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ABSTRACT

A theory of heuristic game tree search and evaluation functions is developed. We give an
exact way for selecting the best initial move in a game using the information from a heuristic
search under the assumption that both sides will play perfectly after that move. The result is
quite different from the traditional minimax theory of game playing, and it leads to the product-
propagation rules for backing up values when subpositions in the game are independent. The
theory avoids Nau's paradox; deeper searching leads to better moves if one has reasonable

searched informations.

Although this theory leads to the best possible move, it does not necessarily lead to the
move where the program, with its limitation of imperfect play, will do best. A powerful game
playing program should not assume that both sides will always make perfect moves, but should

instead have a more realistic model of how it and its opponent will play.



1. Introduction

Standard game playing programs choose their moves by searching a large tree of potential
continuations. Since the total game tree is huge, the tree is searched only to a limited depth. A
static evaluation function is used to estimate value of the positions where the search stops. The

static values are then combined using the minimax algorithm to estimate the value of each move.

Nau (3], however, proved that the minimax algorithm can degrade the information provided
by the static evaluation function, so that for some types of games, it is better to search only one
level of the game tree and use the values from the static evaluators directly to decide which move
to make rather than to search several levels and then use the minimax algorithm before deciding
which move to make. Pearl developed a simple game, suitable for theoretical study, for which this
pathology of the minimax algorithm arises [4, 9]. Pearl’s study [9] of the pathology suggests why
the reason that the minimax algorithm is often useful. Although the minimax algorithm degrades
the information from static evaluation, often a deeper search results in enough of an increase in

the accuracy of the static evaluations to more than compensates for the degradation.

There are two heuristic arguments which are usually advanced in support of look-ahead.
The first is the notion of visibility claiming that since the result of the game is more apparent near
its end, nodes at deeper levels of the game tree will be more accurately evaluated and decisions
based on such information should be more reliable. The second is that the back-up value
integrates the features of all the nodes lying on the search frontier, and so should be more

informed.

Since the minimax algorithm is not a perfect back-up process, it is interesting to find more
accurate back-up procedures where the back-up values will really integrate the features of all the
nodes lying on the search frontier. Pearl [9] suggested one should consider product-propagation
rules instead of minimax. If p; is the probability that the i-th son of a node is a win position,
MIN node (to borrow terminology from the minimax algorithm) is [];p; and the value of a MAX
node is 1 — J];(1 — p;), where the product is over all the sons of the node. Nau [5] investigated

this method experimentally and found that for Pearl’s game it made winning moves more often



than minimaxing did. Although the number of winning moves made by the product propagation
method was greater than the number of winning moves made by minimax, this made almost ne
difference in the final outcomes of the games; each method won almost the same percentage of
games. Nau [5] also studied a class of nonpathological games, where each method made approxi-

mately the same number of correct moves (and had the same winning percentage).

This paper is a study of the theory about heuristic game tree search and evaluation func-
tions. For purposes of theoretical study, an abstract game model is introduced, which is a general-
ization of Pearl's game and Nau’s game discussed by Nau [5]. We assume that result from the
game is win or loss; draw is not permitted. The values (1 for a win of MAX and 0 for a win of
MIN) at the leaves of the corresponding game tree are assigned according to a probability meas-
ure. The assumption on the search is that the visibility is improved in the sense that the informa-
tion given by the search of a level can be retrieved from the information obtained by the search
of a deeper level. These assumptions all apply to Pearl’'s game and Nau’s game, and they do not

strictly apply to most game playing programs.

A theory of a decision making using information from heuristic search is developed. There
is, however, one major assumption. The minimax value of the next move is the only criterion
used for determining the correctness of the decision; that is, the theory assumes that both sides
will make perfect moves after the first move. Clearly no one plays this way. It does however illus-
trate the importance of considering the estimation of evaluation functions, and it leads to new
back up process. It is the authors hope that this study will lead to both experimental and theoret-

ical studies of how to best play games.

Three particular results are derived in this paper. First, the best way to estimate the value
of a move by searching is to use the conditional probability of winning, given the information
from the search; that is, this conditional probability integrates all the information from the
search. Second, if the conditional probability is used to evaluate moves then the result from a
deeper search is on the average strictly more accurate (except for one degenerate case with zero

improvement). Third, if the positions on the search frontier are independent (as in Pearl’s game),



then the conditional probability estimate for the value of a move is obtained using the product-

propagation rules suggested by Pearl [8, 9].



FIGURE 1.
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is a MAX node and O is a MIN node.



2. An Example

An example on a simple game tree is discussed first, which shows how the ideas of the new
models come from the usual probabilistic models. Consider an uniform binary game tree of 4 lev-
els (Figure 1), where the terminal nodes may have independently the value 1 (win for MAX) or 0
(loss for MAX) with a probability of p (0 < p < 1) and 1 - p, respectively. Therefore, all
leaf-patterns of this game tree form a probability space 2 = {0, 1}8, and the components of the
point are independently identically distributed (i.i.d.). The minimax value M on the root A is
then a random variable with value 1 or 0 on . We also consider a heuristic search which finds

the number of winning leaves under the searched node.

If the root A is searched, then we get a value k (0 < k& < 8), which is the sum of all leaf-

values. We may associate this value with an event F;:
8
E={(z1,...,29)€Q| X %=k}, k=0,1,...,8
i=1

The search determines thus the event E; to which the searched leaf-pattern belongs; and Ej is the
information given by the search at the first level. The whole space (I is then divided into 9

different events, which form a partition of 2.

If we search one level deeper, we have the number of 1’s under the nodes B and C, two

children of the root. Now the events associated with this level are the sets of the following form:
. L . )
E; = {(zl,...,zs)eﬂl Mom=i, ) n=j}.
k=1 k=5

Similarly, all such non-empty sets form a partition of (2, which is finer than the previous one

defined by the search at the root. Moreover, each £, is a finite union of such sets :
Ex = Ui+ j=¢ Bij - (2.1)

Therefore, each event E;; at this level is contained in the event E; (k = ¢ + j) corresponding to

the first level; that is, the information given at this level is more accurate than that given at the

first level.



The event given by the search at level 3 (nodes D, E, F and G are searched) is of the form

B, = {(z1, ..., 78) €0 l Tyt 3, =4y, 23 3y = Ay, 25t 26 = 45, 7+ 7y = iy,

where 0 < 1y, 1y, 13, i; < 2. The minimax value at each node of this level can be determined by
the values i,, 75, 25, and i,, hence, the minimax value at the root can be determined correctly by
the search at this level. Moreover, the events E; iaigiy (0 < 1y, 1y, 13, iy < 2) form the finest parti-

tion of £1:

Er'j = U EI'

£1+ r'2=|', it iy=g

1f2iafy” (2.2)

Therefore, the events given by the heuristic search at different levels have the following relations:

i1igigiy
where i; + i, = 7, i3+ 14,= 7 and i + j = k. These relations show that our heuristic search
has improved visibility.

Let’s assume that the purpose of above heuristic search is to estimate the minimax value M
at the root. Since M is a random variable on the space (1, the most reasonable estimation depend-
ing on an event given by the search is the conditional probability of a win (minimax value = 1)

given the event:

M, = P(M=1| E) at level 1; (2.4)
M, = P(M=1]| E;) at level 2; (2.5)
M; = P(M=1| E;; ;) atlevel 3. (2.6)

It will be shown that there is no pathology in the decision making which depends on these values.

As for the back-up process, it is just the product-propagation rules introduced by Pearl ([8, 9]).

3. Probabilistic Models

Consider games between two players MAX and MIN. Assume that the games always result
in 2 win for one player or the other. There is a finite game tree associated with each game.

Label the terminal nodes where MAX wins a one and the terminal nodes where MIN wins with a



zero. We'll consider the games from MAX's point of view. A leaf of a game tree can be moved to
a deeper level by adding nodes with only one child. Therefore, we assume that all game trees dis-
cussed in this paper have their leaves on a same level. Suppose that a game tree T' has k leaves

and h levels. Then all leaf-patterns w = (21, . . ., %), z; = 0 or 1, form the space

n= {0 13~
Assume that the values on the leaves are assigned according to a probability measure P on )
w.r.t. the Borel field F generated by every single point in Q. A Borel field (Chung [1]) is a

nonempty collection of subsets of (1, in which the operations of complement and countable union

are closed. Then a probabilistic game tree model is defined as follows.
Definition 1. A probabilistic game model for a game tree T with h levels and k leaves is a pair
(Q, P), where

Q = {o,1}*,

and P is a probability measure on § w.r.l. the Borel field F generated by every point of (1.

Both the Pearl’s game and Nau’s game discussed in Nau [5] are in probabilistic models.
Furthermore, we don't assume the uniformity of the game trees. And on a probabilistic game

model (€2, P), the minimax value M at any node of the game tree T is 2 random variable on {2
M:Q— {0, 1}.
We define a probabilistic search model as follows.
Definition 2. Let (2, P) be a probabilistic game model for a game tree with h levels and k leaves.
Then a search S on this model is probabilistic if S consists of an increasing sequence of Borel fields:
FoC FiCFC - CFy=F, (3.1)

where Fo = {¢, Q) and each F; (1 < i < h) is generated by a partition of Q. For each leaf-
pattern w € Q, the search S at level i determines the event E of the partition generating F';, which

contains the leaf-pattern w:
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The search of level 0 returns the whole space ( for every leaf-pattern, that is, no special
information is given. The increasing sequence (3.1) illustrates the improved visibility of the
search. In our example, the heuristic search giving the number of winning leaves under the
searched node is a probabilistic search, where F, is generated by all events E;’s, F, by all E;’s,
and all E; ; ;;'s generate F;. For a general Pearl’s game, where the corresponding game tree is
an uniform tree (with height A and branching factor d) and 1 (or 0) is independently assigned to
each leaf with a probability p > 0 (or 1 — p > 0), the heuristic evaluation function giving the
number of 1's on the leaves under the searched node is similarly probabilistic. The information

from the search at a given level is contained in the information from a deeper level.

4. Probabilistic Evaluation Functions

Let (2, P) be a probabilistic game model for a game tree T with a probabilistic search,

where
Bo@ Py @ » wog M=l (4.1)

is the corresponding sequence of Borel fields. The purpose of the search is to estimate the
minimax values of some nodes of the game tree. Let M be a minimax value to be estimated.

Then we define the evaluation functions for M as follows.
Definition 3. For each i, 0 < 1 < h, the conditional expectation of the mintmaz value M w.r.t.
Fy
M; = EM | F))
is called the i-th evaluation function of M. M; is also called the i-th estimation of M.
We note that this definition could be applied to any random variable on Q. If the search

finds the event E at level i, then the value of M; is just the conditional probability of a win given

the event:
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Mi(w) = P(M=1| E) forallweE.

Since {1 is a finite set, M; assumes only finitely many values between 0 and 1. In particular, we
have My, = P(M=1 | Q) = E(M) and M, = M, where E(M) is the mean of the random variable
M. M, does not depend on any information except the whole space. M; depends on a complete

information and is the minimax value M itself.

From the increasing sequence (4.1), we know that the sequence {A;, F;} forms a martingale

(Chung|[1]):
M;=EM;| F;) for 0<i<j<h. (4.2)

This means that M; is the average of M; if ¢ < j. (4.2) can be illustrated in the case of our

example as follows:

P(M=1| Ek) = E kP(EfJ'l E;; )P(l'lrf=ll E;j) = E P(E'-i’-z’-e'-ql Ek)P(ﬂf=].| Eilfziaqu’

iti= ;‘1+ i2+ f3+ g"zk

where M is the minimax value at the root A. The following theorem shows that the conditional
probability of a win given by the value of the evaluation function will be improved when increas-

ing the search level.

Theorem 1. Let i and j (0 < i < j < h) be any two integers. For any two reals z and y
(0 < z,y <1), we have

P(M=1| M;=z, M;=y) =y
if P(Mi=z, M;=y) # 0. In particular, we have P(M=1| M;=z) =z if P(M;=z) # 0.
Proof. Consider the set E = {w ¢ Q| M;(w)=2, Mj(w)=y}. Note that F; C F;, so both M;
and M; are measurable w.r.t. F';; hence E is an element of F;. Therefore,
PM=1, M;=z, M;=y) = fEMdP = fEF,(M|Fj)dP

= jEM,-dP = nydP = yP(M;=z, M;=y),

ie.
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P(M=1 I M=z, Mj=y) =y
if P(M;=z, M;=y) # 0. QE.D.
Therefore, if the events of two levels are given, then the conditional probability of a win

given these two events is just the estimation of the deeper level. And this estimation integrates

the whole information on the search frontier.

5. Decision Making

Because of symmetry, we only consider the decision of MAX. Let MAX move from a node
A, which has n different children B;, ..., B,. Let T be the current game tree with A as the

root. It is still assumed that all leaves are on a same level of the tree.

Suppose that the game is in a probabilistic game model (£2, P) for the tree T and there is a

search with the increasing sequence of Borel fields:
FoCFIC CF_&:F,

where ['; is relative to the search at the nodes B;'s and F}, is relative to the search at the leaves.
Let MI(1 < i < n) be the minimax value at the node B;, which is a random variable on Q.
Now relative to the search of level j (j > 1), there is an estimation of M) for each i,

15 ¢ o

M) =EMD| Fy), 1<j<h

For each i (1 < i < n), {M}?, F;} (1 € j < k) forms a martingale and Theorem 1 holds
for each M) that is, the estimation of a deeper level is more precise. A move is said to be

correct if and only if a node with minimax value 1 is chosen. Now it is ready to prove our main

result:

Theorem 2. The decision making depending on the search of a fized level j, which chooses the

node with the largest estimation MJ[” (1 <1 < n), will be improved, if j is increased.

Proof. Let j; and j, be integers such that 1 < j; < j, < k. Suppose that for any fixed game
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in this model the node B"; is chosen relative to the search of level j; and Bkﬁ is chosen relative to
the search of level j,. Furthermore, for this fixed game let

(k) (k;) (k) (k)
Mjll = Iy, MJ‘ZI = Zo, Mj12 = Y1, Mj22 = Y.

Then z, > y, and z; < y,. From Theorem 1 we have

k
P(M(kl}zl | M)!l l)z-’cl, M}h}:zz) = I

and

k (k) k
P(M*=1 | M; " =y, M}22)=y2} =¥

This shows that, given the informations of levels 7, and j,, the conditional probability that the
chosen node relative to level j, is a win node is always greater than or equal to the conditional
probability that the chosen node relative to level j; is a win node. Being a sum of all such condi-
tional probabilities, the probability that the chosen node relative to the level j, is a win node is
therefore greater than or equal to the probability that the chosen node relative to the level 7, is a
win node. If z, < y, for at least one game in this model, then the decision making of the deeper

level is strictly improved. Q.E.D.

This theorem gives us a theoretical support that if the search has improved visibility and
the evaluation function integrates all information on the search frontier, then the decision making
is improved when increasing the search level. Furthermore, note that the estimation
M}fj (1 < 7 < k) depends on the search of the whole tree T instead of the subtree T; under the
node B;. Since we are considering the general probabilistic games, the information on any other
subtree Ty (1 < k < n and k # i) with the node B; as the root may affect the estimation of
M) The Nau's games discussed by Nau [5] are of this type, because for such games the

minimax values at nodes of a same level are in general dependent.

In the case of Pearl’s games, the independence of the values at all leaves makes the estima-

tions simpler, which will be discussed in the next section.
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8. Independent Models and Product-Propagation Rules

First part of this section gives conditions under which the estimation M}‘) at the node B; in
Theorem 2 depends on the subtree T; under B; only. Second part derives the product propagation

rules as the appropriate backing up method in the case that all searched nodes are independent.

Now consider the same situation in the previous section. Let T; (1 < ¢ < n) be the sub-
game tree with the node B; as the root. Suppose that the probability space (2, P) is a product of
probability spaces (©2;, P;), 1 < ¢ < n:

Q=0;X - X,

and
E = PiX » 2Py,

where (Q;, P;) is the probability space for the leaf-patterns under the sub-game tree T;. Then
the sub-game at the node B; is in the probabilistic game model (Q;, P;). In this case, we say
that the game model ({2, P) is a product of game models (£2;, P;). Furthermore, the minimax
value M at the node B;, which is a random variable on Q, can also be regarded as a random
variable on ;. We use the same notation M) to denote both the random variable on Q and the
one on {1;, which have the same value. Thus for any w = (wy, . ..,w,) € Q, with w; € Q;
(1 € k < n), we have M'(w) = M(w;). Moreover, the random variables {M? | 1 <4 < n}
are independent (Chung [1]).

For an integer j, 1 < j < h, assume further that the Borel field F; is a product of Borel
fields

F; = Fx <« xF/",

where FJ(” (1 < ¢ < n)is a Borel field generated by a partition of {2;. This means that the event
given by the search of level j is a product of events in Q; w.r.t. the subtree 7; (1 < ¢ < n).
Now let E;X - -+ X FE, be a searched event at level j with E; in F}” for 1 € i < n. Then the

value of the estimation M_,“]' in the last section is
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P(E]_x Wiy XE;_1X(E5, M(']=1)XE,+1X i XE”)
P(E;X -+ XE,)

P(MY=1| E;X - - XE,) =

_ P(E, M)=1) e
= PMY=1] E),

thus
MO =EMI | FiN 1<i<n

Thus the estimation of the minimax value at node B; only depends on the search of the subtree

T;. Therefore we proved the following theorem:

Theorem 3. If the game model (Q, P) for the tree T is a product of the game models (Q;, P;) for
subtree T; (1 < ¢ < n) and the searched event is a product of the events w.r.t. the T;, then the

estimation of M\Y) depends on the event w.r.t. the subtree T; only.

Since Pearl’s games with the search finding the number of winning leaves under each
searched node satisfy above conditions, it suffices to use the information under a subtree to esti-
mate the minimax value at the root of the subtree, and the information outside the subtree won't

affect the estimation.

In the second part, we consider the estimation of the minimax value at the root of a tree
with the information under the tree. Let T be the game tree with root A and (Q, P) the
corresponding probabilistic game model. Given a probabilistic search model on this game tree

with the increasing sequence of Borel fields:
FUCFlc-'CFk=F,
let the corresponding evaluation functions of the minimax value M at A be

M;=EM|F), 0<i<h
For the search of the first level, where the node A is searched, let E be the searched event
(in F;), then the evaluation function M, gives the conditional probability of a win given the event

E:

P(M=1 | E).
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In our previous example, if the root of the game tree is searched, and the number of winning
leaves is k (0 < k < 8), i.e., the searched event is F;, then the evaluation function gives the con-

ditional probability of a win given k winning leaves:
8

P(M=1 | Yiai=k).
i=1

When searching only one level in Pearl's games, it is not necessary to calculate this conditional
probability because the number of winning leaves is also a suitable criterion. A node with more

winning leaves never has a smaller probability of a win ([4]).

Now let By, ...,B; (d > 1) be the children of A, and Tp (1 < i < d) the subtree of T
with B; as root. Suppose that the model (Q, P) is a product of models (Qp, Pp), where
(@, Pg ) is the probabilistic game model for the sub-game tree Tp (1 < i < d). If My is the
minimax value at the node B;, which may be regarded as random variables on both {) and QB‘,
then the random wvariables {MBI ] 1<i < d} are igdependent‘ Suppose that the Borel field F,

is a product of Borel fields:

d I3
.= % F{fl,

i=1
where £ (1 < i < d)is a Borel field generated by a partition of QB." This means that the
events given by the search of level 2 (B;'s are searched) is a product of events of QB‘ w.r.t. the

subtree Tp (1 < ¢ < d). Now let

E;X - XEq4

be a searched event at level 2 with E; in F for 1 < i< d. If Aisa MIN node then (by the

product probability measure)

P(M=1, g o n e XE@') = P(M31=1, E])X TN )(P(MBH=1, Eg)

and
P(EIX Tt XE@) = P(El)x s XP( }).

So it follows that the value of M, is
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P(M=1| EyX - -+ XE4) = P(Mp,=1| E})X - - XP(Mg,=1 | Ey). (6.1)
If A is a MAX node then we have

P(M=0, E\X * - - XE;) = P(Mp =0, E)X - - - X P(Mp,=0, E,)

and
P(M=1, E\X - - XE;) = P(E)X - - - XP(Eq) = P(Mp =0, E)X - - - X P(Mg,=0, E;).
Therefore, the value of M, becomes

P(M=1| E;X - XEg)=1-(1-P(Mp=1| E}))X - -+ X(1 = P(Mp,=1| E)). (6.2)

Generally, let all nodes Cy, . . ., C, of level [ (> 2) be searched, Te (1 < i < n) the sub-
tree with C; as the root, and (¢, (1 <7 < n) the space of all leaf-patterns of T¢. Similarly,
suppose that (2, P) is a product of models (Qc‘_, PC,) on each component. On each QC.’ let Mc

be the random variable representing the minimax value of the node C;, which may also be

regarded as a random variable on 2. Similarly, the random variables {Mc,} are independent.
If { > 2 then the set {C; | 1 < i < n}is partitioned into d groups:
G; = {Cyl...ﬂ'l sorny Cply £=1,0..,4d,

where 1 = gy < g; < '+ < g3 = n and each G; (1 < i < d) consists of all nodes of level |

under the node B;. Then we have

g;
fla: =
B‘ J':Q?Sli—] C}
Let
LA
Pg = P,
B' J:g]x_l“"‘l CJ
then
d
P = X PB »
i=1 !

Suppose further that the Borel field F; is the product of Borel fields Fi¢ on (¢, where each F¢ is

generated by a partition of Q¢ (1 < i < n):
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Fi = XFo,

Now let
Ei¥x -+ X%XE,

be a searched event in F; (under the tree T'), where each E; is a searched event in Fe (under the

tree TC.} for 1 < ¢ < n. Then the value of /—th evaluation function is represented as follows:
Case 1. A is a MIN node: In this case we have
d
P(le, "o SR XE,,) = l-I P{M3l=1, E§1_1+1X s XE}.)
i=1
and
d
P(E\X - - XE,) = []P(E,_+1X - XE,).
s
Therefore, the value of M, is
d
P(M=1| E\X * -+ XE,) = [[P(Mp=1| E, +1X - XE,). (6.3)
i=1
Case 2. A is a MAX node: Since

d
P(M=0, E\X - - - XE,) = [] P(Ms.=0, E, 41X - - - XE,)

=1

d
= l (P(Egl_lq—]_x T XEg')_ P(MBI=1! Eg‘_1+1>< i il XE;,')),
=1

the value of M, is
d

P(M=1| E;X - - XE,) = 1-J[(1 - P(Mp=1 | E,_+1X - - - XE,)). (6.4)

i=1

The rules (6.3) (containing (6.1)) and (6.4) (containing (6.2)) are called the product-
propagation tules. Therefore, by induction the value M; given the event E,X --- XF, is
derived by this product-propagation rules from the conditional probabilities of a win at all

searched nodes of level {:



18

P(Mc=1| E) = P(Mc=1| E\X -~ XE,), 1<i<n
We summarize these results as follows.

Theorem 4. Let the probabilistic game model (2, P) for a game tree T be the product of proba-
bilistic models (g, Pc) for all subtrees T (1 < i < n) which have nodes C; of level | > 1 as
roots. Suppose that the Borel field F; of a probabilistic search model is the product of the Borel
fields Fc'_ ( w.r.t. the subiree Tq ), which are generated by partitions oncl_, respectively. Then the
value of the evaluation function M, of the minimaz value M of the root is derived by the product-

propagation rules from the values of

EMc | Fc), 1<i<n,

where M is the minimaz value at the node C; (1 < i < n).

This theorem can be applied to Pearl’'s games, where all nodes of a same level are independent
and the search finding the number of 1's (win for MAX) at leaves under each searched node has
improved visibility in our sense. Let all nodes C; (1 < ¢ < n) of a fixed level are searched, and
the numbers of wins under C; are ; (1 < ¢ < n). Then starting from the conditional probabili-

ties of a win at C; given b;:
pi = P(M¢ =1 | number of wins under C; = §;), (1 < i < n),

where M. is the minimax value at the node C;, we repeat the product-propagation process until

we find the estimation at the root of the tree. Note that the value b;’s should be transformed to

the conditional probabilities before the backing up process.



FIGURE 2.
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7. Discussion

A careful study of Figure 2 will show the essential difference between the traditional
minimax approach to game playing and the approach in this paper. The nodes at the search fron-
tier have been labeled with the probability of winning. Assume that the positions below each node
are independent so that the product propagation version of the theory in this paper applies. With
the information at hand should one move to node A or to node B? The minimax theory says to
move to node B, because after our opponent moves we will be in a position where we can choose
between nodes with values 0.6 and 0.0. We will choose the 0.6 node and have a good chance of
winning. If we had gone to node A, then on our next move we would have to choose between two
nodes of value 0.5. Whichever one we choose, we only have an even chance of winning. The pro-
duct propagation theory says to move to node A. If we move to node B, on the next move we will
have to choose between nodes with probabilities 0.0 and 0.6. We will choose the 0.6 node and
have 0.6 chance of winning. On the the other hand if we move to node A, then we will be able to
choose between two nodes which independently have 0.5 chance of being winning nodes. If on our
second move we can tell which node is best, then we are in great shape. There is a 0.75 probabil-

ity that at least one of the nodes is a winning node.

From these informal arguments we can see that the minimax theory is assuming that we do
not have any new information when we go to select our second move, while the theory in this
paper assumes that we have become infinitely wise, and that on the second move we can suddenly
determine (without error) what the best move is. This helps us understand the results of Nau's
measurements [5]. He found that the product propagation program was indeed able to make win-
ning moves significantly more often than a minimax program when the two programs were play-
ing the same game with the same evaluation function. The advantage did not, however, accumu-
late. When the product propagation program played against the minimax program, there was no
statistically significant difference in how often each program won. Although the product propaga-
tion program was making better moves, it was often arriving a positions where it was unable to

take advantage of the winning position.
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A real game playing program is faced with a situation intermediate between that where we
would expect minimax to do particularly well and that where we would expect product propaga-
tion to do well. On the second move the program does have additional information, but it does
not have perfect information. We hope that this paper will encourage additional theoretical work
on alternatives to the minimax algorithm. A realistic theory of game playing needs to allow for
mistakes by both the program and its opponent. Perfect play should just be a limiting case for a
complete theory of game playing. A crucial aspect of an improved theory should be a model of

how the evaluation of nodes vary with the depth of search.

People who are experimenting with game playing programs may wish to consider backing

up evaluations with the following formula

1
vo = exp(= (- Invy)* + (= Inwy)t + - -)F). (7:2)
For k = 1, it reduces to

Vg = Vg " " °,

i.e. the product propagation rule for a min node, while for k¥ = oo, it reduces to
vo = min(vy, vy, -+ *),
i.e. the minimax rule for a min node. Thus as one adjusts k, one obtains propagation rules that

are intermediate between minimax and product propagation.

The alpha-beta algorithm greatly reduces the amount of searching required when using the
minimax algorithm. As more sophisticated propagation methods are developed, it is important to
also develop methods to limit searching. The alpha-beta algorithm depends on the fact that some
nodes have no effect on the final value. It is rare to have such nodes in a product propagation
tree. Instead some nodes have a small effect on the final value while other nodes have a large
effect. Any theory for value propagation that will be applied to deep searches will need a compan-
ion theory to determine which nodes are the most important to expand. If such a theory is able to
make fine distinctions between the importance of expanding various nodes, it may be able to do

better than minimax at controlling the search.
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One difference between a conventional static evaluation function and our probabilistic
evaluation function is that the static evaluation function evaluates each searched node separately
and then a back-up process is involved, but the latter one evaluates the whole searched nodes
altogether and no back-up process is involved, Nevertheless, they turn out to be the same if all
searched nodes are independent (but a different back-up process is involved).

For the general dependent searched nodes, our evaluation functions exist so far only theoret-
ically. The practical methods finding the values of evaluation functions should depend on the
dependence of the searched nodes and should be studied for each individual case. The product-
propagation method is only for the independent case, and some unexpected results like pathology

in minimax process are also possible to arise if it is applied to the general games.

Even in the independent case, we still can not apply the product-propagation rule directly
to any static evaluation function. We should transform the evaluated values to the conditional
probabilities of a win before using the back-up rules. This conversion between two values is also

a project in itself.
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