TOWARDS A THEORY OF

ENCODED DATA STRUCTURES AND DATA TRANSLATION

Ben Shneiderman

Stuart C. Shapiro

Computer Science Department
Indiana University
Bloomington, Indiana

TecHNIcAL ReporT No. 13

TOWARDS A THEORY OF
ENcODED DATA STRUCTURES AND DATA TRANSLATION

BEN SHNEIDERMAN
STuArRT C. SHAPIRO

Revisep: June, 1975

TOWARDS A THEORY OF ENCODED DATA STRUCTURES AND DATA TRANSLATION
by Ben Shneiderman and Stuart C. Shapiro

Department of Computer Science, Indiana University

Abstract
Several models of data base systems have distinguished levels

of abstraction ranging from the high level entity set model down to
the low level physical device level. This paper presents a model
for describing data encodings, an intermediate level which focuses
on the relationship among data items as demonstrated by contiguity
or by pointer connections. Multiple data encodings for a file are
shown and transformation functions which describe the translation
between data encodings are discussed.

Key Words: data encoding, data translation, data base systems,

data description.

Numerous attempts have been made to develop a theoretical foun-
dation for describing data base systems. Recent work has suggested
a multileveled approach which clearly separates the logical aspects
from the physical aspects.

The well thought-out DIAM model [1], provides a comprehensive
four-level view of data base systems. The highest level, the entity
set model, reflects the users view of the data and is heavily influ-
enced by Codd's work [2] on the relational model. The next level,

the string model, describes the logical access path structure and

draws heavily on graph theoretic notions [3,4]. More closely re-

lated to the implementation details is the encoding model, which

focuses on the internal representation and encoding of storage struc-

tures. Finally, the physical device model deals with the placement

of encoded data on the physical storage media.

Earley's work [5,6] distinguishes relational level, access path
level and an implementation level. He envisions programming lan-
guages at each level and the progression through stepwise refinement
from abstract to concrete algorithms [7]. The lower level languages
enable the user to carefully specify more implementation details,
with the goal of improving efficiency.

Childs's early work [8] on set theoretic models to describe the
high level logical view has been supplemented by work on extended
set theory [9] to describe the implementation details.

These multilevel approaches provide useful divisions for deal-
ing with the complexity of a sophisticated data base system. Psy-

chologists can be employed to assist in the selection of high level

.

models and languages while experts in the operation of physical de-

vices can focus their attention on the machine-oriented aspects.

Mapping the entity set model into data encodings

This paper addresses the problem of describing the static rela-
tionships among data and provides the basis for mappings which des-
cribe the translation from one data encoding to another. The dyna-
mics of insertion, deletion and updating are beyond the scope of
this work.

We adopt the abstract perspective that the entity set model
can be mapped into one or more data encodings. Each of these map-

pings is an implementation of the logical view of the data (see Fig-

P

apre 1), thet 48, IT: L = B , where I is the implementation, f is
the space of logical data structures, and E is the space of data
encodings.

To clarify this basic notion, consider a one way list. The
implementation might be by a linked list strategy within the high
speed storage, by a linked list stretching over several disk blocks,
by contiguous allocation within a block, by contiguous allocation
plus links to overflow blocks, and so on. For a more complex case,
consider the logical view put forth by Codd's relational model. A
number of widely varying implementations can be envisioned for this
logical view.

While a number of formulations have been proposed for dealing
with the logical view of data structures, there is a dearth of tech-

niques for describing data encodings produced by a specific imple-

IMPLEMENTATIONS

LOGICAL DATA STRUCTURES

(ENTITY SET MODEL)

Eligure .

=

o b

ENCODED DATA STRUCTURES

(ENCODING MODEL)

trl»

TRANSLATION

i

mentation. Although the present model does not completely describe
the machine level details, it does serve as an intermediate descrip-

tive model.

The model

The basic components of a data encoding are blocks. A block

is an addressable, contiguous segment of storage. A block is divided
into elements, each of which is a field or a block. A field is a
contiguous segment of storage and is the smallest meaningful unit

of a data encoding. There are two kinds of

fields: data fields and pointer fields. The contents of a data field

is a data item which is an encoding of some piece of information

from the entity set model. The contents of a pointer field is a
pointer which addresses a block. For example, [fl’f2’f3’fuj repre—
sents four fields in a singlé block which are contiguous in the speci-
fied sequence, and [[fl’f2]’[f3’fujj represents a block consisting

of two contiguous sub-blocks, each of which contains two fields.

Def. 1. We define how blocks may be constructed from fields.

Let A be the null block.

Let F be some set of fields.

We now define BF’ which is the set of blocks using the fields
in F. EF does not include A.

55 0 - fi5...5f, for n 21 are in F, then [fl,...,fn] is

in EF' This shows how fields can be combined to form a block.

.

11% Af Eyveren®y Por n > 1 gre 1n F or dn 5 then [el,

FJ
...,en] is in EF' This shows how blocks and fields may be combined
to form a block. Note that a block which contains only a block is

not wvalid.

iii) that is all that is in BF'

~

Now, let By = EF u {A} . éF is the set of all blocks that can
be constructed from the fields in F plus the null block.

IF b= [geanye,] d dn ﬁF we call e;,1 <1 sn, the ele-
ments of b. We will want to talk about the number of elements in

a block.

Def. 2. If b = [ej,...,e] 1s in By for some F, then [b|2 = n

We will also need projection functions which select an element

from a block.

Def. 3. If Db = [al,...,en] is in ﬁF for some F and 1 < i

IA
=

then ﬁi(b) = eq .

Def. 4. We will use the symbol]]2=l for a sequence in the same
n

way that 'El is used for a sum. Thus, [||?_1ei] is the same as
i= =

[eg, eese 1.

B -

To describe a particular data encoding, E, we must describe:
1) D, the set of data fields.

2) P, the set of pointer fields (sometimes empty).

3) B, the set of blocks. B will be subset of ﬁDUp.
4) g, a function from P into B, which describes the pointer rela-

tionships among the blocks.

Examples of data encodings

At this point a clarifying example to contrast four possible
implementations is useful. Consider the representation of a file,
a, consisting of records, bi’ where 1 <= 1 < N , which in turn con-
sist of a student number field dio and three exam grade fields: dil’

s} and d

i2°? 13"

A) The first implementation shows the records to be arranged

sequentially with contiguous fields within each record (see Figure

2a) .
D = {dij 1= 4 = N,0= J & 3}
P = ¢, the empty set
B = {al} v {bi|1 s 1o Pl
a = £||$_ b,J l.e., lal, =N and w,(a) = b,
i=1"1 e i i

For each 1, 1 < i < N
by = [dy45d;5759555d;3]

i.e.; |byl, =4 and for 0= J <3 nj+l(bi) = dyy

g 1is empty.

Figure 2.

s | g | Byq | Gy § G4g
(2a)
io | Pio
di1 | Pi1 P %12 | Pa2 P Y13 | P13
(2b)
. dip | P11 | Pi2 | Pi3
Y VY
\ 4
ds9 || 912 || Y43
(2¢)
S50 | Ps
Geq | %2 | %53
fod)

-8- i

B) The second implementation shows each record as a one-way list.

The records are sequentially arranged (see Figure 2b).

D = {dij|l ed % B.b= g & B}
P = {pijll 1z N,O0 =g = 3}
B = {a}l u {bij|1 < 1< N,0 £3 £ 3} v 14}

For 1 = 1 = N;0 = J:=<= 350 2k 22

a = []11ob10] lal, =N mia) = vy,

byy = [dij,le] |le|e = wl(biJ) = dy; ﬂz(biJ) = Pyj
8(Pyy) = Py

g(py3) = A

C) The third implementation is by the use of the pointer array

technique for the grades within each record (see Figure 2c).

D= {dij|l 2= B0 24 = 3%
P = {pikll 24 2 Nl £ ¥ £ B}
B=fa}u{b,|1l<1isN}vude,fls1isN,1z2ks=3}

a = [|]1ap4]

Por L= T sN,0 5 J = 3,2 £ k35 3

|a|e =N w;(a) = by

by = [d345Py795P3,5P43]

by [=% my(bg) = dyg My (by) = pyy
¢y = [d4] lcikle =1 ﬁl(cik) = d,.

g(pik) = S

-0—

D) The fourth implementation simply splits the first data field

in each record from the remaining three (see Figure 24).

D = {dijll <12 N,0=9 = 3}
P = {pi|l < i s N}
B = {a} v {by|1 < i <N}y {c;|1 =1 =N}
For I <€ 1< N1l £ k< 3
a = [l‘§=lbi] lal, =N m(a) = by
by = [d3g5p31 byl =2 my(by) = a4 my(by) = py
¢y = [d375d55,d35] legl, =3 mley) = dyy
g(py) = ¢y

A final example describes the DBTG Report concept of a set imple-
mented by chain with next and prior pointers. The set S consists
of an owner record with three data fields, r, s, and t, and N mem-

ber records each with two data fields, u and v (see Figure 3):

D = {r,s,t} u {ui,vi|i < 1 < N}
P = {ni,pi|0 < i < N}
B = {a} v {bill £ 5 2 M
g = [r,s,t,no,pO] |a|e =5 w8 = wyla) = ng

wg(a) = 3 ﬂS(a)

|
42
o

ﬂ3(a) = g
For 1 = i = N

by = [ug,vyong,pyd Ibyl, =4

na

Figure 3.

-

S i

m(bg) =uy wylby) = vy malby) =mny wWylby) = py
By Gimd 3 N

gln,) = ﬂa % o i
By L<1=N

glp;) =4, ;=1
by i=0

Prescriptive model

The descriptive model presented thus far is useful as a formal
tool for communication among implementers and serves as a basils for
a component of the total data description task. Such data descrip-
tion facilities are needed by those attempting to improve data struc-
ture implementations [11,12], create data base systems simulators
[13,14] and construct data translation systems [15,22].

The data translation paradigm is to develop a description of
source and target data encodings and a procedural translation facil-
ity to describe the mapping. We elaborate on the data encoding model
by adding transformation functions which describe translations from
one data encoding to another.

Keep in mind that the prescriptive model describes the relation-
ship between a source and a target data encoding; it 1s not a pro-
gram for doing the translation.

In the following definitions, E is some particular data encoding.

Def. 5. If d is a piece of information from some data that E encodes,
encodeE(d) is the data item in E which encodes d. Recall that

a data item is the contents of a data field.

=] 2=

Def. 6. If f is a data Fisld In E, meaningE(f) is the meaning
of the contents of f. That is, encodeE(meaningE(f)) is the data

item which is the contents of the data field f.

Def. 7. If f is a data field in a data encoding E' such that E'
encodes the same data as E, transE,E(f) = encodeE(meaningE,(f)) =

the translation into E of the contents of f.

Def. 8. If b 18 & bleck in E, refE(b) is a pointer to b. If p

is a pointer to b, fery(p) = b.

Def. 9. If f is a data field in E, ValE(f) is the data item con-
tained in f. If p is a pointer field in E, valE(p) is the pointer
contained in p. If b 1s a block in E, valE(b) = b. Note: if p is
a pointer field in E, g(p) = ferp(valg(p)). If b is a block in E

and Pq5P, both point to b, valE(pl) = valE(pz) = refE(b).

pefe 10: FE Cogavost are data items, pointers or blocks in E,
= 1 n
then consE(al,...,en) is a block, b, in E such that valE(wi(b)) =

e - That is, b = [f fn] where for 1 < i < n , valE(fi) = ¢

g o= oy 1°

We will now show how data encodings A-D above are related. In
what follows, we will use superscripts to show what data encoding
is belng used. We will show how to derive B from A, C from B, D

from C, and A from D.

..

B
NB o= NA -
Bor L= 3 2 N0 = 5 23, meaningB(d?j) = meaningA(dij)
B _
bilt_ﬂ
B
bij = cons(transAB(nj+l(ni(aA))),ref(b?j+l))
B _ N B
a- = cons(||i=lbio)
NC = NP = N
Por 121 2 H,0 = 3= 3
g C - B
meanlngc(dij) = meaningB(dij)
B
al = cons(||§=lcons(transBC(ﬂl(wi(aB))),
refC(consC(transBC(wl(gB(ﬂg(wi(aB))))),
refc(consc(transBc(ﬂl(gB(ﬂg(gB(ﬂ2(ﬂi(aB))))))),
ref(consg(transy, (m) (8°(my(e”(m, (8% (m, (7, (2)))1)))22))))))))
D
NP = nC =N

meaningD(dEj) = meaningc(dgj)
D NC c
a~ = consp(||{_;cons(trans,,(m (m,(a”))),
refD(consD(transCD(ﬂl(gC(W2(Wi(ac))))),
transCD(wl(gC(ﬂB(ﬁi(aC))))),

trans o (1) (87 (my (m; (29)))))))))

=P = N
1

For < I £ N30 §J £33

meaningA(dij) = meaningD(dEj)
al = cons(||?Elcons(transDA(wl(wi(aD))),
trans_, (1 (g°(m,(r, (aP)))))
pA" ™1 gy 2

transy, (m,(g"(m,(r, (2”))))),

transy, (15(g” (m, (1, (2”)))))))

Strong equivalence

Two encodings are strongly equivalent if they have the same block
structure, pointer structure, and the value of each of the data fields
in one encoding is equal to the value of the corresponding data fields
in the other encoding. Thus two coples of a record on the same or

a different disk pack are strongly equivalent.

Weak equivalences

Two encodings are weakly equivalent if they have the same block
structure and pointer structure but the values of the data fields

differ in value. Thus, two DBTG record occurrences of the same

o

DBTG record type are weakly equivalent. If the filelds had identi-

cal values, the records would be strongly equivalent.

Enhancements to the descriptive model

This basic descriptive notation can be enhanced in numerous
ways. To evaluate the efficiency of a particular encoding, a cost
function can be associated with each pointer, C:P - T where C
is the cost function, P is the set of pointers, and T is the cost,
typically in units of time or money. The cost of traversing a pointer
within a block is generally less than inter-block traversals. The
contiguous fields within a block are assumed to be available at zero
cost. A probability of request may be associated with each field
to further refine the evaluative model.

The storage space required can be determined by a simple count
of the number of fields. We write |b|f to indicate the number
of fields in a block. |[f|, =1 if f is in F and if b = [e,...e_]

n

then |[b|, = iEl[e|f .

To attach more meaning to the fields, that is, to provide an
interpretation for the abstract encoded data structure, a value func-

tion can be invoked. For example, to show that data fields d o

10°°°7NO
are in ascending order, we write:

Val(dio) < Val(di+l,0) 1 <i <N

Finally, we may consider inclusion of undefined fields. An unde-
fined field is different from a null pointer field. Undefined fields
are useful in describing space in a block which has been reserved

for future entries. This allows for descriptions of partially filled

~-16-

tables or available space lists which contain pointer fields and
undefined fields. Garbage collection, compaction, and reorgani-

zation become special kinds of translations.

Conclusion

The material in this paper provides the basis for developing
a model of encoded data structures. The fundamental motive has
been to characterize the contiguous and pointer based relationship
among fields in a storage facility. The model avoids 1ssues related
to physical devices and the detailils of pointer implementation, such
as whether pointers indicate absolute or relative storage addresses
or disk region addresses.

Other data description models pursue a more reductionist approach:
starting from high level logical data constructs they show how these
constructs might be represented in the storage space. Our construc-
tive approach to data description starts with a more precise low
level view and seeks to carefully model the data as it appears in
the storage space. This more formal approach distinguishes between
data fields and their contents, the data items.

The model serves as a useful basis for describing part of the
data translation task. The source and target data encodings can
be described and then the prescriptive model can be used to show
the relationship between them.

We have not attempted to present a language or operators for
data translation, but a prescriptive model which formally demonstrates
a mapping between two data descriptions. This formal model 1s nec-
essary if we are to prove the correctness of a translation and to

show that no information has been lost.

A

Further investigations are proceeding to describe hierarchically
organized collections, implicit pointer techniques such as hash cod-
ing, and specific transformations such as the permutation of elements

in a block or the replacement of a block by a polinter.

-18-

References

1. Senko, M.E.; Altman, E.B.; Astrahan, M.M.; and Fehder, P.L.
Data structures and accessing in data-base systems (three parts).
IBM Systems Journal 12, 1 (1973), 30-93.

2. Codd, E.F. A relational model of data for large shared data
banks. Comm. ACM 13, 6 (1970), 377-387.

3. Hsiac, D., and Harary, F. A formal system for information re-
trieval from files. Comm. ACM 13, 2 (1970), 67-T73.

L. Shneiderman, Ben, and Scheuermann, Peter. Structured data struc-
tures. Comm. ACM 17, 10 (October, 1974).

5. Earley, J. Towards an understanding of data structures. Comm.
ACM 14, 10 (1971), 617-618.

6., ———m———— . Relational level data structures for programming
languages. Acta Informatica 2 (1973), 293-309.

7. Schwartz, J.T. Abstract and concrete problems in the theory of
files. Data Base Systems, R. Rustin (Ed.), Prentice-Hall (1972),
1-22.

8. Childs, D.L. Feasibility of a set-theoretical data structure-—-
a general structure based on a reconstituted definition of rela-
tion proceedings. IFIP Congress, North-Holland Pub. Co. (1968).

I . Extended set theory: a formalism for the design
implementation and operation of information systems. Unpub-

lished manuscript.

10. CODASYL. Data Base Task Group Report (April, 1971). Available
from ACM, 1133 Avenue of the Americas, New York, NY 10036.

drks

12

13

14.

15

16.

1ifs

1.8

19.

B

Shneiderman, Ben. Data structures: description, manipulation,
evaluation. Ph.D. Thesis, State University of New York at Stony
Brook (May, 1973).

Severance, D.G. Some generalized modeling structures for use
in the design of file organizations. Ph.D. Thesis, University
of Michigan (1971).

Scheuermann, Peter. A simulation model for data base management
systems. Unpublished Doctoral Proposal, State University of
New York at Stony Brook (May, 1974).

Cardenas, A.F. Evaluation and selection of file organization--
a model and a system. Comm. ACM 16, 9 (September, 1973).

Sibley, Edgar H., and Taylor, Robert W. A data definition and
mapping language. Comm. ACM 16, 12 (December, 1973), 750-759.

Fry, J.P.; Smith, D.P.; and Taylor, R.w. An approach to stored
data definition and translation. Proc. ACM SIGFIDET Workshop
on Data Description, Access and Control (November-December,

1972), T7-106.

Fry, J.P.; Frank, R.L.; and Hershey, E.A. A developmental model
for data translation. Proc. ACM SIGFIDET Workshop on Data Des-
cription, Access and Control (November-December, 1972), 77-106.

Smith, D.P. A method for data translation using the stored
data definition and translation task group languages. Proc.
ACM SIGFIDET Workshop on Data Description, Access and Control
(November-December, 1972), 107-124.

Fry, J.P., and Merten, Alan G. A data description language ap-
proach to file translation. ACM SIGFIDET Workshop on Data Des-
cription, Access and Control (1974)

- =

20. Shu, N.C.; Housel, B.C.; and Lum, V.Y. CONVERT: a high-level
translation definition language for data conversion. Comm.

ACM (to appear).

21. Shoshani, A. A logical-level approach to data base conversion.
Proc. ACM-SIGMOD International Conference on Management of Data

(1975) «

22, Stored Data Definition and Translation Task Group Report (to

appear).

Typed by Christopher Charles

