non-linear Specification for an L>Interpreter
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5*3.4. Stacking Version of IM. Using the W and-Friedman construction discussed 

in Section 2.4.5, IM is now transformed to an iterative specification with a control stack.

The result is shown in Figure 5,5. Since the construction forces us to choose an evalua

tion order for recursive calls, we end up a t a weaker interpreter than the formal 

definition demands. In this case an "applicative order" interpreter is derived. For 

example, the L-expression |[5 :(x < = x )]] should produce an error message according to 

the definition of IL, and does so under the IM of Figure 5.4. However, its interpretation 

diverges under the IM of Figure 5.5 (See the last experiment in Appendix B).

In this case, an appropriate version of the control stack is one on which environ

ments and actions can be pushed. Actions are represented by records of the form 

{tag ift rgt]. The possible actions are

[HLT] — h a l t  the machine 

[ARC exp] — evaluate an application's argument 

[ACT v a l]  — to apply a function 

[TST c x p j  e i p s ] — t e s t  a conditional's predicate.

We have allowed the right subfield of a CND-type expression, always something of the 

form [TST cipt expt ], to serve literally as an action, so our trivial translator IR is some

thing of a compiler after all.
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M( exp, atk, env) <S= 

le t [tag Ift rgt ] — exp 

In num!( exp) —■ RETURN( exp, atk),

ideT( ezp) —* COERCE(find( Ift, env), atk), 

lam l(e jp ) —► RETURN(make-FTN(///, rgt, env), atk), 

lblf( exp) — IM( rgt, atk, label( Ift, rgt, env)), 

apll(ezp) -*  IM( //(, pusb(make-ARG( rgt), env, efA), env), 

cnd!( exp) —► W( lft„ push( rgt, env, atk), env),

COERCE( vat, atk) <±= 
le t [tog exp env] =  val 

In opr?( vat) -  RETURN( val, atk), 

numt( val) -  RETURN( vat, atk), 

err!( val) -* RETURN( vat, atk), 

ftnl( vo/) — RETURN( vat, atk), 

spn!( Vfl/) —* M( exp, atk, env).

RETURN( val, atk) <i= 

le t [mt  env] =  top( ef£)

[tag Ift rgt ] =  nxt 

atk'  =  pop( a (A) 

in bltT( nxt) -* val,

tst!( m i)  —» [(tcst( val) —*■ IM( Ift, atk‘, env), IM( rgt, atk', env)], 

arg?( nxt) -*  EVl( Ift, push(make-ACT( Ift), a , atk'), env), 

act?( n x t) —*■ APPLY( Ift, vat, atk').

A PPLY (/(n, arg, atk) < z  

le t [ tag ide exp env ] =  ftn

In opr!( f t n ) — RETURN(apply{ ftn, arg), atk),

ftn?(/fn) -* IM( exp, atk, extcnd( env, ide, arg)),

RETURN(make-ERR( “invalidfunction”), atk).

Figure 6.6. Stacking Version o f the L*lnterpreter.
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5 ,3 .6 ,  Simple Loop for the L-interpreter. We now use the construction of 

Section 2.4.3 to compile the IM or Figure 5.5 into the simple loop shown in Figure 5.6. 

To prepare for the transformation, all of the serious functions must he defined over the 

same state  descriptor. The various argument names are combined to a single formal 

param eter list, and the defining equations ore altered appropriately. The functions 

modify only those parameters they originally depended on, and pass the arbitrary value 

■, in the other positions.

A control token e is added to encode which of IM (E, for "EVAL"), COERCE (c), 

APPLY (A), or RETURN (R) is in control. In the case th a t c equals R and the action is 

a test, the setection of an alternative expression is distributed through the recursive call 

to IM. T h a t is, we have changed the clause

tcst( do/) —* IM(E, ■ ,■ ,■ , I f f ,  atk', old), !M(E, rgt’, atk', old)

to

IM(E, ■, ■, ■, [test( val) — Ift', rgt’}, atk', old).

We are safe in making this local transformation since the system is linear and the condi

tional involves only total operations.

5 .3*6 , Some Refinements In the Loop Version* A little design refinement is 

irresistible. Note the following about the machine of Figure 5,6.

1. Unless an identifier is bound to an expression closure, its evaluation results in sim

ply moving its binding to position val and returning.

2. There are only three cases when a type predicate is used in two states, The predi

cate num ? is used a t QVAL and COERCE The predicates opr? and f t n f  are used 

at COERCE and APPLY

3. When control is a t RETURN, the argument exp is not used.

4. The nrguments f tn  and val are unused except when control passes to APPLY, and 

in APPLY the arguments exp and val are unused,

W ith these points tn mind, let us now propose th a t expressions, values, and actions 

be "superimp osable", like variant records. T h a t is, suppose they are represented in such 

a way as to be accessed by the same field extraction primitives. This allows us to do 

some register optimization. (The trick of allowing TST-expressions to serve as actions 

foreshadows this refinement.) If the tags are kept distinct, we can make several local
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IM( ctl, fin , arg, vat, exp, atk, env) < =  

let
[ tage ide fitext fienv] — fin  

I tag v*text v*env] — val 
[tag tfi rgt] — exp 

[ nxt old] =  top( atk)

[tag tfi' rgt'] =  nxt 
atk' =  pop( atk)

i n

( ctl — E) —*

numT( exp) —* W( R, a, a, exp, m, atk, env),
idet( exp) - *  1M( O , m, m, find( exp, env), m, atk, env),

latnT( exp) IM( R, ■, ■, raake-FTN( tfi, rgt, e n v ) , a, atk, env),

lblT( c ip) -*■ IM( E, ■, a, m, rgt, atk, Iabel( tfi, rgt, env)),

aplT( e ip) -♦ IM( E, ■, ■, ■, tfi,  push(moke-ARC( rgt), env, atk), env),

cndl( exp) — IM( E, ■, m, m, tfi, push( rgt, env, atk), atk),

(ctl =  O) —
errT( val) -*■ M( R, b, a, val, u ,  atk, env),

numl( val) -*  IM( R, a, a, val, n ,  atk, env),

opr!( val) — IM( R, b , b , val, a, atk, env),

ftnl( val) —► 1M( R, a , b , val, a , atk, env),

spnf( val) -*  IM( E, m, m, a , v-text, atk, v-env),

(ctl =  R) —

hltf( n*f) —► val,

tst?( nxt) - +  IM( E, b , b , a , (teat(vat) tfi', rgt*|, atk*, old),

arg?( n if)  IM( E, a, a, a, tfi', pusb(make-ACT( val), a, atk*), old),
actT (nri) —► IM( A, val, tfi', m, m, atk', old),

(ctl =  A) —

oprf(/fn ) — IM( R, a , b , apply(/fn, orp), B, atk, env),

ftn?(/tn ) -* 1M( E, b , a, a, rgt, atk, extend( env', tfi, val)),

Evf( R, a, a, make-ERR(“invalid function”), a, atk, env).

Figure 5.B. Simple Loop for the L-tnterpreter.
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transformations on IM th a t reduce the sizfe of its specification. The result is an 

equivalent version of IM shown in Figure 5.7.

1. Change IM at EVAL in the case th a t exp is an identifier. Place “find( exp, env)" 

back in exp. Alter COERCE to test exp ra ther than vol. Since the only overlap is 

in the case of numerals, which are handled the same way by COERCE and 

EVAL...

2. ...combine COERCE and EVAL into a single cose.

3. Alter every branch to RETURN to place the top action on the control stack in

exp. We are simply "spreading” the stack into an available vacant register. If 

none of the action tags equals any of the expression or value tags, we may also 

combine the states RETURN and EVAL/COERCE.

4. Use vai and exp to bold the argument and function when going to APPLY.

5 .3 .7 .  R e a l iz a t io n  o f  IM . We now have IM expressed as a simple loop and can 

transcribe it into a circuit description according to Theorem 3.3-5. Components are 

enclosed in braces to make it easier to discern them from signal identifiers. The entire 

conditional structure is distributed across the state descriptor, making IM the outermost 

symbol. Figure 5.8 defines a packaged combination, MUXm, tha t implements the

required conditional. Figure 5.0 shows the resulting circuit equation.

6 .3 .8 . R e f in e d  R e a l iz a t io n  o f  IM . The final transformation, shown in Figure 

5.10, factors out complex-typed signals by replacing signals S T K  and E N V  with abstract 
components STACK and ENVIRONMENT, defined in Figure 5.8. Both are specialized 

to serve this circuit. STACK takes instructions P S I I ,  POP, and NOP, and saves actions 

and environments. ENVIRONMENT takes instructions S E T  to change the environment 

in effect, H LD  to keep the current environment, L A B  to produce a labeled environment, 

and E X T  to extend the current environment. It continually finds a binding for one of its 

input signals.

The defining equation for the signal C has been simplified to eliminate one MUXm 

component. The circuit goes into APPLY exactly when the expression register holds an 

action of type ACT. The resulting realization is the last of our derivation.
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IM{ c tl ,  va l ,  exp ,  atk, e n v )  <±z  

le t

[ t a g  Ift r g t  env*] =

[ n i t  o l d ]  =  t o p ( a t k )  

s tk ' =  pop( a tk )

In

( e</ =  E ) —

hltf( eip) -*  v a l ,

numr( e x p )  -*  W( E , exp ,  n x t ,  atk*, o ld ) ,

opr!( eip) -*■ IM( E, exp , n x t ,  a tk ' ,  o ld ) ,

ide!( eip) -*  EVl( E, ■, find( eip, env), atk , env),

Ian»r( e i p )  —► 1M( E , m a k e -F T N ( Ift, rgt, env), nxt, atk*, env),

lb l l(  exp) —► 1M( E , ■ , rgt, atk, labet{ Ift, rgt, e n v ) ) ,

a p l l (  exp) —*■ M( E , ■ , tft, p u sh (m ak e -A R Q ( rgt), env, atk), env), 

c n d t(  exp) —  IM( E , ■, Ift, p u a h (  rgt, env, atk), env), 

f tn f (  e i p )  —► W ( E , exp, nxt, atk', old), 

s p n f (  e ip )  —i► IM( E , ■ , Ift, atk, rgt), 

ts tT ( exp) —  IM( E , ■ , (tea t( v a /)  — Ift, r p ( | ,  atk', o /d ), 

a rg t (  e ip )  - *  IM( E , ■ , Ift, p u sh (m ak c -A C T ( val)* ■» atk), old), 

a c t l (  e ip )  —* IM( A, val, Ift, atk*, old), 

errT( e i p )  —* IM( E , exp, nxt, atk*, old),

( c t l  =  A )  —*

oprt( eip) —* IM( E, apply( eip, v a l ) ,  n x t ,  atk*, o ld ) ,  

ftaT( eip) -* IM( E, ■, rg t ,  atk*, extend( e n v ' ,  Ift, vo/)),

IM(E, make*ERR( “ in v a l id  f u n c t i o n " ) ,  n x t ,  atk*, o ld ) .

Figure 6.7. Refined Loop for the L-lnterpreter*
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m u x M(c, exp, e-num, e-opr, e-ide, e-lam, e-lbl, e-apl, e-cnd, e-ftn,

e-apn, e-tat, e-arg, e-act, e-err, a-opr, a-ftn, a-err) <S=

( c =  E )  —►

[n u m lfe z p )—* e-num,oprT( e jp ) —► e-opr, Ide?(c2p ) —► e*irfe, lam !(ezp )—* e-lam,

lbll( ezp) —*■ e-lbt, apl!( ezp) —» e-apl, cndT( e z p )—• e-cnd, ftnT( exp) — e-ftn,

spnT( exp) — e-apn, tstf( exp) — c-tat, arg?( exp) — e-arg, act!( exp) — e-act,

e rr ! (e ip ) -»  e-err],

{ e =  A ) — | oprI( exp) —a-opr, ftnl( exp) —  a-ftn, a-err ].

E N V IR O N M E N T ^IN ST , X, Y, Z) <=  re c  ( [find](X, ENV), ENV) 

w h e re

ENV = env0 I [m ux^IN S T , ENV, X, [label](X, Y, ENV), [extend](X Y Z ) )

muxE(iW , u, v, w, x)  <£=

(tnaf =  HLD) —► u,

(iruf =  SET) — v,

( i n a t  =  LAB) —* w ,
( i r t f l  -  E X T ) — x.

ST A C K (IN ST , ACTN, ENV) re c  (NXT, OLD)

w h ere  

(NXT, OLD) =  trauspose([top](STK)) 

STK =  atk0 I [muxsI(INSTt [pushKACTN, ENV, STK), (pop](STK))

m u x s( inat, u, v, w) <=

(inal =  NOP) —* u,

(intf =  POP) — v,
(inat =  PSH) —► w .

Figure S.8. Higher Level Com ponents for the L-reallzatton.
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M( c°, vat0, exp0, atk0, entP) <=  rec  □  w h ere  

0 - c ° \  [muxMI(C, EXP, [El, [E],

[E], [E],

VAL =val° I [muxMI(C, EXP, EXP, EXP,

ALU =  [apply|(EXP, VAL)

ERR — [make-ERR](EXP, C)

EXP =exp° I [muxMl(C, EXP,NXT, NXT, FND, NXT, RG T, LFT, LFT, NXT,

LFT, TST, LFT, LFT, NXT, NXT, RGT, NXT)

LFT =  |lft](EXP)

RGT =  [rgt](EXP)

TST =  [mux]( [testl(VAL), LFT, RGT)

CLS =  [make-FTN](LFT, RGT, ENV)

FND = [find](EXP, ENV)

STK =atk° 1 [muxM](C, EXP.RTN, RTN, STK, RTN , STK, PSH, PSH, RTN,

STK, STK, PSH, STK, RTN, RTN, STK, RTN)

PSH =  [pushl(ACTN, ENV, STK)

RTN =  [pop](STK)

(NXT OLD) =  (topl(STK)

ACTN =  [muxMl(C, EXP, a, ■, ■, ■,

■, ■, ACT, a,
ARG =  [make-ARQl(RGT)

ACT =  [make-ACTl(VAL)

ENV =entP ! [muxM)(C, EXP,OLD, OLD, ENV, OLD, LBL, ENV, ENV, OLD,

RGT, ENV, ENV, ENV, OLD, OLD, EXT, OLD)

LBL =  [label](LFT, RGT, ENV)

EXT =  [extend](LFT, VAL, SAV)

SAV =  (envl(EXP)

a, ARG, RGT, a,

■, *, ■)

[EJ, [E], [E], [E], [E], [El,

[E], [A], [E], [E], [E], (EJ)

a, CLS, a, a, a, EXP,

a, VAL, EXP, ALU, a, ERR)

Figure 6.0. Realization o f the L-interpreter.
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M ( c°, v a f ,  t i p 0, »tk°f en  < =  r e c  □  w h e r e

C =  c ° \  [mux]{ ACTl(EXP), [E], [A])

VAL = va l°  ! [muxM)(C, EXP, EXP, EXP, a, CLS, a , a, a, EXP,

■, a, m, VAL, EXP, ALU, a, ERR)

TST =  [muxj([test]( VAL), LFT, RGT)

ALU =  [applyHLFT, VAL)

EXP = txp°  ! [muxM](C, EXP, NXT, NXT, FND, NXT, RGT, LFT, LFT, NXT,

LFT, TST, LFT, LFT, NXT, NXT, RGT, NXT)

LFT =  [lft](EXP)

RGT =  [rgt](EXP)

SAV =  [env|(EXP)

CLS = [make*FTN](LFT, RGT, ENV)

ERR = [make*ERR](EXP, C)

(NXT OLD) =  STA C K (S1, S2, ENV)

51 =  [muxM](C, EXP,[POP],[POP|,[NOP),[POPl([NOP],[PSHl,[PSHl,|POPl,

[NOP],[NOP], [PSH],[NOP],[POP],[POP],[NOP],[POP])

52 =  [muxM](C, EXP, a, a, a , a, a, RGT, ARG, a,

a, a, ACT, a, a, a, a, a)
ARG =  |make-ARG](RGT)

ACT =  [make-ACT](VAL)

(FND ENV) =s ENVIRONMENT(El, E2, E3, SAV)
E l =  [muxM](C, EXP, [SET], [SET],[IILD], [SET], [LAB],[HLD], [HLD], [SET],

[SET],[HLD],[HLD], [HLD], [SET], [SET],[EXT], [SET]) 

E2 =  [muxM](C, EXP, OLD, OLD, LFT, OLD, LFT, a, a, OLD,

RGT, a, ■, m, OLD, OLD, RGT, OLD)

E3 = [muxM](C, EXP, a, a, a, a, RGT, a, a, ■,

a, a , a, a, a, a, VAL, a)

Figure 5.10. Refined L-realization.
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5.3*9* R e m a r k s .  We have derived a description for a machine th a t interprets suit

ably represented expressions in the language L  with a call-by-value semantics. In 

Appendix 8, each step in the derivation is expressed in Daisy, and a set of trial expres

sions ore interpreted by the various versions of EvL

The executable versions of M ’s specification would eventually serve as an experi

mental vehicle for continued design refinement. For example, a trace of the circuit 

shows th a t it wastes cycles testing for expression closures. (See the last experiment in 

Appendix D.) We would do better to make tha t test concurrent with evaluation, so that 

the presence of an expression closure has the effect of an interrupt. Of course, innumer

able other modifications are possible, and we shall not pursue them here.

The programs in Appendix B were used to debug the derivation. Since the 

transformations were carried out by hand, there were a number of errors. Many were 

discovered by attem pting to execute the erroneous forms.

In transforming the specification to one having linear control, L 's semantics have 

been weakened; there are expressions which converge under the initial specification but 

do not on the target machine. We could alter L’s format specification to reflect this 

change in its design. Figure 5 .U , giving L’s continuation semantics, is the appropriate 

modification. While we took a separate step to introduce the control stack, the transfor

mation is entirely in the spirit of Section 5.3.2. Had we started with L’s continuation 

semantics rather than its standard semantics, we would have proposed a  representation 

for continuations and introduced the appropriate agents and operations for these objects 

directly (Wand, 1982a).
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Domains

Ide r*/ identifiers

Num (n) numerals

Bool N truth values

Opn — Val — Fas M operations

Err — { “invalid function (m) error messages

Exp N expressions

Baa — ZVum +  Boo/ + Opn +  Err M basic values

Val — floe V- F/n  + Spn M expressible values

F/n  =  Val — Spn (f) functions

Spn =  f f -  Vo/ (<*) ezpressiori closures

K  =  V a/-* Vo/ (*) expression continuations

Ent> =  Ide — Vo/ (p) environments

Valuation — ZL .* E x p  — E n v  — / f  — V al  
ZL [|n]jp« =  k  n 

Ej  ([ ijp  k =  c o e r c e  ( p i )  k  
ZL[[X I * ejpfc =  k  ( \  v k \  JLdcD ( p [ v / i ] ) K * )

Bj d i < =  e]jp k  -  fix ( \ e  . I L ^ e  ]] p\cj  i ] )

E> | c t : e#Dp k  =  Bj \ e ^ p  (  X /X  |[e t \ p  ( \ v .  ( a p p ly  f v k )  ) )

/E - f l e ,  —  c f l  e J J p K  =  / k f l e j p  v * ^

Auxiliaries

p[ v f  i] = \ j , / i =  »V — v, p/ty. 
coerce =  X ok . fv i t S p n )  — ft; «y, f k vj

app/y =  \  J  a k  . ( f  i i O p r )  — k ( / v) ,  ( f  i s F t n )  —• f v t c ,  “ in v a l id  f u n c t i o n ” , 
t e s t  — X o. ( v  i s B o o l )  — a«/7oo(/, ff.

Figure 5.11. Continuation Sem antics for L*



6. Circuit Refinement

Experiments with realizations in Section 4.4.3 and Chapter 5 hare revealed th a t the 

derived circuits can be improved. In this chapter we turn to the issue of refining circuit 

descriptions. Although a specific refinement task is considered below, the method of 

refinement is consistent with the methods developed earlier. A (specialized) set of 

transformation rules is used to attain  a  goal. Since we are concerned with improving cir

cuits and not deriving them, both source and target descriptions will now be connec

tivity expressions. The initial specification describes the instantaneous behavior of a 

combined operation. Our transformations yield digital system realizations tha t perform 

the same computation as the specification but do it in a serial fashion. Of course this 

complicates the timing of the circuit involved.

The task is to modify a large combinatorial system so th a t it has fewer external 

connections. This goal is attained by "folding" the system so th a t components, and 

hence external leads, are superimposed. Since an individual component cannot simul

taneously produce two results, it is necessary to serialize its behavior. Time is traded 

against space, where the latter is measured in terms of a "pin count".

It will be necessary to keep track of individual values produced by the system in 

circuit-folding derivations. Since Daisy is fairly useful for this kind of bookkeeping, it is 

used as the transformation medium. T hat is, we shall build our algebra of synthesis on 

Daisy-like notation, rather than the purely functional or purely sequential languages 

used earlier.

121
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To illustrate the problem, let us consider the following configuration of components.

u.

( 1)
-  [j]

VJ vt  vn
The operation /  is applied in parallel and independently to the individual values 

ti; ,..., un, producing results vn. Suppose tha t we want to implement a design that

has only one input and one output. The obvious modification is to serialize the u's and 

use a single /com ponent:
(-*)

• • • /
• •

U U, till i s vt

The schematic notation above is informal. The series of tokens along a single wire sim

ply illustrates th a t the /-com ponent is acting on each of the u'a. One should not read 

too much into this picture; for example, it does not imply th a t wires necessarily store 

values. The price for reducing the external connectivity of this system is th a t the sur

rounding circuit must somehow be modified to support the serialization. This is a simple 

serialization problem; the u'a can he presented in any order; the v'a are produced in the 

same relative order. Now consider a  system th a t has internal connectivity:

(i)
u.

V1 vt n
The g ra can be superimposed as before, but in this case the attem pt at folding introduces 

feedback. A register1 is needed to synchronize the system internally.

1 This Is a good time to recall that the word "register" was adopted for its brevity and to 
note that what is realty meant here Es storage mechanism. How storage is achieved depends on 
the fabrication medium.
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ui  ui

C
The surrounding circuit must present the u'« in an order th a t exploits the feedback in 

the circuit. There is only one suitable ordering.

In seeking a method of synthesising heat  refinements like the ones above, we 

should, if possible, account for the changing performance relationship between the sub

circuit and the system th a t surrounds it. We develop a transformation system below in 
which, a t some point during a derivation, we elect to identify some fragment of the 

evolving description as a signal. Once the identification is made, the content of the sig

nal becomes superfluous in the description. However, this residual information is 

retained as a specification of external behavior and can be used as a basis for coordinat

ing the target system with its surroundings.

The order that values are serialized drives the transformation process. While the 

examples in this chapter are small enough th a t appropriate orderings can be deduced by 

inspection, it will be apparent th a t without guiding heuristics synthesis would be hope

lessly explosive. Gannon (1982) discusses a method to analyze regularly connected data

flow systems to find appropriate orderings. His model assumes connective storage: pro

cess coordination is achieved by storage along connecting paths. Both examples above 

accept tokens on such a path, and deliver values to another. Note however, th a t some 

of the connective storage is already implemented if the ^-circuit's ou tput is taken from 

its internal register:

Having introduced storage we now need a  clock. In transforming a combinatorial 

subsystem to a synchronous-one, it becomes necessary to determine how the target’s 

temporal behavior can be coordinated w ith it surroundings. Cuny and Snyder (1982) 
present a model in which autonomous processing elements are specified according to
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their external communicative behavior, and they address the problem of finding viable 

computation rates by which the processors can be interleaved to perform synchronously. 

A process is described by a regular expression over sets of transactions. We shall call 

such an expression a schedule. In their notation, our second example above initially had 

schedule

(The subscripts identify external connections. ‘R ’ means “read” ; lW ’ means “write”. In 

the work cited, connections are identified by the names of the surrounding processing 

elements. These names are not known here, so port identifiers are used instead.)

The initial system is combinatorial; it does all its transactions a t once. The refined 

version is sequential, either

[ ( R , , RUw v ) [ l Ru w v))°_ 1 l’
or

[ (K.o R„ } [ {R0 Wv> I" - 1  IWV} ]*

depending on whether or not the internal register is used to buffer output. The residual 

byproduct of synthesis mentioned above will be displayed in a form from which such 

expressions could be extracted.

The synthesis method developed in the rest of this chapter does not compete with 

methods such as Gannon's or Cuny’s and Snyder's, rather it serves as a bridge between 

them. On large problems analysis is needed both to guide the construction of solution 

circuits and to deal with the increased temporal complexity of the target system. The 

method offers a way to maintain correctness while constructing realizations th a t achieve 

the goal of serialization. Section 0.1 develops a set of basic transformations on Daisy 

expressions. These are generalized in Section 0.2 to a rewriting system th a t we shall use 

to attack serialization problems. Section 6.3 presents three examples of “scheduling 
derivations” on increasingly complex configurations of components.

0.1. Transformation Axioms

A combinatorial system will be specified in Daisy by a system of value-defining 

equations (Sec. 4.2). The left-hand sides of these equations are format expressions: 

identifier structures delimited by square braces '[’ and The right-hand sides are 
actual expressions: value structures delimited by angle brackets '< *  and * > ’. To
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evaluate these systems, on environment is constructed th a t recursively binds formal 

structures to values. For the remainder of this section suppose we are dealing with a 

specification

S  <= rec e where 

* 1 *  fli

* n =  3n

where experiment e is an expression over x . Recall th a t S ’s value is
t • «

ffl I e|| Xo'•/..[ ® 1 < ' /  j  1 )

where p0 is some initial environment (Sec. 4.3).

Let )a denote the value of a in p '; th a t is, la  =  JDflaflp'. Then by Daisy's version 

of environment extension,

P' = P o U °n /  aJ  "* I K / * / ) '

However, pg can be extended in any order, as long os the x's are distinct, and in fact can 

be arbitrarily restructured. W ith this in mind, we propose the following axioms for 

transformations on S;

Axiom N: ( Vacuous Equations) The equation [[[] =  < >  Q can be added to S.

Axiom G: (Gluing) The equations [[x =  aQ and fly =  6J can be replaced by

H [z ! y ] — < a  I b>  ],

Axiom E : (Extraneous Equations) I f  the identifier y  is free in S  then

(i) The equation [[ y =  6fl can be added to S, for any expression b.

(ii) The equation Q x — a]) can be replaced by Jx  =  j/fl and J[y =  afl.

Axiom F : /Function F ac to rin g  The expression [ [ < / j a / ... / i a m>]] can be replaced by

H < / . . .  /  > tE i< O j... am>  J, tcAcre S stands for  a transposition operation.

AxiomS: (Signal Interpretation) Nil = < u  * > .
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These axioms are all valid in the semantics of Daisy. Axiom N  introduces an equa

tion th a t has no effect in S  because the formal expression contains no identifiers. 

Axioms G  and E  do not change the value of S  because the list constructor is not strict; 

adding unused bindings and indirection through extraneous names simply restructures 

the environment, Axiom F  exploits Daisy’s application combinator, d-apply. The point 

of the axiom is th a t operations may be factored out of structures by applying the reduc

tion rule for function-lists in reverse. Axiom S foreshadows our intention to interpret 

some finite sequences as signals: the main goal or synthesis in this chapter is to construct 

signals by serializing values. Consequently, we shall permit finite sequences to be inter

preted as signals with only finitely meaningful prefixes. This is the only axiom whose 

validity cannot be deduced directly from the definition of Daisy in Chapter 4. In fact, 

Nil is implemented to satisfy Nil ^  fix \ I . ( m  , I}, where in Daisy, ■ (don’t-know) is an 

all-purpose error message.

6.2. General Transformations and their Behavioral Interpretation

We now combine the axioms of the preceding section into a set of specialized 

transformation rules for the serialization probtem. Each definition is followed by a dis

cussion of how the rule makes progress towards a serialized target.

Let the specification S  be as before, except th a t it will now be parameterized by a 

list of input values:

S:[Uj... u j  <= rec e where

Rule P: (Gluing) Let n be a permutation o /{ i ,  S, ..., n ). A ny subset of equations in S

1 <3 <P < * )

may be rewritten as

[ x*(t} x*(t) •" xw{P) ] = a*(*t "* a*fr)>  ’
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Rule T is valid by repeated use of Axiom G , as its name suggests. It is used to associate 

the x's or a'a together in a single structure. Often, this structure is later reinterpreted as 
a signal.

Rule A: (Delay) The equation [x  =  a] may be rewritten at [ [  y  I x ]  =  < ■  I f l> J , 

where y  i t  any formal expression of identifiers that are free in S.

We obtain the new equation in A through Axioms G  and E , by gluing the extraneous 

equation Q y =  ■]] to [fx =  a]]. In the derivations below, y  will always be a  simple 

identifier and z wilt always be a linear sequence. So we will be changing equations of the 

form

[xt  x f  ...J =  a

to

[yx i xt .,.] =  < ■  ! a > .

Explicit concatenator symbols indicate th a t a register has been added to the evolving 

circuit. This register postpones the x's in time, which is why A is called the delay rule. 

To avoid making up meaningless names, we sometimes write a ■ for y:

[■ Xt Xt . . .] =  < «  1 0 > .

Rule A: (Lifting) The expression |[ < f t  oj »„ f t  on>  ]] can be rewritten at 

H < /* > i3 * < f l j ... an>  H, where E it the identity component < A 1 .1*> .

The validity of lifting follows from the meaning of application, as discussed in the previ

ous section under Axiom F, and from the the interpretation of Nil as the everywhere 

indeterminate signal. The rule differs from Axiom F in th a t here we regard the Unite 

sequence of f ' t  to be a component. By Axiom F, |  < / t  a{ ... f t  an>  Q can be rewritten as 

H < / . . .  / > t H : < a / ... a „> I |. Extend |[ < / . . . / > ] ]  to the infinite sequence | [ < / * > J  

and by Axiom S interpret ([ < . . .  an>  J instead as the signal | < o j ... . . .> J

The result of application is

< / :  at ... f t  an / :■  / :■  . . .>
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Assuming /  completely strict, this becomes

< f t a t ... / :  on ■ ■ . . .>  

which by Axiom N  we may write as

< /*  a, ••• /* «„>

The identity component 3  does a generalised transposition on inputs of any dimension.

This is the same coercion used in the circuit experiments of Section 4.4.3. Rule A is used

to introduce to the evolving description a single component tha t serially computes indivi- 

dual values.

Rule M : (Selection) Suppose S contains two equations o f the form

Ix i V** *pl = ■
\yt y ,  ••• yp \ -

Let  |  [2; ... zp ] {] he a formed expression in which 2 . is one of z. or y. for all i*.

Then there is a selection component M  by which

[xJ xg ... zn ] =  M :<a  6 > .

M  is simply a multiplexor with a fixed predicate signal. For example, if we have

*f ) =  “s>

\y, yt\ - <bt bt>
and wc want a signal of the form [xt yt ], then we may may replace these equations with 

1*1 ys 1 =  M U X :< < tt 5 >  < a i at x b i bt> >

We shall denote the fixed predicate signal as a subscript on M, encoded as a string of 

bits, with (0 ‘ interpreted os true.

MoiI < < 0 / at > < b t bt »
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Rule 4>: (Installation) The identifier x it an instance of the value a in S  i f  either a is m or 

the equation [[x ~  a j  can be deduced from S. A formal structure it an instance 

of an actual structure i f  its e/emenfe are eaeA instances o f the correponding e/e* 

ments o f the actual structure. A  actual value can be replaced by any o f its 

instances.

Rule 4* is used to replace values consumed in S  with results produced in S, For exam

ple, if S contains the equations

z ~  < a «  c >

< abc>
By Rule $ , s's defining equation may be replaced by

z =  < x t xt xa>

The rule implies th a t ■ is truly arbitrary. T hat is, we must agree th a t any value may 

serve where an unknown value Is required. Installation is a restricted form of substitu

tion used to introduce feedback. The equations of S  do not immediately admit substitu

tion because they are not identities: their left-hand sides are formal structures and their 

right-hand sides are not. For instance, the defining equation Jx  =  xfl may bind x to the 

divergent value2, ju s t as surely as does the equation [[x =  x + We must avoid 

transformations tha t would lead to such equations.

We shall keep track of value instances by a naming convention. The identifier 

[[ V ]| is by convention an instance of the value a. For example, a name for the parame

te r u can be introduced by Axiom E  with an equation of the form [[ V  =  uj],

6.3. Scheduling Derivations

We shall give three examples to show how the rules defined in Section 6.2 can be 
applied to the scheduling problem. The first two come from the discussion in the intro

duction to this chapter. The third is a somewhat more complicated combination, a por

tion of a regularly connected network.

awhich is the minima/ fixed point of the equation. The use of defining equations as identities 
to reason about Lucid programs leads to the same "glitch" (Ashcroft and Wadge, 1077).
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6*3*1* C i r c u i t  F* Consider the simple serialization problem for n — 3. The com

binatorial system is specified

a 6 c
•  •  •

»> [ |]  [ £  i £
x y s

Si[a b c] re c  □  w h ere  

x =  f :< a >  

y =  f :< b >  

z — f :< c >

From S  we may derive

x ~  f :< a >  

y  =  f :< b >  

z =  f :< c >

Given

[x y z] =  < f : < a >  f :< b >  f : < c > >

[x y z] =  < f * > : H : < < a > < b > < c > >

[x y z] =  < f + > : < < a  b c > > meaninp of H

The final step above is a symbolic transposition of the argument to < f * > .  We are 

turning the individual arguments to <  f* >  into a signal. To emphasize that we are now 

thinking of S as a digital circuit, let us identify its signals.

V =  < f * > : < U >  

[x y z] =  V

U =  < a  b c >

/rfen/iTicafiort 

of signals
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THc derived circuit applies the combinatorial component < f* >  to its input signal U and 

produces output signal V. If a, b, and c are presented in order on U then the results x, y, 

and then z ore delivered on V. We shall rephrase this interpretation as a schedule 

specification; the deGning equations for V  and [x y z] state  the external characteristics of 

the circuit.

SCHEDULE

Input O utput
fat lime) fat ttme)

0 1 S 0 1 2

U: a b c V: x y z

6 .3 .2 . C i r c u i t  G . Define S for the simple feedback problem, again with n — S.

d a  b e
•  •  •  •

x y

S:[d a b c] <$= re c  □  w h ere  

x  ~  g : < a d >  

y  =  g i< b  x >  

i  =  g : < c y >

We begin by superimposing the g's in the only reasonable order.

x =  g :< a  d >  

y =  g t< b  x >  

i  =  g i< c  y >

Given
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[x y z] = < g : < a d >  g : < b x >  g i < c y > >

[x y  z] = < g * > :5 i< < a  d > < b  x > < c  y > >

[x y  z] = < g * > : < < a  b c >  < d x y > >

Note tha t j  is produced at “ time 0" but is consumed a t “time 1" by < g * > . We shall 

have to delay this instance of x if the circuit is to use it.

[ i x y  z] =  i  I < g * > i < < a  b c >  < d  x y > >

Let us invoke our interpretation of M7 as the totally indeterminate signal and write

Nil[■ x y z] =  ■ 1 < g * > i < < a  b c ■ >  < d  x y ■ > >

Our next goal is to separate the sequence < d  x y ■ >  into two sequences tha t segregate 

internally computed values from externally provided values. Add an extraneous instance 

of d and do some gluing.

Axioms E, G

[■ x y z] -  ■ I < g * > : < < a  b c ■ >  < d  x y ■ > >

Now by the Selection Rule, the system can be rewritten

[*d* x y  z] =  M011,z<  < d  ■ ■ ■ >  V >

V =  * 1 < g * > : < < a  b c ■ >  < d  x y ■ > >  

[■ x y z] =  V

M



133

Since 'd' is an instance of d and z is an instance of ■, we may rewrite this system as

[‘d’ x y i] =  M0I11:< < d B B « >  V >

V =  ■ ! < g * > : « a b c * >  < ‘d ’x y i > >  

[■ x y i] =  V

❖

If we name the rest of the signals we get

V

W

[■ x y z] 
U 

D

■ t g*:<U  W >  

M0U.:< D  U >

V

< a  b c ■ >

< d ■■■>
Identification 

of signals

We have derived a description of a circuit of two inputs and one output

m

SCHEDULE

O utput
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6 .3 .3 . C i r c u i t  H . The final example is a portion of a combinatorial array discussed 

by Gannon (1982).

S*[a b c d e ]  < =  rec  < r  s t  u v >  

w h ere  

[ r x] =  h :< c  b >

[ y v] =  h :< d  x >

[ s z] — h :< y  a >

[ t  u] =  h :< e  r >

As usual, we shall a ttem pt to superimpose certain external leads, namely a with b, and d 

with e. One possible derivation follows:

[rx] — h :< c  b >  

[y v] =  h :< d  x >  

[s z] =  h :< y  a >  

(t u] =  h :< e  z >

given

[[rx][s z]] =  < h :< c  b >  h :< y  a > >  

[ [ y v ] [ tu j] =  < h :< d  x >  h :< e  z > >
P, twice

[[rx][sz]] =  < h * > : < < c y >  < b a > >  

[[y v][t u]] =  < h * > : < < d  e >  < x  z > >
A, twice
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[[r s ■][x z ■]] =  H :< h * > :< < c  y  ■ >  < b  a ■ > >  

[[y t][v uj] — 2 : < h * > : < < d  e >  < x  z > >

E, Nil

[[r 3 ■][x z ■]] =  2 : < h * > : < < c  y  ■ >  < b  a ■ > >  

[[y t][v u]] =  2 : < h * > : < < d  e >  < x  z > >

[■ y  ‘t ’J =  ■ ! < y  t >

[V  ■ ■] =  < c  ■ ■ >
[V  y  V] =  M0il: < < c  ■ ■ >  <■  y  V > >

WAi O 
(8) Axiom E  

M  (!) and (8)

[[r a i][x  z ■)] =  2 : < h * > : < < ‘c’ y  ‘t ’>  < b a « > >  

[[y t][v u]J =  2 : < h * > : < < d  e » >  < x  z ■ > >
[m y  't ']  =  ■ ! < y  t >

fc* y  *t’] =  m o u i < < c ■ ■ >  < ■  y  *t’> >

*

Nil

[IJ] = 2 :< h * > :< K  N >

[L M] = 2 : < h * > : < 0  J >
p  = ■ I L

K = Mon:< Q  P >

[r s -]  = I

[x z ■] = J

M  = L

[uv] = M

(■ y  ‘t ’] = P
f c ’ y  ‘t ’] = K

N = < b  a ■ >

O = < d  e ■ >

Q = < c  •  ■ >

Identification 

of signals

These equations describe a circuit with external input signals N, O, and Q; external out

put signals I, M, and P\ and internal signals I, K, and L, The schematic and schedule 

specification are:
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muz

Input

SCHEDULE

O utput

6.4. Remarks

This chapter demonstrates th a t the algebraic framework we have developed to 

obtain circuit descriptions is also useful for refining them. We introduced a set of axioms 

and rules tha t are tailored to a particular problem. The implication is th a t by similar 

specialization, a transformation system would evolve to deal with local changes in a 

design as well as the global generation of one.

The reader may have noticed tha t in the schedule for Circuit H the stored value I is 
available earlier if the combinatorial ou tput L  is used instead of P. Hence, this circuit 

can execute its function in two cycles if the register is used sotey for internal synchroni

zation. However, even if the delayed occurrence of t is used, the circuit’s schedule can be 

overlapped.
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N: a1 b* a3 b3 a* b* • ••

O: d 1 e1 d* e3 d3 e3 ♦ l*

Q: c1 ■ c3 ■ c3 ■ *•*

I: r 1 s1 r3 s* r 3 s3 til

M: V1 u 1 vs u3 v3 u3 fit

P: N ■ t l ■ t 1 ■ t 3

A single additional cycle is needed to capture the last f. The schedule specifies Circuit H 

In terms of its external communication. Using the overlapping shown above, its input- 

output characterization in the Cuny-Snyder notation is

<r n r 0  r ,  w , w m> [{r n r „  w , WM) {R„ r g r „  w , w m W p}]*{Wp)

White each step in these example derivations is a valid transformation on 

specification text, it is not immediately clear what drives the derivation toward a circuit 

realization. Our heuristics were to segregate internal from external values, and to intro

duce delays to align component inputs with component outputs. However, since we arc 

free to introduce delays of any duration, and since some value orderings are inadmissible, 

a transformation strategy based on those simple heuristics could easily go awry.

In Circuit H one can see th a t if inputs a and 6 are serialized, b should precede a 

because 6 is needed to produce i ,  x is needed for y, and y  is needed when a is used. 

However, even with analysis the small configuration in Circuit H can be folded in 

numerous ways, into a  circuit of one, two, or three components. Even with some prun

ing a blind transformation strategy is explosive.



7. Conclusion

7.1. Review

This dissertation shows th a t the discipline of applicative style is a Biting basis for 

digital hardware design because the abstraction of functionality, upon which applicative 

style is predicated, is also fundamental to digital design. Functional specifications and 

digital realizations are given in virtually the same notation. Moreover, the transition of 

interpretation from instantaneous operation to sequential behavior, lifting, is transparent 

to the basic techniques of this approach. This transparency erases the discontinuity that, 

typically results when design moves from an abstract specification notation to a  concrete 

realization notation.

The design method is to specify an algorithm in a purely functional notation, 

without regard to representation or contralt and then to derive from th a t specification a 

description of an equivalent digital/synchronous system. I have focused on transforma

tion methods, a form of synthesis in which the engineer is simply “doing algebra" on the 

formulation of a design. Notation is manipulated by such rules as folding, unfolding, 

combination, and symbolic simplification, with the goal of reaching a syntactic form that 

Gts the implementation realm.

7*1.1. I t e r a t i o n .  The secondary notation of a Qowcbart or finite state machine, 

which is often used in conventional circuit design, does not arise in this method. How

ever, it should be emphasized th a t this is merely an occlusion of syntax. A major step in 

each of the examples was to find an iterative version of the specification. Iterative form 

characterizes sequential control (i.e. flowchartability); thus, this approach gives the 

engineer a notation to develop a quality th a t is intrinsic to other notations, such as

138
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flowcharts. In th a t sense a t least, a functional specification language is more abstract, 

hence less constraining, than a procedural one. It leaves the way open to develop reali

zations according to other strategies than the linearization of control.

A simple loop can always be constructed from an iterative specification by introduc

ing a param eter th a t serves os a control token. Simple loops are essentially realizations: 

Theorem 3.3-5 yields a circuit description immediately by lifting. The elementary func

tional recursion of the loop transposes to the signal reflexivity of a connectivity descrip

tion. At the same time, the method admits prevailing structured design techniques. 

Hierarchical decomposition, through macros (packaged combinations) and representation 

abstraction (abstract components), are transparent to lifting.

7 .1 .2 . C i r c u i t  S y n th e s is .  A signal is a mapping from time to values th a t sub

sumes the recurrence relation by which digital systems are usually described. I avoid 

explicit mention of time by modeling a signal as a sequence and a circuit as a fixed point 

in the domain of signals. Since behavior is discrete (and since feedback loops always 

pass through registers), constructing the fixed point is equivalent to inductively solving 

the corresponding recurrence. This model unifies the mathematical treatm ent of 

specification and realization languages and also results in an experimental vehicle for 

synthesis: Daisy. Daisy's application operator interprets “function-lists" in a manner 

consistent with (in fact it motivated) the definition of component application in Section

3.5. The choice to model a component as signal of operations—rather than as an opera

tor an signals—is of tittle consequence in a basic behavioral model because primitive com

ponents are constants in tha t interpretation. However, when circuits are factored Into 

communicating abstract components, the residual instruction signal is consistently 

viewed as a component whose operation varies. The factorization distributes the condi

tional across application, then distributes application over behavior; os usual, everything 

lifts.

Experimentation served two purposes in this investigation. It provided the means 

both to observe circuit behavior and also to certify derivations empirically. In a few 

instances, observation revealed qualities of performance th a t are not addressable in the 

specification language. The "discovery" in Section 4.4 tha t the GCD circuit stabilizes 

was an illustration th a t formal specifications do not account for every quality th a t a 

realization might have. The lengthy derivation in Section 5.3 was done entirely by 

band, although a number of the steps could be automated using published techniques. A



140

Daisy version of each stage of the derivation was written and executed (Appendix B) on 

a representative set of inputs. At the very least, this reduced typographical errors, but 

it also raised the level of our confidence in the derivation. A proof need not be com

pletely correct to be useful (Lipton, et.al. 1079); a circuit description m ust be. 

Automated synthesis systems are likely always to have gaps th a t m ust be bridged empir

ically, for they free the engineer to think ever more abstractly. The ability to construct 

and carry out experiments is a significant advantage, if not a necessity, all the more so if 

it can be done directly in the notation of the synthesis system.

7*1*3. C i r c u i t  R e f in e m e n t*  Through Chapter 5 the emphasis in synthesis is on 

manipulation of specifications. If this area is not fully understood, it is at least well 

charted by research in program synthesis. In passing from specification notation to reali

zation notation the concerns of the designer should become more local, for it is at th a t 

point that the monolithic view of the developing description disintegrates, from a simple 

loop into a system of interconnected but otherwise autonomous components. This in no 

way implies th a t all design decisions can be made on the specification-side. As an exam

ple of local refinement strategies Chapter 0 presented a “special purpose" transformation 

system. The specific goal was to use serialization to trade space, measured by the 

□umber of external connections, against time. Correct realizations were constructed 

through a small set of rewriting rules. The derivations introduced registers to implement 

serialization and therefore also complicated the timing of the circuit. However, they also 
spawned a schedule, for target behavior th a t could be used to coordinate it with the sur

rounding system.

7.2. Limitations of the Approach

If one seeks to appraise the realization language in terms of “ typical" circuit 

designs, one can readily see tha t it falls short of its fundamental purpose: to “ portray 

implementations" (Chapter 1). The notation makes it difficult to express bidirectional

ity in signals; whether the difficulty is due to shortcomings in syntax or semantics should 
be considered carefully. This dissertation only touches on the issue of communication; 

an im portant question to consider in judging this approach is how it extends to account 

for external and independent signals.
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7.2.1. B id ire c t io n a l i ty *  Since the specification language is purely functional, it is 

not surprising tha t an applicative realization language suffices as a target for synthesis. 
As defined here, circuit descriptions state connectivity using applicative terms th a t 

require a distinction between input and output. Consequently, my realization language 

is inadequate for describing components, such as some memories1, whose input and out

put leads arc physically identical. Milner overcomes the problem by using a notation far 

connectivity tha t does not depend on the inpu t/ou tpu t distinction (Milner, 1073). The 

realization language 1 have adopted translates easily to Milner's notation. W hat emerges 

is a relational model of behavior; functionality is a special case. Of course, directionality 

(perhaps “causality” is a better word) is also obscured in the resultant semantics. Rela

tional specification languages, such as Prolog (See for example Clark and Gregory, 1981), 

might be used to confront bidirectionality directly. On the other hand, directionality 

(functionality) is the preferable abstraction and should not be lightly discarded. One 

finds evidence for this thesis by looking a t how circuit design has evolved away from its 

natural basis (analog components in equilibrium) to an artificial digital basis th a t forces 

a circuit to behave os a function on its state. Bidirectional wires rarely2 serve simultane

ously as both input and output; rather, they are a physical unification of conceptually 

distinct entities. T h a t point notwithstanding, physically identical parts of an object 

should surely be identified in the description of th a t object, and in the case of bidirec

tional leads this is a problem for the applicative realization language adopted here.

7.2.2. Digital Asynchrony, Communication, and Integration. My exam

ples all deal with closed specifications and consequently I was able to develop circuit 

descriptions in a uniform temporal framework. 1 employed standard techniques to 

decompose architecture, but said little about decomposition of control. How standard 

control factorizations (procedures, coroutines, etc. ) are lifted merits study. When a 

designer breaks a problem down in this fashion he incurs a liability in the form of a com

munication problem and m ust develop a protocol by which autonomous controllers coor

dinate their activity.

Digital asynchrony is discrete autonomy. The interval between meaningful external 

events is an unknown but always integral number of clock cycles. The first law of

'See (Mead and Conway, 1980, p. 161, Fig. 5.10) for another fine example.

Counterexamples are wholeheartedly Invited.
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structured digital design is to "latch11 truly asynchronous signals and thereby ensure 

th a t, from the point of view of the system, they occur at opportune moments.

The subject of digital asynchrony has been broached several times in this disserta

tion. For example, one way to introduce autonomous processes is to designate them as 

operations. T h a t is, assume that they behave in negligible time and deal with coordina

tion separately. In the L-circuit of Chapter 5, the ENVIR ONM ENT  instructions EXT, 

FND, and LBL, were presumed to result in trivial operations. However, it is barely credi

ble to assume th a t extend, find, and label are trivial1. To complete the realization of the 

L -interpreter it will likely be necessary to introduce protocols for waiting, in order to 

intergrate the autonomous abstract components. In the meantime, a natural strategy 

for control decomposition is to carry out design-as-usual while treating certain serious 

symbols as though they were trivial. Some conventional design techniques, for example 

self-timing strategies (Mead and Conway, 1980), would support this strategy.

A circuit that is party to a communication (and this includes many circuits) cannot 

be specified in closed form. Its description must account for externally generated signals, 

and the operator/value based specification language used here m ust be extended to 

express inpu t/ou tpu t. The single-putter discussed by Winkel and Prosser (1980, pp. 

183-180) is a nice example because its computation is minimal in relation to its commun

ication.

Problem  S tatem ent, We have a debounced pushbutton, with the down position 
meaning on (true) and the up position off (false). Devise a circuit to sense the depression 
of the button and assert an output signal for one clock pulse. The system should not al
low additional assertions of the output until after the operator has released the button.

A solution, below, presumes not only that the button is debounced but also th a t it is 

latched. The specification for the single-pulser m ust take into account th a t some of the 

identifiers change according to external stimuli. Let us introduce pseudo-operations get 

and puf tha t express this. Assume that a depressed button and pulse assertion are both 

implemented by high voltage. The authors' flowchart specification, expressed as an

30'DonDell's associative architecture (1981,1983) can perform these operations in unit time if
some restrictions are made. The question is not whether such things can be done, but whether
they wilt be done in a particular design endeavor. A conventional implementation, using off-the-
shelf components, would certainly require several cycles to implement these operations.
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FINDfb, p) <S= highf(b) -*  W AIT( getfb), ptit(high) },

F IND f getfb), putftow) J.

W AlTfb, p) <Z= k ig h ffb )—* WA1T( gct(b), putflow) ),

F IND f getfb), put(low) ).

W ith binary control token c representing W AITjFIND  os high/low, a realization is

C =  ■ 1 MUXt(B, C, [high], (feu), [high], [/om])

B =  GET(B)

P =  PUT(MUX2(B, C, [high], (Zoo;), [four), [tom|)

where m u ijb , e, w, z, y, z) <=  highf(c) ~*fhigh?fb) —► w, zj,

fhighffb) -  y, z}.

Analysis of the conditionals leads to a refined realization:

C =  ■ ! B 

B =  GET(B)

P =  PUT( AND(B, N O T (C )))

Put and get are coercions from external signal to value; they become redundant when 

lifted. If they are simply eliminated we arrive at the authors’ solution circuit.

C =  ■ ! B

P =  AND(B, NOT(C))

Note th a t since there must be some voltage on every signal at every time the

‘'Since this specification has ao base clauses it does not converge, Unless we are careful about 
the meaning of put, its minimal solution is the undefined function.
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specification reads and writes on every iteration. Admittedly, this is a  clumsy way to 

introduce external communication to the specification language, but a t least it is direct. 

A ttem pts to isolate a less verbose applicative construct for external communication have 

lead to a number or proposed constructs for indeterminacy. Filman and Friedman sur

vey the variety of approaches in their text (1983). The issue was addressed as early as 

1963 by McCarthy, through his AMB operator (1003a). Keller (1078) discusses indeter

minacy using K ahn’s process semantics as a starting point. There does not appear to be 

a consensus on th a t topic a t this time. Along the lines of the research reported here, 

Johnson (1082) shows one way to specify asynchronous systems using the indeterminate 

constructor of Friedman and Wise (1979, 1080, 1081). This constructor is implemented 

in Daisy, but was not exploited in this dissertation.

7.3. Prospects for Research

This discussions of the previous section ask basic questions about the foundations 

of functional style. There are, as well, many refinements to the method presented here 

th a t are worthy of investigation.

7 .3 .1 . M u l t ip h a s e  C lo c k in g . My schematics depict registers as boxes th a t are 

governed by a universal clock. The notation and terminology call to mind a printed-wire 

fabrication medium, where the qualities of a  storage component are consistent with the 

pictures. In other media storage elements can be less physically imposing, and can also 

give rise to other synchronization strategies. In VLSI designs, for example, storage is 

sometimes implemented with pass transistors and synchronized by alternating clacking 
signals (Mend and Conway, 1980). Multiphase clocking could be expressed in my realiza

tion language through a partitioning of storage elements (the term "register" becoming 

counterintuitive at this point) according to the phases they serve. One might obtain a 

canonical 8-phase system in a form like ^ Z  — z^o I :*t I GfZ)^ and then proceed to 

make refinements. How a properly phased realization can be synthesized merits study; 

and may also be a key to addressing the bidirectionality problem (Section 7.1.1).
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7 .3 .2 . T h e  R e a l iz a t io n  L a n g u a g e  a s  a  F o r m a l  S y s te m  Aschroft and Wadge 

(1670) present Lucid as a formal system in the tradition of Hoare’s (1606). (I noted the 

similarity between my realization language and Lucid in Section 1.2,1.) A Lucid 

speciGcation can be viewed as a set of axioms, used to deduce assertions about behavior. 

The works just cited address correctness; hence, description tex t is used to generate 

veriGcation conditions. Although I have adopted synthesis os a means for dealing with 

correctness, in the course of experimentation other kinds of observations were made 

about circuit behavior. Aschroft and Wadge point out th a t Lucid can be used to 

address other properties, and it would be interesting to explore how the realization 

language might be used to generate "performance conditions’* about stability, power 

consumption, fault tolerance, and so on. Hafner and Parker (1683) do ju s t tha t; they 

use a behavioral description language, syntactically similar to mine, to synthesize timing 

requirements.

There is also the intriguing possibility th a t with appropriately redeGned base opera

tions, realizations themselves might construct performance characterizations or fabrica

tion data. For example, since recursion corresponds directly to connectivity in realiza

tions, a graphics data base could be established by evaluating a realization in an 

environment where the ground symbols are bound to graphics primitives.

7 .3 .3 . O t h e r  T o p ic s .  This dissertation gives additional motivation for the contin

ued study of transformability among recursion schema, and other general problems sur

rounding the automation of synthesis. Research is needed not only to formalize seman

tics but also to address the nature of interaction in synthesis systems. If one stipulates a 

component of human creativity in computer-aided design, then it is not enough simply 

to require of the human all that the computer cannot or has not yet been programmed 

to do.

It was noted in Section 1.1 tha t design is dualistic: it is characterized as an inter

play between the selection of an algorithm and the selection of a representation in which 

that algorithm executes. This holds in software and hardware alike, and this disserta

tion makes only modest inroads into the problem area of choosing a representation. 

This is an open area for research, but the question that follows from this investigation 

can be stated simply: "which methods lift?"



146

7.4. Final Remarks

I prefer the game of 0 0  to the game of CHESS. It stimulates me more, although 

differently. Since I am a master of neither game, my preference is hardly authoritative; 

but even if I were a master of both my preference would not make 0 0  a better game.

I did not set out to prove in this dissertation tha t applicative methods are better 

than others for the design of circuits. The question I asked myself was whether the con* 

straints of the the style would allow one to describe circuits, and if so, are there any 

advantages in using the style for that purpose. That one can describe circuits in a 

purely applicative way, though perhaps moderately surprising at first, says nothing 

about the practicality of doing it. However, tha t one can derive a realization by "doing 

ordinary algebra" indicates that the approach is indeed a promising basis for engineer

ing. This inference depends on the reader’s agreement, first, tha t the target notation 

achieves its concretely descriptive purpose (I believe tha t to be self evident); and second, 

tha t the specification language is a suitable notation for expressing ideas. The second 

point is a premise of this work; to conclude here tha t the approach is superior to conven

tional methods would be to beg the question. Still, I think th a t those who are familiar 

with digital design will, in retrospect, find substantial benefit in applicative style.

For those already predisposed to M cCarthy’s basis, this dissertation has something 

further to say about its appropriateness and its relationship to programming. It is addi

tional positive evidence presented in a more neutral (i.e. less von Neumann) setting. To 

compare functional languages to procedural ones is, to a large extent, to compare 

specifications to their realizations, or for th a t m atter, GO to CHESS. If, nevertheless, one 

is resolute to make a comparison, it should be done on the basis of an independent ta r
get language. Digital systems seem more suitable than, say, machine code for this pur

pose. I think I have shown applicative methods to be competitive in th a t realm, and i 

hope tha t the evidence herein is sufficient to provoke futher investigation. I also hope 
tha t CHESS players who would follow the progress of th a t investigation try  a few games 

of CO,
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APPENDIX



A. True Syntax of Daisy

At tlie time of this writing a parser for Daisy's proposed syntax (Figure 4.1) has 
not bccu fully implemented. This appendix gives the present version of the language. 

Further documentation can be found in Kohtstaedt's programmer's manual (1082), 

which also cites published research tha t inspired development of the language. Appen

dix IB shows the Daisy source actually used for examples in this dissertation. The 

present syntax of the language is given in Figure A-l.

Examples of conversions between present syntax and proposed notation are shown in 

Figure A.2,

The conditional phrase structure is made unnecessary by the fact that the list con

structor is noil-strict. There is a 3-place operation, if, th a t selects an alternative based 

on the tru th  value of its Grst argument. The Boolean coercion function in Figure 4-4b 

describes the implementation of if  accurately. Recursive and lexically scoped systems

expression « t 
■ • Q expression | atom | fern  | application ] abstraction

atom ■ » 
* * (Vent(Tier | numeral j operator

fcrti m »
* • { i h t )  | <  list >  | { l i s t}

list I • ̂ 0  [ expression * | expression 1 expression | expression fist

application * • 
* * expression : expression

abstraction * t«
• • \ (  expression . expression )

definition expression — expression | identifier i expression = : expression .

Figure A.X. Present Daisy Syntax
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Daisy stylised teit

0 i © i

(x y) l*y]
(x ! y) [ x l y ]

(x *) \ x * \

<a b> <  a b >
<a 1 b> < a  I b >

<a *> < a  +>

{a b> 
{a 1 b>

{ a b  } 

{ a lb }

f  : a f : a

\ (  x , o) X x . e

i f :<  p a q b c> p — a, q — b, c

lo b :(x  a  o) le t x =  a in e
lob:(C x y) <a b> a) l e t  x =  a y =  b tn e

ro c :(x  a  o) r e c  e w h e r e  x =  a

f : x  =: a, Fix < =  e.

Figure A.2. Conversions to Present Daisy Syntax.

itrc built, by pseudo operations rec  and let.

A fern  is a “ list specification’1, the salient properties of a list being its content and 

its order. Tbe tbrec fern delimiters express progressively weaker stipulations about 

them. The delimiters have been changed to '[...j1 in tbe Idealized language because 

parentheses will eventually be reserved for parser direction. Ferns of tbe form ‘[...j1 

denote phrc lists, a form of structural quotation stating content and order literally. 

Ferns of the form denote value lists, whose content depends on the current

environment, but whose order is fixed. Value lists are an abbreviation of Lisp’s LIST 

operation. Ferns of the form '{...}’ denote lists of values, but do not specify an order. 

The construct is used to address indeterminacy.
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Comments in Daisy programs are delimited on tbe left by a vertical bar, and on 

the right be a carriage return. Comment lines are used to mimic the proposed notation. 

For example, the factorial realisation

X  =x° 1 D CR(X)
Y - l  ! 2

2 - 1  \ M PY(Y, 2)

R E A D Y -  2 E R 0 f ( X )

is implemented in idealized Daisy as

F I B : x  <= r e c  t e s t : < X  Y READY> 
w h e r e
‘ X = <x I DOR: < X »

Y = <1 I Z>
Z = <1 I ADD: <Y Z »

READY = ZERO?: <A>.

The true source for the experiment is

F I B : x  = :  r o e : ( ( X  Y Z READY)
< <x ! D C R :< X »

<1 I Z>
<1 1 ADD: <Y Z »  

ZERO?: <X> >
t o s t K X  Y READY> )

With mi in icing comments added the source file used was

F I B : x  = :  r o c : C ( X  Y Z READY)
<f X =

<x ! D C R :< X »
I Y =

<1 ! Z>
I Z =

<1 1 ADDKY Z »
I READY =

ZERO?: <X>
> I in

t e s t : < X  Y READY> )



B. Daisy Trials

This appendix contains listings of tbe Daisy source for experiments of Section 4.4.4 

and listings for experiments with the //-in terpreter derivation in Chapter 5. Appendix 

A gives the conversion between the idealized version of Daisy used in the body of this 

dissertation and the present syntax of the language as reflected here.

The program source listings were printed from the source files used for experimen

tation. The execution listings were recorded from the actual trial runs, but have been 

manually modified to clarify the output. In some listings, blank lines were deleted for 

vertical compression and blank spaces were added to align columns. Repetitive setup 

commands and responses were deleted from the execution record. Other modifications of 

the listings are noted where they occur. Included in this appendix are:

•  implementations of frequently used components and experimentation aids;

•  realisations of the iterative specifications for the factorial, Fibonacci, and 

greatest-common-diviaor functions, discussed in Section 4.4;

• the realization of the stacking version of the Fibonacci specification, discussed in 

Section 5.1;

• the specifications and realizations generated in the derivation of the //-interpreter 

circuit in Section 5.3;

• trial forms th a t were used to test the evolving //-in terpreter descriptions; and

• experiments with the //-realization.

Each listing is accompanied by a brief explanation including references to relevant 

figures and discussions in the body of the dissertation.
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ADD = ( a d d * ) .
DCP. = ( \ ( ( x ) . d c r : x ) * ) .
DIV = ( d i v * ) ,
EQ? = ( e q ? * ) .
I F = ( i f * ) .
I  lie = ( \ ( ( x ) , i n c : x ) * ) .
LT? = ( I t ? * ) .
MPY = ( m p y * ) .
SUB = ( s u b * ) .
ZERO? = ( \ ( ( x ) . e q ? : < x  0 > ) * ) .
MID = ( a n d * ) .

Dfticv C o m p o n e n ts . Discussion: Section 4.4.1. Compare with Figure 4.0.

t e s t : x  = :  f o r m a t : t r a n s p o s e : ! . 1 P r i n t  s i g n a l s  i n  p a r a l l o l  
1

t r a n s p o s e  = ( \ ( x . x ) * ) .
1
1 -  t i m e  s l i c e s  
1

f o r m a t : ( c I S )  = :  <CR c  1 f o r m a t : 5 > .
1
I -  i t o r l e a v o  c a r r a i g o  c o n t o l

CR = 1 : p a r s e : ( ( ) ) .
1
I -  c a r r a i g o  c o n t r o l  c h a r a c t e r

E x p e rim e n ta l A ids. Discussion: Section 4.4.3. Tlie assignment for OR is a way to

obtain the carrnign-rctitrn character (ASCII OD, hexadecimal), which is not available by 

unme in Daisy.
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FAC:* = :  r o c : ( C X  Y READY)
<1 X =

<x I DCR: < X »
I Y =

<1 r MPY: <X Y »
I READY =

ZERO?:<X>
>1 i n

t e s t : < X  Y READY> ) .

F I B : i  = :  r o c : C ( X  Y Z READY)
<1 X =

< x  t DCR:<X>>
I Y =

<1 1 Z>
I z ~

<1 I ADD: <Y Z »
I READY =

ZERO?: <X>
>1 i n

t e u f c K X  Y READY> ) .

C C D :( i  y )  = :  r o c : ( ( X  Y U W V READY)
<1 X =

< i  1 U>
I Y =

<y ! SUB: <W U »
1 U =

I F :< V  X Y>
I V =

I F :< V  Y X>
I V =

L T ? : <X Y>
I READY =

E Q ?: <X Y>
>1 i n

t e s t K X  Y READY> ) .

D a i s y  S o u r c e  f o r  t h e  E x a m p l e  R e a l i z a t i o n s .  T h i s  is s o u rc e  fo r  e x p e r i m e n t a t i o n  

w i th  t h e  r e a l i z a t io n s  o f  t h e  i t e r a t i v e  sp e c i f ic a t io n s  fo r  factorial  ( F i g u r e  4 .7 ) ,  Fibonacci 

( F i g u r e  4 .8 ) ,  a n d  greatest common divisor  ( F ig u r e  4 .0). E x e c u t i o n s  o f  t h e s e  d e s c r ip t i o n s  

a r c  s h o w n  in  t h e  figures .



160

e v l s t : p a r s e : d e k i : Q * / u s i u / s d j / P h D / t h e s i s / c o m p l i b  
o Y l s t : p a r s e : d s k i : 0 ’ / u s i u / s d 1 / P b D / t h e s i s / t o o l s

M T stk  = ( ? ?  * ) .

e m p t y ? : ( c )  s a m a ? : < s  M T stk > .
t o p : (Ct  I s ) )  = : t ,
n o o p : s  ~ : s .
p o p : ( b  1 s )  = ;  s .
p u s h : ( v s )  = :  <v  ! s > .
p l o p : t v  ( t  1 s ) )  = :  < v  I b> .

o p e r a t e : ( i  v  s )  = :
i l : <  s a m e ? : < i  On oop > b

s a m o ? : < i  Qpop > p o p : s  
s a n e ? : < l  Op u sh >  p u s h : < r  s >  
s a m o ? : < i  O p l o p >  p l o p : < v  s » .

STACK:CsO I  V) = :  r e c : ( S  
I S =

<sO I < o p o r a t o * > : < I  V S »
I in

« t o p * > : <S> < e m p t y ? * > : < S » ) .

L i s t  r e p r e s e n t a t i o n  T o r  s t a c k s .  
Em pty  s t a c k  
S t a c k  o p e r a t i o n s :

empty:STACK — > BQDL 
top :ST A C K  — > VALUE 

noop:STACK — > STACK 
pop:STACK — > STACK 

push:VALUE x STACK - - >  STACK 
push:V A LU E x STACK — > STACK

I n s t r u c t i o n  d e c o d e r .

I l i g h a r  L e v e l  S t a c k  C o m p o n e n t ,

STACK:[sO I  V] <=
r e c  <TOP:S EMPTY?:S>
w h e r e  S = sO ! OPERATE:<1 V S > .

S t a c k  R e p r e s e n t a t i o n .  S t a c k s  a r e  r e p r e s e n t e d  a s  l is ts  fo r  t h e  s t a c k i n g  r e a l i z a t io n  o f  

t h e  Fibanerei  sp e c i f ic a t io n  in  S e c t io n  5.1, T h e r e  is a  d i s c u s s io n  o f  t h e  a b s t r a c t  c o m 

p o n e n t  S T A C K  t o w a r d  t h e  e n d  o f  t h a t  s e c t io n .  Id e a l iz e d  s o u r c e  fo r  t h e  e x p e r i m e n t  is 

g iv e n  in  F i g u r e  5 .2 (a ) ;  a n d  th e  e x p e r i m e n t  I tse lf  is s h o w n  in  F i g u r e  5 .2 (b ) .  T h e  f i r s t  tw o  

lines  o b t a i n  c o m p o n e n t  d e f in i t io n s  a n d  e x p e r i m e n t a l  a id s  f ro m  files n a m e d  “ c o m p l i b ”  

a n d  “ to o ls .”  R e a d  th e  a t o m  '? ? ’ as  ■ . T h e  e m p t y  s t a c k  is a n  in f in i te  l is t  o f  d o n ' t - k n o w s .  

D e f in i t io n s  o f  a b s t r a c t  o p e r a t i o n s  a r e  s t r a i g h t f o r w a r d  [e.g. p u s h  is c o n s ) ,  e x c e p t  p e r h a p s  

fo r  t o p ,  w h ic h  h a s  a d d i t i o n a l  f o rm a l  a r g u m e n t  s t r u c t u r e  b e c a u s e  i t  will he  u se d  in  a  

c o m p o n e n t  (see  t h e  d i s c u s s io n  in  S e c t io n  4 .4 .1 ) .  T h e  f u n c t io n  o p e r a t e  s e rv e s  a s  a n  

i n s t r u c t i o n  d e c o d e r  in  t h e  a b s t r a c t  c o m p o n e n t .
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MUX-i*' = ( m u x - l i* ) .  I H i g h e r  L e v e l  M u l t i p l e x o r
mux-11: ( p  q  r  u  v  tr x )  I

i f : < p  i l : < q  u  v>  i f : < r  w x > > .  I
I S t a c k i n g  v e r s i o n  o f  F i b o n a c c i

F I D c k t : ( 1 0  xO sO t o )  I
r o c : ( C L  X (V I E l )  (V2 E2) I  P Q READY)

< |L =
<10 I MUX-H:<P Q V2 <1*>  <0*> <1*> < 0 * »  >

IX -
<x0 I MUX-tl: <P H V2 <1*> D C R :< D C R :<X » ADDKX V l>  V l>  >

1 [VI E l ]  =
STACK:<s0 I  MUX-N.‘ <P Q V2 ( ' # * )  DCR:<X> ( ' # * )  X »

I [V2 E2] =
STA CK :<t0  I  MUX-M: <P Q V2 ( ’ # * )  « > * >  C’ If*) < Q t t * > »

11=
MUX-N:<P Q V2 ( n o o p * )  ( p u s h * )  ( p o p * )  ( p l o p * ) >

|P =
E Q ?: <L < 0 * »

|Q=
L T ? : <X < 2 * »

IREADY=
AIJD: < EQ ?: <L < 1 * »  E2>

> I i n
to s tK R E A D Y  X I  VI L V2 E2 P Q> ) .  

f i b : n  = :  F I B c k t : < 0  n  M T s tk  M T s tk > .

S ta c k in g  R ea liza tio n  o f F IB . The packaged component M U X -N  is called MU. i n  

Section 5.1. The help function fib initializes registers for experiments. Execution of this 

description is shown in Figure 5.2(b),
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n u m ? : ( t g  I f r t ) *5 * • s a m e ? : < t g CNUM>.
i d o ? : ( t g  I f r t ) “ * » s a m e ? : < t g QIDE>.
l a m ? : ( t g  I f r t ) •  »» s a m e ? : < t g QLAM>.
l b l ? : ( t g  I f r t ) «• *t s a m e ? : < t g 0LBL>.
a p l ? : ( t g  I f r t ) “  * s a m e ? : < t g 0APL>.
e n d ? : ( t g  I f r t ) =  : s a m e ? : < t g 0CHD>.
t s t ? : ( t g  I f r t ) •  *™ « s a m e ? : < t g 0T S T > .

b i t ? : ( t g  I f r t ) ** • s a m e ? : < t g 0B IT > .
e r r ? : ( t g  I f r t ) “ * ■ s a m e ? : < t g QERR>.
o p r ? : ( t g  I f r t ) “ * ■ s a m e ? : < t g OOPR>.
f t n ? : ( t g  I f r t ) “ * » e a m e ? : < t g 0FTN>.
f i x ? : ( t g  I f r t ) “ ** s a m o ? : < t g 0 F I X > .

a r g ? : ( t g  I f r t ) “ < s a m o ? : < t g 0ARG>.
a c t ? : ( t g  I f r t ) “ « * s a m o ? : < t g 0ACT>.
h i t ? : ( t g  I f r t ) ■ s a m e ? : < t g 0HLT>.

raake-FTJI: c l o s u r e  = :  <0FTH ! c l o s u r e > .  
m a k o -E R R :m e s s a g e  = :  <CERR m e s s a g e > .  
m a k o - A C T ; a c t i o n  = :  <0ACT a c t i o n > .  
m a k e -A R G :a rg u m e n t  = :  <0ARG a r g u m e n t > . 
t a g : C C t  1 r  o ) )  = :  t .  
l i t : C ( t  1 r  o ) )  = :  1 .  
r g t : ( ( t i r e ) )  = :  r .  
e l s : ( ( t  1 r  e ) )  = :  e .

h a l t  = <0HLT>.
??? = <0???*>.

L - m a c h i n e  t y p o  p r e d i c a t e s  
E x p r e s s i o n  t y p e s .

N u m e ra l
I d e n t i f i e r
L a m b d a - e x p ,  \ I d e . E x p  
R e f l e x i v e - e x p ,  I d a  <= Exp 
A p p l i c a t i o n ,  Exp  : E xp  
C o n d i t i o n a l ,  Exp  - >  E x p ,E x p  

r g t - p a r t  o f  c o n d i t i o n a l

V a l u e  p r e d i c a t e s  
B o o l e a n  
E r r o r  m e s s a g e  
O p e r a t o r  
F u n c t i o n  c l o s u r e  
E x p r e s s i o n  c l o s u r e

A c t i o n  t y p e s
s a v e  f u n c t i o n ,  e v a l u a t e  a r g
a p p l y  f u n c t i o n
h a l t

C o n s t r u c t o r s  a n d  e x t r a c t o r s  
f u n c t i o n  c l o s u r e  
e r r o r  m e s s a g e  
a p p l y  a c t i o n
e v a l u a t e - a r g u m e n t  a c t i o n

i
C o n s t a n t s

i n i t i a l  c o n t i n u a t i o n  
d o n ' t - c a r e  s i g n a l

R e p re se n ta tio n  o f th e  U n d erly in g  T y p e  fo r th e  L - ln te rp re te r .  Discussion: Sec* 

tion 5.3.2. All concrete types are represented as lists. Continued on the following two 

pages.
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P r i m i t i v e  C o n d i t i o n a l
t e s t : ( p  c  a )  = :

l e t :  ( ( p * - t a g  p - v a l )  p
i f : <  b i t ? : p  i f : < p « - v a l  c  a>  < » ) .

P r i m i t i v e  a p p l i c a t i o n
a p p l y : C ( t a g  1 o p )  o p n d )  = :  o p i o p n d .

S t a c k  o p e r a t i o n s
p u s h : ( a c t a  o n v  s t k )  = :  < a c t n  e n v  1 e t k > .
p o p : ( a c t n  e n v  ! s t k )  s t k .
t o p : ( a c t n  e n v  t s t k )  < a c t n  e n v > .

C o m p o n e n ts
I F  = < i f * > . ■

AND = < a n d * > .
ACT? = < \ ( ( x ) . a c t ? : x ) * > .
t r a n s p o s e : !  = :  ( i d * ) : x .
i d : i  = : x.
TOP =  < \ { ( x ) . t o p : x ) * > c o m p o n e n t  v e r s i o n  o f  t o p
POP =  < \ ( ( x ) , p o p : x ) * > c o m p o n e n t  v e r s i o n  o f p o p
HAKE-ACT = < \ C ( x ) . m a k e - A C T : x ) * > c o m p o n e n t  v e r s i o n  o f make-ACT
MAKE-ARG = < \ ( ( x ) . m a k e - A R G : x ) * > c o m p o n e n t  v e r s i o n  o f mako-ARC

M ain  m u l t i p l e x o r

s l o t :  ( c t l  e x p  e -n u ra  e - o p r  e - l d e  e - l a m
e - l b l  e - a p l  e - c n d  e - f t n
o - f i x  e - t s t  e - a r g  e - a c t
e - e r r  a - o p r  a - f t n  a - e r r )  = :

i f : < s a m e ? : < c t l  0EVL>
i f : <  n u n ? : e x p  e -n u m  o p r ? : e x p  e - o p r  i d o ? : e x p  e - i d o  l a m ? : e x p e - l a m

l b l ? : e x p  e - l b l  a p l ? : e x p  e - a p l  e n d ? : e x p  e - c n d  f t n ? : e x p e - f t n
f i x ? : e x p  e - f i x  t s t ? : e x p  e - t s t  a r g ? : e x p  e - a r g  a c t ? : e x p e - a c t
e r r ? : e x p  e - e r r  >

s a m o ? : < c t l  0APL>
i f : <  o p r ? : e x p  a - o p r  f t n ? : e x p  a - f t n a - e r r  » ,

SLCT -  ( s l c t * ) .

R e p re se n ta tio n  o f  th e  U n d e rly in g  T y p e  fo r th e  L - ln te rp re te r  (c o n t'd ) . 

S L C T  is the main multiplexor for the realization (c / Fig. 5.8),
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f i n d : ( ( t a g  i d s )  e n v )  = :  e n v : i d s .

e x t e n d : ( i d e  v a l  e n v )  = :
\ ( x .  i f : < s a m o ? : < x  i d o >  v a l  e n v : x > ) ,

l a b o l : ( i d e  e x p  e n v )  = : 
r o c : ( r h o

o x t o n d : < i d o  <0FIX  e x p  r h o >  onv>  
r h o ) .

i n i t e n v  = l e t : (  e r r o r  m a k e - E R R : ( n o n n u m o r i c  o p e r a n d )  
\ ( i .  i f : <

s a m e ? : < i 0 z e d ? > <0DPR ! \ ( v . i f : < num ?: v <0BIT e q ? : C 2 : v 0 »  e r r o r > )  >
s a m e ? : < i 0 o n e ? > <OOPR ! \ ( v . i f : < num ?: v <0BIT e q ? : C 2 : v 1 »  e r r o r > )  >
s a m e ? : C l O in c > <00PR ! \ ( v . i f : < n u m ? : v <0NUM i n c : 2 ; v> e r r o r > )  >
sau te?  :< 1 O d e r > <00PR 1 \ ( v . i f : < num ?: v <0HUM d c r : 2 : v > o r r o r > )  >

s a m e ? : < i Q l t ? > C60PR ! \ C u . i f : < n u m ? : u
<0QPR 1 \ ( v . . i f : < num ?: v 

. e r r o r  >)
COBIT
>

l t ? : C 2 : u 2 : v »  e r r o r > ) >

s a m e ? : < i C eq? > <G0PR 1 \ ( u . i f : < n u m ? : u •

<Q0PR 1 \ C v . i f : < n u m ? : v  
e r r o r  > )  >

COBIT e q ? : C 2 : u 2 : v »  o r r o r > ) >

s a m e ? : < i Qadd > C00PR I \<U. i f : < n u m ? : u
<00PR ! \ ( v . i f : < num ?: v  

e r r o r  > )  >
COHUM a d d : C 2 : u 2 : v »  e r r o r > ) >

s a m a ? : < i O sub > <00PR ! \ C u . i f : < n u m ? : u
<00PR ! \ C t . i f : < num ?: r  

e r r o r  > )  >
COHUM s u b : c 2 : u 2 : v »  e r r o r > ) >

s a m e ? : < i Ompy > CQOPR 1 \ C u . i f : < num ?: u
<00PR 1 \ C v . i f : < n u m ? : v  

e r r o r  > )  >
COHUM m p y :C 2 :u 2 : v »  e r r o r > ) >

make-ERR CQUHBOUltD i> » ) .

Representation of the Underlying Type for the L-interpreter (cont’d).
In lten v  is a function th a t initially maps operator symbols to operations. Operations are 

function closures, tagged as type OPR. Binary operations Tor L  are implemented as ear

n ed  versions of Daisy's operations.

I E n v i r o n m e n t  o p e r a t i o n s
I
1 
I
I
I
I
I
I
1
I I n i t i a l  e n v i r o n m e n t
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M :( o x p  o u t ) = :
l e t : ( ( t a g  l i t  r g t )  e x p  
i f  :<

c u m ? : o x p  e x p
i d e ? : e x p  C O E R C E ;f in d :< e x p  env>  
l a m ? : e x p  m a k a - F T I I : < l f t  r g t  onv>  
l b l ? : o x p  M : < r g t  l a b e l ; < 1 1 1 r g t  o n v »  
a p l ? ; e x p  APPLY:<  M : < l f t  e n v >  M : < r g t  e n v »  
e n d ? : e x p .  l e t : ( ( r g t ^ t a g  r g t « - l f t  r g t * r g t )  r g t

t e G t : <  M : < l f t  e n v >  M : < r g t « - l f t  e n v >  l l : < r g t « - r g t  e n v >  >)
» .

C O ER C E:val = :  i f : <
o p r ? : v a l  v a l  
n u m ? : v a l  v a l  
e r r ? : v a l  v a l  
f t u ? : v a l  v a l
f i x ? : v a l  l e t :  ( ( v a l « - t a g  v a l« -e x p  v a l« - e n v )  v a l  

M :< val« -oxp  v a l - o n v > )
>.

A P P L Y : ( f t n  a r g )  = : 
i f  :<

o p r ? : f t n  a p p l y : < f t n  a r g >
f t n ? : f t n  l e t :  ( ( f t n * - t a g  f t n * - i d e  f t n ^ e x p  f tn * - e n v )  f t n

U ;< fbn**exp  e x t e n d : < f t n * - i d e  a r g  f t n * * e n v »  ) 
m a k e - E R R : ( i n v a l i d  f u n c t i o n )
>.

t r y : e x p  = : M :< ex p  i n i t e n v > .

C o n c re te  N o n -lin ea r Specification  fo r th e  L - ln te rp re te r . This specification was 

derived in Section 5.3*2, and appears in Figure 5.4. This and all of the following 

specifications are accompanied by a help function try  th a t properly initializes the state 

for “ top level" evaluation.
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M :( o x p  s t k  e n v )  = :
l e t : ( { t a g  1 f t  r g t )  e x p  
i f  :<

n u ra ? :o x p  . RETURN:<e x p  B tk>
i d e ? : e x p  C O E R C E :< f in d :< e x p  e n v >  s t k >
l a m ? : e x p  R E T U R N :< m ak e -F T H :< lf t  r g t  env>  s t k >
l b l ? ; e x p  H : < r g t  s t k  l a b e l : < l f t  r g t  e n v »
a p l ? : e x p  M : < l f t  p u s h : < n a k o - A R C : r g t  e n v  s t k >  onv>
e n d ? : e x p  M : < l f t  p u s b : < r g t  e n v  s t k >  env>

».
C O E R C E :(va l  s t k )  = :

l o t ; ( ( t a g  e x p  e n v )  v a l  
i f  :<

o p r ? : v a l  RETURN:<val s t k >  
n u n ? : v a l  RETURN:<val s t k >  
e r r ? : v a l  RETURN:< v a l  s t k >  
f t n ? : v a l  RETURN:<val s t k >  
f i x ? : v a l  M :< ex p  s t k  onv>  

> ) .

R E T U R N :(va l  s t k )  = :
l e t : ( ( n x t  e n v )  t o p : s t k
l e t : ( ( t a g  l f t  r g t )  n x t  
l a t : (  s t k  p o p : s t k
i f  :<

t s t ? : n x t  M : < t e s t : < v a l  l f t  r g t >  s t k  env>  
a r g ? : n x t  M : < l f t  p u s h : < m a k e - A C T : v a l  <> s t k >  e n v >  
a c t ? : n x t  A P P L Y : < l f t  v a l  s t k >  
h i t ? : n x t  v a l  

» ) ) .

A P P L Y : ( f t n  a r g  s t k )  = :
l e t : ( ( t a g  i d e  e x p  e n v )  f t n  
i f  :<

o p r ? : f t n  RETURN: < a p p l y : < f t n  a r g >  s t k >  
f t n ? : f t n  M :< o ip  s t k  e x t e n d : < i d e  a r g  onv>>
R E T U R N :< m a k e -E R R :( in v a l id  f u n c t i o n )  s t k >

>) .

t r y : e x p  M :< ex p  < h a l t >  i n i t e n v > .

Stacking Version o f the L-interpreter* Discussion: Section 5.3.4 (cf. Fig. 5,5).
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1.1: ( c t l  f t n  a r g  v a l  e x p  s t k  e n v )  = :
l e t :  ( ( f * - t a g  f « - id e  f« -exp  f * e n v )  f t n
l e t : ( ( v * t a g  v * e x p  v«-env) v a l  
l o t : ( ( o « - t a g  l f t  r g t )  e x p  
l e t : ( ( n x t  o l d )  t o p : B t k  
l e t : ( ( n « - t a g  a * * l f t  n * r g t )  n x t  
l e t : ( s t k *  p o p : s t k  
i f  :<

s a m e ? : < c t l  GEVL> 
i f : <

n u m ? : e x p  M:<0RTN <> <> e x p  <> s t k  env>
i d e ? : e x p  M:<QCRC <> <> f i n d : < e x p  e n v >  <> s t k  env>
l a m ? : e x p  H:<0RTH <> <> r a a k e - F T N : < l f t  r g t  e n v >  <> s t k  env>
l b l ? : e x p  M:<QEVL <> <> <> r g t  s t k  l a b e l : < l f t  r g t  e n v »
a p l ? : e x p  M:<0EVL <> <> <> l f t  p u s h : < m a k e - A R G : r g t  e n v  s t k >  env>
e n d ? : e x p  M:<0EVL <> <> <> l f t  p u s h : < r g t  e n v  s t k >  e n v >
>

s a m e ? : < c t l  0CRC> 
i f  :<

e r r ? : v a l U:<ORTN <> <> v a l <> s t k

A5o

o p r ? : v a l MKORTN <> <> v a l <> s t k env>
n u m ? : v a l MKORTH <> <> v a l <> s t k  env>
f t n ? : v a l M:<0RTN <> <> v a l <> s t k env>
f i x ? : v a l M: <0EVL <> <> <> v«-oxp s t k  v*-onv>
>

s a m o ? : < c t l  0RTH> 
i f  :<

h i t ? : n x t  v a l
t s t ? : n x t  M: <QEVL <> <> <> t o s t :< v a l  n « - l f t  n * - rg t>  s t k '  o l d >
a r g ? : n x t  H:<QEVL <> <> <> n « - l f t  p u s h : < m a k o - A C T : v a l  <> s t k ' >  o l d >
a c t ? : n x t  H:<0APL n * * l f t  v a l  <> <> s t k '  o l d >
>

s a m e ? : < c t l  0APL> 
i f  :<

o p r ? : f t n  M:<ORTN <> <> a p p l y : < f t n  a r g >  <> s t k  env>
f t n ? : f t n  M:<0EVL <> <> <> f« -exp  s t k  e x t e n d : < f 4' i d e  a r g  f * * o n v »

M:<QRTN <> <> m a k e - E R R : ( i n v a l i d  f u n c t i o n )  <> s t k  env>
>

» ) ) ) ) ) .

t r y : e x p  = :  M:<OEVL <> <> <> e x p  p u s h : < h a l t  <> < »  i n l t o n v > . ____________________

First Loop Version o f the L>interpreter. Discussion: Section 5.3.5 (ef. Fig. 5.6).
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v a l  e x p  s t k  e n v )  = :
l e t : C ( t a g  l f t  r g t e n v ' )  e x p
l e t : ( ( n x t  o l d )  t o p : s t k
l e t : ( s t k '  p o p : s t k

i f : < s a m o ? : < c t l  0EVAL>
i f  :<

h i t ? : oxp v a l
n u m ? : e x p M:<0EVAL e x p  n x t  s t k *  o l d >
o p r ? : e x p M:COEVAL e x p  n x t  s t k '  o l d >
i d e ? : e x p M:<0EVAL <> f i n d : <e x p  e n v >  s t k  env>
l a m ? : e x p MKQEVAL m a k e - F T H : < l f t  r g t  e n v >  n x t  s t k '  o l d >
l b l ? : e x p M:<QEVAL <> r g t  s t k  l a b e l  : < l f t  r g t  e n v »
a p l ? : e x p M: <0EVAL <> l f t  p u s h : <  m a k o - A R C :r g t  e n v  s t k >  e n v >
e n d ? : e x p M:<0EVAL <> l f t  p u s h : < r g t  e n v  s t k >  env>
f t n ? : e x p M:COEVAL e x p  n x t  s t k *  o l d >
f i x ? : e x p H:COEVAL <> l f t  s t k  r g t >
t s t ? : oxp M:<0EVAL <> t e s t : < v a l  l f t  r g t >  s t k  env>
a r g ? : e x p M:<0EVAL <> l f t  p u s h : <  m ake-A C T: v a l  <> s t k >  env>
a c t ? : e x p M: <0APPLY v a l  l f t  s t k  env>
o r r ? : oxp M: COEVAL e x p  n x t  s t k 1 o l d >  ,

s a m e ? : < c t l  0APPLY>
i f  :<

o p r ? : e x p HKOEVAL a p p l y : < e x p  v a l >  n x t  s t k '  o l d >
f t n ? : e x p MKOEVAL <> r g t  s t k  e x t e n d : < l f t  v a l  e n v * »
M:<0EVAL m a k e - E R R : ( i n v a l i d  f u n c t i o n )  n x t  s t k '  o l d >

» ) ) . •

t r y : o x p  = :  M:<0EVAL <> e x p  p u s h : < h a l t  <> < »  i n i t e n v > .

R efined  L oop fo r th e  L -m ach in e . Discussion: Section 5.3.0 (c/. Fig. 5.7).
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ENVIRONMENT: (I1ISTR ARG-1 ARG-2 ARG-3) = :  I
r o c : ( ( F H D  EHV) I

<1 FHD = I
< X in d * > :< A R G -l  ENV> I

I EHV = I
< i n i t e n v  I SLCT-E:<IN STR EHV

ARG-1
< l a b e l * > : < A R G - l  ARG-2 EMV> 
< o x te n d * > :< A R G - l  ARG-2 A R G - 3 > »

>1 l a
<FND EH V >).

SLCT-E = < s l c t - o * > .  
s l c t - e : ( i  vO v l  v 2  v 3 )  

i f : <  s a j n e ? : < i  Q h ld >  vO 
s a j n e ? : < i  O s e t>  v l  
s a m o ? : < i  O f ix >  v2  
s a m o ? : < i  Q e x t>  t 3 >.

STACK:(INSTR ARG-1 ARG-2) = :  
r e c : ( ( S T K  (NXT OLD))

< |  STK =
« h a l t  < »  i S L C T -S :< IN 5T R  STK < p u s h * > :< A R G - l  ARG-2 STK> P O P :< S T K > »  

I [IJXT OLD] =
t r a n s p o s e ) : TOP: <STK>

>1 i n
<HXT O LD >).

SLCT-S = < s l c t - s * > .  
s l c t - s : ( i  vO v l  v 2 )  = :

I X :<  s a m e ? ; < i  Onop> vO 
s a m o ? : < l  Opsh> v l  
s a m e ? : < i  Opop> v2  > .

A bstract Com ponents for the Realisations. Discussion: Section 5.3,8 (c/. Fig, 5.8).

STACK'S
i n s t r u c t i o n  d e c o d e r .

ENVIRONMENT'S 
i n s t r u c t i o n  d e c o d e r .
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M : ( c t l 0  v a lO  expO s t k O  e n v O ) = :  
r o c : ( ( C T L  EVL APL

VAL ALU FTH ERR
EXP FHD TAG LFT RGT SAV TST
STK CNXT DLD) STK' PSH ACTN ARG ACT
EHV F IX  EXT )

C o n t r o l  r e g i s t e r  
V a l u e  r e g i s t e r  
E x p r e s s i o n  r e g .  
S t a c k  r e g i s t e r  
E n v i r o n m e n t  r e g .

CTL =
< c t l O  t S L C T :< CTL EXP EVL EVL EVL EVL EVL EVL EVL EVL

EVL EVL EVL APL EVL EVL EVL E V L »
EVL =

<OEVL*>
APL =

<OAPL*>
VAL =

< v a lO  I SLCT:< CTL EXP EXP EXP ? ? ?  FTH ? ? ?  7 7 ?  ? ? ?  EXP
? ? 7  7 7 ?  7 7 ?  VAL EXP ALU 777 ERR »

ALU =

FTH =

ERR =

EXP =

FHD =

TAG =

LFT =

RGT =

SAV =

TST =
< t o s t* > :< V A L  LFT RGT> 

-= >  ( c o n t i n u e d )

< a p p ly * > :< E X P  VAL>

< m ak e-F T H * > : <LFT RGT EHV>

< m a k e - E R R : ( i n v a l i d  f u n c t i o n ) *>

<expO I SLCT:< CTL EXP HXT HXT FND HXT RGT LFT LFT HXT
LFT TST LFT LFT HXT HXT RGT HXT »

< f in d * > :< E X P  EHV>

< t a g * > : <EXP>

< l f t * > : < E X P >

< r g t + > : <EXP>

< c ls * > :< E X P >

First L-roallzatton. Discussion: Section 5.3.7 (c/. Fig. 5,6), Continued, next page.
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I ( c o n t i n u e d )  < = -
I
I STK =

<st!cO I SLCT:< CTL EXP STK* STK' STK STK' STK PSH PSH STK'
STK STK PSH STK STK* STK' STK STK' »

I [HXT DLD] =
t r a n s p o s e : TOP: <STK>

I STK' =
POP:<STK>

I PSH =
<push*>:<A C TN  EHV STK>

I ACTN =
SLCT:<CTL EXP 7 7 ?  7 7 ?  ? ? ?  ? ? ?  ? ? ?  ARG RGT ? ? ?

77 7  7 7 ?  ACT 777  7 7 ?  777 777  777 >
I ARG =

MAKE-ARG:<RGT>
I ACT =

MAKE-ACT: <VAL>
I
I EHV =

<onvO f SLCT:<  CTL EXP OLD OLD EHV OLD FIX EHV ENV OLD
RGT EHV ENV ENV DLD OLD EXT OLD »

I F IX  -
< l a b e l * > : < L F T  RGT ENV>

I EXT =
< e x te n d * > :< L F T  VAL SAV>

> I i n
m o n i to r :< C T L  VAL EXP HXT>).

m o n i t o r : ( ( l a ! I d ) ( v a l v d ) ( e a l e d ) ( t a l t d ) )  =  :
< l a  v a  e a  t a  c r  I i i : < b l t ? : e a  <> m o n i t o r :  < l d  v d  e d  t d > » .  

t r y : e x p  = :  M:<OEVL <> e x p  p u s h : < h a l t  <> < »  i n i t e n v > .

F ir s t  L -rea liz a tio n  (c o n t’d). The help function m o n ito r  traces registers CTL, VAL, 

EXP, and NXT, and terminates the trace if the Ae/Z-action shows up in EXP.
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M : ( c t l O  v a lO  expO ) = :
r e c : ( C C T L s t a t e  l a b e l

VAL ALU FTH ERR v a l u e s
EXP TAG LFT RGT SAV TST e x p r e s s i o n
(NXT OLD) S I  S2 ARG ACT s t a c k
(FND ENV) EO E l  E2 )

i
e n v i r o n m e n t

<1 CTL =
< c t l O 1 I F : <ACT?: <EXP> <OAPL+> < O E V L *»>

1 VAL =
< v a lO 1 SLCT:<  CTL EXP EXP EXP ? ? ? FTH ? ? ?  7 7 ?  7 7 ? EXP

? ? ?  ? ? ? ? ? ? VAL EXP ALU 7 7? ERR »
1 ALU =

< a p p l y * > : <EXP VAL>
1 FTH =

<raake-F T N *> :<L F T  RGT E!IV>
1 ERR =

< n a k o - E R R : ( i n v a l i d  f u n c t i o n ) *>

I EXP =
<oxpO ! SLCT:< CTL EXP NXT HXT FND HXT RGT' LFT LFT NXT

LFT TST LFT LFT NXT NXT RGT NXT »
I TAG =

< t a g * > : <EXP>
t LFT =

< l l t * > : < E X P >
I RGT =

< rg t* > :< E X P >
1 SAV =

< c le * > :< E X P >
I TST =

t
< t e s t* > :< V A L  LFT RGT>

i
t -= >  ( c o n t i n u e d )

R efined  L -re a liz a tlo n . Discussion: Section 5.3.8 {ef. Fig. 5.10). Continued, next page.
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I (co n tin u ed )<=- 
I
I[HXT OLD] =

STACK:<S1 S2  EUV>
1 SI =

SLCT:< CTL EXP <Opop*> <Opop*> <Onop*> <Opop*> 
<Qnop*> <Q psh*>  <0peh*> <Opop*> 
<Onop*> <Qnop*> <OpBh*> <Qnop*> 
<0pop*> <Opop*> <0nop*> <Opop*> >

I S2 =
SLCTKCTL EXP 7 7 ?  7 7 ?  7 7 ?  7 7 ?  777 ARG RGT 777

7 7 ?  7 7 ?  ACT 7 7 ?  7 7?  7 7 ?  7 7 ?  7 7 ?  >
t ARG =

MAKE-ARG: <RGT>
I ACT =

MAKE-ACT:<VAL>
I
I [FHD ENV] =

ENVIRONMENT:<EO E l  E2 SAV>
I EO a

SLCT:<CTL EXP < 0 e e t * > < O s e t* > < 0 h ld * > < G s e t* >
<O hld*> <O hld*> < O ce t* >

<0BQ t*> <O bld*> <O hld*> < 0 h ld * >
< 0 s e t * > < Q s e t* > < Q ex t*> < 0 s e t * > >

SLCT: <CTL EXP OLD OLD EXP DLD LFT 7 7 ? 7 7 ?  OLD
RGT 7 7 ? 7 7 ?  77? OLD OLD LFT OLD >

SLCT:<CTL EXP 7 7 ?  777 7 7 ?  7 7 ? RGT 7 7 ? 7 7 ?  7 7 ?
7 7 ?  7 7 ? 7 7 ?  777 7 7?  777 VAL 7 7 ?  >

> I i n
n o n i t o r : < C T L  VAL EXP NXT>).

m o n i t o r : C ( c a l c d ) ( v a l r d ) ( e a l e d ) ( n a l n d ) )  = :
< c a  v a  e a  n a  c r  ! i f : < h l t ? : e a  <> m o n i t o r : < c d  v d  o d  n d » > .

t r y : e x p  = :  M:<GEVL <> e x p > .

R efined  L-reallz& tlon (c o n t’d). The help function m o n ito r  traces registers CTL, 

VAL, EXP, and NXT, and terminates the trace if the halt-action shows up in EXP.
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I
I f o r m  -  5
I

t s t l  = (HUM 5 ) .
I
I f o r m  -  ( \ i . i ) : 6  
I

t s t 2  = (APL (LAM I  ( ID E  I ) )  (HUM 5 ) ) .
I
I f o r m  -  o n e ? : 0  - >  e r r ,  z a r o ? : 0  ->  0 ,  a r r
I

t s t 3  = (CHD (APL ( ID E  o n a ? )  (HUM 0 ) )  (TST (ERR 0 )
(CND (APL ( ID E  z o d ? )  (HUM 0 ) )  

(TST (HUM 0 )  (ERR 1 ) ) ) ) )
I
I f o r m -  C ( \ f . ( \ a .  f : a ) ) : ( \ x . i n c : x ) ) : 6
I

t s t 4  = (APL (APL (LAM F (LAM A (APL (ID E  F) ( ID E  A ) ) ) )
(LAM X (APL (ID E  i n c )  ( ID E  X ) »  )

(HUM 5 ) ) .
I
1 f o r m  - F <= \ X . \ Y .  ( e q ?  :X) :Y - > x ,
1 ( l t ? : X ) :Y - > ( F : X ) : ( ( s u b : Y ) : X ) ,
1 ( F : Y ) : ( ( s u b : X ) : Y ) .

t s t l  = (LBL F
(LAM X
(LAM Y
(CND (APL (APL (ID E e q ? ) ( ID E X ))  ( ID E  Y ))

(TST (ID E X)
(CHD (APL (APL (ID E I t ? )  (ID E  X ))  ( ID E  Y ) )

(TST (APL (APL (ID E  F) ( ID E  X ))
(APL (APL ( ID E  s u b )  ( ID E  Y » (ID E X ) ) )

(APL (APL (ID E  F) ( ID E  Y)>
(APL (APL (ID E  s u b )  ( ID E  X )) (ID E Y ))>

) ) ) ) ) » .

g c d : ( x  y )  = :  t r y :  <0APL <QAPL t s t l  <0HUM x »  <QHUM y » .

Trial Form s for L-lnterprater Experim entation. Continued, next page.
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I
J f o r m  -  F  <= \X .  o a o ? ; X  - >  X, ( m p y :X ) : ( F : ( d c r : X ) ) .
I

t s t L  = (LBL F 
(LAM X

(CHD (APL (ID E  o n e 7 )  ( ID E  X ))
(TST ( ID E  X)

(APL (APL (ID E  mpy) ( ID E  X ))
(APL (ID E  F )  (APL (ID E  d c r )  ( ID E  X ) ) ) ) ) ) ) } ,

f a c : i  = :  t r y : < 0 A P L  t s t L  <0NUM z » .

I
I f o r m  -  F  < -  \ X .  z o d ? : X  - >  1 ,
I ono?:X ->  1 ,  ( a d d : ( F : ( d c r : x ) ) ) : ( d c r : ( d c r : X ) ) .
I

t s t H  =  (LBL F 
(LAM X
(CHD (APL (ID E  z a d ? )  ( ID E  X ))

(TST (HUM 1)
(CHD (APL ( ID E  o n e ? )  ( ID E  X ) )

(TST (NUM 1 )
(APL (APL (ID E  a d d )

(APL (ID E  F)
(APL ( ID E  d c r )  ( ID E  X ) ) ) )  

(APL (ID E  F)
(APL (ID E  d c r )

(APL (ID E d c r )  ( ID E  X ) ) ) ) )
) ) ) ) ) ) .

f i b : i  = :  t r y : < 0 A P L  tsfcH <QHUM i » .

T r i a l  F o r m s  f o r  L - l n t e r p r e t e r  E x p e r i m e n t a t i o n  ( c o n t ’d ) .  T h e  f o rm s  t s t l ,  t a t L ,  

a n d  t s t N  d e f in e  t h e  greateat-common'divisor, factorial, a n d  F ib o n a c c i  f u n c t io n s .  T h e  

h e lp  f u n c t io n s  g e d ,  f a c ,  a n d  f ib  b u i l d  a p p l i c a t i o n s  fo r  r e p e a t e d  te s t in g ^
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k  f i l e : Q / u s i u / s d j / P h D / t h a s i s / L / r e p , d L o a d  representations.

Cnura? i d o ?  I a n ?  I b l ?  a p l ?  e n d ?  t e t ?  b i t ?  o r r ?  o p r ?  i t a ?  i i x ?  a r g ?  a c t ?  
h i t ?  raake-FTH m ake-ERR make-ACT make-ARG t a g  l i t  r g t  e l s  h a l t  ? ? ?  t e s t  a  
p p l y  p u s h  p o p  t o p  f i n d  e x t e n d  l a b e l  i n i t e n v  s l c t  SLCT I F  AND ACT? t r a o s p  
o s o  i d  TOP POP MAKE-ACT MAKE-ARG)

k  f  i l e : 0 / u s i u / s d j / P h D / t h o s i s / L / i o n a s . d  *-[ L o a d  tr ia l  form a.
C C t s t l  t s t 2  t s t 3  t s t 4  t s t l  g e d  t s t L  f a c  t s t N  f i b )

k  f  i l o : Q / u s i u / s d j / P h D / t h o s i s / L / U . R , d ■ N o n l in e a r  specification
CM COERCE APPLY t r y ) (Fig. 5 .4 )

k  t r y ; t s t l
Trials  -  

■ F orm :  5
(HUM 5)

k  t r y : t s t 2 ■ F orm :  (X l . i ) i5
(HUM 5 )

k  t r y : t s t 3 ■ F orm :  o n e ? t O  —*■ e r r ,
(HUM 0 ) z e ro T iO  —► 0 ,  e r r .

t  t r y : t s t 4 ■ F o rm : ( ( \ f . \ a . f : a ) :

(MUM 6 ) ( \ x . l n c o c ) ) t 5

k  g e d :  (2  3 ) ■ G reatest  C om m on
(HUM 1) D ivisor

k  f a c : 4 ■ F actor ia l
(HUM 2 4 )

k  l i b ; 3 ■ F ib o n a c c i
(HUM 3 )

k End-of.filc

DSI e x i t .
on this trial.

A n n o ta te d  L isting  o f  T r ia l  R u n s  on  th e  V a rio u s  In te rp re te r s .  The first trial 

tests the non-tincar specification of the L*interprctcr. All trials are on the expression 

forms defined on the preceding pages. Trials are continued on the following three pages.
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k  111o:0 /u s iu /sd j/P h D /th e s is /L /M . S . d
<M COERCE RETURN APPLY try ) (Fig. 5.5)

k  t r y : t s t l  
(NUM 5)

- 5

k t r y : t s t 2  
CHUM S)

4* • (\i.!):5

k  t r y : t s t 3  
(HUM 0)

- one?:0 -*■ e r r ,  zero?:0 —♦ 0 , e r r

k  t r y : t s t 4  
(NUM 6)

4- ■ (( \f .\a ,f :a ) :) \x .in c ix )) :5

k g e d :(2 3) 
(HUM 1)

4* • Greatest Common Divisor

k ia c :4  
(NUM 24)

■ Factorial

k l i b '.3 
(NUM 3)

4- ■ Fibonacci

k
)
DSI e x i t .

- End-of-Jile on this trial, 

(Initialization Deleted)
k 2 ile :0 /u B iu /s d j/P h D /th e s is /L /U .I I .d  

CM t r  t ry )

k  t r y : t s t l  
(NUM 5) 

k  t r y : t s t 2  
(NUM 5) 

k  t r y : t s t 3  ’ -
(HUM 0) 

i  t r y : t s t 4  
(NUM 6) 

k  g e d :(2 3)
(NUM 1) 

k Ia c :4  
(NUM 24) 

k  f i b : 3 
(NUM 3)

k
)
DSI e x i t .

(Initialization Deleted) 
Stacking specification.

F t n t  loop version.
(Fig. 5.6)

5

(XU):5

one?:0 —► e r r ,  zero?:0  -*■ 0 , e r r

((\f.\a .f:a ):)\x ,inco t)).*5  

Greatest Common Divisor

Factorial

Fibonacci

End-of-jUc on this trial.

Trial Runs (cont’d).
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k f i lo tO /u s iu /s d j/P h D /th e s is /L /M .12 ,d
(M try ) (Fig. 5.7)

k  t r y : t s t l  
(NUM 5)

■ 6

k  t r y : t s t 2  
(NUM 6)

• (XU):S

k  t r y : t s t 3  
(NUM 0)

■ one?:0 —► e r r ,  zero?:0  -*■ 0, e r r

k  t r y : t s t 4  
(NUM 6)

* (( \f .\a .f :a ) :) \x .in c sc )) :5

k  g e d :(2 3) 
(NUM 1)

- Greatest Common Divisor

k  fa c :4  
(NUM 24)

* Factorial

k  f ib :3  
(NUM 3)

• Fibonacci

k
)
DSI e x i t .

- End-ofifile on this trial. 

(Initialization Deleted)
k  I  i l e : O /u s iu /sd j/P h D /th e sis /L /M , C l. d 
k  CM m onitor t ry )

k  t r y : t s t l  
(NUM 5) 

k  t r y : t s t 2  
(NUM 5) 

k  t r y : t s t 3  
(NUM 0) 

k  t r y : t s t 4  
(NUM 6) 

k  g e d :(2 3)
(NUM 1) 

k  fa c :4  
(NUM 24) 

k  f ib :3  
(NUM 3)

k
)
DSI e x i t .

(Initialisation Deleted) 
Refined loop.

First realization.
(Fig. 5.9)

6

(X!.i)t5

one?tO —► err, zero?:0 —► 0, err 

((\f.\a.f:a):)\x.incoc)):5 

Greatest Common Divisor

Factorial

Fibonacci

End-of-file on this trial.

Trial Runs (cont’d).
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{Initialization Deleted)
Refined realization.

(Fig. 5.10)

5

(XU):5

o n e ? : 0  —* e r r ,  z e ro T tO  —► 0 ,  e r r

((\f.\a .f:& )t)\x .incsc))tS

Greatest Common Divisor

Factorial

Fibonacci

End* of*file on this trial.

T r ia l  R u n s  (con tM ). In the realization trials, the help function t r y  is redefined to 

return the content of the VAL register as soon as the halt action appears in the EXP 

register.

k  £ile :6 /u B iu /sd j/P h D /th e s is /L /U .C 2 .d  
(M m onitor s l c t - e  SLCT-E ENVIRONMENT 
s l c t - s  SLCT-S STACK'try)

k  t r y : t s t l  
(NUM S) 

k  t r y : t s t 2  
(NUM 6) 

k t r y : t s t 3  
(NUM 0) 

k t r y : t e t 4  
(NUM 6) 

k  g e d :(2 3)
(NUM 1) 

k  fa c :4  
(NUM 24) 

k  f ib :3  
(NUM 3)

k
)
DSI e x i t .
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k  f i l e : 0 / u s i u / s d j / P h D / t h e s i s / L / U . R . d  
(U COERCE APPLY t r y )  

k  t r y : (APL CAPL (ID E  a d d )  (1IUM 2 ) )  (HUM 2 ) )  
(ERR ( i n v a l i d  f u n c t i o n ) )

k
)
DSI e x i t .

k  f i l e : O / u s i u / e d j / P h D / t h e s i s / L / M . C 2 . d

(M m o n i t o r  s l c t - e  SLCT-E ENVIRONMENT 
s l c t - s  SLCT-S STACK t r y )

k  t r y : ( A P L  (HUM 6 )  (LBL X ( ID E  X ) ) )

(EVL Cl (APL (NUM 5 ) (LBL X ( ID E  X ) ) )  (HL
EVL ? ? ? (NUM 6) ARG (LBL X (ID E
EVL (HUM 5 ) (ARG (LBL X (ID E  X ) ) ) (HLT)
EVL ? ? ? (LBL X (ID E  X )) (ACT (NUM 5 )
EVL 7 7 ? (ID E X) (ACT (NUM 5 )
EVL 777 (F IX (ID E X) b e t a ) (ACT (NUM 5 )
EVL 777 (ID E X) (ACT (NUM S)
EVL 777 (F IX (ID E X) b o t a ) (ACT (NUM 5 )
EVL 777 (ID E X) (ACT (NUM 5 )
EVL 777 (F IX (ID E X) b e t a ) (ACT (NUM 5)
EVL 7 7 ? (ID E X) (ACT (NUM 5 )
EVL 777 (F IX (ID E X) b e t a ) (ACT (NUM 5)
EVL 7 7 ? (ID E X) (ACT (NUM 5)
EVL 777 (F IX (ID E X) b e t a ) (ACT (NUM 5 )
EVL 7 7 ? (ID E X) (ACT (NUM 5)
EVL 7 7 ? (F IX (ID E X) b e t a ) (ACT (NUM 5 )
EVL 7 7 ? (ID E X) (ACT (NUM 6 ) 1C,

Afort-/t'near specifiation 
Load interpreter

Evaluate 5 : (x < =  x) 
Interpretation con

verges to an 
error message.

Circuit realisation 
Load interpreter

Evaluate 5 : (x < =  x)
Tracing C TL, VAL, 

EXP, and NXT.

«-* Evaluator loops

Daisy interrupted.

D e m o n stra tio n  th a t  th e  R e a lisa tio n  Is f a r t i u i .  The literal b e ta  is Daisy’s symbol 

for a (non*printnble) function closure. Here the object is the environment field of an L-  

function closure. The realisation diverges because the derived interpreter is applicative 

order.
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Load

Teat
form

Try it.

SPN?

SPN?

SPNI

S P N f  
(cont'd)

E x p e rim e n t w ith  th e  R ea liz a tio n . Q (F  < =  (Xx. zero? ! x  —*■ x , F  : (d c r t x ))) : 2]| 

is evaluated to show cycles wasted in testing Tor expression closures. Signals CTL, VAL, 

EXP, and NXT are traced, The symbol appears in place of output text tha t was 
manually deleted. Useless closure tests are indicated by the annotation S P N f" .

t  f i l o : O / u s i u / s d j / P h D / t h e s i s / L / M . C 2 . d  
CM m o n i t o r  s l c t - e  SLCT-E ENVIRONMENT 

S l c t - s  SLCT-S STACK t r y )  
t  t s t  

(APL (LBL F
(LAM X

(CND (APL (ID E  z e d ? )  ( ID E  X ) )  
(TST (ID E  X)

(NUM 2 ) )
(APL (ID E  F )  (APL (ID E  d c r )  ( ID E  X ) ) ) ) ) ) )

& t r y : t s t

(EVL [] (APL (LBL F - * - )  (NUM 2 » (HLT)
EVL ? ? ? (LBL F (LAM X - * - ) ) (ARG (NUM 2 ) )
EVL ? ? ? (LAM X -*■0 (ARG (NUM 2 ) )
EVL (FTN X - * - ) (ARG (NUM 2 ) ) (HLT)
EVL ? ? ? (NUM 2) (ACT (FTN X b e t a ) )
EVL (NUM 2) (ACT (FTN X b e t a ) ) (HLT)
APL (NUM 2) (FTN X ■ b e t a ) (HLT)
EVL ? ? ? (CND (APL - * - )  - * - ) (HLT)
EVL ? ? ? (APL (ID E z e d ? )  ( ID E  X » (TST - * - )
EVL ? ? ? 1 (ID E z e d ? ) (ARG (ID E X ))
EVL ? ? 7 (OPR - * - ) (ARG (ID E X ))
EVL (DPR - * - ) (ARG (ID E X )) (TST - * - )
EVL ? ? ? (ID E X) (ACT (OPR - * - ) )
EVL ? ? ? (HUM 2) (ACT (OPR - * - ) )
EVL (NUM 2 ) (ACT (OPR - * - ) ) (TST - * - )
APL (NUM 2 ) (OPR - * - ) (TST - * - )
EVL (B IT [ ] ) (TST (ID E X) (APL - * - ) ) (HLT)
EVL ? ? ? (APL (ID E F) (APL - * - ) ) (HLT)
EVL ? ? ? (ID E F) (ARG (APL - * - ) >
EVL ? ? ? (F IX (LAM X - * -  b e t a ) (ARG (APL - * - ) ) *

EVL ? ? ? (LAM X 0 (ARG (APL - * - ) )
EVL (FTN X - * - > (ARG (APL - * - ) ) (HLT)
EVL ? ? ? (APL (ID E d c r )  ( ID E  X )) (ACT (FTH X b e t a ) )
EVL ? ? ? (ID E d c r ) (ARG (ID E X ))
EVL ? ? ? (OPR - * - ) (ARG (ID E X ))
EVL (OPR - * - > (ARG (ID E X )) (ACT (FTN X b e t a ) )
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EVL ? ? ? (ID E X) (ACT (OPR - * - ) )
EVL ? ? ? (HUM 2 ) (ACT (OPR - * - > )
EVL (HUM 2 ) (ACT (OPR - * - ) ) (ACT (FTN X

APL (HUH 2 ) (OPR - * - ) (ACT (FTN X - * ~

EVL (HUM 1) (ACT (FTH X b e t a ) ) (HLT)
APL (HUM 1) (FTH X ■ b e t a ) (HLT)

EVL 7 7 ? (CHD (APL - * - > (TST - * - ) ) (HLT)
EVL ? ? ? (APL (ID E z e d ? ) ( ID E  X ) ) (TST - * - )
EVL ? ? 7 (ID E z e d ? ) (ARG (ID E X ))
EVL ? ? ? (OPR - * - ) (ARG (ID E X ))

EVL (OPR (ARG (ID E X )) (TST - * - )
EVL 777 (ID E X) (ACT (OPR - * - ) )
EVL 777 (NUM 1) (ACT (OPR - * - ) )
EVL (HUM 1) (ACT (OPR - * - ) ) (TST - * - )

APL (HUM 1) (OPR - * - ) (TST
EVL (B IT [ ] ) (TST (ID E X) (APL - * - ) ) (HLT)
EVL 7 7? (APL (ID E F )  (APL - * - ) ) (HLT)
EVL 777 (ID E F) (ARG (APL - * - ) )
EVL 7 7? (F IX (LAM X ) b e t a ) (ARG (APL - * - ) )
EVL 7 7? (LAM X 0 (ARG (APL - * - ) )
EVL (FTH X - * - ) (ARG (APL - * - ) ) (HLT)

EVL 7 7? (APL (ID E d c r ) (ID E  X )) (ACT (FTN X
EVL 7 7? (ID E d c r ) (ARG (ID E x »
EVL 7 7? (OPR - * - ) (ARG (ID E X ))
EVL (OPR - * - ) (ARG (ID E X )) (ACT (FTN X
EVL 777 (ID E X) (ACT (OPR - * - ) )
EVL 777 (HUM 1) (ACT (OPR - * - ) )
EVL (HUM 1) (ACT (OPR - * - ) ) (ACT (FTN X
APL (HUM 1) (OPR - * - ) (ACT (FTN X
EVL (HUM 0 ) (ACT (FTH x b e t a ) ) (HLT)
APL (HUM 0 ) (FTH X ■ b e t a ) (HLT)
EVL 7 7 ? (CHD (APL - * - ) ) (TST - * - ) (HLT)

EVL 7 7 ? (APL (ID E z e d ? ) (ID E  X )) (TST - * - )

EVL 7 7 ? (ID E z e d ? ) (ARG (ID E X ))

EVL 7 7 ? (OPR - * - ) (ARG (ID E X))

Experim ent with the Realization (cont’d).

fcont'd)

SPN?

SPN?

5/WF

<- • SPN!

-  • SPNF

-  - SPN?

-  • SP iV f
(cont *d)
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EVL (OPR - * - ) (ARG (ID E  X )) (TST - * - )
EVL ? ? ? (ID E  X) (ACT (OPR - * - ) )
EVL ? ? ? (NUM 0 ) (ACT (OPR - * - ) )
e v l  ( m m  0 ) (ACT (OPR - * - ) ) (TST - * - )
APL (MUM 0} (OPR - * - ) (TST - * - }
EVL (B IT  t r u e ) (TST ( ID E  X) - * - ) (HLT)
EVL ? ? ? (ID E  X) (HLT)
EVL ? ? ? (HUM 0 ) (HLT)
EVL (HUM 0 )

)
t
) DSI e x i t .

(HLT) #

(cant’dJ 

S P N f

S P N f

Experiment with the Realization (cont'd).



C. Proofs

COROLLARY 2.3-2.

Let FIB and G be defined by

FIB(x) <£= (x < 1 )  1, F I B ( z - S )  + F I B f x - 1 )

Gfx, y, s) <5= (x = 0) —■ y, G (x -1 ,  z, y  + z).

Then for all a >0 ,  FIB(a) =  Gfa, 1, I).

PROOF: Using induction hypothesis “If  a <  k +1 then FlB(a) — G(a, 1, l ) n. 

Base Step.

FIBfO) =  1 =  GfO, 1, I )

FIB(l)  =  I  =  GfO, I,  2) =  Gfl,  1 ,1 )

A FIB, A G 

A FIB, v , AG

Induction, Suppose 0 <  a <  k + 1 implies FIB(a) =  Gfa, 1, I), Then

FIBfk + 2) -  FIB(k) + FIBfk + I )

=  Gfk, 1 , 1 ) +  G f k + l ,  1 ,1 )  

=  Gfk + 2, 1, 1)

A FIB
I.H., used twice 

Proposition 2.3-1

COROLLARY 2.3-5.

Let FAC and G be defined by

FACfx)  <=  (x —0) —* 1, x * FACfx  —1).

Gfx, y) <=■ (x - 0 )  — y, G f x - I ,  x *y). 

Then for all a >0 ,  FAC(a) — Gfa, 1).

184
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PROOF:  by structural induction on Int.

Bant. FAC(O) ~  1 -  GfO, 1)

Induction. Suppose FACfk)  =  Gfk, I). Multiplication is commutative and associative, 

and the equation for G is an instance of the recursion scheme of Proposition 2.3*3. 

Hence

FA Cfk + I )  -  fk + 1) ♦ FACfk)
-  (k + 1) * Gfk, 1)

— Gfk, fk +1)  * I)  

=  Gfk +1, 1)

A F A C  and fk + 1 ) ^ 0 .  

I.H.
Proposition 2.3-3 

y G  and fk +1) &0

PROPOSITION 2.4-3.

Consider the linear recursion scheme:

Ffx) <=  pfx) — ffx), hfFfgfx))

and the iterative system

Gfx, y) <=  pfx) — Hfy, ffx)), Gfgfx), y).

Hfx, y) <t= pfx) — x, Hfgfx), hfy)).

For alt a, Ffa)  =  Gfa, a).

PROOF:

CLAIM I: I f  pfa) is false then for all a and b, Hfa, b) — hfHfgfa)), b),

PROOF:  By subgoal induction on H. Since pfa) is false, Hfa, 6) =  Hfgfa), hfb)). 

Now if pfgfo)) is true then

Hfgfa), hfb)) =  hfb) =  hfHfgfa), b))

Otherwise, by induction

Hfgfa), hfb)) =  h(Hfgfgfa)), hfb)) =  h(Hfgfa), b))

This proves Claim I.

CLAIM IL If  pfb) is false then Gfa, b) =  hfGfa, gfb)).

PROOF:  By subgoal induction on G. If pfa)\s  true then Gfa, b) =  Hfb, ffa)), which 

by Claim I equals h(Hfgfb), ffa))), since pfb) is assumed false. Under the premise 

tha t pfa)  is true, this folds to hfGfa, gfb))).
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If pfa) is false then Gfa, b) — Gfgfa), b) =  h(Gfgfa), gfb))) by induction. How

ever, if pfa) is false, this also folds to hfGfa, gfb))). This proves Claim II.

PROOF of the PROPOSITION:  To show that for all a, Gfa, a) — Ffa), we proceed by 

subgoal induction on G. If pfa)U  true then

Gfa, a) =  Hfa, f fa))  =  ffa)  =  Ffa).

Otherwise,

Gfa, a) -  Gfgfa), a)

~  HGfgfa), gfa))) 

= bfFfgfa)))

=  Ffa)

A G

Claim II

I.H.
y F

T H E O R E M  2.4-6 .

Let F  be defined by

Ffx)  <=  pfx) — ffx), hfx, Ffgfx})}.

and consider the specification.

Gfu, v, x, y, :) <±= pfx) — Lfu,  a, u, ■, fx),

Gfu, a, gx, m, m).

Lfu,  v, x, y, z) <= pfx) —> s, Mfu, gx, gx, u, z).

Mfu, v, x, y, z) < =  pfx) — Lfu,  a, v, a, hfy, z)),

Mfu, v, gx, gy, :).

For all a, Ffa) -  Gfa,*, a, m, • ) .

DISCUSSION:  Let j"  denote the rt-fold composition of g with itself. Observe tb a t if F  

converges on a, the result is of the form

hfa, hfga, ..., hfg(n~lU, fgna)...))

(Some parentheses have been suppressed.) We adopt the following strategy for comput

ing this term iteratively:

(I) Compute fgna and call it z.
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(2) For i* =  n - 1 0, compute y  =  p'a and set z to hfy, z).

The problem is to perform the loop in step (2) -without the benefit of a counter. This is 

done by noting tha t n is precisely the number of times g must be applied to x in order to 

make p true. The strategy is implemented by introducing a ‘'trailer'* identifier tha t lags 

behind the computation of g nx by i steps, so th a t when g nx becomes true, the trailer 

contains g(n’*h. This value makes it possible to reconstruct the i 1* outer call. The solu

tion scheme uses five identifiers

u -  the initial value of the argument 

v — a restart value for the next pass through step (2) 

j — the value tested by p.  

y -  the trailer identifier 

;  — a value accumulator 

As the statem ent of the theorem asserts, an iterative equation for F  is

Gfu, v x, y, *) <t= pfx) Lfu, m, u, m, fx),
Gfu, m, gx, m,

Lfu, v, x, y, *) <= p f x ) - * :, Mfu, gx, gx, u,

Mfu, v, xi Ut *) <*= pfx)  — Lfu, m, v, ■> hfy, :)),
Mfu, v, gx, gy, s).

G computes the inner term f g nx, then resets x to its initial value for the first pass 

through the loop. L advances x by one step, saves th a t value for the next pass through 

the loop, and sets the trailer to x*s initial value. M  computes by advancing x and

y in tandem.

CLAIM I: I f pfb) ia false then Mfa, b, c, d, e) = hfa, Mfga, gb, c, d, e)).

PROOF:  By subgoal induction on M, depending on the value of pfc)  and pfgb). If 

pfe)  is false, then
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l.h.s. =  Affa, b, gc, gd, e)

= hfa, Mfga, gb, ge, gd, e)) 

=  r.h.s

AM ; ~'p(c) 

I.H.; -'p(b) 

VA/; ^p(c)

Otherwise, if p(c) is true, then

l.h.s. — Lfa, m, b, m, k(d, e))

=  Mfa, gb, gb, a, hfd, e})
AM; pfc) 

A L ;  ~>pfb)

and

r.h.s — hfa, Lfga, m, gb, a , hfd, e)) | AM ; pfe)

Now if pfgb) is true, both sides reduce to hfa, hfd, e)). If not, then

l.h.s. — hfa, Mfga, ggb, gb', a, hfd, e}))

-  hfa, Mfga, ggb, ggb, ga, hfd, e})) 

= hfa, Lfga, m, gb, n,  hfd, e)))

=  r.h.t.

I.H.; -'pfgb) 

AM ; ->pfgb) 

\?L; ->p(gb)

This proves Claim I.

CLAIM II: I f  pfa} is false, then Gfa, m, c, m, u )  — hfa, Gfga, u, c, a , u)).

PROOF: By subgoal induction on G; the case depends on the value of pfe). 

CASE 1 fpfe) is false).

l.h.s. — Gfa, a , gc, m, m)

=  hfa, Gfga, m, ge, m, »)) 

— r.h.s.

A G  

I.H. 

V G

CASE 8 fpfe) is true).

l.h.s — Lfa, m, a, m, fc)

=  Mfa, ga, ga, a, fc)

A G

A L ;  i >p(a)

And on the right,
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r.h.a =  hfa, Lfga, m, ga, m, fc}) | A G

Now if p/j/a/ is true, both sides reduce to hfa, fc)\ so suppose p(ga} is false. Then

l.h.a =  Mfa, ga, gga, ga, fc)

-  h(a, Mfga, gga, gga, ga, fc)} 

=  h(a, Lfgat m, ga, m, fc})

— r.h.a.

A AY; -'p(ga) 

Ciaim I 

s?L; -'p(ga) 

V < ?

This proves Claim II.

PRO OF of the THEOREM:  To show th a t for all a, Gfa,u,  a,m,m) = Ffa),  we proceed 

by subgoal induction on F. In case pfa) is true, both sides reduce to ffa). If pfa) is false, 

then

Gfa, m, a, ■, ■ / =  Gfa, m, ga, n, m) AG ;  ^p(a)

-  hfa, Gfga, m, ga, m,m))  Claim If

-  hfa, Gfga)) y G ;  ^p(a)

~  hfa, Ffga)) l.H.

~  Ffa)  V ^ ; - 'P W

a

EXAMPLE 2.4-8

Let us introduce notation to abbreviate the stack operations. For values a and b, 

and stack a , let the expression [ /a  b t o }\j be an abbreviation for ftpuahfa, puahfb, &))l.  
Take the format parameter [[/u v f  o ‘JQ to mean that the identifiers u and v name the 

top two elements of the current stack and tr ' names the current stack, understood to be 

called <r, with u and (/removed.

Applications of 1-place operations are abbreviated by suppressing parentheses 

around the argument. For example, we shall write g j x )  simply as g0x.

The initial specification is
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Ffa) <*= pfa) — c, h f  Ffaz),  F(glx) ),

The first step of the transformation introduces the stack and a return function R .

F fa  a )  <S= R((p(x) — c, h fF fgQz), F(gtxj) ), a).

R f a  a)  <=  empty?fa) —* v, □ □ □ .

Use rule (2) to distribute R  through the conditional.

F fa  cr) <S= p(x) — rt/c, o-;, rtf' h f  F(gQz), Ffg{x) ), a). 

Rfa, a )  <5= empty f fa)  —* u, □ □ □ .

Define c ' =  /ifyJ( F(yt)); r — Ffgjz); and t — g{z.  Allocate an action value, a =  0. By 

rule (3), transform S f  to

F f a  tr) p(z) R f a  a), R f  F(g^),  [0 gtx ! a) ).

R f a  (w z I a'}) < =  empty f fa )  -* v,

atffw, 0) — R f  hfv, Ffa)), o'),  □ □ □ .

By rule (I) we can get rid of the second call to R  In the equation for F.

Ffa, <t)  pfa) — Rfa, a), F(  ggX, (0 gfx I a) ).

Rfa, fw s I o'\)  <=  empty f fa)  -* v,

atffw, 0) —* R f  hfa, Ffa)), <r’), □ □ □ .

Let e ' =  k(yl , y j ;  r =  F(:); and t — v. Make the final transformation according to 

step (3), with new action value a — 1.
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F(x, tr) < =  p{:z) — Rfc,  a), F (  g01, (0 gtx I <rj }.

Rfv,  (w z Itr'j) <S= empty?(a) —* v,

atffw, 0) —* Ffs, (1, v i a ’]} 

atffw, 1) —* R f  hfv, z), a ‘).

P R O P O S IT IO N  4.2-1

For alt environmenta p, and all exprcttiona'c and e ‘,

ZD [[ ( X [ h l t ] . h ) : < e !  e ' >  ]|p =  ID 5 cjp

and

ID[I ( X [ h l t ] * t ) : < e l  e '>  ]]p =  ZDQe'jp

PROOF: Both assertions have simitar proofs, differing only in the last few steps. Only 

the second proof is given here.

I D l  (  X [ h  1 1 ]  .  t )  : < e t  e '  >  ]]p

=  d-apply f/DQX [ h I t ]  . t ^p) (ID [[ < e I e ' >  JjpJ 

=  d-apply f  X v . ZD[[t]]p[ v /  [h it] \)  {/D|[el|p , JZ?|[e'Jp} 

=  f \  v . © [It0p[ v f  [Hit] ]y {ZD|I eflp , ZD[|e']|p)

=  p[<®IIeD/>. ®Oe'l<’) / ( h i t ] ] ^ ;

= /  h \ ( t )

= /  t ] ( t )

= B  le'Ip

AID

AZD, /trice 

Arf*app/y

iu6iit/o(iOfi

A ZD

A Env. extension 

A Em .

A Env.



192

PROPOSITION 5.3-1

For  a : Env -*■ Val, fix {  X < . a  < /  t] )  =  a  (fix (  X p \p[ a p ' /  i \ ))

P R O O F :  Let pg =  fix \  p ' . p [ a p * f  i], and define vQ — apg. Since pg is a fixed point,

P0 = P ^ P o / * ]  -  p \ vo / *1 (*)

Hence,

u/ “  a P0 = a P[vo / { \

and so vg is a fixed point of ( X( . a p [ t  f  i] ). Let vf be any other fixed point, and define 

p t — p[vt l  i\. Then since is a fixed point, consider

Thus, pt is a fixed point of \ p \ p [ a p * /  **}; hence pg C p^  By (*) we have

* K / » ]  =  Pa £  #’/-# » ( v, / * \

Since pg and p{ only differ a t i, it must be th a t

P\ v0/  *U0 ~  vo ^ vt ~  p \ vi !  * W

T hat is, v^is the minimal fixed point. Therefore,

fix( \ t  .ap[ t  (  i) ; =  v / ^ a p / ^ a  (fix ( \ p ‘.p[ap‘/  i] }).

□



D. Symbols

a, 6, c — constant symbol, 17 

i, y, z -  identifier, 17 

p, q -  predicate symbol or propositlonat expression, 17 

r, s, t -  term or expression, 17 

e -  expression, 17 

F, G, H  -  function variable symbol, 17 

p —- r, 4 -  conditional expression, 18 

F(x)<£s r. -  recursive function definition, 10

■ -  inderterminate, or “ floating” value, 16 

I -  register initializer, 51 

•  -  value token in a schematic, S3 

0  -  component counterpart to an operation symbol, 51 

[T] -  register, 53 

E -  identity component, 127 

[[...]] -  syntactic quotation, 17 

A +  B -  separated sum domain, -12 

A X B -  product domain, 42 

A —► B -  continuous function domain, 42 

J : A —*B  -  /  E A-+B,  43

(...J -  pairing operation, 43 

*10, ~ projection for domain pairs, 43

*aaA, *ittD — inspection, restriction, and injection for domain sums, 43 

E  -  domain element designator, 41 

C -  approximation ordering, 41

193
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X -  minimal approximation, 41 

\  x.  t  — abstraction of t  by x, 42 

X[u v | .e  -  \ x .  e (x \0 )(x \l ) ,  44

s  -  strongly equivalent, 71 

SigD -  the domain of signals over D, 02

d 00 -  constant signal, 02 

A F -  “by unfolding F ’a definition1’, 21 

y F  -  “by folding F ’s definition", 22 

!.H. — “by induction hypothesis", 27 

-  verification condition for F, 25

x° — initial value of signal X,  55

A'®" -  behavior of signal X  at time n, 52

Kx — constant operation, 31 

n -  projection operation, 31 

f g  — serial combination of operations, 31 

< . . .>  -  parallel combination of operations, 31 

r f i i
el -  a substitution, 21

x i >'"> Zn

T -  translator from applicative terms to combined operations, 32 

2T, ID, ILt -  a valuation function, 46, 70-75, 102

R  -  L compiler, 104

Repy  -  a representation for K, 103 

exp, T[...] -  abstract value of, 103 

[tag ...] -  represented value, 103



INDEX
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Index

A

A bstract component, 13, 87, 01-08, 140 
Accumulator, 0, 37 
Action, 38-30, 88, 110 
Actual expression, 124 
Application 

—, Daisy, 71
—, of a com ponent,__

Applicative
— premise, 1
— s ty le ,  1
— language, 05 

apply, 44
— compouent, 03 

Approximation ordering, 41 
Autonomous processes, 142
Axioms, for serialization (tee acriattzatio

B

Bnckus-Naur notation, 40 
Balanced format, 20, 33 
Behavior, 3, 52, 62-03 
Behavioral equivalence, 52 
Bidirectionality, 141—142 
Bool, 41
Branched conditional format, 25, 20

c
Cnll-by-nnmc, 05-07 
Calt-by-value, 05-07 
Carrier, 10 
Circuit

— description, 52 
—, in Daisy, 79
— F, 130-131
— G, 131-133
— H ,133-137 

Clock, 50
Closure, 11, 00, 105-107 
Combinator, 40 
Combinatorial component, 51 
Combined operation, 31-32

Communication, 03, 142-144 
Compilation, 2, 100 
Component, 5, 10, 63 

—, in Daisy, 79-80 
Computation rule, 00, 139 
Conditional expression, 18 
Connective storage, 123-124 
Constant, 16

— combinator, 44
— operation, 31
— signal, 62 

Continuation, 12, 46—48, 119 
Continuous, 41
Control

— algorithm, 7
— token, 34, 37, 89, 112, 139 

Convergent term, 23 
Creativity, 28, 145 
Cuny-Snyder model, 123-124, 137 
curry, 44

D

Daisy, 4, 65, 139 
—, kernal language, 69 
—, standard semantics, 69-78 

D ata recursion, 10, 78 
Data-flow, 123 
Defining equation, 19 
Delay rule, 66 
Demand driven, 65-60 
Device, 80-81 
D ig, 10, 143 
Digital asynchrony, 142 
Digital circuit design, 1 
Digital system, 5 
Direct interpreter, 99 
Distributivity

— of conditionals, 29-31, 48-49, 93-94
— of lifting, 50-59, 91, 138 

Domain, 41-42 
Don't-care, 16 
Don't-know, 16



E

Engineering, 2 
Environment, 21, 65

— in Daisy, 70-71, 125
—, representation in L, 104 

Experiment, 08-60, 81 
—, in Daisy, 81-86, 90-98 

Expression, 18

F

FAC, 19, 22-23, 27, 37, 45, 60, 08, 81-84 
Fcedbnck, 2
FIB, 19, 37, 00, 08, 82-85, 05-97
FP programming, 8 -9
fix, 44, 106
Fixed point, 44
Flo web art, 138

— in circuit design, 5, 138—130 
Flo web art ability, 3, 36 
Folding, 21

— circuits, 13, 121-122 
Formal expression, 124 
Formal parameter, 17 
Function variable symbol, 17 
Function, 3
Functional, 44

G

GCD, 10, 61-02, 08, 82-86, 139 
yd,  143
Global identiGers, 19 
Gluing, 125-120 
GO, 140
Ground term or expression, 19

H

Higher level components, 88—08 
History (of values), 5, 8

I

Ide, 41
Identifier, 17, 41 
Identity component, 127

Indeterminate constant, 16 
Induction, 24-27 

—, structural, 24-25 
—, subgoal, 25-27 

Infinite sequence (in Daisy), 78-79 
Injection, 43
Input-output assertion, 25 
Inspection, 43 
Instance (of a scheme), 20 
Instantaneous behavior, 51 
Instruction, 13, 39, 87, 92, 140 
In t, 17
Iterative, 3, 15, 20, 27—28, 138

J, K

Kernel language, 69-77

L

L  (language), 12-13, 88, 100-120 
—, continuation semantics of, 120 
—, interpreter for, 101—103 
—, standard semantics of, 101—103 

L j, 18 
Lr , 18 
Ls , 51 
Lt , 18

—, as a da ta  type, 45 
Lambda abstraction, 42 
Language driven design, 99-100 
Lazy evaluation, 66 
Lifting, 6, 53, 138 
Linear specification, 6, 20 
Linearization, 37, 46 
Lisp, 8, 65, 71 
Lucid, 9

M

M , 105-144 
Message, 69
Metalinguistic variables, 17 
Multiphase clocking, 144 
Multiple valued operations, 49 
Multiplexor, 30 
mux, 30-31
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N

n-placc, 16 
Nml, 41

o

Operation, 16 
O utput driven, 79-81

P

Packaged combination, 13, 87, 89—91, 95, 
114, 140 

Padding, 29, 33 
Pairing, 43
Parallel combination, 31, 44
Partinl correctness, 2, 26
Predicate, 16
Probe, 71
Process, 10, 63
Program, 4 -5 , 27
Projection
— combinator, 44
— operation, 31 
Prolog, 141
Propositiona] expression, 18 
put, 143

Q, R
Rank, 17 
READY, 55 
Realisation, 2

— language, 12, 50-53
— of a specification, 56 

Recurrent, 18 
Recursion, 44-45

—, data, (see rejlexivity)
— equation, 2, 16-23
— scheme, 15, 20 

Reduction, 21 
Reflexivity, 10, 45 
Register, 5, 50-53 
Representation, 103—105

-r problem, 145 
Restriction, 43
Rules, for serialization (tee Serialization)

s
Satisfy a definition, 20 
Schedule, 124, 140

— derivation, 124, 129-137
— specification, 131 

Schematic, 4—5, 53
Scott-Stracbey notation, 4, 7, 16, 40-45, 

139
Selection, 30 
Self-timing, 142 
Serial combination, 31, 44 
Serialization, 121-123, 140

— axioms N , G , E , F , S , 125
— rules T, A, A, M, I, 126-129 

Serious, 18, 39
Signal, 9, 50, 6-632, 139

— equation, 52
— expression, 50-51 

Simple loop, 6, 12, 59-61, 139 
Simplification, 21 
Single-pulser, 143-144 
Solution

—, as a fixed point, 45 
—, of a specification, 22 
Specification, 2 -4 , 12, 15—19

— of control, (see 
Stability (in circuits), 83, 139 
Stack, 38

— component, 92 
Standard semantics, 45-47 
State, 9
Stream, 10-11 
Strict, 23, 128 

—, Completely, 23 
ttrtct, 80 
Structured

— digital design, 7, 13
— programming, 7 

Substitution, 20 
Suspension, 11, 66 
Synthesis, 2

— of iterative form, 36-40
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T

Tag, 103-104 
Terra, 18
Transformation, 2, 138 
Transparency, (see diatributivity 
(rau-ipose, 03 
Translator (7"), 32, 58-59 
Trivial, 18

U

U,, 28, 33-30, 54 
UL, 35 
uiiciirry, 44
Underlying type, 5, 15—10 
Unfolding, 21 
Universal schemes, 35 
Universal type, 15

V

val, 21-23 
VALUE, 55 
Valuation, 20-23 
VeriGcation condition, 25, 145

w
W and-Friedman construction, 38—40, 88,

110

X ,  Y ,  Z
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