Issues in Applicative Real-time Programmingx
by

Lennart Edblom and Daniel P. Friedman

Computer Science Department
Indiana University

Bloomington, Indiana 47405

TECHNICAL REPORT NO. 129

ISSUES IN APPLICATIVE REAL-TIME PROGRAMMING

Lennart Edblom and Daniel P. Friedman

August 1982

*Research reported herein was supported in part by the National Science Foundation under grant number MCS
77-22325 and grant number MCS 79-04183.

D.1.1 [Programming Techniques |-
Applicative (Functional) Programming;
D.2.1 [Software Engineering |:
Requirements/Specifications - languages;
D.3.2 [Programming Languages |:
Language Classifications - epplicative languages;
D.3.3 [Programming Languages |:
Language Constructs
General Terms; Applicative programming, real-time programming languages.

Additional Key Words and Phrases: Time-sensitive behavior, streams, hiatons, execution

time predictability.

Table of contents

oDCERIRREIN o nosenmmmetnsnsimisnstisess e s s S A R S A
. What is real-time programming?
. Real-time programming languagescccccceviiiiiiiiiiiiiiiiiie e
2.1. Language requirements for real-time programmingcccoceeeeeumenennnnn.
2.2. Language requirements for industrial real-time applicationsc............
. An approach to applicative multiprogrammingcccccccoiriiieiieriinnnrennnn.n.
3 1. Output-driven compPUtation aainimamv ivaiutinrwslseiuis iarassn o
3.2. Handling Indeterminismcooociiicimieiiiieienierireeseere s e s sesse s s e e e rannas
- Applicative Teal-tilie PIOFFAmTIIED . vyesusioswssiositismssssiivissiis s
4.1. Programming time-sensitive functions applicativelycccccovvvmimrreieeririennnnns
42, Execution tiitie predictability .ccuivammnmaimisaima s amsiatusmmismi
. Bnmamary-and conclnsTONS: v e i s RS b bs stk adin b rmansramaanes

B (s o 1 (o< TR

Issues in Applicative Real-time Programming

11

11

15

18

19

27

30

31

l
”I'I
a4
a1
21

i

It

iy ol

. b-f-'ui-k;'..-l-_—i_.j..h.w.....’a.:.'.i..'. 2 e i i b BB a8 A e dal s e 80“.”56‘:3“[L

s Fy i O BT A A e b 5 Tpoimms o suid-lost ai JadW |

S A e g ity e e v ORARRE] Birsavgon) walideail L

".'91-‘-‘!"""'.'\'.'C'W‘1"“';\',’-""pr m |W“.'L°;“ il ﬂ'ﬂ‘ﬂﬂﬂ!‘ﬂw wm‘] A .-'9

lu-\An..:--u’{,-rilirill.'f mﬂi"!?pﬂ‘ M‘Wlﬂltﬂﬂhﬂi “1 mﬂ"lﬂpﬁmw‘iylﬂ .J __,‘;‘,f'
e T asisrrmgorgidim svitesilgqe of dssorqgs wh &

et et et e el i e DOENMGENGY ABVITb-sg O L

et Wl s i
O OO . 1170 S E 17 TRV T | S LN
1 1 my i1 il

R s B e s ik e SSHEMEETROT) St leyy svitarilqgA b

e vermeees vrreenen e WiaviMEilgge aroloayl wvitiszamis goimmenyonti Lk
S PO U SR ||| S8 1 PEET- I TEY TS PRSP I 5
el i G e G IDEOY bug Py mud @

N L L ALl o) saf el et i rne mir— s PEEEEY R R PR E S Bt g B m""‘“’“ .ﬁ

el

poimmaigord sarit-lsafl svldenliqqi ol enowel

o

Issues in Applicative Real-time Programming

0. Introduction

In this paper we address some of the questions concerning real-time programming,
especially from the standpoint of applicative programming. First we would like to iden-
tify the characteristic properties of real-time programs. What are the building-blocks
they are composed of? Which requirements are they supposed to meet? We want to iso-
late the fundamental properties of real-time programming. When we have done that, can
we make these properties transparent and interface them into an applicative framework?
[low can we do that? If it Iis impossible, why is it so? Which crucial obstacles prevent us
from doing so? We do not claim to solve all these problems, rather we try to identify and
state the fundamental problems concerning real-time programming. Then we try to
apply tools invented by McCarthy, Landin, Friedman & Wise, Ashcroft & Wadge and

others to solve real-time problems using an applicative style of programming.

In the first section we try to answer the question about the nature of real-time pro-
gramming, and to de:-velop an idea of which requirements a real-time system must meet.
In the following section we investigate how this influences the design of high-level pro-
gramming languages for real-time applications, which primitives and which operations
that are needed in such a language. In particular, we take a look at a proposed standard
for real-time FORTRAN [Heller et al. 78]. We also consider why it is at all desirable to
develop good high-level languages for real-time programming.

Most real-time systems are naturally expressed as a number of components, operat-
ing in parallel with some degree of interaction. Consequently, we need tools to express
parallel processing, synchronization, and communication among tasks. It is therefore
appropriate to review an approach to applicative multiprogramming. That is done in

Section 3, where it is shown how communication and synchronization can be imple-

Issues in Applicative Real-time Programming

mented by means of streams [Landin 65], and how the problem of handling asynchro-

nous events can be solved using the multiset constructor frons [Friedman & Wise 80].

The centerpiece of the paper is Section 4, where we tackle some of the problems
concerning applicative real-time programming. The fundamental question is: Is it possi-
ble to express time-sensitive computations in an applicative style? We claim that it is
possible, and present a tentative approach to how it may be done by including objects
representing time, called hiatons [Faustini 82] , in the communication streams. We also
discuss the possibility of estimating the time needed to execute a sequence of code in an
applicative language, something which often is necessary to do in real-time program-
ming.

Finally, Section 5 argues that applicative languages may indeed be a useful tool in
real-time programming. They enable a programmer to write programs on a high level,
programs which will be easier to prove correct than today’s programs. When verified,

they can be transformed into programs more suitable for implementation and execution.

The reader is assumed to be familiar with the functional style of programming. If
not, consult [Henderson 80] or [Backus 78] for an intreduction.The applicative programs
in this paper are to a large extent written using a syntax similar to that of [Henderson

80).

1. What is real-time programming?

An ordinary sequential program is designed such that the computed results are
independent of the execution speed of their processors, or of any other external events.

To speed up computation one may use several concurrently operating processors. Pro-

Issues in Applicative Real-time Programming

grams using scveral processors consist of several routines, called processes, which are
themselves purely sequential and are executed concurrently. In existing programming
languages, communication between processes is accomplished via some kind of shared
variables and synchronization signals. However, such multiprograms still specify the
computed results independently of the absolute and relative speeds of employed proces-
sors. But suppose that certain processes - which are not programmable - may fail to
wait for synchronization signals. For example, the nonprogrammable process may be a
human, unwilling to wait for the results of his request longer than a certain duration.
We have then entered the field of real-time programming where the results of our pro-
grams, and cven more important, their validity, depend on the execution speed of the

utilized processors, and/or on external events.

The crucial property that distinguishes real-t;ime programs from other programs is
accordingly that they are time-dependent , or time-sensitive , in one way or another. It is
almost always required that a real-time system should respond appropriately to some
kind of events within a certain time limit. In some systems, for instance an airline reser-
vation system, the limit may be a few seconds. In other systems the constraints are
much tighter. We might for example have a system that controls a chemical process. It
is not unusual that the system wants to sample some output signals every millisecond. It
must then be able to perform the necessary calculations and issue the correct feedback
signal within a millisecond, otherwise in the end’ the whole plant may blow up. To make
sure that our programs meect such time constraints, we must be able to calculate how
long time that is needed to run a certain piece of code, to calculate the cost of an expres-
sion. One must know beforehand if the piece of code he's just written will execute in less

than a millisecond.

Issues in Applicative Real-time Programming

Not all time dependencies consist of tight constraints. It might be the case that a
system should perform a certain operation every minute. Now the problem is hardly to
find the time to do this, but rather to know when a minute has elapsed. One way is to
have some kind of clock or timer, which generates an interrupt each minute. Obviously,
one advantage with the interrupt mechanism is that it enables us to write and execute
other tasks in the system without any consideration of the task that should be per-
formed each :ﬁinute. But two clocks are never exactly synchronous, and even if it
wouldn’t matter in this particular example if we had to change to a slightly different
clock, there might exist systems where the exchange of a clock for another might intro-
duce errors in the timing of some components, and possibly invalidate the whole system.
But if we want to manage without a clock, we again have to know how long it takes to
execute each particular piece of code that may be executed during this minute, in order

to be able to know when a minute has elapsed.

One of the reasons people use assembly languages and real-time FORTRAN is that
in those languages you know the time required to execute each particular statement. In
Section 4 we discuss the possibility of writing applicative programs whose execution

times are predictable.

Another aspect of time in rea]-tiﬁle systems is that a real-time system must be able
to respond appropriately to external events that appear asynchronously, at indeter-
minate times. The handling of these asynchronous events must not interfere with other
computations in progress, but must be properly synchronized and interleaved with them.
An approach to this problem will be discussed in Section 3 about applicative multipro-

gramming.

Issues in Applicative Real-time Programming

Suppose however that the handling of these asynchronous events is subject to some
time constraints, i.e. if an event has occurred within a certain period of time, do some-
thing, otherwise do another thing. Then we have got a situation where the rate of the
input effects not only the rate of the output, but it effects what is output! This is not a
functional behavior. But recall that the most characteristic property of applicative pro-
gramming is its functionality, that is, the output of a function is determined solely by its
input, and there are no side-effects. However, this situation violates that property. This
raises the question: Can all types of real-time behavior and all real-time computations be
expressed functionally, in an applicative language? If we want to use applicative
languages for real-time programming, we must find an affirmative answer to this ques-
tion. In Section 4 we adress this problem, and propose a solution by introducing a special
kind of object, called hiaton (from ‘‘hiatus”, meaning a pause; according to [Faustini 82]
the term is due to W.Wadge and E.A.Ashcroft). A hiaton represents a unit of time, and
timing information is encoded by allowing hiatons as elements of the streams used for

process communication.

We claim that what we have discussed so far are the most important properties of
real-time programming, the most fundamental building-blocks of real-time systems.
There are, of course, also many other requirements on real-time systems. They are how-
ever of a more general nature, concerning reliability, efficiency etc., and are thercfore
outside the scope of this paper. A good overview of these questions can be found in
[Dreisba.ch & Weissman 77]. [Infotech 71] and [IFAC 78| are other references with

papers that discuss the characteristics of and requirements on real-time systems.

Issues in Applicative Real-time Programming

2. Real-time programming languages

In this section we present the requirements for a real-timé programming language.
What features are essential to express real-time behavior, and what capabilities are
desirable? In the second part of this scction, we take a look at the proposed standard for
real-time FORTRAN, and try to draw some conclusions concerning the language

requirements for industrial real-time applications.

Naturally, there are many, sometimes widely differing, opinions about the ideal
structure of a real-time programming language. One good discussion of what properties
such a language should have can be found in [Dreisbach & Weissman 77]. Additional
opinions are presented in [SPL 74a],especially [Barnes 74], [Wirth 77b] and [Ichbiah et al

79).

2.1. Language requirements for real-time programming

In the past, real-time systems have to a large extent been programmed in assembly
code. High level languages have only been used in the design phase, and for the less
time-critical parts of the system. There are several reasons for this:

Predictability. As discussed in the previous section, it is sometimes necessary
to be able to calculate in advance bounds for the time needed to
execute a certain code sequence, to make sure that the program
meets all time constraints. This is much easier to do for assembly
code programs.

Efficiency. In time-critical parts, compilation of high-level code would simply
not yield machine code that was efficient enough.

Machine dependencies and communication. Existing high level languages
have provided no facilities to deal with machine-dependent
features, for instance to access the hardware registers. Neither
has it been possible to express the details of process communica-
tion and synchronization in an adequate and precise way, so the
programmer has been obliged to resort to assembly languages.

Issues in Applicative Real-time Programming

However, the increasing size and complexity of real-time systems has made it clear
that it is not feasible to use assembly languages. Some kind of high-level language is
needed. Naturally, this need has induced efforts to design special real-time high-level
languages. One example is RTL [Schoefler 71], and its successor RTL/2,
[SPL744),[SPL74b], which is widely used in the UK and Western Europe. Another
example is Modula [Wirth 77a], [Holden & Wand 77]. Since we in this paper occasion-
ally will use Modula in examples of conventional real-time programming, the reader with

no knowledge of Modula is encouraged to read [Wirth 77al.

We will now try to point out the most important requirements on a high-level
language for real-time programming. We start by noting that although real-time pro-
gramming conceptually is different from multiprogramming, it is nevertheless the case
that the concept of parallelism is intrinsic to the nature of most real-time systems. Such
systems can often be thought of as several tasks, operating in parallel with some degree
of interaction. Therefore, it is necessary that real-time languages include features that

support parallelism.

According to [Wirth 77b] the most important single item in a real-time program-
ming language is a notational unit for describing processes that are themselves purely
sequential, but can be executed concurrently. The reason for this is that we must be able
to think of each logical process as being sequential and coherent. The second item that
appears to be necessary is a collection of shared variables, together with their operators
for which mutual interference is excluded. The third item is an object to trigger con-
tinuation after waiting. Put another way, we need features for communication and syn-

chronization among processes.

Issues in Appllcaiive Real-time Programming

These requirements can be fulfilled in an applicative language. A function
definition in a functional program is certainly an adequate notational unit for describing
a sequential process that can be executed concurrently with other processes. Communi-
cation and synchronization is achieved, not with the help of shared variables and signals,
but using streams. A stream ([Landin 65]) is a (possibly infinite) list, where the first ele-
ments can be accessed before the rest is defined. A stream can be thought of as a com-
munication channel between two processes, one which produces the elements of the
stream, and another which consumes these elements. In Section 3 we will explain in

more detail how streams can be used instead of shared variables and signals.

A good real-time language must also have capabilities to access and make full use
of hardware, peripheral devices, and other macine-dependent capabilities. However, the
machine-dependent parts of a program should be explicitly encapsulated and separated
from the rest of the program. In Modula, this is accomplished by means of device
modules. There doesn’t seem to be any conceptual obstacle to making a similar con-

struction in an applicative language, although no closer investigations have been made.

As mentioned in the previous section, real-time systems are usually large and com-
plex. This makes it very important that we use a programming language that helps to
master this complexity. In other words, it must be simple, clear, and well strucb.ured, in
order that programs written in it will be easy to write, debug, validate and maintain. In
agreement with this, [Pike71] states that among the goals of realtime language design

efforts should be:

1. Lucidity

2. Freedom from side effects.

3. Enforcement of programming discipline.
4. Natural modularity.

. Ease of learning and use.

[]

Issues in Applicative Real-time Programming

These requirements could equally well serve as a description of an applicative program-
ming language. Most programmers that are acquainted with the functional style of pro-
gramming agree that algorithms can be more clearly and concisely expressed in an appli-
cative language than in any of the existing imperative languages, because an applicative
style adheres more closely to the way we think about problems, and the way we formu-
late them in natural language. For the same reason, applicative languages are also easier
to learn and to use. Freedom from side effects is an inherent property of applicative
languages, and because of its dependence upon functional composition, applicative pro-
gramming necessitates thinking in terms of top-down stepwise refinement, and provides
natural modularity. We conclude that if we could enrich an applicaive language with the
necessary primitives and operations for a real-time environment, it would be well suited

for real-time programming.

2.2. Language requirements for industrial real-time applications

In [Heller et al 1978] the requirements on a programming language for industrial
real-time applications are defined in terms of FORTRAN procedures which realize the
necessary operations. These procedures can be divided into five groups, each one han-
dling a separate type of function. These groups are day and time information, multipro-

gramming, binary pattern and bit processing, process I/O and file handling.

The procedures of primary interest for this paper are those concerned with mul-
tiprogramming. They can be further divided into procedures for task scheduling, i.e for
starting and terminating of tasks, and for task synchronization. There are different pro-
posals concerning the details of the procedures, but a real-time programmer will need at

least the following operations for starting of tasks:

Issues in Applicative Real-time Programming

- start a task immediately or after a specified time delay

- start a task at an absolute time

- execute a task when a specified event occurs, i.e we must be able to respond
properly to events which happen at indeterminate times.

- start a task immediately or after a specified time delay, and execute it
periodically with a specified time interval between executions.

- start a task at an absolute time and execute it periodically.

Next we need some operations for termination of tasks; specifically we must be able to

- terminate tasks waiting for time (i.e stop future execution of tasks
scheduled to start at a certain time)

terminate tasks waiting for events

- remove a task from the system

L

The procedures for task synchronization manages synchronization with respect to events
(interrupts) and times, and intertask synchronization. For event/time synchronization

we need the possibilities to

- wait during a specified time delay
- wait for a specified event (but not more than a maximum time,
to avoid deadlock)

Finally, for intertask synchronization we must be able to

- suspend a task until a certain condition is true, e.g until another task
bas produced a needed value
- cause the resumption of a task when a certain condition is true.

From the above we again conclude that in a real-time programming system it is
' cssent.ial. to have a concept of time, to be able to schedule and synchronize tasks with
respect to an external clock, or with respect to each other. One also needs the ability to
specify the execution of a process at a certain time, or after a specified time delay, or to
periodically execute a process. We may also want to synchronize two processes in such a
way that whichever of them first reaches the “synchronization point” in its code, waits
there until the other process reaches its corresponding ‘‘synchronization point”. Finally,

we must be able to handle events that appear asynchronously. In Section 4, we will see

10

Issues in Applicative Real-time Programming

how many of these requirements can be satisfied, using hiatons.

Since our primary area of interest in this paper is the time-sensitive part of real-
time programming, we will not cover the other four groups of operations in this paper.

The interested reader is referred to [Heller et al 78].

3. An approach to applicative multiprogramming
3.1. Output-driven computation

What language constructs are necessary to accommodate applicative multiprogram-
ming? Let's first of all point out that in the particular applicative system, that we
assume in this section, all computation is output-driven (other terms for this approach is
demand-driven [Keller et al. 79], and lazy evaluation [Hlenderson & Morris 76]). As will

be seen below, this property is essential in implementing process comm unication.

The output-driven approach means that a list can exist while none of its com-
ponents are determined. The constructor cons is non-strict, it suspends evaluation of

both its arguments.

A stream [Landin 65] is a list constructed by a constructor which is strict only in
its first argument. The important property of streams is that the first element of a
stream can be accessed, while the rest of the stream is undetermined. As was indicated
in the introduction, this property makes it possible to use streams to implement com-

munication between concurrent processes.

As an example, we will imagine two processes, P1 and P2 that produce some kind
of values, let’s for simplicity assume that P1 produces a list of the odd positive integers,

and P2 a list of the even positive integers. A third process takes one value from P1 and

1.1

Issues in Applicative Real-time Programming

one from P2, performs some operations on these values, and produces a resulting value.
To keep things as simple as possible, we will assume that this process just adds the two

values together. Consequently we name the process Sum.

A program in Modula that runs these three processes concurrently will look like

this:

module Sumlists
interface module P1_to_Sum
define Fetch 1, Depositl; (*Names that may be
accessed from outside the interface module*)
var buffer:integer;
empty: boolean;
free, ready: signal;

procedure Fetchl (var x:integer);

begin if empty then wait(ready) end;
x:=buffer; empty:=true;
send(free)

end Fetchl;

procedure Deposit] (x:integer);

begin if not empty then wait(free);
buffer:=x; empty:=false;
send(ready)

end Pl_to_Sum;

begin (# initialize buller)
empty := true

end P1_to_Sum

(* A similar interface module, P2_to Sum, with procedures Fetch2 and Depo-

si1.2

has to be declared and used for the transmission of values from P2 to Sum
#)
process P1;

var n:integer;
begin n:=-1;

loop n:=n+ 2;

Depositl(n);

end

end P1;

process P2; (*Similar to P1%)

32

Issues in Applicative Real-time Programming

end P2;
process Sum;
var nl, n2:integer;
begin
loop Fetchl(nl); Fetch2(n2);
write(n1+ n2)
end
end Sum;

begin Sum; P1; P2;
end Sumlists;

The three processes Sum, P1 and P2 are started in parallel. (If we only have one proces-
sor, we will of course have quasi-parallel execution). When Sum tries to Fetchi(nl) it
has to wait until P1 puts an integer in the buffer (i.e. assigns a value to the shared vari-
able), and issues the signal send(free). Likewise Sum has to wait until P2 has.prorlucod a
value and deposited that value, before it can Fetch2(n2). On the other hand, Pl and P2
cannot deposit a new value in their respective buffers until Sum has fetched the previous
value. The computation proceeds in this fashion, with process synchronization and com-

munication achieved using signals and interface modules.
The corresponding applicative program will look like this:

let Sum A B = cons (add (first A)(first B)) (Sum (rest A)(rest B))
and P1 X = cons X (P1 (add X 2))
and P2 X = cons X (P2 (add X 2))
in Sum (P1 1)(P2 2)
(In the definition of Sum we assume that the streams A and B are infinite,so we do not

have to test if either is empty).

How does the computation proceed when this program is executed? First of all we
may note that since Sum uses cons, the resulting stream itself is not manifest. Only if

we request that (part of it) be printed, will suspended references be coerced and values

13

Issues in Applicative Real-time Programming

be computed. So let's suppose that we want to print, say the first ten values of the
result. Since this requires the first values of the results of P1 and P2, the demand-driven
evaluation will cause evaluation of ﬁ_rs! Pi 1 and first P2 2. These are the only values
that P1 and P2 will compute at this time, the rest of the streams are still suspended.
Speaking in terms of control flow, the control will now return to Sum, which adds
together these two values and delivers the result to the output driver. When the output
device demands a new value, Sum needs the next value from P1 and P2, so they are
computed and sent to Sum. The computation goes on like this, with Sum, P1 and P2
acting like coroutines. As in the Modula program, P1 and P2 produce only one value at
a time. Only when Sum has consumed those values, and demands two new values, will

I’l and P’2 resume computation.

When we compare the two programs,we immediately note that the applicative pro-
gram is much shorter. Of course this comparison is not entirely fair. Since Modula is a
typed language, and our applicative language is not, we don’t have to cope with the
whole machinery. of declarations, with the immediate consequence of shorter programs.
But apart from that, there is still a significant difference between the two programs.].""S
much easier to express our intuitive notion of what is happening in an applicative
language than in Modula. In Modula, we have to give a detailed specification of the com-
mmunication protocols between two procedures, and we have to use signals in order to
synchronize the processes. In contrast, all these functions are automatically performed by
the applicative program by virtue of the output-driven computations in the system. In
Modula, we also have to define shared variables and interface modules, and explicitly
manipulate these variables. Using applicative programming on the other hand, Lhere is
no need to manipulate the streams that correspond to the shared variables. Since all

computations are defined as functions, a stream can be the result of a function, and the

14

Issues in Applicative Real-time Programming

input to another function. All result values are automatically transmitted via the

stream.

One might argue that the constructs in Modula are more powerful, since one may
extend the buffer to contain more than one element by some small changes in the inter-
face module. But the communication by streams isn’t limited to one element at a time
cither. If one process demands n values from another process | then the next n values of
the stream connccting these processes are computed! The only limitation is that values
can’t be computed in advance and stored in the buffer, as they can in Modula." However,
if we have a multiprocessor system, one might imagine strategies to anticipate a demand

and compute values in advance.

3.2. Handling indeterminism

Let's now modify our previous example. Assume that the two processes P1 and P2
produce their respective integers asynchronously, at indeterminate times. Since the
values no longer arrive in pairs, we can’'t add them together, so we exchange the process
Sum for another process, Merge, that merges these two streams into one in a timely
fashion. That is, Merge shouldn't take one element from P1 and one element from P2,

alternately, but should take whatever element that is ready.

This is an instance of one of the major problems in real-time programming, the
problem of handling asynchronous and indeterminately occurring external events using a
programming style built upon deterministic and synchronous interprocess communica-
tion. Different tools and constructs have been invented to grapple with this problem of
timing, for instance semaphores [Dijkstra 68|, monitors [Hoare 74] and signals and inter-

face modules [Wirth 77a].

15

Issues in Applicative Real-time Programming

A new perspective on this problem is offered by [Friedman & Wise 80]. They intro-
duce a new constructor, frons , which constructs an unordered structure, a multiset , in a
manner similar to the way a list is constructed by the LISP sequence constructor cons.
The elements of the structure constructed by frons are all suspended. A value is com-
puted only if the suspension is probed by one of the access functions first or rest. When
we ask for the first element of M, evaluation of all the elements of M start and proceed
concurrently. When any one of the evaluations converge, the corresponding value is
returned as the value of first M. (An evaluation is said to converge if the associated

computation terminates in finite time, yielding a well-formed result).

By embedding the asynchronus events of a real-time system within a multiset, the
programmer need not worry about flow of control on the arrival of external signals, since
there is no explicit flow of control. All that is required of the programmer is to specify
the contents of his multiset, in other words, what different events that may occur, and
what to do when an element of the multiset is accessed, that is, when something has
happened. He should make sure that his program gives valid results no matter which of

the possible sequences appear.

We will now solve our modified problem, using our new tools: frons and multisets.
The code for the Merge function will look like this:
Merge M =
let (h . t) = M
in if null M then NIL

else if null h then Merge t
else cons (first h)(Merge (frons (rest h) t))

where the notation (z . y) = 2 matches z to the first element (the head) of z, and y to

the rest. (the tail) of z.

16

Issues in Applicative Real-time Programming

We must also introduce the function streamify. Streamify P converts the list P,
constructed by suspended cons to a Landin-stream whose first element always is mani-
fest. It must be used to ensure that first P always returhs a manifest element, and not a

suspension,
Now the expression
Merge (frons streamify(P1) frons streamify(P2) nil)

solves our problem. When we ask for the first element of the result oll' this expression,
evaluation of both P1 and P2 starts. As soon as one of P1 and P2 converges to a value,
that value is taken as the first value in the resulting stream. The next value to be
merged will be the next value that any one of P1 or P2 produces. The evaluation contin-
ues in this way, the elements will be merged in the order they converge, regardless of

which process that produces them.

We might notice that the Merge function doesn't put any limit on the number of

elements in M, Merge may accomodate any number of processes.

Let’s return to the more general problem of handling asynchronous events. To solve
this problem, we construct a multiset, containing all processes that cause these events.
We must also create a function, corresponding to Merge, that takes care of the events
that occur. Phrased in conventional terms, it would be called an interrupt handling rou-
tine. That routine would ask for the “first” object of the multiset. As soon as any of the
processes has produced a value (that is, some kind of event has occurred) that value will
be returned to the ‘‘interrupt handling routine” where it is handled in the appropriate
way. Then we ask for first of the rest of the multiset, and so on. If two events happen
simultaﬁeously, they will nevertheless be merged in some order and handled one after

another. Put another way, only one of the events may be chosen as first, and when that

1.7

Issues in Applicative Real-time Programming

one has been handled the other one will be chosen as first of the rest of the multiset and

taken care of.

If we assume that we already have a database where it is recorded which process
(processes) shculd start when a certain event occurs, we may now solve the problem of
how to start a process when a certain event occurs. We embed the asynchronous events
within a multiset as indicated above. When an event occurs the “interrupt handling rou-
tine” will look up in the database which processes are to be started and send a start
message on the input stream of those processes. The solution will be similar to the solu-

tion of the airline reservation system in [Dennis 77].

The problem of handling asynchronously occurring events is also discussed in
[Henderson 82]. Henderson defines a function ‘“‘interleave”, which performs the same
task as our Merge function. Since he doesn’t use frons, “‘interleave” is a fuction not only
of the elements of the sequences which constitute its arguments, but also of the time at
which each element becomes completely defined. Henderson goes on to discuss if “‘inter-
leave” is a pure function, if it should be included in an applicative language, and how

one could implement it in such a case.

4. Applicative real-time programming

If we are to be able to use applicative languages for real-time programming we
must first of all solve the problem with the nonfunctional behavior of some real-time
computations. In the first part of this section we will show how we may do this with a
special kind of object called a hiaton [Faustini 82]. A hiaton can be thought of as a unit
of delay that can be mixed with the regular data objects (also called datons) of a stream.

Hiatons allow a function to produce something regularly even if it has no real output.

18

Issues in Applicative Real-time Programming

Using hiatons in our streams we can embed the timing information and time dependen-
cies in the data structures, and preserve a purely functional behavior. We also discuss

some of the new problems that are raised by the introduction of hiatons.

In Section 1 we also stated that it is a desirable property of real-time programs that
we should be able to predict the time needed to execute a certain code sequence. In the
second part of this section we discuss if and how this can be realized in an applicative

language.

4.1. Programming time-sensitive functions applicatively

Let us consider another, more difficult version of the problem to add two streams
together. Assume that the even integers arrive regularly, but the odd integers do not.,
there is a delay, sometimes fairly large, between each odd integer. Assume furthermore
that the process that sums (or, generally, consumes) these streams is operating under a
certain time constraint. Specifically, if an odd integer hasn't arrived within a certain
time limit the corresponding even integer is thrown away (or output to a stream of

“wasted evens”)

How can we express a solution to this problem in an applicative language? [ivi-
dently, the result is time dependent. The resulting output will depend on which odd
integers did arrive before timeout, and which didn't, because this in turn will determine
which evens will be wasted, and which elements will be in the result stream . That

means that the expression
Sum Evens Odds

may evaluate to different results if it is evaluated twice, even if it is evaluated in exactly

the same context both times. The expression is no longer referentially transparent,

19

Issues in Applicative Real-time Programming

because of the influence of time.

This problem is certainly not artificial or very contrived. It also appears in indus-
t-ri.:;] real-time programming. Suppose we have a task that controls some chemical pro-
cess. Bach second a device samples some process variable and sends the result to the con-
trolling task. This corresponds to the stream of even integers. As long as the chemical
process runs without problems nothing happens, the sampled values are simply thrown
away by-the controller. But if something goes wrong, then an interrupt occurs. This
corresponds to something arriving on the stream of odd integers. The controlling task
now must access the latest value of the control variable (and presumably some more con-
trol variables and other information, too) and decide on a suitable action as a response
to the situation that caused the interrupt. Again we find that the content of the result-
ing streams (‘‘wasted samples” and ‘‘actions”) depends on time. Consequently, if we
want to be able to use applicative languages in real-time programming, we must find a

way to express this kind of time-dependence in a referentially transparent manner.

If we use t_.he ambiguity operator amb of [McCarthy 63] we may express a solution
to the above problem in an applicative syntax. Remember however that the use of amb
destroys the referential transparency, since amb may not return the same result when
applied repeatedly to the same arguments. We also generalize the solution so that both
streams may show the same irregular Ibehavior as the odds above. The function clock ¢ is
supposed to yield a time-out after t units of time. We also assume that we have opera-
tions that test if an object is an even or odd integer, or a timeout.

handle E O =

letrec (Eh . Et) = E
and (Oh . Ot) = O

and next = amb Eh Oh
in if even? next then

20

Issues in Applicative Real-time Programming

let mate = amb Oh (clock t)
in if timeout? mate then handle Et O
else cons (add Eh Oh) (handle Et Ot)
else if odd? next then
let mate = amb Eh (clock t)
in if timeout? mate then handle E Ot
else cons (add Eh Oh) (handle Et Ot)

We may note that the original “‘Sum” program in Section 3 produced an ascending
sequence consisting of every other odd integer. The time-sensitive program in this section
still produces an aﬁcending sequence of odd integers, although not every other one. The
point is that certain properties of the original program are still preserved. Generally,
speaking, this is an imporiant fact to note when we want to prove and verify our pro-

grams.

Another variation of this problem is the following: Suppose that we have an even
integer, but no odd integer arrives before time-out. Then we want to throw away the
next odd integer that arrives. If we have an odd integer, but no even, we want to get rid
of the next even integer. To accomplish this, we would change the seventh line of our

program to
if timeout? mate then handle E Ot
and the next to the last line to

if timeout? mate then handle Et O

In Section 3 we dicussed how we can cope with nondeterminism in an applicative
language, using multisets and the constructor frons. The main point was that the thing
that caused problems, namely nondeterministic behavior, was isolated into the data

structure. Now our problem is that the computations we want to perform depend on

21

Issues in Applicative Real-time Programming

time. Could it be possible to embed time-dependent behavior in our data structures, in

such a way that the resulting programs are referentially transparent?

Yes, it is! Assume that we have some objects called hiatons [Faustini 82], (from
“hiatus”, meaning a pause). A hiaton represents a unit of time. Assume furthermore

that these hiatons can be elements of streams. That is, a stream could look like
(1 3 hiaton 5 hiaton hiaton 7 hiaton 9 11

(From now on, we will occasionally abbreviate hiaton to H). Now suppose that the unit
of time that elapses before a timeout, waiting for an odd integer in the original problem
above, is the same amount of time as represented by a hiaton. Put another way, if the
process that produces the odd integers haven't managed to produce an integer within
this time limit, it outputs a hiaton instead. The stream output by this process will then
look, for instance, like the stream shown a few lines above. Using streams with hiatons,
we are now able to solve our problems, using a referentially transparent, applicative style
of programming. In order to use an even integer only when a corresponding odd integer
has arrived, and dispose of it otherwise, we write the following piece of code:
handle E O =
let (I5h . Et) = E
and (Oh . Ot) = O
in if hiaton? Oh then cons hiaton (handle Et Ot)

else cons (add Eh Oh) (handle Et Ot)

To show how this program works, let us suppose that the input streams begin as follows:

24681012 1416 18 20
1

E=|
O=(1HH35 HTHOIII ..

The resulting output stream will then start with 3, since both 1 and 2 arrive before

timecout. The next element of the even stream is 4, but in the odd stream we find a hia-

ton, so the result will be a hiaton. The even integer 4 is thrown away (or alternatively

22

Issues in Applicative Real-time Programming

output to a stream of wasted evens). The computation proceeds in this fashion, and pro-

duces the following result:

(3HH 1115 H 21 H27 31

To solve the other variant of the problem, to throw away the next odd if no odd
arrives in time, we have to write a slightly more complicated function. We introduce an
extra parameter to count how many of the next odd integers we are going to throw
away.

handle E O count =

let (Eh . Et) = E
and (Oh . Ot) = O

in if hiaton? Oh then cons hiaton (handle E Ot (addl count))
else if gt? or O then handle E Ot (subl count)
else cons (add Eh Oh)(handle Et Ot)

In this example we output a hiaton for each incoming hiaton in the odd stream. This is

not the only possibility, but further discussion of this is deferred.

The fundamental difference between these later examples, and the previous exam-
ples is that in these functions the dependence upon time is embedded into the streams. If
two streams both consist of (an initial segment of) the odd integers in ascending order,
but the distribution of hiatons is different in the two streams, then we have got two
different streams, although the numerical elements are the same , and in the same order.
The expression handle E O will always give the same result when applied to the same
arguments, because the phrase “the same arguments” now implies that the distribution
in time of the stream elements is identical inasmuch as no hiaton occurs in one stream

where an integer occurs in the other stream.

The introduction of hiatons does of course create some new questions. For exam-

ple, should hiatons be introduced into all streams, connecting different processes? The

23

Issues in Applicative Real-time Programming

Accordingly, if we are to be able to use an applicative language for real-time pro-
gramming, and especially in time critical tasks, we must be able to predict how long it
will take to evaluate different expressions. In ordinary real-time languages this is done by
con-lpi]ing the statements in question into assembly code, and sinc<la we know the time
required to execute each assembly instruction, it's not very difficult to compute the time
needed for the corresponding high-level statements. As Wirth points out in [Wirth 77b],
it wouldn’t be too much to require that the compiler itself should provide us with accu-

rate execution time bounds for any compiled statement or statement sequence.

However, a difficult problem occurs if our real-time system is programmed in an
applicative language that uses suspended evaluation. As explained earlier, this means
that expressions are evaluated when their values are needed, and that's often not when
they first are encountered. This results in the possibility that if we need the value of an
expression, this may cause the evaluation of certain other suspended expressions. But if
we need the value of the first expression another time, the values of the previously
suspended expressions are now computed, and our desired value can be returned almost
immediately. The time required to evaluate our expression will not be the same on both

occasions, and this conflicts with our need for predictable execution times.

One solution to this might be to make it possible for the programmer to declare
which functions that are to be evaluated in lazy mode, and which expressions should be
suspended. This approach is taken in [Moor 82| for the applicative language HOPE. This
language is however primarily intended for sequential programming., and more research is
needed to investigate if this approach can be combined with the need for suspenced

cvaluation when using infinite streams and multisets.

28

Issues in Applicative Real-time Programming

Another problem is that applicative languages use recursion very heavily, in fact,
using application recursively is the only “control structure”. Although recursion permits
us to express computations clearly and concisely, its implementation requires dynamic
storage allocation and some kind of garbage collection. Also, the use of dynamic (infinite)
data structures implies a need for garbage collection. As previously stated, garbage col-
lection occurring at indeterminate times destroys the predictability of execution times.

However, this problem is simplified by using real-time garbage collection, [Baker 78].

So far, we have said nothing about the hardware in our system, in particular we
have not specified if we have one or many processors. Most real-time systems currently
in use have a single processor. However, as Wirth points out in [Wirth 77b], processor
sharing makes the determination of execution-time bounds much more difficult. The
situation becomes even worse if processes are assigned different priorities, and processes
with high priority may interrupt processes with lower priority. After a thorough analysis
of the situation, Wirth concludes that the best way to solve the problem is to avoid it,
that is, to dedicate one processor to each process. With rapidly decreasing hardware

costs, this is certainly not as out of the question as it was ten years ago.

This conclusion is equally valid for an applicative real-time system, or maybe even
more, since the opportunity to express and exploit parallellism is better in applicative
languages than in current programming languages (see [Pettorossi 81]). The implementa-
tion of hiatons will probably also be less difficult if each process has its own, dedicated
processor. The reader is advised to consult e.g [Musstopf 78] for further discussion of the

impact of microprocessors on real-time systems.

29

Issues in Applicative Real-time Programming

5. Summary and Conclusions

We have been investigating the nature of real-time programming, and if applicative
languages could be used for real-time programs. We found that the main problem was
that certain real-time applications showed a nonfunctional, time-sensitive behavior. The
rate of input determined not only the rate of output, but also what was output. How-
ever, by introducing a new kind of object called a hiaton we may solve this problem. A
hiaton represents a unit of time, and codes up timing information. By allowing hiatons
as elements of the streams used for communication between processes, we embed the
dependence on time into the data structure, and may in this way preserve the func-

tionality of all processes.

We have also seen that applicative languages meet most of the general requirements
on real-time programming languages, e.g clarity, natural modularity, and ease of learning
and use, and do also support parallel processing, process communication and synchroni-
zation. All this taken together shows that applicative languages would be well suited for
real-time programming. Of course, a lot of research is still required to work out all the
details, but the important point is that we have not found any fundamental, theoretical

obstacle for using applicative languages in real-time systems.

One advantage with applicative languages is that their purely funcional, mathemat-
ical nature makes them easier to reason about than the imperative languages of today.
Niklaus Wirth states in [Wirth 77b] that current real-time systems are, in practice,
impossible to verify analytically. A real-time system, programmed in an applicative
language, at least conceptually thought of as implemented on a multiprocessor system
with one processor dedicated to each process, would open up new possibilities for

verification. After verification, program transformation techniques may be applied to

30

Issues in Applicative Real-time Programming

transform the program into a more efficient and easy to implement program.

Acknowledgements. We would like to thank David Wise for his helpful comments
and suggestions. We would also like to thank Sonja Edblom for her help during the

preparation of this paper.

6. References

[Backus 78]
Backus J., Can Programming Be Liberated from the von Neumann Style? A Func-
tional Style and Its Algebra of Programs. Comm. ACM 21, 8 (August 1978), 613-
641.

[Baker 78]
Baker H. G. Jr., List Processing in Real Time on a Serial Computer. Comm. ACM
21, 4 (April 1978), 280-294.

[Barnes 74]
Barnes J.G.P., RTL/2 Language Design. In [SPL 74a/, pp 6-9.

[Dennis 77]
Dennis J.B., A language design for structured concurrency. In Design and Imple-
mentation of Programming Languages, J.H. Williams, D.A. Fischer (eds.), Springer
1977, pp 231-242.

[Dijkstra 68]
Dijkstra E.W., Cooperating sequential processes. In Programming Languages,
F.Genuys (ed), Academic Press, New York, 1968, pp 43-112.

[Dreisbach & Weissman 77]
Dreisbach T.A., Weissman L., Requirements for real-time languages. In Design and
Implementation of Programming Languages, JH Williams, D.A Fischer (eds.),
Springer 1977, pp 298-312.

[Faustini 82]
Faustini A.A., An Operational semantics for pure dataflow. Dept. of Computer Sci-
ence, University of Warwick, Coventry, UK, 1982.

[Friedman & Wise 79)
Friedman D.P, Wise D.S, An approach to fair applicative multiprogramming. In
Semantics of Concurrent Computation, G. Kahn (ed.), Springer, 1979, pp 203-226.

[Friedman & Wise 80]
Friedman D.P., Wise D.S., An indeterminate constructor for applicative program-
ming. In Seventh ACM Symposium on Principles of Programming Languages, 1980,
pp 243-250.

[Heller et al 78]
Heller G., Kneis W., Rembold U., Weisner G., Standards and proposals of indus-
trial real-time FORTRAN. In [IFAC 78], pp 95-107.

31

Issues in Applicative Real-time Programming

[Henderson & Morris 76]
Henderson P., Morris J.H.Jr., A lazy evaluator. Third ACM Symposium on Princi-
ples of Programming Languages, 1976, pp 95-103.

[Henderson 80]
Henderson P., Functional Programming: Application and Implementation, Prentice-
Hall, Englewood Cliffs, N.J., 1980.

[Henderson 82]
Henderson P., Purely functional operating systems. In Functional Programming and
its Applications, J.Darlington, P.Henderson, D.A.Turner (eds.), Cambridge Univer-
sity Press 1982, pp 177-192.

[Hoare 74] 5
Hoare C.A.R., Monitors: An operating system structuring concept. Comm. ACM
17,10 (Oct. 1974) 549-557.

[Holden & Wand]
Holden J., Wand I.C., Experience with the programming language MODULA. In
Real Time Programming 1977, Proc. IFAC/IFIP Workshop, Eindhoven, Nether-
lands, 20-22 June 1977, pp 3-11.

[Ichbiah et al. 79]
Ichbiah J. et al., Rationale for the design of the Ada programming language. Sig-
plan Notices 14, 6B (June 1979), Chapter 11.

[IFAC 78] \
IFAC/IFIP workshop on real time programming, Mariehamn, Finland, 19-21 June
1978. Annual Review tn Automatic Programmning, vol 9, part 2/3.

[Infotech 71]
Real Time. International Computer State of the Art Report, Infotech, England,
1971.

[Keller et al. 79]
Keller R.M., Lindstrom G., Patil S., A loosely-coupled applicative multiprocessing
system. Proc. National Computer Conference 1979, pp 613-622.

[Landin 65] :

‘Landin P.J., A correspondence between ALGOL 60 and Church’s lambda notation

- part 1. Comm ACM 8, 2 (Feb. 1965), 89-101.

[McCarthy 63]
McCarthy I, A basis for a mathematical theory of computation. In Computer Pro-
gramming and Formal Systems, P. Braflort and D.Hirschberg (eds.), North-Holland,
Amsterdam (1963), pp 33-70.

[Moor 82]
Moor .LW., An Applicative Compiler for a Parallel Machine. Proc. of the Sigplan’'82
Sympostum on Compiler Construction, Sigplan Notices 17, 6 (June 1982), pp 284-
292.

[Musstopf 78]
Musstopf G. The influence of microprocessors on future real-time systems. In
[IFAC 78], pp 21-29.

[Pettorossi 81]
Pettorossi A., An approach to communications and parallelism in applicative

32

Issues in Applicative Real-time Programming

languages. In International Collogtum on Formalization of Programming Concepts,
J. Diaz, 1. Ramos (eds.), Springer 1981, pp 432-446.

[Pike 71]
Pike H.E., Real Time Software for Industrial Control. In [Infotech 71], pp 405-424.
[Schoefler 71] '

Schoeffler J.D., A real time language for on-line application and systems program-
ming. In [Infotech 71/, pp 467-486.

[SPL 74a
SPL Review; RTL[2 Special. SPL International, London, 1974.
[SPL 74b] _ .
Introduction to RTL/2. SPL International, London, 1974.
[Wirth 77a)
Wirth ‘N., Modula: A language for modular multiprogramming. Software - Practice
and Ezperience 7, 1 (Jan. 1977), 3-35.

[Wirth 77b)]

Wirth N., Toward a Discipline of Real-time Programming, Comm. ACM 20, 8
(August 1977), 577-583.

33

B

wolmmaygar'd -M svidmallggA of wsoaul

Ausran’y pomesredl (e poiter A e eyl sgodinoiol ol .uglmul
' a1 AP pemang” .[.Ia,-hﬂsl somn il 1 e T
(% i)
U R T \,‘W lwhw al doving’) lginmuhgel mlﬁlwm ETUTE I TR S L R
1T wBlpdar]
~mernong auiviaes hae nokpoilgne skl 10 agrugoel sme g A0 0T mﬁnmim"
. RS g (S tmmhl\, al gnig
M\ \Jqf
PSR jeabwo i *mmwml J‘ﬁ hl‘mqu’ “\\fﬂ arsrn R J9
. 46T Jg,
1N asbdod dseodnisa] A2 9 ATH @ seitsubanal
{IIGT ﬂ"ll}oq
et = sveuler gmmssvgruit e wivbom 30} ogeuasl A alubolt A divia!
2BE (T 2l 1% siwsivags® s

¥S dnitd]
R \,f\ll. BTC LA BT T mﬂlﬂmu-b&.ﬂ Yo ||ﬂ_ﬁq|.ﬂ'l(f i tmwoT o7 e
. - RS v ﬁ’TﬂI rgu i)

rg

