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ABSTRACT

It is proposed that human cognition consists of the manipulation of data struc-
tures which are ‘‘diagrammatic images’. Images are not assumed to be the
objects of conscious experience. They are patterns in media which are abstractly
in the form of two-dimensional arrays. These patterns can be pictorial, proposi-
tional or of a hybrid nature, and lie on a continuum analogous to that of ordi-
nary diagrams. The patterns are interpreted and manipulated by a production
system. By virtue of a gross characterization of the physiological implementation
of the image-holding media, the model provides in outline a simultaneous answer
to three important questions: (1) how are the brain’s data structures imple-
mented? (2) where do the lower-level data structures (feature maps) which arise
in vision fit in the whole range of data structures in the brain? and (3) how can
both pictorial imagery and propositional computation be elegantly included in a
cognitive mode]?
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SECTION 1: INTRODUCTION

“The brain computes by manipuleiing diagremmatic images.’’ This is the core of
an imagery-based cognitive model described in this report. There has been much
debate® about whether human cognition makes use of ‘‘pictorial images’, under various
interpretations of that term. Let us take pictorial images to be patterns, in some
“graphic medium’ in the brain, which resemble the world in much the way ordinary pic-
tures do. The cognitive model postulates that the brain makes use not just of pictorial
patterns in such media, but also of patterns from a much wider class. This class of pat-
terns is analogous to the full range of ordinary diagrams (patterns of marks on external
graphic media). At one extreme, a pattern can be pictorial. At another extreme, a pat-
tern can be purely ‘‘propositional’ — that is, serve the purposes that network struc-
tures, logical formulae and other abstract data structures serve in cognitive theories. In
particular, the propositional patterns in the brain are typically similar, in a gress way,
to semantic network diagrams to be found in the literature (see e.g. Findler (1979)).

The purpose of this paper is to present in clearer and fuller form the claims just
sketched. Detailed discussion and comparison with other work is, for the sake of brevity,
postponed to later papers. The model is very briefly outlined in Barnden (1982). Two
points should be clearly understood at the outset. First, the issue of conscious imagery 1s
not addressed by the model — the images conjectured to exist are data structures which
are not assumed to correspond to or generate conscious experiences. Second, what will be
proposed is really a model schema rather than a model — many parameters will have to
be specified for a model to appear which is testable by psychological experiment or com-
puter simulation. For convenience, however, we shall continue to use the term “model”.

The model provides a rough but unified answer to three important open questions
about the nature of human cognition:-

(Q1) How is the brain’s data structure manipulation implemented in terms of physiologi-
cal mechanisms?

(Q2) How does the manipulation of data structures derived from perceptual input fit in
with the brain’s data structure manipulation generally?

(Q3) What is the relationship between the brain's spatial information about physical
domains and its non-spatial information (about physical or non-physical domains)?

Underlying each of these questions there is a certain strong assumption. The assumption
for the first question is the following.

* See, for example: Anderson (1978, 1979), Baylor (1971), Block (1981), Bower (1972), Chase
and Clark (1972), Cooper and Shepard (1973), Fodor (1975, pp.174ff), Hayes (1973), Hayes-Roth
(1979), Hebb (1977), Hinton (1979), Kieras (1978), Kolers and Smythe (1979), Kosslyn (1981),
Kosslyn and Schwartz (1977), Kosslyn et al. (1979), Neisser (1976), Paivio (1971, 1977, 1980), Pal-
mer (1975, 1978), Peterson, Peterson and Ward-Hull (1977), Peterson, Thomas and Johnson
(1977), Posner (1973), Pylyshyn (1973, 1978a, 1978b, 1979, 1981), Richardson (1969), Schwartz
(1972), Simon (1972, 1978), Sloman (1971, 1975).
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The Data-Structure Hypothesis

The brain’s short-term cognition (natural-language understanding, perception,
problem solving, general thought processes) can be explained largely as the manipu-
lation of data structures in approximately as straightforward a sense as the sense in
which the operations of a digital computer (running a program) can be explained as
the manipulation of data structures.

This hypothesis is our version of the prevalent “symbol-manipulation™ view of cog-
nition, espoused by many researchers in cognitive science (notably Newell (1973) and
Newell and Simon (1972)). We shall not argue for its validity here (even though it is not
universally believed, and Dennett (1978) has argued that there is no cogent reason for
accepting it). We content ourselves with taking Fodor’s stance (Fodor (1975, p.27),
Fodor (1981, p.29) that it is the most fruitful working hypothesis which is currently
available. The word ‘largely” in the hypothesis allows some cognitive activity, such as
low-level components of perceptual and motor activity, to escape the necessity to be
straightforwardly explained in terms of data structure manipulation. Note that the
hypothesis does not say that the data structures in the brain bear any resemblance to
those in a computer. Nor does it say that the sense in which the brain manipulates data
structures resembles the sense in which computers do.

The assumption underlying the second question is the following, and concerns a
special form of data structure in the brain.

The Feature Map Hypothesis for Vision

Low-level preprocessing converts retinal stimulation into a ‘‘feature map” physio-
logically implemented in the brain. A feature map is a temporary association of
values with the elements of a finite 2D array. Each element corresponds to a small
region on the retina; neighborhood in the array corresponds to neighborhood of
regions; and the values associated with an element constitute information about
the presence of certain features (such as small line segments, intensity changes,
color, etc.) of the retinal stimulation in the corresponding region.

(Thus the array is a medium analogous to an external graphic medium, and a
feature map is a pattern in that medium. Feature maps are special cases of the
images postulated by the model.)

Feature maps are similar to the lower-level representations commonly used in
artificial-intelligence vision systems (Hanson and Riseman (1978)) and to Marr’s raw pri-
mal sketches (Marr (1976)). It is sufficient for the purposes of this paper to adopt the
simplifying pretence that we are monocular and that our feature maps are rectangular
arrays (in an abstract sense, not necessarily a physical one).

It seems probable that some sort of feature map mechanism is physiologically
implemented in the brain, because of the nature of the ‘‘columns” in primary visual cor-
tex (Hubel and Wiesel (1979)). It is important to note, however, that the feature map
supported by these columns need not be the only one in the brain, and that the idea
that the main function of the columns is to support a feature map has been challenged
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(e.g. Pribram (1971, Ch. 8)). Non-visual perception will not be covered in this paper,
although the author is studying an expansion of the ideas of the paper to incorporate it
(see the brief comments in Section 8 ).

We may regard a feature map as being in some sense a picture of part of the physi-
cal world. We say this because the feature map is similar in structure to a system of
adjacent regions in a certain (retinal) projection of the real world, and the information at
each feature map element is of a low-level type. In a moment we shall move on to say
that, not only is the brain capable of interpreting feature maps, but is also capable of
internally generating patterns like feature maps, and of manipulating them for
problem-solving and other cognitive purposes. These patterns, by virtue of their similar-
ity to feature maps, are deemed to be ‘‘pictorial” and are analogous to pictorial draw-
ings. We bring in this analogy to pictures to provide a transition to the next assumption,
which was inspired by consideration of pictorial and other sorts of drawing.

Suppose onehas a (perhaps very schematic) pictorial drawing of some furniture in a
room seen from above, and that one is using this picture to plan the layout of the room.
Then, given any position P on the drawing it is easy to determine whether there is part
of a piece of furniture at the room place corresponding to P. Similarly, given a position
P on the drawing it is easy to find other positions which correspond to places in the
room neighboring the room place associated with P. It is these properties of the drawing
which allow one to plan the positions efficiently, of the furniture so that no two pieces of
furniture occupy the same space, pieces of furniture are not too close together, certain
types of furniture are close to the walls, and so on. In a very similar way, a bird’s-eye
drawing of a billiard table allows efficient solution of problems concerning the approxi-
mate movement of balls on the table. To switch to a more abstract example, consider a
geographical map. If one has a finger on a particular place P on the map then one
immediately has access to information about the world at the position corresponding to
P. If a line on the map corresponds to the equator, then one can easily determine which
countries the equator passes through by following that line and looking at meighboring
map regions.

Consideration of the forms of problem solving greatly facilitated for us by the pic-
tures in these examples (and other obvious ones) suggests that an important characteris-
tic of the drawings is that they are “spatially indexed:-

Informal Definition. A spatially indezed data structure is a data structure with
the following properties. There is a set of items, called ‘‘spatial elements’, which
correspond to some regions in space (or in some projection of space). These regions
cover a volume or area of space, and none of the regions contains any of the others.
Associated with each spatial element e there is some information I(e) concerning the
spatial region corresponding to the element. There is an efficiently implemented
primitive operation which, given access to one of the spatial elements, gives access
to I(e). There is another efficiently implemented primitive operation which, given
access to one of the spatial elements, gives access to those spatial elements (if any)
which correspond to regions neighboring the region corresponding to the given ele-

*
ment.

* Spatial indexing bears much of the import of the term “analogical” when used in relation
to data structures describing physical situations, but that term is notorious for being used in
confusingly different ways in the cognitive science literature.
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This definition serves to make our furniture plans, billiard-table diagrams and geographi-
cal maps special examples of spatially indexed data structures (the ‘‘implementation”
being ourselves): we take the spatial elements to be points (or rather very small regions)
on the drawing or map, and the two operations are the operation of seeing what is on
the paper at such a point e (I(e) being the marks on the paper at e) and the operation
of turning attention to points neighboring a given point. Note that neighborhood of
regions is represented as neighborhood of diagram points. Equally, we might have a fur-
niture plan or map implemented on a computer, by having a conventionally-
implemented 2D array whose elements take over the role of points on a piece of paper.
The addresses of the array elements can be taken to be the spatial elements. We then
have the efficient operations of retrieving the contents of the addressed memory location
(or series of locations), and of finding “‘spatially neighboring™ addresses. Alternatively,
and more abstractly, the spatial elements could be pairs of array subscripts. The efficient
operations would be the operations of retrieving the value associated with a subscript
pair, and of computing the subscript pairs “neighboring’ a given subscript pair.

The space containing the regions associated with the spatial elements in a spatially
indexed data structure need not be essentially two-dimensional, as it is in the furniture
and map examples. More importantly, the information I(e) need not be of the pictorial,
low-level sort found in a pictorial drawing. Bobrow (1975, p.5) has suggested the use of
a data structure which consists of an array A isomorphic to an array of points in space,
where each element e of A is associated with an arbitrarily complicated and abstract
item of information I(e) (represented perhaps as a list structure) concerning the world
region around e’s corresponding spatial point. (Hayes (1974) and Minsky (1975) have
made somewhat similar suggestions.) With suitable implementation, e.g. by giving A a
conventional array implementation on a computer, the data structure would qualify as
being spatially indexed.

There is no implication that a spatially indexed data structure should explicitly
involve array-like entities or graphic media, or even that the set of ‘‘spatial elements”
should correspond to regularly spaced regions of space. For instance, a set of logical for-
mulae specifying the locations of some objects (by means of predications such as
“at(blockl, 3,5,7)", say) would be spatially indexed if implemented in some way such
that the two required operations are efficient. The spatial elements are those coordinate
tuples which appear in some formula, but these explicitly represented positions might be
sparsely and irregularly scattered.

It certainly appears that for some types of problem solving the use of spatially
indexed data structures (and in particular, pictorial ones) is especially convenient. The
use of blatantly pictorial spatially indexed data structures has been studied a little in
the artificial-intelligence literature (e.g. Funt (1977)) and in the cognitive-science litera-
ture (e.g. Kosslyn and Schwartz (1977), Kosslyn (1981)). However, the pictorial quality of
the data structures in these studies is only part of the reason that they are convenient
for certain types of manipulation. It is the spatially indexed quality of the implementa-
tion of the data structures which accounts for much of that convenience.

[t is now claimed, without further argument, that the convenience of spatially
indexed data structures for some types of cognition is sufficient to justify adopting the
following assumption.
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The Spatial Indexing Hypothesis

a) Some of the data structures the brain constructs and manipulates for problem
solving and other cognitive purposes are spatially sndezed data structures holding
information about physical situations. Some of the spatially indexed data structures
the brain uses are ‘‘pictorial’’, in that the information associated with the spatial
elements of the structure is at a low level (like the feature information at feature

map elements).

b) The physiological implementation of the array medium in which feature maps
appear is such that the medium together with a feature map in it constitutes a spa-
tially indexed data structure.

The assumption that the feature maps are in fact spatially indexed data structures is
quite natural, and certainly the feature map proposals with which the author is familiar
appear to assume spatial indexing in any reasonable implementation of the feature maps.

The third of our questions should be interpreted in the context of the spatial index-
ing hypothesis. The question becomes partly one of the way in which the brain’s spa-
tially indexed data structures fit in with other data structures that the brain may use.
However, it is important to realize that it is not being claimed that the use of spatially
indexed data structures exhausts the brain’s methods for dealing with spatial informa-
tion. The possibility of data structures which contain spatial information but are not
spatially indexed is not excluded.

A fourth important assumption we make is that some of the data structures the
brain manipulates are ‘“propositional’ in nature — that is, roughly, they are structures of
P P _ g
predicative form where the predicates are at arbitrary levels of abstractness or concrete-
ness.

The attention of the model schema is focussed on rapid, short-term cognitive pro-
cessing, such as is involved in the interpretation of visual input, understanding of
natural-language text, problem solving, etc. The paper has little to say about the nature
and acquisition of long-term knowledge, and omits detailed consideration of such matters
as the low-level transduction of perceptual input and the production of motor and other
output. Another restriction of the scope of the discussion is that it concerns only normal,
adult, human cognition.

Section 2 discusses a familiar continuum of graphic notations. Section 3 outlines the
thinking that led to the formulation of a diagrammatic cognitive model, and defines the
abstract notion of diagram which we use later in our cognitive model. Section 4 explains
how a computational system could operate by the manipulation of net-like propositional
diagrams. Section 5 outlines the extensions necessary to cope with diagrams with pic-
torial as well as propositional aspects. Section 6 states more precisely what is being
claimed about human cognition. Section 7 discusses some justifications for studying the
model schema and mentions some putative objections to it. Section 8 is the conclusion.
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SECTION 2: THE DIAGRAMMATIC CONTINUUM

As presaged by the first sentence of the introduction, the cognitive model to be
presented is intimately bound up with the notion of a diagram. We can conveniently use
the term ‘“diagram” to encompass all the forms of 2D graphic notation with which we
are familiar in our everyday lives. Graphic notation includes, at one extreme, faithfully
pictorial diagrams and, at another extreme, ‘‘propositional’’ diagrams. Two examples of
“‘propositional” diagrams are a body of natural-language text and a network diagram
such as might be found in a paper about semantic networks (see e.g. Findler (1979)).

We shall henceforth use the term ‘“spatial (part of a) diagram” to mean (a part of)
a diagram in which there is some natural correspondence between positions in the
diagram and positions in space. As we noted in the furniture-plan and other examples,
spatial diagrams are automatically spatially indexed, by virtue of the way we manipulate
them.

Propositional diagrams are an extreme form of non-spatial diagram. Note that pro-
positional diagrams can nevertheless deal with spatial matters. A pictorial diagram Is an
extreme case of a spatial diagram. We shall not attempt to define precisely what it

means for a diagram to be pictorial.” A pictorial diagram can be a picture in some com-
monplace sense of some part of a physical world. It can depart dramatically from being
photographically precise — it can be approximate, schematic, stylized and oversimplified.
Thus a stick figure of a person can be classed as pictorial. An equator line on a map con-
tributes to the map failing to be pictorial in any strong sense, because the line does not
picture any irregularity in the world itself. The line does nonetheless correspond to a set
of world points which are of special interest. We can therefore describe an equator line as
being a pictorial feature of a map in some weak sense.

A non-pictorial spatial diagram is one where the pattern in a diagram region
corresponding to a spatial region is interpreted as an abstract piece of information about
the spatial region. The pattern may, for instance, be a natural-language fragment. Such
a diagram therefore automatically mixes propositional and spatial aspects. It is a com-
monplace that the diagrams we use mix non-spatial (including propositional) and spatial
(including pictorial) aspects in various and intricate ways. Maps, cartoons, advertise-
ments, musical notation, diagrams used in physics problems and (semi-)pictographic
writing provide ready examples. (Some such examples are discussed in Fodor (1975, e.g.
p.190) and Schwartz (1981, especially p. 117). Some network diagrams have (schematic)
pictures at or in nodes. For instance, in Raphael (1976, p.81) a search graph for the
Towers of Hanoi puzzle is illustrated as a linked set of nodes, in the usual way, but each
node contains a schematic picture of the three towers and the discs on them. Fig. 1
shows another example of mixed picture/net notation. Network diagrams used in scene-
analysis work (see e.g. Hanson and Riseman (1978) and Winston (1975)) often have a
spatial aspect in the sense that nodes are arranged in the diagram in a way roughly
corresponding to the physical arrangement of the objects denoted by the nodes. Indeed,
much of the usefulness of the diagrams would be lost if they were not spatial in this
way.

* Goodman (1968) has pointed out the large cultural factors influencing the attribution of
term such as our “pictorial’.
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Fig. 1: A simple example of a mixed pictorial/propositional diagram.



Diagrams which are largely pictorial shade gracefully into more abstract diagram-
matic notation. For example, a map of an underground railway system is more schemati-
cally pictorial than a map showing the true geographical relationships of the railway
lines, but less abstract than a diagram in which stations are nodes and connecting rail-
way lines are shown as links but there is no correspondence between the positioning of
nodes in the diagram and real positioning of stations. The geographical-map/usual-
map/net-diagram progression here is but a selection of three points on a continuum of
possible diagrammatic representations of the railway system.

In partly spatial diagrams, positions and sizes of some patterns are directly related
to spatial positions and sizes in the world. There is a closely related diagrammatic
phenomenon where patterns whose relative diagrammatic position or size conveys
abstract information. For example, in a ‘‘pie chart”’ showing where a university gets its
money, different sectors of a disk (the ‘“pie’’) correspond to different funding sources and
have size proportional to the monetary contribution of that source. We can regard the
pie diagram as being a ‘‘spatial analogue’ of a non-spatial situation: a ‘‘spatial”
measuring scale is being used to correspond in an obvious way to an abstract measuring
scale. Other similar examples of spatial analogue are provided by x-y graphs of functions
and by histograms. In network diagrams, the importance of a node can be indicated by
the size of the node. The importance of a link can be inversely related to its length, so
that for a given node, importantly related nodes are diagrammatically close to it.
(Indeed, this importance/length relationship is discernable in net diagrams in the litera-
ture.)

The type of spatial analogue in these examples is called ‘‘size analogue”. The other
main type is ‘‘position analogue”. A familiar example of position analogue is the
representation of time by space in a diagram. An ordinary calendar is a case in point.
Although time is represented linguistically and numerically as well, much of the point of
normal calendars would disappear if they did not have their analogue aspect. Relative
spatial position also provides the analogue in Venn diagrams of sets. Here, blobs in the
diagram represent sets, and their overlapping is an analogue of set intersection. Normally
the size of blobs or overlapping regions is of no significance, but occasionally a variant of
Venn diagrams is used in which the size of a region is roughly indicative of the size of
the denoted sets. This variant thus incorporates size analogue as well. In tree diagrams
(e.g. of family trees, taxonomy trees, part-of hierarchies) the nodes nearer the root are
often placed higher in the diagram. This is an example of position analogue. This analo-
gue is redundant when the hierarchy is completely defined by directed links drawn
between nodes. However, the links often do not have direction marks on them, being
considered to lead from their higher ends to their lower ends.

We have noted that diagrams in which position corresponds to spatial position are
automatically spatially indexed. Clearly, there is a derived concept of ‘‘analogue-spatially
indexed” which applies to parts of diagrams which are spatial analogue rather than spa-
tial. Just as spatial indexing facilitates certain types of problem solving in a spatial
domain, the analogue-spatial indexing facilitates some problem solving in non-spatial
domains.
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SECTION 3: A SKETCH OF AN ANSWER

Here we take a look at the thinking which led to the paper’s answer to the three
questions posed at the beginning of Section 1.

Recall that we are assuming that some of the data structures the brain uses are
feature maps and that these structures are spatially indexed. Recall also that we drew
an analogy between feature maps and pictorial diagrams (which, note, are also spatially
indexed data structures, for us). Fig. 2 portrays the state of affairs, including the contin-
uum of graphic notation noted above. Now consider that we are faced with the problem
of where feature maps, and spatially indexed data structures in general, fit in with the
whole range of data structure types in the brain. (This problem is part of questions Q2
and Q3.) But look at how pictorial diagrams, and spatial (therefore spatially indexed)
diagrams in general, fit in with the totality of diagrams: they are simply special cases of
the patterns of marks that we are capable of interpreting. What these observations sug-
gested to the author was the following:

it would be worth investigating the tdea that the brain contains media analogous
to external graphic media and that the brain’s data structures — whether feature
maps, other (internally generated) spatially indezed data structures, or proposi-
tional data structures — are ‘““diagrams’ on those media.

This idea is the core of the cognitive model schema to be investigated. The author is the
first to grant that the idea is by no means implied by the foregoing discussion.

An important motivation for studying the idea that the brain’s data structures are
“diagrams” is that it is very economical, in the sense that the assumption that the brain
uses spatially indexed feature maps introduces diagram-like entities anyway, so we may
as well see how far we can push the idea that the brain can deal with “diagrams” (pat-
terns in ‘‘graphic media”). Of course, we must give some account of how the brain is
meant to interpret and manipulate its “‘diagrams’. Much of the rest of the paper is con-
cerned with giving such an account. Note in particular that we must show that the
“graphic media” can be implemented in such a way that spatial ‘“diagrams’ are indeed
spatially indexed. (We remarked that ordinary spatial diagrams are automatically spa-
tially indexed because they are “‘implemented on us’. This does not mean that to get
brain diagrams to be spatially indexed we have to assume a homunculus in the brain
which looks at diagrams, and whose cognitive activities must in turn be explained, ... )
We shall present a gross conjecture (in Section 6) about the way the ‘“‘graphic media” of
the brain are physiologically implemented. Thus question Q1 will be answered in gross
outline. Furthermore, not only does the diagrammatic idea answer questions Q2 and Q3,
but also it answers them in an elegant manner: the integration of all the different sorts
of data structure used in cognition (according to the Data Structure Hypothesis) is as
smooth and rich as is the integration of all the different sorts of diagram under the
umbrella of graphic notation. (It is not, however, claimed that the brain's “‘diagrams”
are necessarily very similar to external ones.) The desirability of a smooth integration of
information types stretching from the pictorial to the propositional has been argued by
Schwartz (1981, pp.127ff) and Fodor (1975, p.190), although of course those authors
might disagree with our method of achieving that integration.

It is now time to say what the “‘graphic media” in the brain are meant to be, at an
abstract level of description. Really all that we shall be doing is abstracting away from

3.1



“Terards

TeuoTy s odoad
‘ LTTOT
TeTI0yoTd
[
[l
W 08 KOOTYNY ans—| |
N
s |
s8JdnyonIas seusds TwOTsAyYd
112 ol Sutyordep
K1TRrTrEdS sdeu adngBol

%

SV VI
A¥VNITHO

A0 WAANTINOD

NIVHA
dHI NI
STHATHNILS VIvVa

Fig.2: The depiction of the diagrammatic continuum is highly simplified.



any particular physical medium, and insisting on a medium made up of a finite number
of elements. Henceforth, we shall talk about “imaginal matrices” instead of ‘‘graphic
media’ in the brain.

Informal Definition. An smaginal maetriz (IM) is an abstract, finite, b-
dimensional rectangular array for some n > 2, where the array elements are called
tmagels, together with a set of of smaginal features (IFs) and, for each imaginal
feature, a range of possible numerical values. An Image is an association of a value
with each imaginal feature at each imagel in an IM (so that an Image is a pattern
of IF values over an IM).

The point of the paper would not be affected by allowing other forms of pattern-holding
matrix (e.g. matrices with hexagonal or polar ‘‘geometry’’), but rectangularity is con-
venient for the purposes of simple discussion. The term ‘“‘Image” will always appear with
a capital letter to avoid confusion with other notions of “image’ used elsewhere.

An IM is an abstract entity - if an IM were supposed to reside in a computer, brain
or whatever, no assumption that it is manifested as some sort of physical array would be
necessary. It is nevertheless convenient for heuristic purposes to imagine the imagels of
an IM as forming a rectangular array in physical space. More particularly, we shall be
concentrating on 2D IMs, and using the analogy of an IM as the points of a fine, invisi-
ble grid imposed on a piece of paper (or as the image points of a video screen). Then the
IF values can be thought of as visible features such as intensities of marks, colors or
whatever . (The choice of visible manifestation is arbitrary except in the case of an
Image which is a feature map, the IFs in that case having a fixed interpretation in the
heuristic. A feature map IF standing for a small line segment, say, would be illustrated
by means of a small line segment on the paper.) An Image is then thought of as a
diagram on the piece of paper (or screen). This analogy allows us to talk about, and
illustrate, Images as if they were diagrams as discussed in Section 2. For instance, a pic-
torial Image is an Image which, with suitable visible manifestations for the IF values,
can be said to correspond to a pictorial diagram.
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SECTION 4: NETWORK IMAGE MANIPULATION

This section tries to clarify what it could mean to say that computation can take
the form of the manipulation of propositional Images in 2D IMs. Such computation is
part of the postulated activities of the brain. We shall return to pictorial and combined
Images later. For definiteness, we take the particular example of the manipulation of
conventional-network Images — without making any claim that precisely such Images are
used in the brain, or indeed that one would want to build an artificial computing system
using such Images. A conventional-network Image is an Image whose illustration on
paper (by means of the heuristic mentioned in Section 3) is similar to the diagrams of
conventional semantic networks found in such works as Findler (1979), Anderson and
Bower (1973), etc. Thus a node in the Image is a small localized group of imagels for
which some IF has a value distinctly different from the values for that IF in a surround-
ing region of imagels; a link is a similarly highlighted narrow ribbon or chain of imagels
Joining two nodes, with some ‘‘mark’ on the ribbon to indicate the direction of the link;
and a label on a link or node is some pattern adjacent to the link or node. We are, in
effect, upgrading network diagrams from the status of visual aid to the status of bona
fide data structure.

The precise sort of pattern which can be a node or link label is not of great impor-
tance at this point in the paper, but for convenience we illustrate our network Images by
diagrams in which labels are natural-language fragments. It is worth noting that differnt
sorts of node and link can be separated by using different IFs to ‘‘draw’ them. We can
conveniently summarize this by saying that nodes and links can be of different ‘“‘colors’.
We do not expect, however, that there would be enough IFs to obviate the need for link
labels.

For simplicity we shall start by assuming that there is just one IM, and that it is
large enough to incorporate whatever network diagrams we might want the system to
deal with. At the end of the section we shall introduce the modifications made necessary
by having, instead, a number of finite IMs of a size such that a given network might
have to span several IMs.

An important part of what is meant by propositional computation using Images is
that the Images are ‘‘essential’’ to the computation — that is, it is not the case that
Images are converted into or produced from non-Image data structures elsewhere in the
system, the real computation being manipulations of those other data structures. Also,
we assume that the mechanisms which interpret Images contain relatively little data of
their own, and that what there is is of restricted sorts (e.g. data for holding control
information in the course of doing a manipulation made up of a number of steps). Thus,
most of the data-holding capability of the system is meant to reside in the IMs. This
statement will become a little less vague later on.

In the rest of this section we look at the sorts of net manipulation a network-Image
interpreter must perform and how it can perform them. We shall not, however, attempt
to treat an example of the application of networks to any particular knowledge domain.
Thus we shall be concerned entirely with general ‘‘sytactic’ matters. The interpreters we
shall consider examine networks in a fairly conventional manner. That is, they basically
proceed by following paths along links in the network Image and take actions on the
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basis of the sorts of nodes, links and labels they detect. At a high level of description,
the sorts of manipulations performed by currently implemented network systems are
typified by the following operations: traversing specified sorts of paths; matching sub-
nets; addition of subnets (linking them into the existing nets); deleting subnets; convert-
ing subnets to and from other forms (e.g. natural-language text); executing a piece of net
acting as a declarative description of a process; and using the presence of certain sorts of
subnet to trigger processes (a simple example of this is when a procedure is “‘attached”
to a node). There is great variation among net-based systems as to which of the above
operations are performed and as to the exact nature of the operations. However, we can
discern a set of intermediate-level operations which are necessary or desirable to support
the high-level operations listed:

— checking the presence of a particular label on a given link

— choosing an action on the basis of a particular label or on the basis of a particular
simple configuration of labelled links based at a single node

— at a given node, finding a link (perhaps with a specified label) from the node

— at a given node, finding the label (if any) on a link to or from the node

— given a link, finding the node at a particular end of it (this allows traversing of
links)

- remembering a traversal path so that it can be re-traversed later (perhaps in the
opposite direction to the original traversal)

— deleting a node and the links emanating form it or going to it

— inserting a new node and linking it to existing nodes

— inserting and deleting links between existing nodes

— inserting, deleting and changing labels

— marking nodes and links as being of current interest.

Note that to remember paths we need to be able to ‘keep a finger” on each of a finite
set of nodes and/or links, where there is no a priori bound on the size of the set. We
cannot get away with a fixed finite set of “fingers'’ (marks, pointer variables or the like).

What we should like to know eventually is how these intermediate-level operations
can be implemented in terms of low-level operations which fiddle about with imagels’ IF
values, and moreover can be implemented with very little data-holding capability in the
interpreter itself. Instead of treating this implementation problem in the general form at
which it stands, we shall look at the particular precise case of the operations needed for
a certain simple type of manipulation on a certain simple type of network Image. Also,
we shall not go down quite to the low level mentioned above.

Section 4.1: A Simple Example

The type of network Image considered here is an arithmetic expression tree of the
form illustrated in Fig. 3. The tree in the figure is a representation of the expression
(5 + 6%7) * (8+9 - 10)
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The manipulation we consider is that of evaluating the tree, i.e. deriving the arith-
metic value of the expression. The way this manipulation can be described at an inter-
mediate level is in terms of the movement of numbers and certain markers about in the
tree. These movements are derived from conventional methods of traversing tree struc-
tures implemented on computers. The markers are small patterns which can be placed
next to nodes or links of the tree. There are four types of marker: ‘?’, ‘"', ‘#’ and ‘%’
(The quoted symbols will be used in figures and text, although in actuality the markers
could be patterns of other forms. A simple option would be for the markers to be small
blobs of four special, distinct “colors”.) ‘?’ and ‘I’ markers are placed mext to nodes,
while ‘%" and ‘#’ markers are placed next to the beginning of links. In addition, any ‘!
or ‘%’ marker is the start of a link of a special sort which ends at some number. This
special sort of link is called a “‘shows” link and the number is called the ‘‘showee’ of the
marker. (“Shows” links might be distinguished from tree links merely by being in a
different ‘“color”.) A ‘?’ next to an operation node (i.e. internal node) of the tree indi-
cates that the subtree at that node is ready to be evaluated (but evaluation has not yet
started). The ‘#’ markers merely manage a flow of ‘?’ markers down the tree. A ‘?’
next to a leaf node is replaced by a ‘I" “showing” the number inside the node (i.e. there
is a ‘‘shows” link from the ‘!’ to the number). A ‘I’ next to a node indicates that the sub-
tree at that node has been evaluated, and that the result is shown by the ‘V. ‘%’ mark-
ers merely manage the passing of results up the tree. The action of applying an arith-
metic operation to some numbers is initially considered to be indivisible, but a little later
we shall see how that action might itself be decomposed.

The necessary manipulations of markers, numbers and links are carried out by a
production system (Newell (1973), Newell and Simon (1972), Davis and King (1977),
Waterman and Hayes-Roth (1978)) of the following informal nature. The productions are
condition-action rules expressed in a constrained form of English. Productions fire one by
one. If several productions are satisfied at any stage, an arbitrary one is allowed to
proceed. Also, if this production is satisfied by several distinct Image parts, the produc-
tion proceeds on the basis of an arbitrary one of these parts. The deletion of a ‘! or ‘%’
includes deletion of its shows link.

(Initialization)
A 7" next to the tree root.

(P1) if there is a ‘?’ at a node with a non-‘#’ outlink
then insert a ‘#’ on the beginning of this link.

(P2) if there is a ‘?" at an internal node with no non-‘#’ outlink
then delete this ‘?'.

(P3) if there is a ‘#'-link from a node with no ‘?’
then insert a ‘?' at the destination of this link;

delete this ‘#’.

(P4) if there is a ‘?" at a leaf node
then insert a ‘!’ next to this leaf, showing the contents of this leaf;
delete this ‘?'.
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(P5) if there is a ‘!’ at a node with an inlink and no ‘%’-outlink
then insert a ‘%' showing the showee of this ‘I’
and next to the beginning of this inlink;
delete this ‘.

(P8) if there is a node containing a '+, with no ‘" and with no non-‘%’ outlink
then add the numbers shown by the ‘%’ markers on the outlinks of this node;
insert a ‘! next to the '+’ node
and showing the result.

<similarly for other arithmetic operations >

(P7) if there is a ‘! next to a node with a ‘%’-outlink
then delete the ‘%’ on this link.

(P8) if there is a ‘" at a node with no inlink and no ‘%’ outlink
then stop.

We should note an important primitive which is used in the productions’ action
parts. Each use of “‘this” in an action part betrays an implicit datum emanating from
the production’s condition and transmitted to the action part. This datum is the iden-
tity of the pattern (node, marker or link) which is meant to be denoted by the *‘this”
phrase in the action part. The question is: where/how is this datum held? In fact, it is
easy to hold the datum in the Image itself by marking the identified pattern in a certain
way, namely by “‘highlighting’’ it with a special IF (“color”). Highlighting is done when
a production is chosen for execution, and consists of giving an especially high value to
the special IF at every imagel used in the pattern. The production’s action part then
“knows’' the pattern simply as that pattern which is highlighted with the particular spe-
cial IF. Similarly, highlighting can be used to perform feats of pattern-identity memory
entirely within action parts.

A particular example will help to make the action of highlighting clearer. Consider
production (P4). Suppose there is indeed a ‘" mark at a leaf node and that (P4) is
chosen for execution at this node. Then the ‘" is highlighted with a special IF (IF1 say)
and the leaf-node outline is highlighted with some special IF2. The sequence of actions
taken by the production, at a lower level of description than before, could be as follows,
where IF3 and IF4 are further special highlighting colors.

— delete any pattern highlighted by IF1

— insert a ‘!I' pattern, highlighted by IF3, somew here-close-to-and-outside any pattern
highlighted by IF2

—  highlight with IF4 any pattern contained within any pattern highlighted by IF2

— insert a shows link pattern from any IF3-highlighted pattern to any IF4-highlighted
pattern
— remove all highlighting by IF2, IF3 and [F4.
IF1 and IF2 are used to keep track of (‘“‘point to”, “mark’) patterns discovered by the

condition part. IF3 and IF4 are used to keep track of patterns created and discovered
(respectively) by the action part itself. The use of “any” in these lower-level steps
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indicates that the production as a whole is not tied to any particular region in the IM
and that the component primitive actions (insertions, deletions, etc.) are similarly not
tied to specific regions.

We shall not look at how the necessary primitive pattern-recognition operations are
performed — detecting nodes, links, markers and simple combinations of them. Note that
such pattern-recognition occurs both in condition parts and in action parts. We shall
later suppose (Section 6) that pattern-recognition of the sort required in this simple
example 1s done by special ‘hardware’ distributed over the IM.

The question naturally arises of whether operations pertaining to different produc-
tions can be performed in parallel — can production executions proceed in parallel? can
condition testings proceed in parallel? etc. We would certainly want to look for detailed
implementation techniques which would allow such parallelism. Problems are intreduced,
however, by the suggested highlighting techniques. There is potential for interference
between the productions if different ones can involve highlighting with the same colors.
Therefore the number of available IF's limits the extent of parallelism (of operations act-
ing on a single IM) if highlighting is used.

Finally, comment is needed on the actual multiplication, etc. of numbers. These
arithmetical operations were portrayed as being primitive operations in the production
system . This portrayal was for simplicity of exposition — in fact the multiplications and
so on can be broken down into Image manipulations. Assuming for definiteness that the
numbers are in ordinary decimal notation (or rather, that they are linear sequences of
pattern instances, one distinct pattern for each of the ten digits) a pair of numbers can
be added together by ‘‘column-by-column’ addition just as they would be by pen and
paper (although it is not actually necessary for the numbers to be near each other in the
IM.) Such column-by-column operations can be achieved by the highlighting and pattern
insertion/deletion techniques referred to above — the details are straightforward. We are
left with much simpler numerical primitives than the ones we assumed before. We now
assume only that there are the primitives of adding together two digits and a carry, mul-
tiplying two digits, etc.

Section 4.2: General Pattern-Manipulation Primitives

Several network-Image examples have been worked out apart from the arithmetic-
tree one, but they will not be detailed here. One involves networks which are representa-
tions of Lisp expressions, and the attendant production system acts as a Lisp inter-
preter. The Lisp example is managed using exactly the same sort of marker technique
(though in a slightly more complicated form) as was used in the arithmetic example. In
the Lisp example, paths of interlinked markers are set up to serve the purposes that
stacks do in Lisp interpreters implemented on ordinary computing systems.

It is to be emphasized that the particular sort of network Image appearing in the
examples which have been worked out are not claimed to be appropriate in putative real
IM computing systems. They have been studied merely as exercises to clarify certain
issues. One issue which has been clarified in considerable detail is that of the types of
localized pattern examination and manipulation operation which are sufficient to support
network Image systems (using a single large IM). In fact, we expect that the operations
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listed below are fundamental ones in the manipulation of all types of Image. In the fol-
lowing list, terms such as ‘‘specific pattern’ and ‘‘specific position’’ are used and will be
clarified in a moment.

— inserting a specific pattern (e.g. a marker) at a specific position

— deleting a specific pattern (e.g. box outline) from a specific position

— deleting from a specific region any pattern which happens to be there
— copying a specific pattern from one specific position to another

— copying from one specific region to another any pattern (e.g. a digit) which happens
to be in the first region

~ adding/deleting specific colors to/from existing specific patterns (e.g. to effect
highlighting)

— adding/deleting specific colors to/from any pattern which happens to be in a
specific position (for example to effect highlighting)

— following specific lines (e.g. network links) and outlines (e.g. of node boxes)

— using patterns to trigger complex processing (example when some production
responds to the presence of a particular arc label).

A pattern is specified (for the purposes of the term ‘“specific pattern) by shape and/or
colors used, but not by position in the IM. A position or region is specified (for ‘‘specific
position/region’’) by shape and/or colors used, by qualitative position within the IM, or
by qualitative position relative to some specific pattern. ‘“Qualitative position within the
IM” incorporates characterizations like “‘tending to the left”, ‘‘tending to the top”
(“left”, etc. being derived form our drawing analogy). Such gross IM-relative positioning
is allowed so that structure can be imposed on an Image without the need for structur-
ing patterns such as links, and is useful in some of the examples which have been stu-
died in detail. “Qualitative position relative to a specific pattern” can mean ‘‘inside the
specific pattern [assumed to be some sort of outline]”, “close to but outside the specific
pattern [which could be a small outline, blob or marker]”, “close to and to the left of the
specific pattern’, and so on. The word “qualitative” has been used to underscore the
idea that the precise position of patterns relative to each other or to the IM itself is
meant to be essentially irrelevant to the Image manipulation mechanisms. (This point
anticipates a postulate concerning IM systems in the brain — Section 6.)

“Following a line” was included in the above list of operations. A more precise
description of the operation would be ‘‘access the other end of a specific line one of
whose ends is already accessed”, where the access might take the form of highlighting.
We can actually cast line-following itself in terms of more general operations. Suppose
there is a line one of whose end segments has been highlighted with color IF1. If we have
the operation

— add a specific color to the whole of a pattern specified by being (partly or
wholly)drawn with a specific color

then we can use it to highlight the whole of the line with a color IF2. This latter end is
now detectable by virtue of being highlighted by IF2 but not by IF1.

Throughout, we have made virtually no reference to the direction of links. This is
because the direction of a link may be used, for example, in the decision as to whether
to traverse the link, but the link direction is in principle independent of possible direc-
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tions of traversal of the link.* Note that if a particular link is to be traversable in both
directions, it is helpful to have a label at each end of the link (as opposed to having only
one label on the link). Indeed, if this is done and the labels are variants of each other
(e.g. AGENT and AGENT-1) then there is no need to have another device specifying the
link direction.

Section 4.3: Systems using Several IMs

In later sections IM systems in which there are a number of IMs of moderately res-
trictive size wiil be of special interest to us. In the context of network Images, we can
take ‘‘moderately restrictive’”” to mean that no more than a dozen or two nodes and
attendant links can be fitted in. We assume that all the IMs are isomorphic (same
dimensions, same IF's and value ranges).

Let us then assume that we wish to implement a conventional semantic network in
the IMs of such a system. Some method is necessary for tying together pieces of network
lying in different IMs. It is possible to imagine a system in which a pattern (or single
imagel value) in an IM could serve as the address or name of some other IM; similarly, a
certain sort of pattern or single imagel value in an IM could serve as the address of an
imagel in that very IM. When we come to the cognitive model as such (in Section 6) we
shall avoid these naive addressing techmiques. There is an alternative: a mechanism
which associates sufficiently similar patterns in different IMs, i.e. notices that a pattern
appears (perhaps with some limited variation) in two or more IMs. Suppose for instance
that a node in (a network Image in) one IM must be equated with a node in another IM.
The equation could be established by labelling the two nodes with the same label,
perhaps drawn from a special class of labels. In other systems there could be other
interpretations placed on the presence of the same label in two IMs.

We may therefore propose that a desideratum in an IM computing system is an
association primitive with the following characteristics. When the primitive is applied
to a sufficiently simple pattern in an IM, the primitive highlights sufficiently similar pat-
terns in other IMs, provided that in each IM the pattern is in a sufficiently simple con-
text. The IF used in the highlighting is a parameter to the primitive. Node and link
labels should pass the test of being sufficiently simple (even if they are as complex as
natural-language words, in our drawing heuristic). ‘“‘Sufficiently similar” should allow
only a reasonably small amount of distortion: the similarity is meant to be a spatial one
— so for instance two pieces of net Image which were isomorphic as nets would fail to
associate unless they were laid out in IM ‘space’” in approximately the same way. A
difference in the IFs used for the patterns to be associated is allowed; indeed, we could
envisage parameters to the primitive indicating what range of IFs are allowed in associ-
ated patterns. Some variation in the IF values is also allowed. The “sufficiently simple
context’ proviso is included to relieve the primitive from the requirement that it notice
patterns which are intricately embedded in other patterns.

* This point is often obscured in the literature, especially when there is an unstated assump-
tion that links not only have abstract structuring significance but also denote pointers in a com-
puter implementation — see Woods (1975) and Brachman (1979) for discussion of such confusions.



A very important requirement we place on an IM system incorporating the associa-
tion primitive is that the primitive should be efficiently implemented. That is, the time
taken by the primitive to find all the associated patterns should be comparable to the
time taken, say, to detect the presence of a single primitive pattern (e.g. node, link,
marker in a network) or to follow a link. (“Comparable”, not ‘‘equal’, is definitely
intended here — perhaps a factor of about one order of magnitude could be allowed.)

Despite the “sufficiently simple pattern’ criterion, it is not assumed, for the pur-
poses of usefully applying the primitive to a pattern, that the pattern has to be one
which is recognized by the primitive pattern-recognition mechanisms tied to IMs. For
example, an inter-IM association label might not be one which is actually detectable (as
anything other than merely some label) by any production.

There is no reason to forbid the primitive to operate within individual IMs as well
as between them. This gives us an intra-IM structuring method over and above the use
of adjacency and links. An advantage of intra-IM pattern association over the use of link
patterns is that the overall comlexity of Images is reduced, and structuring within IMs
becomes more unified with structuring between IMs. However, the local complexity of
IMs may be increased (more labels are needed) and the time taken to “‘follow the link”
may be greater. These drawbacks would force a compromise between the use of associa-
tion and the use of explicit links. One advantage of using an associative technique and
not an IM (or imagel) addressing technique is that patterns can be moved around within
and between IMs without disturbing structure in any way.

The possibility of using associative techniques (or ‘“‘content addressing’) in comput-
ers has been known for a long time, and in fact some computers use them — this subsec-
tion is merely pointing out that such techniques are also useful in an IM system.

Section 4.4: The Meaning of Nodes

The meaning of a node (the effect its presence has on the interpreter in the net sys-
tem) is defined by two things: the connections of the node to other nodes, and the labels
or other information ‘‘in”" or ‘at’’ the node. In some cases the connections alone are
sufficient to determine the meaning. For instance, in Fig. 4 the hit-instance node (the
one at the start of the PRED link) is known to be a hit instance node precisely by virtue
of the PRED link, and all other information about the node needed by the particular
system at hand is given by the other links adjacent to the node. However, some nodes do
need labels (or other special attached information) — for instance, we may (depending on
the precise nature of the total system) need the label “hit” in the figure to allow the
interpreter to bring appropriAte processes into play.

One of the most important type of link from a node is a PRED link (or, similarly,
an OCCURRENCE-OF, SUPERCONCEPT, IS-A, etc. link). Although such links can
appear explicitly in network Images, there is an alternative technique which may make
more sense, at least in simple sorts of network. Instead of a PRED link as in Fig. 4 we
could have a label association as in Fig. 5(a) or Fig. 5(b). Here we are simply replacing a
link by a pattern association. Indeed, in a multi-IM system we would tend to have to use
an association instead of a link in any case. (Equally, the generic concept taking part in,
say, an IS-A relationship might not kave a node anywhere to represent it, in which case
we take the label on the instance node to serve to ‘“‘associate nodes to implicit procedural
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Fig. 5
(a) "Linking” by pattern-association on labels within a single IM.

(b) "Linking” by pattern-association on labels within distinct IMs.



knowledge.)

Note that in Fig. 5 the two “‘hit” labels are differently placed with respect to their
nodes. Some differentiation is needed between the labelling used at the two nodes,
because the connection we are establishing is directional.

Section 4.5: Locality

A significant characteristic of most of the network-Image manipulations described
in this Section is that are based on ‘lecal’’ operations. That is, the basic manipulations
used each deal with just a small portion of a single network Image (e.g. 2 node and a few
links). These local manipulations are directly inspired by the local manipulations
currently used in implementations of network systems in conventional computers. The
locality is, however, not something we demand in general. The association primitive is an
example of a basic mechanism which is non-local, both because an application of the
primitive is concerned with many Images, or many parts of a single Image, and because
there is no requirement that the associated patterns be small.
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SECTION 5: PICTORIAL AND GENERAL IMAGE MANIPULATION

We now look at how pictorial Images could be manipulated in an IM computation
system. The first point to emphasize is that an IM which manipulates pictorial Images is
not excluded from manipulating other sorts of Image, such as propositional ones. In par-
ticular, the system may contain ways of producing a propositional Image summarizing a
pictorial Image and of producing a pictorial Image from some prescription in a proposi-
tional Image. For instance, consider a “blocks-world” system (see e.g. Winston (1975))
where blocks can be of different sizes and shapes. Let us assume it is useful to have pic-
torial representations of situations for the purposes of some of the problem solving done
by the system. But let us also assume that it may be convenient to have propositional
representations of the qualitative spatial relationships (e.g. left-of) and support relation-
ships in situations. Therefore, a change in a pictorial Image may be guided by a change
in a propositional Image summarizing the same situation, and a change in a proposi-
tional Image may be required by a change in a pictorial Image. Of course, some means of
associating parts of propositional Images with parts of pictorial Images is necessary. This
issue will be taken up later.

Not only may propositional Images be used to describe the same block
configurations as are depicted in pictorial Images, but other sorts of propositional Image
might be manipulated as part of the computation required to manipulate the pictorial
Images or their propositional counterparts. For example, an Image might (proposition-
ally) represent a plan of action which is to be taken. Again, a propositional Image might
contain a rule which says what should happen to a pile of blocks if the bottom one is
removed. The general technique of guiding manipulation of pictorial Images by manipu-
lation of propositional Images is an IM version of ‘“‘cognitive penetration” into imagery,
as discussed by Pylyshyn (1981).

We can envisage pictorial Images being manipulated in much the way the network
Images of Section 4 are. For example, a movement of an Image portion picturing a block
could be done by highlighting the block sublmage and the desired destination region,
and then applying a copy primitive and a deletion primitive like those in Section 4.
(Note here that the copy and deletion primitives need not be sensitive to nature of the
particular pattern being dealt with.) Of course, we are likely to need basic pattern-
recognition mechanisms which are capable of detecting patterns picturing blocks. This
pattern-recognition is likely to have to detect sublmages which are considerably larger
than those recognized in network-Image systems (e.g. nodes, labels). Note that once a
block sublmage has been detected, it can be marked or highlighted in such a way as to
obviate the need for further pictorial pattern-recognition on that block.

It would be convenient to have a movement operator which had the same effect as
a combined copy and delete, but more efficiently implemented. This operator would also
be useful in network-Image systems. Another useful operator would be a movement
operator which is given a direction and a distance as parameters rather than a destina-
tion region. With a small distance value this operator could be used to simulate continu-
ous motion of pictured objects. In certain problems it might be necessary to keep on the
lookout for collision of objects which are being subjected to simulated motion. We could
therefore propose that there is a basic mechanism which detects adjacency and overlap-
ping of sublmages. Such a mechanism is in any case useful in the case of non-pictorial
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Images. If an Image on an IM is a spatially indexed data structure, then the implementa-
tion of that mechanism would be efficient.

At present it appears that, given methods for manipulating pictorial Images and for
manipulating propositional Images, there is no major difficulty in devising methods for
manipulating Images at intermediate points on the continuum of diagrammatic notation.
The major new factor is that the processes working on Images must be able to distin-
guish between pictorial, propositional and other types of Image aspect.

We saw earlier that an IM system solving blocks-world problems might manipulate
both pictorial and propositional Images describing the same situation. If this were so
there would have to be a way of identifying parts of a pictorial Image with parts of a
propositional Image. There are at least two simple ways in which this might be done.
Let us assume that the propositional Image is of network form. Then object subImages
in the pictorial Image could be annotated with labels of some sort which are also used to
label nodes in the propositional Image. We appeal here to the pattern-association primi-
tive of Section 4.3. The second method is for the position of a node in the propositional
Image to correspond to the position of the corresponding object in the pictorial Image.
But this method suggests we could sidestep the whole issue by having Images which con-
tain superimposed pictorial and propositional patterns, as illustrated in Fig. 6. The two
superimposed Images might or might not use disjoint sets of IF's.
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Fig. 6: A mixed pictorial/propositional Image. The network pattern is itself spatially
laid out. There are no IS-A or PRED links, in the spirit of Section 4.4.



SECTION 8: IMAGINAL MATRICES IN THE BRAIN

This section describes the main claim of the paper in more detail.

Main Postulate

The entire machinery that the brain has for the rapid internal manipulation of tem-
porary data structures (in vision, natural-language understanding, problem solving,
general thought processes) is an IM production system, where there are many IMs
and they are all 2D and isomorphic. The system is subject to the constraints men-
tioned in the rest of this section. The Images can be pictorial, propositional, or else-
where on the continuum of ‘‘diagrams’’. The Images have no necessary relationship
to conscious imagery.

The Main Postulate is not to be taken to mean that all the sorts of Image sug-
gested by analogy with the diagrams in Section 2 can be manipulated. That section
served only to clarify the nature of the axis on which brain Images are conjectured to lie.

Implementational Postulate

a) Imagels (in the same or different IMs) are implemented as disjoint physical entities
in the brain. Let us call these entities “physical imagels’’. Physical imagels may be
disjoint neuron assemblies of some sort, but there are other possibilities. For each
IF there is a different respect in which the physical imagel can be activated. The
degree of activation implements the value of the IF at the imagel.

b) The basic pattern-recognition applied to IMs by the production system is achieved
by distributed processing networks with a rough functional similarity to those dis-
cussed by by Hebb (1949), Hinton (1981), Feldman and Ballard (1981), Anderson et
al (1977), and numerous others.

¢) The abstract neighborhood of imagels within individual IMs is implemented in such
a way that the basic pattern-recognition operations and the primitive Image-
manipulation operations in Section 4.2 are efficient.

(It may well be that Part (c) is best satisfied by having abstract neighborhood of imagels
implemented as proximity of physical imagels. It may even be that the physical imagels
implementing an IM are arranged as a physical array, but this is by no means a neces-
sary assumption and we shall not make it.)

Suppose we assume that highlighting is the standard technique used by productions
for “accessing’’ patterns and regions. We similarly define a production to have ‘‘access”
to an imagel group if that group is highlighted in a way detected by that production.
Part (c) of the Implementational Postulate then immediately implies that if a production
has access to an imagel group it has efficient access to the patterns supported by the
imagels in the group. Part (c) also implies that if a production has access to an imagel
then it can gain access to neighboring imagels (by effecting a spread of highlighting).
Now recall the definition of spatial indexing in Section 1. We see that Part (c) of the
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Implementational Postulate ensures that, if an IM is currently being interpreted on the
basis that localized imagel groups correspond to spatial regions, then the IM together
with its Image is a spatially indexed data structure. The spatial elements e are imagel
groups, and the information I(e) takes the form of the pattern(s) supported by the
imagels in group e.

An important consequence of part (b) is that mot all the temporary data structures
in the brain can conveniently be said to be Images: the pattern of excitation of the pro-
cessing elements in the pattern-recognition mechanisms can be viewed as a temporary
data structure lying outside IMs. However, it is legitimate to say that the data struc-
tures involved in the pattern-recognition mechanisms account for but a small proportion
of all the temporary data structures manipulated in the brain, and that furthermore
these data structures are of a highly specialized sort compared to the range of data
structures which can appear as Images. Suggestions about what patterns in IMs are
recognized by the basic pattern-recognition mechanisms are made below.

Section 8.1: General Nature of the Brain’s IM System

We now place quite strong constraints on the sort of IM production system that the
brain is conjectured to use. Some of the constraints were anticipated in previous sec-
tions.

Basic Parameters

The precise number of IMs, size of IMs, number of IFs, and value-ranges of IFs in
the brain are parameters to the model schema being presented. As an initial guess, there
are a few dozen IMs, an IM has size N by N where N is no more than a couple of hun-
dred, and there are a dozen or two IFs. This paper makes the simplifying assumption
that all IMs are isomorphic and use the same IFs*. The set of IMs is fixed during adult
life.

No Addressing

There is no way of gaining access to an imagel or to an IM by means of a precise
“address” which is some sublmage or just the value of some imagel. The no-addressing
restriction greatly influences the conjectures we can plausibly make about the nature of
the Images used in the brain.

Spatial Tolerance

Consider two states of the whole IM set (that is, two possible sets of Images, one
Image per IM) where the states only differ by small displacements and scalings of subIm-
ages such that the adjacency and containment relationships of patterns are maintained.
Then the response of the production system to the two states is essentially the same.

* That is, for any two IMs there is a 1-1 correspondence between the IF sets such that
corresponding IFs have the same value-ranges. We also assume there is an inter-IM pattern-copy
operation which respects the IF correspondence.
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For example, if all the Images were networks as in Section 4 and the corresponding
Images in the two states only differed by small variations in the spatial positions of the
nodes and links, then the manipulations the productions perform affect the networks in
structurally the same way. Actually, in this example there is no necessary restriction to
small differences between the Images (although only small scalings of node sizes and link
thicknesses may be tolerable). If, however, the rough positions of nodes within an IM
were important (cf. the hierarchy diagrams mentioned in Section 2) then large differences
would not be tolerated.

In later more detailed models it may be appropriate to recast spatial tolerance as a
mathematically rigorous form of continuity of the function from Images to production
effects.

IF-Value Tolerance

A property similar to spatial tolerance is that two patterns which differ only by
small variations in the IF values used have essentially the same effect on the production
system. A related assumption is that individual IF values do not carry significant infor-
mation. This is intended to exclude the possibility, say, that a set of data structures is
given a numerical encoding, so that a single IF value could represent a complex piece of
information. It is definitely the patterns of IF values which are intended to be the infor-
mation bearers at the level of description used in this paper.

Images are the Essence

A strong assumption throughout this paper is that Images are essential to the com-
putation in an IM system. That is, there is no other system of data structures of which
Images are merely recodings and in which the real computation takes place. This
assumption explains the intent of the term “‘entire’” in the first sentence of the Main
Postulate.

Simplicity and Locality of Productions

The productions are simple and local in the following sense. The condition parts
mostly check for the presence or absence of simple combinations of patterns which are
small compared to the size of an IM and which are recognizable by the basic pattern-
recognition mechanisms. The testing of a condition part does not affect Images (except in
so far as the processing of a condition part, or the selection of the action part for execu-
tion, may cause changes such as highlighting). The action part of a production is a sim-
ple sequence of primitive operations, with no branching or looping. (These primitive
operations include input/output to other systems in the brain - e.g. vision preprocessors
and motor systems - as well as Image-manipulation and pattern-recognition operations.)
There are no local variables in productions — their effect must be achieved in other ways,
such as by highlighting or by other placement of special marks in Images.

An exception to the locality of condition parts is that the manipulation of pictorial
Images may require response to patterns convering a large region of an IM. It is also con-
Jectured that such matters as parallelism of lines, symmetry of patterns, and repetition
of patterns are aspects of Images which can be detected by the basic pattern-recognition
mechanisms, even when the patterns involved in the symmetry and repetition cases can-
not in themselves be recognized by those mechanisms.
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Connexions between Productions and IMs

Productions are envisaged as being, by and large, tied to individual IMs, and pro-
ductions tied to different IMs may generally execute in parallel. In implementation terms
we therefore envisage a multiplication of mechanisms — e.g. in a network system each IM
has its own mechanisms for detecting nodes. The tying of a production to a single IM
means that its Image execution and manipulation is confined to that IM. We allow a
relatively small number of productions to be permanently tied to more than one IM.
Also, a production which is tied to a single IM may dynamically select another IM to
serve as temporary storage. For this grabbing of storage to make sense, we attach to
each IM an activation strength: an inspectable measure of how intensively it is currently
in use. The lower the activation strength, the more likely the IM is to be grabbed. These
measures are a small amount of data in excess of that contained in Images themselves,
and therefore detract slightly from the *“‘purity’ of the IM system.

Distinguishability of IMs

It is possible for different IMs to be used in distinctly different ways and for their
productions to be distinctly different. For example, different IMs might be used to hold
very different types of network, requiring different sorts of processing. In such a system,
therefore, the information provided by an Image (that is, the meaning of an Image) is
not completely defined by the sort of pattern the Image is — we have to bring in the
identity of the IM the Image occupies. Now, one could push the distinguishability of IMs
to an absurd extreme, by having as many distinguishable IMs are there are different
data structures that we want the system to manipulate! Let us say there are M such
data structures. Let each IM consist of a single imagel with a single IF with two possible
values, 0 and 1. Let there be just one production working on each IM; this production is
triggered by its IM being “on” (that is, the IF value is 1) and acts by switching its IM
off and switching some IM on. Clearly, such a degenerate IM system violates the spirit of
IM systems. A less degenerate IM system is obtained by having only log,M switch-like
IMs, allowing any number of them to be on at once, and allowing productions which can
detect the state of an arbitrary number of switches. There are then M possible states of
the whole IM set. Such a system still violates the spirit of IM systems. (It should be
noted that this system is similar to Hebb-like neural assembly systems.) The important
point revealed, however, is that there is a continuum of possible types of IM system
going from the degenerate sorts just mentioned down to the more genuine sorts dis-
cussed previously. Different systems on this continuum allow differing amounts of infor-
mation to be encoded in the distinguishability of IMs. We assume that the brain’s IM
system encodes relatively little information by IM distinguishability. A small amount of
such encoding is probably unavoidable in practice.

Activation Strengths of Productions

Another sort of non-Image data which we allow if not taken to extremes consists of
the activation strengths of productions. We envisage that one of the things a production
can do is to specify that a certain set of productions are to be made more active or less
active. The condition parts of productions which are more active are more likely to be
satisfied, other things being equal. This feature is included so that the production system
can be in different processing modes at different times. The intent is, however, that these
modes define what processing is to occur only in a gross sense, and are not used to
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impose fine control over production executions.

Creation and Deletion of Productions

[t is not proposed that productions can create and delete productions. We do, how-
ever, allow the existence of gross mechanisms, over and above productions themselves,
which can produce or destroy productions. For instance, there may exist a strength-
decay mechanism and a stipulation that a production with strength zero is destroyed.
There may be a mechanism which automatically generalizes sufficiently similar produc-
tions to produce a new, more general production. We shall not dwell on these possibili-
ties in this paper.

In a number of proposed semantic network systems (e.g. Norman and Rumelhart
(1975), Mylopoulos and Levesque (1979)) pices of network can be executed as programs.
Thus there is nothing to prevent some of the important high-level processing in an IM
system being defined by explicit Image information rather than by the nature of the pro-
ductions. The productions would serve to interpret the explicit Image ‘‘programs’.
(Indeed, this is what happens in the Lisp-interpreter exercise mentioned in Section 4.2.)
In a system containing executable Images, productions can of course create and destroy
executable Images (which may themselves represent productions).

The Nature of the Brain’s Images

It is not the purpose of this paper to fix the precise class of Images the brain's IM
system can manipulate. We can, however, make some general, plausible conjectures:-

a) Images at many different points on the pictorial-spatial-propositional axis are
extensively used in various different types of problem-solving. In particular, spatial
analogue is extensively used.

b) In propositional (parts of ) Images, the main structuring primitives are:-

— adjacency of patterns (much as in the adjacency of a node and a link, or of a
label and a node; we also include pattern containment as a form of adjacency)

— linking of patterns by line-like or ribbon-like patterns (such as the links in
network-Images)

—  pattern association within and between IMs (see Section 4.3).

c) The adjacency and linking in (b) are used, in particular, to associate pictorial
sublmages and propositional subImages.

d) Network Images which are in a gross sense similar to the diagrams of semantic net-
works in the literature are extensively used, as are networks which are partly pic-
torial or spatial. (The nature of labels in networks receives some discussion in Sec-
tion 7.)

e) The patterns which can be recognized by the basic pattern-recognition mechanisms
include: blobs, lines, circles, and other simple shapes (e.g. for nodes); outlines of and

stylized sketches of commonplace physical objects®; and patterns used for labelling
purposes.

* “Stylized sketches’’ can be patterns similar to the feature map patterns arising from visu-
al perception of physical objects.
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It would be wrong to imagine that the class of Images usable in the brain’s IM sys-
tem constitutes a language in any sense which implies that there is a precise semantics of
it in terms of the world outside the particular brain concerned. There is indeed a precise
semantics — the precise effect that the presence of Images has on the brain. If this is to
serve any purpose, of course, we expect some correspondence between certain Images and
the external world and we expect that the manipulations of those Images reflect possible
changes in the world. However, it may well be that that correspondence and reflection is
only approximate, incomplete and oversimplified. In sum, it is a mistake to assume that
the data structures manipulated by the brain need represent anything except in a loose,
approximate sense.

Long-term Storage of Images

IMs hold only short-term (very temporary) data structures. We assume that the
activation strength of an IM decays very rapidly unless productions are continually at
work on it. The question therefore arises of the form that long-term knowledge takes.
Certainly, we already have a rough characterization of long-term knowledge: namely, as
the set of productions. Here we propose that there exist also a dynamically-changing,
very large population of ‘long-term IMs’’ (LTIMs) whose function is to hold Images for
periods much longer than is possible in the short-term IMs (STIMs) which we have con-
sidered so far. The role of LTIMs is roughly described by the following postulates.

(1) STIMs are implemented in such a way that Image interpretation and manipulation
is efficient but the brain does not have enough physiological resources to contain
enough STIMs for long-term storage purposes. LTIMs are implemented in such a
way that enough of them can be present, but Image interpretation and manipula-
tion within them is impractical.

(2) LTIMs can be permamently grouped together, to allow storage of data structures
which do not fit into one LTIM.

(3) Some LTIMs are permanently associated with productions. A production can cause
the Image in an LTIM permanently associated with the production to be copied
into a specific region in an STIM.

(4) A production can cause an LTIM group to be created and some Images or specific
subImages to be copied into the LTIMs in the group.

(5) Just as in the case of STIMs, each LTIM has an activation strength. High-
activation LTIMs continuously compete to have their Images transferred into low-
activation STIMs. This competitive tranfer mechanism is, aside from the possibility
of productions changing the activation strengths of STIMs and of LTIMs, indepen-
dent of and concurrent with the workings of the production system.

(6) A production cannot change the Image in an existing LTIM. It is possible that
LTIMs are occasionally destroyed by mechanisms independent of the production
system (e.g. decay mechanisms).

(7) There is an LTIM/STIM counterpart to the inter-STIM pattern-association primi-
tive: namely, when an STIM and an LTIM contain sufficiently similar patterns (in
sufficiently similar contexts) and the LTIM’s activation-strength is sufficiently high,
the activation strength of the LTIM may be boosted (thus making it more likely
that the LTIM's Image will be loaded into an STIM). This association primitive
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probably works much more slowly than does the inter-STIM association primitive.

We need not commit ourselves to the presence of a direct inter-L TIM pattern-association
primitive of any sort, although it would be advantageous. If such a primitive is not
present, indirect inter-LTIM association can occur via the STIM-LTIM pattern-
assoclation primitive together with the inter-STIM pattern-association primitive.

If the brain does manipulate network-like Images, then only temporary networks
(e.g. parts encoding viewed scenes or natural-language input) can lie in STIMs, since the
Images in STIMs decay very quickly unless continuously operated upon. However,
LTIMs can include network-like Images, and these Images can be ‘linked” to nets in
STIMs by virtue of (3) and (7). For example, a node label can be detected by a produc-
tion which then (as in (3)) loads into an STIM some permanent piece of net which holds
information which is meant to be keyed by the label.

Section 6.2: The Link to Perception

We now turn to question (Q2) posed at the beginning of the Introduction:

(Q2) How does the manipulation of data structures derived from perceptual input fit in
with the brain's data structure manipulation generally?

The data structures derived directly from visual input are the feature maps, as proposed
in The Feature Map Hypothesis for Vision in the Introduction. It should come as no
surprise (especially in view of the discussion in Section 3) that we now propose that
feature maps are just pictorial Images with a special origin.

Vision Postulate

During visual perception, some of the brain’s STIMs are the receptors of retinal
stimulation which has been preprocessed into feature maps. That is, Images which
are feature maps are continually being generated from retinal stimulation. The
examination, manipulation and transformation of feature map Images is but a spe-
cial case of the general operations of the IM production system, and IMs which are
used to hold feature maps can also be used for the manipulation of internally-
generated Images (which need not be at all spatial).

It is still assumed that all STIMs (and now LTIMs) are isomorphic and use the same set
of IF's. We must therefore suppose that there are at least as many IFs as are needed for
the purposes of feature maps. In fact, there are probably several more. The IFs which
are used in feature map Images to encode features of retinal stimulation do not thereby
necessarily have a special interpretation in Images which are not feature maps. However,
an internally-constructed pictorial Image depicting a situation S can be similar to a
feature map Image resulting from looking at S.

The Vision Postulate explains two aspects of our model schema which may have
been puzzling the reader: the insistence on 2D IMs and the insistence on a collection of
IMs rather than a single much larger IM. The explanation is the desire to have a uniform
system in which externally generated and internally generated Images are essentially of

6.7



the same type. The sources of this desire are in turn explained in Section 7.
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SECTION 7: DISCUSSION

The claim is that the IM-system proposal for the brain provides a workable answer
to the three questions that we posed in the Introduction. Part of the purpose of this sec-
tion is to argue that this answer is, moreover, a good, though as yet schematic, one. At
the end of the section we mention a few putative objections to the model.

Much of our case rests on the elegance and economy resulting from (a) postulating
a continuum of data structures which includes “pictorial images” and propositional data
structures merely as extreme cases, while (b) reducing the problem of the implementa-
tion of the brain's temporary data structures (question Q1) to that of implementing cer-
tain simple pattern-holding media (the IMs) and certain simple, powerful and general
primitive operations working on those media.

A very important part of (b) is that a solution is given to the problem of frequent,
temporary, not-explicitly-foreseen, not-previously-encountered association of infor-
mation. This association of information should be one of the main concerns of any
theory which purports to explain cognition in terms of data structure manipulation, and
to explain data structure manipulation in terms of physiological mechanisms. In our
model the association largely takes the form of

— the adjacency of patterns within IMs

— the association of patterns within and across IMs by means of the pattern-
association primitive of Section 4.3.

— and the explicit linking of patterns within IMs (as in a network-Image system).

Even if other parts of the theory turn out to be wrong, the idea that association of infor-
mation takes these forms in regular networks of imagel-like entities may still be impor-
tant and substantially correct.

The postulate that IMs in the brain are 2D and that there is a multiplicity of them
calls for some justification. Recall from the Introduction that the basic assumption
underlying question Q2 (concerning the relationship of perception to cognition as a
whole) was that perception consists of decoding feature maps. Let us accept that feature
maps are Images in 2D IMs as defined in Section 3. Suppose now that we were to pro-
pose an IM system as the basis of non-perceptual cognition, but that we did not a priori
commit ourselves to the system having only 2D IMs or to having a multiplicity of them.
It would then, anyway, be a good move for the sake of a simple and uniform model to
restrict initial attention to systems in which all IMs are alike (and are therefore 2D
because of the feature map assumption) and in which there must be a multiplicity of IMs
(because by the feature map assumption an IM is constrained in size). We are thus using
a methodological appeal to simplicity to justify the adoption of many, 2D IMs, with
feature maps just being Images with a special origin. Furthermore, the necessary
interpretation and manipulation operations may be considerably simpler in the case of

2D IMs than in the case of higher-dimension ones.”

* Another possible justification is that it would surely be easier to explain the evolution of
human cognition from perception in lower organisms if we accept the feature-map-oriented IMs of
our model than if we adopt a more elaborate system.
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Why is it that we propose that the brain uses Image notations at intermediate
points on the pictorial-propositional axis? The first point to note is that we are virtually
forced into such a proposal by the very vagueness of the terms “pictorial’” and “proposi-
tional”. There is no particular line we can reasonably draw near either end of the axis.
This point follows from the considerations of Section 2. A more concrete argument is
simply that intermediate notations are useful. Some earlier sections support this, but we
can conveniently summarize some of the points here.

Suppose we do accept that the brain finds it useful to manipulate pictorial Images
in the course of some types of problem solving, and to manipulate propositional Images
in other types of problem solving. It is then virtually immediate that it will find it useful
to manipulate Images which are ‘“‘mixed” — partly pictorial and partly propositional.
This is simply because in some problems aspects of a situation described in a single
Image may best be described pictorially whereas other aspects may best be decribed pro-
positionally. Also, suppose even that it superficially appears appropriate to use two
separate Images, one pictorial and one propositional, to describe a physical situation.
Recalling the discussion of blocks-world problems in Section 5, we see that the desirabil-
ity of a simple means of associating parts of the two Images suggests that the proposi-
tional Image be laid out pictorially, and even that it be superimposed on the pictorial
Image.

Recall that it is claimed that spatial indexing accounts for a lot of the usefulness of
pictorial diagrams, and that there are forms of non-pictorial diagram which are also use-
ful as a result of their spatial indexing (or perhaps analogue-spatial indexing in the ter-
minology of Section 2). It follows by analogy that non-pictorial spatial Images and
analogue-spatial Images will be useful in some types of problem solving.

The ability to plan optimal routes along paths in space can easily be envisaged to
have evolved into an ability to plan searches in search spaces portrayed as network
Images. We assume the network is laid out in such a way that the length of a link is
approximately proportional to the cost of traversing the link. The path-finding tech-
niques which were evolved for spatial tasks could be used to find a set of search paths
which have a good chance of being of minimal cost. These paths could then be examined
in more detail by non-spatial computation. This suggested planning technique is like one
mentioned by Sloman (1972). An intersting toy example of its potential is provided by
Amarel’s (1968) demonstration that certain diagrams of the search spaces in generalized
Cannibals and Missionaries problems rapidly suggest to a human viewer, by virtue of
their spatial layout, that a solution does or does not exist and what rough solution stra-
tegy should be followed.

Venn diagrams provide a paradigmatic example of how spatial-analogue diagrams
can facilitate simple logical deductions. It is conceivable that some such technique
(perhaps using Images similar to diagrams of the “mental models” suggested by
Johnson-L aird (1980)) is used in the brain’s IM system.

A common theme in the examples presented is that manipulations which can be
conjectured to have arisen originally for use on pictorial Images can also be used on
other sorts of Image. For instance, the mechanisms which notice adjacency and contain-
ment of pictorial patterns in IMs (and certainly such noticing is important in pictorial
simulation of world activity) can be deployed to notice adjacency and containment of
non-pictorial patterns (and certainly such noticing is fundamental in the network-Image
manipulations of Section 4). Such unity of operation is also possible at higher levels of
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Image manipulation/interpretation. For instance, a production system segment which
was capable of finding routes along paths over physical terrain could be deployed for
finding routes through a propositional network-Image. On a more general plane, mechan-
isms which notice similarities and regularities in pictorial Images could be used for the
same purpose in non-pictorial Images.

Language in Thought?

The Vision Postulate renders perfectly plausible the following conjecture, which
may at first sight be startling: that ‘‘naturel-language fragments could appear as data
structures in internally-generated Images”. Or, more precisely: internally generated
Images can contain interpretable patterns which are similar to those appearing in feature
maps when a person is looking at natural-language text. Such patterns could, for
instance, act as labels in network Images. Given the Vision Postulate, it would be
surprising if we forbad such use of “‘natural-language fragments”, since of course the IM
system of anyone who can read must be able to recognize and interpret natural-language
fragments in feature maps. To be sure, the difficulty of manipulating an Image goes up
with the complexity of the natural-language fragments within it, and the interpretation
of those fragments may entail the manipulation of other data structures (in other IMs).
However, assuming that in the normal literate adult the commoner words are recognized
by the basic pattern-recognition mechanisms, fragments which are single words do not
pose any major problem deriving specifically from the fact that they are words as
opposed to some other sort of sublmage. Labels in network Images have to be patterns
of some sort, and they might just as well be “words" as anything else. In fact, the use of
words constitutes a measure of economy, since words must be interpretable in any case
for the purposes of reading. Also, translation of data structures to and from pure
natural-language form for the purpose of external communication is likely to be
simplified.

Of course, it is not being suggested that natural-language fragments appear in
internally generated Images of adult illiterates or young children (except in that the frag-
ments may happen to lie in feature maps which have been transferred to LTIMs and
later read back into STIMs). Also, this paper refrains from speculating about how usual
it is for natural-language fragments to be used in internally generated Images, even in
the case of normal adult literates. It is certainly not being suggested that such things as
network labels must be natural-language fragments.

The proposal that textual natural-language fragments can appear for general cogni-
tive purposes is a version of the idea that language is used in a literal way in thought.
However, our proposal only makes a statement about unconscious thought (recall the
note about consciousness in the Main Postulate in Section 6). Also, the IM model’s con-
jectured use of language is considerably more sophisticated and flexible than that
envisaged by a proposal in which there are functional components of the brain which are
constrained to manipulate only natural-language fragments. There is no reason, of
course, why on occasion an Image could not be entirely made up of natural-language
fragments. Finally, the possible use of “auditory’” natural-language fragments is touched
on briefly in the next Section.
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Some Objections

We now turn to brief consideration of some arguments which might be levelled at
the model. One we can reject very quickly is the suggestion that the IM model involves
an infinite regression because Images must be ‘‘seen” by some homunculus whose cogni-
tive abilities are presumably explained in terms of Images, ... The Images in our theory
are not ‘“‘seen’’ in any sense stronger than that in which the bit strings in a computer are
“seen’ by the hardware which interprets and manipulates them.

Four putative objections which the author intends to discuss elsewhere are:

(1) that the number of LTIMs needed puts an implausibly large information-storage
load on the brain (this argument is linked to objections by Pylyshyn (1973) that it
would be implausibly expensive for the brain to hold a large stock of visual images)

(2) that a memory based on LTIMs would result in unprincipled loss of information
from long-term Images (again, this is based on objections by Pylyshyn (1973,
1978b), and also by Palmer (1975), to visual-imagery theories)

(3) that the fact that blindness does not appear to impede general cognitive abilities
may prove to be fatal to the model, in view of the strong link in the model between
visual processes and the rest of cognition

(4) and that if, as seems natural, there is in fact a fairly close link between the visual
images which appear to be present in consciousness and the pictorial Images the
brain is supposed to manipulate, then it remains to be explained why we cannot
have conscious visual Images similar to the propositional Images using the brain’s
own private notation (if, indeed, we cannot).

We can make the following brief observations about these objections. Concerning (1), so
little is known about the physiological information-storage methods and capacity of the
brain that the objection is without sensible foundation. Concerning (2), it has not been
adequately shown that forgetting does not involve unprincipled loss of information, and
in any case that objection involves a totally unwarranted assumption that mon-image
information items would themselves necessarily be implemented in such a way as to
avoid unprincipled loss of information. Concerning (3), it is not clear to the author
whether there exist forms of blindness whose nature would dictate, in a reasonable,
detailed IM model, postulation of failure of some physiological machinery essential to the
IM system; so it i1s difficult to assess the importance of this objection. And concerning
(4), the problem is but our version of, and is no more puzzling than, a general unsolved
problem for any theory which is based on the Data Structure Hypothesis and in which
not all of the supposed data structures are manifested in some direct sense in comnscious
thoughts. The problem is precisely this: why are not all the data structures so mani-
fested?
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SECTION 8: CONCLUDING REMARKS

The IM model schema has been put forward as an answer to the three questions Q1
- Q3 posed in the introduction. Each of these questions was asked in the context of a
certain strong assumption. Naturally, there is no implication that the model follows ines-
capably from these assumptions. Our answer is admittedly only a model schema, not a
precise model, and does not of course answer the three questions to the ideal degree of
detail. The schema has many parameters which will need to be given ‘“‘values” for a pre-
cise model to be forthcoming and therefore for the results of psychological and physiolog-
ical experiment to be relevant. Some of the parameters are:

— the size of IMs

— the number of short-term IMs

— the number of IF's and the nature of their value spaces
— the precise nature of the production system

— the speed of operation of the primitive operations

— the precise nature of the pattern-association mechanism
— the precise class of Images used in IMs

— a precise set of tasks for the system to perform.

Perhaps the first predictions which would be testable by psychological experiment would
concern the capacity of short-term memory and the dependence of rates of processing on
complexity of the data structures involved — this rate being partially governed by the
size and number of short-term IMs, the extent to which data structures fit into single
IMs, and the amount of spurious inter-IM pattern-association which interfers with the
desired processing.

The issue of the precise physiological implementation of IMs and productions has
been largely uncoupled from more abstract issues of the nature of the Images used and
of their use. Therefore, we could proceed in the relatively near future to specify a
simplified cognitive model which is precise in its abstract aspects but leaves the question
of detailed physiological implementation open. Conversely, we could pursue a parallel
investigation into how IMs and productions could be physiologically implemented (or, at
least, implemented in terms of idealized physiological mechanisms, e.g. simple pseudo-
neurons) so as to facilitate the sort of primitive operations we discussed in Section 4.2
and 4.3, while leaving open the question of whether these operations are ultimately des-
tined to be the correct ones. We may therefore justifiably claim that the IM model
schema is very rich in suggestions for further interesting and feasible research. This
richness and detail constitutes in itself a major incentive for studyiong the IM model,
and the research generated would probably remain of interest even if the schema were
eventually shown to be erroneous. We may admit that the IM model is highly specula-
tive, while remarking that the degree of speculation is no higher than that of previous
attemts to describe the general information-processing machinery of the brain.

The author is embarking on a series of computer-simulation exercises whose aim is
to show in detail how an IM system can perform useful computation. An early exercise
(on which work has started) will be a computer simulation of an IM system which acts
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as a diagrammatic form of the production system language PSG (Newell (1973)). (The
list structures which PSG productions work on will become abstract Images.) This exer-
cise will do much to clarify the feasibility of the basic pattern-recognition and manipula-
tion operations suggested in Section 4. Another rather similar exercise (which is also
already under way) is the computer simulation of an IM implementation of the program-
ming language Lisp. Aiming in a somewhat different direction, a later exercise will be to
simulate an IM system capable of simple pictorial event simulation (manipulating pic-
tures of physical situations to effect simple problem solving). A succeeding exercise will
add limited abstract annctational elements to the pictures. The last of the currently
envisaged series of exercises will be the simulation of an IM system which manipulates a
certain network-Image notation and can cope with the inclusion of limited pictorial ele-
ments.

The claim that the schema will fruitfully repay further stduy is a methodological
Justification for it. The other main justification is again a methodological one: thet the
deployment of the basically simple idea that “the brain’s data structures are diagrams”
simultaneously does all of the following. First, it allows “pictorial images” and proposi-
tional data structures merely to be different points on a unified notational axis which
also includes interesting forms of hybrid notation. Second, it is the start of a physiologi-
cal account of how pieces of information (in the form of sublmages) can be brought into
purely temporary and unforeseen association. This is a fundamental capability of
computer-implemented information-processing systems, and has been transported to a
brain model without the need to transport the (numerical) location addressing used in
conventional computers. Third, the schema has the desirable property that it incor-
porates the perceptual feature maps in a principled (not ad hoc) way. '

The schema postulates that most of the data manipulated in cognition is encoded
in patterns in IMs. As we observed, however, some information is contained in other
places and therefore detracts from the “purity” of the IM system. The main impurities
are: that the basic (perhaps Hebb-like) pattern-recognition mechanisms acting on IMs
can be seen as manipulating data structures; that the identity of an IM in which a given
Image resides may be important in the case of some IMs; and that IMs and productions
have activation strengths. It is claimed that these forms of data are merely impurities
because they are relatively uninformative compared to the Images themselves.

Although the precise nature of the Images manipulated in a brain is not specified
by the model schema, we have conjectured that some of them are broadly similar to the
network diagrams one finds in the literature. An interesting consequence of this is that it
elevates net diagrams from the status of illustrations for the benefit of network research-
ers to the status of bona fide data structures. We could even conjecture that part of the
reason we find network diagrams useful externally is precisely that they are reasonably
similar to network ‘‘diagrams’ used internally, so that mechanisms which interpret net-
work Images can also be deployed in the interpretation of feature maps arising from per-
ception of external network diagrams. We might go on from here to suggest that our
fondness for many other particular sorts of external notation (at various points on the
notational axis) is to be explained partly by a broad similarity to Image notation used
internally. It is far too early to evaluate the worth of these conjectures, and their falsity
would not disconfirm the IM model schema. One point to observe is that the sorts of
external notation we use may influence the sorts of Image we manipulate. Exposure to a
particular form of graphic notation could train the IM system in the manipulation of
similar notation in Images. Indeed, the suggested use of natural-language fragments is a

8.2



case in point.

There are major topics on which this paper has been silent but which will have to
be tackled eventually. Some of the most important of these are: the detailed use of IMs
in the understanding of spoken and written language; the inclusion of mechanisms to
organize motor activity; and the detailed use of IMs in perception. The Vision Postulate
is but a special case of a braoder but more tentative idea about the incorporation of per-
ception as a whole. This broader conception has it that auditory and tactile perception,
and some proprioception, also operate by preprocessing receptor stimulation into Images
(the IMs associated with different modalities being non-isomorphic) and that these IMs
are as much an integral part of the whole IM system as are the vision-oriented IMs of
this paper. ad This conjecture generates an expansion of the class of Images plausibly to
be suggested as occurring in the brain. In particular, it becomes possible to suggest the
use of auditory natural-language fragments as well as graphic natural-language frag-
ments in Images, thus getting over the problem that graphic ones are only functional in
literate brains.

The radical and speculative nature of the model should not blind us to the fact
that the computational mechanisms proposed for the brain are but a natural extrapola-
tion from those used in computers. Instead of a linear store (of locations) we have a
group of 2D stores (made up of imagels); instead of bit strings in locations we have IF
values at imagels; instead of the association of information by location adjacency, loca-
tion addressing and content addressing (bit-string association), we have association of
information by imagel and pattern adjacency, linking by line-like patterns, and
“pattern-association’; and instead of the basic method of decoding the bit-string from a
single location, we have the basic, sustantially local pattern-recognition mechanisms.
This computer analogy, together with the current trend in hardware development, then
renders it not inconceivable that artificial IM systems implemented on special parallel
hardware will some day be of use.
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