Research in the Computer Science Department

at Indiana University

1981-82

edited by

Mitchell Wand

Computer Science Department
Indiana University

Bloomington, Indiana 47405

TECHNICAL REPORT NO. 134
RESEARCH IN THE COMPUTER SCIENCE DEPARTMENT
at INDIANA UNIVERSITY
1981-82

Edited by
Mitchell Wand

December, 1982

Table of Contents

1:Baenlty = s 35 96 3985 5% 5185 S8, 5085 ¥ B n e I . A
DDACHITOR o« wnn wo cwes W BomEe @l S W E WS WG w3 S
3. Summaries of Research Projects
4. Publications e s wn sm s o8 swis o8 S w S5 Bm e : TR
A. Publications appearing in 1981-82 L -
B. Articles' to appear -« : ¢ s o« s ow e ow v e w2 s w o
C.Booksinprint
D. Other Technical Reports i o om w o s G W

5. Colloquium Series 1981-82

§1 Faculty

John Barnden, Assistant Professor; Ph.D., Oxford. Artificial intelligence, programming
languages, formal semantics.

Cynthia Brown, Assistant Professor; Ph.D., University of Michigan. Analysis of al-
gorithms, compilers.

John Buck, Lecturer; B.S., Virginia Tech. Systems analysis, data base and information
systems, computer science education.

James Burns, Assistant Professor; Ph.D. Georgia Tech. Theoretical computer science,
parallel and distributed systems, distributed data bases, computer graphics.

Will Clinger, Assistant Professor; Ph.D., MIT. Semantics of programming languages,
artificial intelligence, nondeterministic concurrent computation, logic.

George Epstein, Professor; Ph.D., University of California, Los Angeles. Systems design,
multiple-valued logic, computer science education.

Robert Filman, Assistant Professor; Ph.D., Stanford University. Artificial Intelligence,
programming languages, distributed computing, data base systems, logic, and man-
machine interaction.

Daniel Friedman, Associate Professor; Ph.D., University of Texas at Austin. Program
methodology, formal semantics, artificial intelligence, distributed computing, simulation

[=T)

languages, applicative languages, LISP.
Stanley Hagstrom, Professor, Computer Science and Chemistry; Ph.D., Jowa State Uni-

versity. Computer hardware, laboratory automation, computer networking, operating
systems, software engineering, analysis of algorithms in ab initio quantum chemistry.

Smith Higgins, Associate Professor; Ph.D., Notre Dame. Computer science education,
number theory, modern algebra.

Douglas Hofstadter, Associate Professor; Ph.D., University of Oregon. Artificial intel-
ligence, perception of patterns and style, self-monitoring and self-perception, philosophy
of mind.

Stan Kwasny, Assistant Professor; Ph.D., Ohio State University. Natural language
understanding, artificial intelligence, data structures, computational linguistics, data base
systems.

John O'Donnell, Assistant Professor; Ph.D., University of lowa. Computer architecture,
operating systems, VLSI design, programming languages.

Franklin Prosser, Professor; Ph.D., Pennsylvania State University. Digital hardware,
operating systems, computer science education.

Paul Purdom, Associate Professor; Ph.D., California Institute of Technology. Analysis of
algorithms, compilers.

Edward L. Robertson, Associate Professor and Chairman; Ph.D., University of Wisconsin.
Theory of computation, computational complexity, hardware and software systems ar-
chitecture, data bases.

Mitchell Wand, Associate Professor; Ph.D., Massachusetts Institute of Technology. Se-
mantics of programming languages, logic, algebra.

David Wise, Associate Professor; Ph.D., University of Wisconsin. Applicative program-
ming, data structures, multiprocessing architectures and languages.

Ll

§2 Facilities

The following is a list of equipment which is available purely for research use in
the Indiana University Computer Science Department:

VAX 11/780, 500 Mbyte disk, 3.5 Mbyte RAM, running UNIX 4.1bsd
Canon laser beam printer from Imagen Corporation

In addition, the department has other facilities which are shared between research
and instructional uses.

Ungermann/Bass Ethernet terminal servers

HP 3000 model 44

Motorola 68000 systems - several systems are on hand.

The department also maintains and operates a digital electronics laboratory
which includes facilities for constructing and testing hardware designs. The lab supports
arange of prototyping activity from wire wrap construction through fabrication of double
sided plated through hole printed circuit boards.

In addition, the following University facilities are-available to researchers at
Indiana University:

DEC KL10

Prime 750

4 VAX 11/780(VMS)

IBM 4341

CDC Cyber 172, soon to be replaced by CDC 170/855
Calcomp, Versatec and Zeta plotters

§3 Summaries of Research Projects

John A. Barnden
Information Processing using Diagrammatic Imagery

An unconscious-imagery model of human cognition is under investigation in
an artificial intelligence project. In the model, temporary symbolic structures appear
as imaginal diagrams analogous to real drawings of data structures. The diagrams are
states of abstract array-like structures implemented as neural networks. The present
study is attempting to elucidate the expressive and problem-solving convenience of the
unusual (e.g. hybrid pictorial/abstract) symbolisms natural to the model. The project
also involves the computer simulation of the necessary image-manipulation processes.

Concurrent Programming Using Phases

A concurrent programming language, PhasL, is being developed in which the
notions of condition and process are united in a single ‘phase’ concept, and in which
there are no sequential control constructs. A PhasL program defines a self-modifying
tree of phases. The language allows elegant solution of complex concurrent-programming
problems. There are some interesting implementational and formal-semantical problems
for which solutions are being devised. Automatically checkable restrictions of the language
to allow distributed implementation are being studied. The modification of PhasL into a
form suitable for artificial-intelligence applications is receiving attention.

George Epstein
Multiple-Valued Logic

I continued research in multiple-valued logic design. My two basic areas were in
theory and applications. In theory, I studied properties of core points in lattices, with A.
Horn. In applications, I studied symmetric functions with J.C. Muzio and D.M. Miller,
and positive functions with Y. W. Liu.

Robert E. Filman
Meta-Reasoning in Knowledge Representation

A central issue in the creation of an intelligent computer system over a domain
is the representation of the knowledge embedded in that domain in machine-usable
forms. This research suggests that it is possible to construct intelligent systems where
the underlying facts, the legal conclusions derivable from those facts, and the appropriate
control strategy to derive those conclusions can all be expressed in machine-usable form as
instances of meta-theoretic reasoning. We are exploring the expression and resolution of
knowledge representation problems by a combination of procedural attachment, rewriting
systems, and meta-theoretic representations, in the context of a first order logic system.
Issues to be addressed include the representation of heuristics and control, hypothetical
reasoning, non-monotonic systems, knowledge and belief, time, strategies, learning and
game theory.

Robert E. Filman and Daniel P. Friedman
Models and Techniques for Distributed Systems

Currently we are writing a book based on the development of tools and tech-
niques for distributed software. In the text we describe and discuss some 15 languages
and models for interprocess communication. In addition, we discuss heuristics for problem
solving in the distributed processing environment.

Daniel P. Friedman and William Clinger
Continuation Based Parallel Processing

In giving the standard semantics of a programming language, four concepts are
central: syntactic objects (code), environments, continuations, and the store. Closely
connected to these semantic concepts are certain operational concepts corresponding to
typical implementation techniques. Among them is the concept of a closure, which may
be thought of as a code/environment pair. Another is the concept of a process, which
may be thought of as an active closure/continuation pair. Processes may be thought of
as communicating via locations in the store. Our view of computation emphasizes these
connections between semantic and operational concepts.

The programming language Scheme treats closures and continuations as first
class objects. Closures have been fairly well exploited, but the art of programming with
explicit continuations remains relatively undeveloped. Much as closures seem most useful
when combined with side effects (a synergism between the functional and imperative
worlds), continuations turn out to be most useful when combined with concurrency (a
synergism between the sequential and parallel worlds). Side effects are phenomena that
greatly enrich (i.e. complicate) the semantics of closures. Assignment statements are
a means for causing such side effects. Analogously, concurrency is a phenomenon that
greatly enriches the semantics of continuations. We have invented a new Scheme primitive,
par2, for causing concurrency.

We have a straightforward operational semantics for par2, describing its actions
in terms of continuations and processes (threads of computation).

We have used this one primitive function, par2, to implement busy waiting
implementations of amb, parallel or, and their equivalents; non busy waiting amb, parallel
or, and their equivalents; cobegin/coend, fork, kill, kill transitively, vanish, and vanish
transitively; by-need amb, active cells, and exchange functions; and with the addition of
a fair mutual exclusion primitive, actors.

We intend to investigate further the power of these tools. Specifically, we are
exploring the interactions between closures, continuations, and concurrency. We also wish
to develop a denotational semantics corresponding to our operational semantics.

Daniel P. Friedman and Christopher Haynes
An Operational Model of Languages for Coordinated Computing

With the proliferation of inexpensive computing devices, there is a clear need
for programming languages that provide disciplined and efficient facilities to coordinate
their computing. A number of proposals for such languages have been made with widely
varying approaches to the problems of distributed computing, yet little is known of their
interrelationships.

This research will attempt to develop a precise and coherent description of
languages for coordinated computing by providing an operational definition of their
semantics in the programming language Scheme. Besides resolving ambiguities in the
existing natural language descriptions of these languages, such uniform descriptions clarify
the relationships between the proposed languages. Such a clarification would aid in
designing future languages for coordinated computing, as well as in making coherent
choices between existing languages.

Of immediate interest is the problem of process scheduling, which has tradition-
ally been perceived as a function of the underlying operating system. We have imple-
mented an operational description of the hybrid language Cell. This language embodies a
complex scheduling mechanism and a rather unorthodox control structure. This prelimi-
nary research indicates that such complexities may be concisely specified in the Scheme
language, and suggests that scheduling may be brought into the domain of programming
languages in a unified and transparent manner,

Daniel P. Friedman and David S. Wise
Applicative Programming for Systems

This project extends an applicative approach to programming parallel computers
for system-level problems which require synchronization. This applicative style requires
that all programs be stated as expressions in a calculus, where arguments are input and
values are output; sequence of execution or evaluation is irrelevant. Synchronization of a
process with an external event— perhaps the output of another processor—is accomplished
through the multiset data structure, which encapsulates all the interprocessor contention
within a shared data object. We have developed the semantics of multisets and lists at
the formal level, but several issues stand between this approach to difficult system-level
problems (e.g. airline reservation system) and its direct implementation on arbitrary
numbers of communicating processors.

The most important one is fairness. An originally unordered multiset takes on
an order as it is probed, but it may also be augmented; fairness requires that convergent
values, whether original or augmenting, may not be deferred arbitrarily in that order.
Another problem is controlling the propagation of the strict functions which we have
introduced in order to restrict convergence of structured values within a multiset. the
selection of a storage-management scheme for a heap shared by many processors remains
open; generalizations to reference counting or restrictions to garbage collection are needed
to constrain memory conflicts. Several other problems, including the role of functions as
values, and the strategies for firmware implementation of multisets, will be considered.

Douglas R. Hofstadter
Creative Perception

With my graduate students I have been working on one central, general, abstract
problem, and on three particular examples of it, each one in a different domain. The
general problem might be called “creative perception”, or “perception with abstraction
built into it”. These phrases emphasize the well-known fact that perception is not
direct, but requires considerable interpretation, or addition of information. We feel that
perception in a general sense is the central and only problem of artificial intelligence. This
requires construing perception in the broad way we are stressing.

Our three projects are:

(1) Seek-Whence, operating in the domain of sequences — infinite se-
quences of integers grouped into patterns. In this project, our aim is to
imitate the cognitive processes carried out by a human who watches a
pattern appear slowly (as successive terms of the sequence are revealed):
forming guesses, seeing them supported or undermined, reforming those
guesses or making new cnes, and eventually coming to a firm conclusion
— thus, “secking whence” the sequence comes. In effect, we are study-
ing the scientific process as it occurs in a miniworld. We are not nearly
as concerned with simply reproducing the ability to get the right answer
after seeing many terms as with making a program capable of being
in all the typically human intermediate states of guessing, confusion,
hope, disappointment, and so forth, as arise after seeing only a handful
of terms. We are also concerned with one other aspect of doing science
that we see as absolutely crucial: the ability to manufacture what we
call “variations on a theme”.

(2) Letter Spirit, whose concern is the understanding and modeling
of the method by which people can see sample letterforms and “get
the hang of the style”, so that they can go on and complete an entire
alphabet in “the same style”. The crucial thing is to abstract out some
“essence of style” that can be transported and implanted in any letter.

(3) Jumbo, a program that takes a group of letters and shuffles them
about in an attempt to form “English-like” structures, in imitation of
someone playing the newspaper game called “Jumble”. The central idea
is to allow exploration of the space of possibilities without having to
manufacture each candidate from scratch, but rather one simply knows
how parts can regroup and reorganize to form coherent wholes. Thus,
one perceptual whole can jump directly into another perceptual whole
without being totally taken apart.

In all three of these projects, we have been guided by two main metaphors: (1)
that of the biological cell in which numerous enzymes are manufactured on demand when
certain kinds of processing are needed, and (2) that of courting, marriage, and divorce,
according to which structures on all levels have natural “affinities” for one another, and
they seek to bond together into larger units, which may further bond into larger units,
or which may, when unstable, get dismantled. We are also working on making our
operating-system-like architecture capable of “self-watching” and altering its own course
according to the results of that self-watching, a process that we call “self-guidance”.

Stan C. Kwasny
Interpreting Errorful Inputs in Natural Language Understanding Systems

We are investigating how techniques designed for interpreting syntactically ill-
formed inputs in a Natural Language Understanding System can be applied to other
stages of language. Specifically addressed will be the question of whether these or other
techniques can operate at the semantic and pragmatic levels to achieve a more robust
understanding at those levels. When this is achieved, the overall robustness of the
language processing component of such a system will be enhanced.

In this study, a Cascaded Augmented Transition Network (CATN) model of
grammar is utilized. This permits interaction between several Augmented Transition
Network (ATN) grammars written for various stages of language processing. It is our
theory that malformations realized at the surface or syntactic level may also occur at
other levels as well. Furthermore, the nature of these deeper malformations is identical
in many ways to the nature of malformations that have been successfully treated at the
syntactic level. This theory will be tested during the course of this work.

John O'Donnell
List Processing Architecture Research

A computer architecture consisting of a binary tree of combinational logic, with
data paths connecting adjacent leaves, is being applied to list processing languages (LISP
and SCHEME). This architecture supports a data structure which combines the opera-
tions performed on lists and arrays, and efficiently implements variable binding access and
storage management in LISP. The research studies the requirements of efficient language
implementation, the capabilities and limitations of the base architecture, and will develop
hardware design techniques to support physical fabrication of the architecture. Physical
fabrication of several versions of the architecture will test the design techniques, permit
a detailed evaluation of the architecture, and may lead to useful high level language
machines.

Franklin Prosser
Structured Hardware Design

The theme of my major research interests is to make hardware design processes
more systematic, structured, and orderly. This theme has led me down two major
avenues: teaching of structured digital hardware design, and the development of design
aids to support structured design. In both of these areas I have worked with Professor
David Winkel of the University of Wyoming. Our interest in teaching digital design
led us to develop hardware instructional laboratories at Indiana University and at the
University of Wyoming, and we wrote a current textbook (Winkel and Prosser, The Art
of Digital Design, Prentice-Hall, Inc.). The labs and the book contribute to my goal
of teaching students to deal with complexity in orderly and systematic says; in the lab
each student builds a fully functional minicomputer from MSI-level components, using
structured design and debugging techniques.

In our research in structured design, we are developing a Logic Engine—a
system for microprogrammed control of hardware architectures. The system has (a)
a powerful base unit for clocks, display, and power, (b) a large printed circuit board
containing the Logic Engine controller, a microcomputer system for the user interface,
and copious space for the user’s hardware design, and (c) a software support system to
assist the user in developing and testing microcode and debugging the overall design.

Using the Logic Engine as the control element, we are developing a FORTH
machine for high-speed execution of programs written in the FORTH language.

Also, using a simplified version of the Logic Engine, | am revising my hardware
instructional laboratory, so that students may produce their minicomputer designs using
either hardwired or microprogrammed control elements.

Socn I hope to develop a VLSI version of the Logic Engine control circuits, since
the main portion of the Engine should fit nicely into a VLSI design.

On a more abstract level, I have been working to develop structured design
methods and incorporate them into routine hardware design. Among the techniques that
we have found most useful are mixed logic for circuit descriptions and the ASM description
of control algorithms. These techniques form the backbone of our textbock. Recently, I
have made some progress in incorporating these and similar techniques into VLSI design.

Paul W. Purdom, Jr. and Cynthia A. Brown
Average Time Complexity of NP-Complete Problems

The worst case complexity of the best known algorithms for solving NP-complete
problems is exponential. We are studying the average time complexity of satisfiability
using various search algorithms on models of random conjunctive normal form predicates.
A class of predicates over v variables is characterized by p(v) , the probability a given
literal is in a random clause, and #(v) , the number of random independently selected
clauses in a predicate. We are characterizing the functions p(v) and ¢(v) for which some
algorithm takes polynomizal average time in the limit as v becomes large. We have found
algorithms that take polynomial average time when p(v) or {(v) grow extremely slowly
and when t(v) grows quickly compared to p(v) .

Game Playing

Traditional game playing programs are based on combining limited depth search,
heuristic evaluation functions, and minimax propagation of values. Nau has shown that
for some games this approach leads to a paradox; deeper searching leads to more random
play (which is worse play if one has a reasonable heuristic evaluation function).

We are developing new approaches to game playing that avoid the paradox. So
far we have developed a theory for how to best use heuristic search to make the best first
move (assuming a perfect player will take over and make the rest of the moves for you).
We are currently investigating how to make the best move when the program, with all of
its imperfections must play the entire game.

Compiler Design

The use of attribute grammars to specify compilers is being studied.

Edward L. Robertson
Studies Related to NP-Complete Problems: Structure Approximation and Backtracking

Important practical problems in the class of “NP-complete problems”, from such
diverse areas as industrial management and computer network reliability, are all difficult
to solve, in the sense that all known general methods for solution are not much better
than trying all possible cases. Moreover, these problems are all related, so that an efficient
solution method for any one problem would provide efficient solutions for all of them.
This research intends to 1) discover properties characterizing NP-complete problems, 2)
study when it is possible to find approximate solutions to NP-complete problems given
that finding exact solutions is too costly, and 3) develop methods to ignore hopeless cases
if a case-by-case search for solutions is indeed necessary.

Mitchell Wand and Daniel P. Friedman
Algebraic and Logical Semantics of Computation

Our research in the semantics of computation has focused on the use of con-
tinuations and their representations in a variety of contexts. We are extending this in-
vestigation to study implementations and representations of denotational semantics. In
particular, we are studying compiler correctness with respect to Scott-Strachey semantics.
We provide alternatives to the use of so-called congruence relations for this task. We have
developed techniques for deriving target code as a representation of continuation seman-
tics for a sizable class of languages. These techniques have implications for the design of
language-oriented machines in microcode or VL SI; we hope to explore these implications
as well.

David S. Wise and Daniel P. Friedman
Applicative Programming for Indeterminate Systems

Indeterminate systems are operating systems, data base systems, distributed
systems, and multiprocesser systems that require real-time response to many independent
conditions that occur with a relative synchronization not known at the time the system is
built. Applicative or functional programming is a style of expressing computer algorithms
as mathematical function definitions, which are specifically devoid of time- and side-
effects.

Extending applicative programming to deal with the essential properties of
timing in systems is important because it is already so promising for efficient use of these
same systems for time-independent tasks. Traditional programming styles do not make
good use of parallelism available in new architectures because they have been modelled
after single processor computers. They have, however, been extended to deal with
synchronization issues. Applicative languages, which can well use parallelism unknown
to the programmer, have not been extended to deal with all of the problems in working
with such systems.

We propose to develop the DAISY programming language and DSI system to a
production environment that can cope with issues of indeterminism among input condi-
tions, breadth-first evaluation of condition trees, failures of output devices, and embedded
systems, and to refine system preformance with respect to program maintenance and
automatic introduction of sequentality to reduce time and space needs.

10 -

§1 Publications

A‘

Publications Appearing May, 1981-May, 1982.

Brown, C.A. and Purdom, P.W., Jr. “Average Time Analysis of Backtracking,”
SIAM J. on Computing (1981) pp. 583-593.

Brown, C.A. and Purdom, P.W., Jr. “How to Search Efficiently,” Seventh Interna-
tional Joint Conference on Artificial Intelligence, Vancouver, British Columbia (1981)
pp- 588-594.

Brown, C.A. and Purdom, P.W.,, Jr. “Average Time for Satisfiability Algorithms,”
Nineteenth Annual Allerfon Conference on Communication, Control and Computing,
Monticello, Ill. (1981) p. 644.

Brown, C.A. and Purdom, P.W., Jr. “An Empirical Comparison of Backtracking
Algorithms,” IEEE Trans. on Pattern Recog. and Mach. Intell. 4 (1982) pp. 309-
316.

Burns, J. “Symmetry in Systems of Asynchronous Processes,” Proc. 22nd Symp. on
Foundations of Computer Science, Oct. 1981.

Burns, J. “Data Requirements for Implementation of N-process Mutual Exclusion
using a Single Shared Variable,” Journal of the ACM 29, 1, Jan. 1982 (with P.
Jackson, N.A. Lynch, M.J. Fischer and G.L. Peterson)

Clinger, W. “Foundations of Actor Semantics” (Ph.D. Thesis), MIT Artificial Intel-
ligence Technical Report 633, May 1981.

Epstein, G. “Positive Multiple-valued Switching Functions—An Extension of Dede-
kind’s Problem,” Proc. of 12th Int'l. Symp. on Multiple-valued Logic (with Y.W.
Liu).

Epstein, G. “A summary of ‘Core Points in Double Heyting Algebras and Dissectable
Lattices’,” Polish Acad. of Sci., Bull. of Section of Logic, 10, 4 (1981), pp. 181-184,
(with A. Horn).

Filman, R.E. and Friedman, D.P. “Models, Languages, and Heuristics for Distributed
Computing,” National Computer Conference 1952, AFIPS Press.

Hofstadter, D.P. “Heisenberg’s Uncertainty Principle and the Many-Worlds Inter-
pretation of Quantum Mechanics,” Scientific American, July, 1981.

Hofstadter, D.P. “Analogies and Roles in Human and Machine Thinking,” Scientific
American, September, 1981.

Hofstadter, D.P. “Nonlinear Iteration and Strange Attractors,” Scienfific American,
November, 1981.

Hofstadter, D.P. “Self-Referential Sentences Revisited,” Scientific American, January,
1982.

"

Hofstadter, D.P. “The Skeptical Inquirer versus the National Enquirer,” Scientific
American, February, 1982.

Hofstadter, D.P. “Is the Genetic Code Arbitrary?” Scientific American, March,
1982.

_ 11 -

Hofstadter, D.P. “Pattern, Poetry, and Power in the Music of Frederic Chopin,”
Scientific American, April, 1982,

Hofstadter, D.P. “On Number Numbness,” Scientific American, May, 1982.

O'Donnell, J. “A Systolic Associative LISP Computer Architecture with Incremental
Parallel Storage Management,” TR81-5, Computer Science Dept., University of Iowa
(1981).

Purdom, P.W. and Brown, C.A. “Average Time Analysis of Simplified Davis-Putnam
Procedures,” Information Processing Letters 15(1982) pp. 72-75 {with Allen Goldberg).

Robertson, E.L. “Continual Pattern Replication,” Information and Control 48, 3,
March, 1981, pp. 211-220 (with J. lan Munro).

Robertson, E.L. “On the Structure of Sets in NP and other Complexity Classes,” The-
oretical Computer Science 15 (1981) pp. 181-200 (with L.H. Landweber and R.J.
Lipton}.

Wand, M. “Semantics-Directed Machine Architecture,” Conf. Rec. 9th ACM Symp.
on Principles of Prog. Lang. (1982), pp. 234-241.

Wand, M. “Specifications, Models, and Implementations of Data Abstractions,” The-
oretical Computer Science 20 (1982), pp. 3-32.

Wise, D.S. “Interpreters for Functional Programming,” In J. Darlington, P. Henderson,
and D.A. Turner (ed), Funectional Programming and its Applications, Cambridge
Univ. Press (1982), pp. 253-280.

Articles to Appear

Clinger, W. “Nondeterministic Call by Need is neither Lazy nor by Name,” to
appear in the Proceedings of the 1982 ACM Conference on LISP and Functional
Programming, August, 1982,

Clinger, W., Friedman, D.P. and Wand, M. “A Scheme for a Higher-Level Semantic
Algebra,” Proc. US-French Seminar on the Application of Algebra to Language
Definition and Compilation, (Fontainebleau, France, June, 1982) (J. Reynolds and
M. Nivat, eds.) to be published.

Epstein, G. “Core Points in Double Heyting Algebras,” to appear, Algebra Universalis.

]

Epstein, G. “The Underlying Ground for Hypothetical Propositions,’
Scientia.

Filman, R.E. and Friedman, D.P. Coordinated Computing: Tools & Techniques for
Distributed Software, to be published by McGraw Hill (1983).

Hofstadter, D.R. “Who Shoves Whom Around Inside the Careenium?” to appear,
Synthese.

to appear,

Hofstadter, D.R. “Subcognition and Computation: A Reply to Allen Newell,” to
appear, Knowledge, edited by Fritz Machlup.

Keutzer, K.W. and Robertson, E.L.. “The M-Shuffle as an Interconnection Network
for SMD Machines,” Twentieth Annual Allerton Conference on Communication,
Control and Computing, Monticello, Iil. (1982).

e GO

Kwasny, S. “Ill-Formed and Non-Standard Language Problems,” position paper,
20th Annual Meeting of the Assoctation for Computational Linguistics, 16-18 June,
1982, Toronto, Canada.

Purdom, P.W., Jr. and Brown, C.A. “An Analysis of Backtracking with Search
Rearrangement,” to appear, Siam J. Comp.

Purdom, P.W., Jr. and Brown, C.A. “Evaluating Search Methods Analytically,” Na-
tional Conf. on Artificial Intelligence (1982), pp. 124-127.

Purdom, P.W. and Brown, C.A. “Searching in Polynomial Average Time,” Twentieth
Annual Allerton Conference on Communication, Control and Computing, Monticello,
L. (1982).

Robertson, E.L.. “On the Complexity of Partitioning Sparse Matrix Representations,”
to appear, BIT (with J.P. Malmquist).

Wand, M. “Deriving Target Code as a Representation of Continuation Semantics,”
ACM Trans. on Prog. Lang. and Systems 4, 3 (July, 1982), pp. 496-517.

Wand, M. “Loops in Combinator-Based Compilers,” to appear, Conf. Rec. 10th
ACM Symp. on Principles of Prog. Lang. (1983).

Wand, M. “What is Lisp?” to appear, American Mathematical Monthly.

Wise, D.S. “Functional Programming,” in A. Ralston (ed.) Encyclopedia of Computer
Science (1982 revision).

Books in Print

Epstein, G. Modern Uses of Multiple-valued Logic, Reidel, 1977 (Co-editor with J.M.
Dunn).

Friedman, D.P. The Little LISPer, Science Research Associates, Palo Alto, 1974.

Hofstadter, D.R. Gédel, Escher, Bach: an Eternal Golden Braid, Basic Books, New
York, 1979.

Hofstadter, D.R. and Dennett, D. (eds.) The Mind's I, Basic Books, New York, 1981.

Wand, M. Induction, Recursion, and Programming, Elsevier North Holland, New
York, 1980.

Winkel, D. and Prosser, F. The Art of Digital Design: An Introduction to Top-Down
Design, Prentice-Hall, Englewood Cliffs, N. J., 1980.

Other Technical Reports

TR 114 — Steven D. Johnson. “Connection Networks for Output Driven List
Multiprocessing,” (October, 1981).

TR 116 — Steven D. Johnson. “Circuits and Systems Implementing Communication
with Streams,” (October, 1981).

TR 117 — Paul W. Purdom, Jr. “Solving Satisfiability Problems with Less Searching,”
(October, 1981).

TR 118 -— Paul W. Purdom, Jr. and Cynthia A. Brown. “Polynomial Average-Time
Satisfiability Problems,” (December, 1981).

- 18 —

TR 119 — A. T. Kohlstaedt. “Daisy 1.0 Reference Manual,” (November, 1981).

TR 120 — S.D. Johnson and A.T. Kohlstaedt. “DSI Program Description,” (November,
1981).

TR 121 — Lee Becker. “Phonological Analysis by Computer: Prospects &Direction,”
(December, 1981).

TR 122 — Mitchell Wand. “Research in the Computer Science Department at [.U.
1980-81,” (December, 1981).

TR 123 — Paul W. Purdom, Jr. “Search Rearrangement, Backtracking, and
Polynomial Average Time,” (March, 1982).

TR 126 — Frank Prosser and Patricia J. Brajnikoff. “Guide to the Printed Circuit
Board Fabrication Facility,” (1982).

TR 127 — George Epstein. “Switching Theory, Multiple-Valued Logic, and Logic
Design,” (1982).

TR 128 — Paul W. Purdom, Jr. and Cynthia A. Brown. “The Pure Literal Rule
and Polynomial Average-Time,” (June, 1982).

TR 129 — L. Edblom and D.P. Friedman. “Issues in Applicative Real-Time Pro-
gramming,” (August, 1982).

= B

§5 Colloquium Speakers in Computer Science 1981-82

Giuseppe Longo

University of Pisa/MIT

Semantics of Lambda-Calculus: An Introductory Account
September 9, 1981

Steve Johnson

Ph.D. Candidate, Indiana University

The 1981 Summer School at Marktoberdorf
September 15, 1981

Cynthia Brown

Indiana University

Average Time for Satisfiability Algorithms
September 22, 1981

John Barnden

Indiana University

The Hyper—Visual Representation of Symbolic Information in Cognition
QOctober 1, 1981

David Wise

Indiana University

Compact Layouts of Banyan/FFT Networks
October 6, 1981

B. Chandrasekaran

Ohio State University

MDX and Related Medical Decision-Making Systems
October 13, 1981

James E. Burns

Indiana University

Symmetry in Asynchronous Systems
October 20, 1981

G. Berry

Ecole National Superieure des Mines de Paris

Programming with Concrete Data Structures and Sequential Algorithms
October 26, 1981

Guy Steele

Carnegie-Mellon University

The Common Lisp Design Effort
October 27, 1981

Ravi Sethi

Bell L aboratories

Semantics Directed Compiler Generation
November 3, 1981

David B. Pisoni

Indiana University

Voice Technology: Some Results of Research on the Perception of Synthetic
Speech Produced by Rule with a Text-to-Speech System

November 17, 1981

— 15 .—

Daniel Dennett

Tufts University

The Prospect of a Marriage between Cognitive Ethology and Al
December 4, 1981

Dennis Gannon

Purdue University

Data Driven Scheduling for Parallel Computation: Some Experiments and
Structures from Numerical Algorithms

December 8, 1981

Jeff Line

Hewlett Packard Corp.
The HP 3000 Machines
January 26, 1982

Joe Stoy

MIT

The Correctness of Programming L.anguages Implementations
February 11, 1982

Janice Cuny

Purdue University

Conversion from Data Flow to Synchronous Execution in Loop Programs
February 26, 1982

Jieh Hsiang

University of Illinois

Mechanical Theorem Proving using Term Rewriting Systems
March 4, 1982

Larry Wittie

SUNY Buffalo

Portable Operating Systems for Network Computers
March 17, 1982

Mark Kahrs

University of Rochester

VLSI Compilation for Very High Level Languages
March 18, 1982

Diane Fischer

SUNY Buffalo

Some Results in Applied Statistics
March 29, 1982

Stuart Goldkind

University of Rochester
Introduction to Chess Programming
March 30, 1982

Michael G. Dyer

Yale University

BORIS: An Experiment in In-Depth Understanding Narratives
April 1, 1982

-~ 16 —

Margot Flowers

Yale University

Reasoning and Memory: A Computer Model of Human Reasoning
April 2, 1982

Eitan Gurari

SUNY Buffalo

Decidable Problems for Programs
April 19, 1982

Carl Smith

Purdue University

A Recursive Talk on Recursion
April 20, 1982

17 -

