Evaluating Search Methoés Analytically®

by

Paul V. Purdom, Jr. and Cynthia A. DBrown

Comprter Science Department
Indiana University

Bloomington, Indiana 47405

TECENICAL EEPCRET MO, 125

EVALUATING SEARCH HMETEODS ANALYTICALLY

Parl V. Purdom, Jr. and Cynthia A, Brown

LApril 1982

*Research reported herein was supported in part by the National Sciernce Founda-
tion under grant number MCE 7206110.

1. Introduction

Many interesting problems can, at present, best be solved by search methods
[7]. In the worst case, searching requires exponential time. Several clever teck-
nigues have been developed to speed up searcking (see, for example, {1, 3, 6, &, 12,
13, 14, 15, 19, 20, 21]1). Vhile each of these tecknigues is clearly helpful for
some class of problems, it is difficult to evaluate the importance of each method
(and of eack combinatior of methods). Anazlytical studies have been done on several
search methods [2, 4, 5, 9, 16, 11, 17]. Each analysis was parameterized ir a way
that emphasized searck problems for which the method under consideration had an
interesting behavior. Thus, Goldberg [9, 10] studied the pure literal rule wusing
conjunctive normal form (CNF) predicates with long clauses, while Erown and Furdom
[2, 17] studied backtracking using CNF predicates with short clauses, Since eackh
algorithm has its own region of interesting behavior, the results of the aralyses

are difficelt to compare with each other.

In this paper we describe a unified approach tec analyzing search algorithms,
one that indicates the strengths and weakmesses of each algorithm in a way that
makes comparisons straightforward. We first analyze the average time behavior of
each algorithm on random CNF problems characterized by v — the number of variables,
t — the number of clauses, and p — the probability a given literal is in a clause
(so that the average length of a clause is 2pv). This step is similar to the ini-
tial step of previous approaches, which continued by ckoosing particular functions
p(v) and t(v) and studying the resulting asymptotic bekavior. Ve continue by
letting p(v) and t(v) be arbitrary functions of v , anrnd finding the asymptotic
behavior of the algorithm as v approackes infinity. Fimally, we find the relationm
between p(v) and t{(v) that characterizes the boundary between exponerntial and

polynomial average time for the algorithm., The results can be displayed with a

diagram of p(v),t(v) space which shows the exponential vs. polynomial contour for
each algorithm., Fig. 1 shows the results for several basic algorithms. Contours
are drawn for ordinary backtracking where all solutions are found, using fixed
search order (the results are derived in [18]); searching using the pure literal
rule and a fixed search order [10, 18]; pattern of occurrence (an algorithm
developed for use with problems that have only a2 few clauses) [18]; and elimination
of unused variables followed by exbaustive search (this paper). Fig. 2. shows the
results of using the same approach to cbtain a more detailed comparison between
ordinary backtracking and simple search rearrangement [16]. From these figures it
is clear that the pure literal rule is wseful for problems with large clauses (con—
straints that are easy to satisfy), that backtracking is useful for problems with
many short clauses (large numbers of constraints that are not easy to satisfy), and
tkat specialized methcds are useful for problems with 2 small number of clauses
(constraints). As more sophisticated algorithms are analyzed, the same approachk can
be used to identify the types of problems for whick they are most suitable. The
approachk is even more useful for identifying whick elementary techniques should be

combined te produce powerful general purpose algorithms.

2. The liodel

We compute the average running time of eack algorithm using random CNF predi-
cates., The precicates are formed using v variables, and thus 2v literals. A
random clause is formed by independently selecting each literal with probability p.
For eack variable the probability of selecting both the positive and negative

: 2 = ;
literal is p , so tautological clauses are common unless p is small (smaller

_1}' 2

than v). A random predicate is formed by incdependently selecting t «clauses.
Notice that for any 0 {(p < 1 all predicates with t clauses are included in the

set of model problems. If p is small then predicates with short clauses have a

higher probability while if p is large then predicates with long clauses have a

higher probability.

The derivations for the results below are contained in the cited papers. Ve
use the conventioms: a = vp(v) ; a = (n In v)/v for some large comstant =n ; and

g is a small positive constant. We say f(v) < g(v) when 1lim f(v)/g(v) < 1
Ve

Polynomial average time is used when:

1, Ordinary backtracking (fixed search order) [18]:

In 2, t O (In 2 - alv

- -1n(1 - e—a)

[P

a) a

(iln 2 - a)vd

@

b) s

I~

In 2 %

I~

% where

é¢ is the largest root of In(1+d) + d(in(1+1/d)) = 2a.

2. Simple search rearrangement backtracking [16]

a) same as 1, or (for example)

b) 2 > 3.5, t > V—l‘-lz;-é- exp(2a - @) (1+0(i))

2ea

(See [16] for more details).

3. Simple pure literal rule [10, 18]

P 2 €

4, Pattern of occurrence [18]:

t ¢ (In In v)/(1ln 3)

5. Elimination of unused variables followed by exhaustive search [this paper]:

t £ a/lp

(M

the average number of solutions per problem is polynomial when

£ 3 (In 2 - e)w
-a

-In(1 - e)

4, Bample Analvysis

To illustrate our method we give a brief analysis of algorithm 5. The proba-—
bility that neither literal for a variable occurs in a given predicate is (l—p)Zt
If 1 wvariables occur in & predicate the time for exhaustive search is 2% . The

probability that i particular variables occur, and that the remaining v—-i do

not, is [1—(1—p}2t]1[(1—p)2tlv_1 . The number of ways tc choose i variables

=
out of v is (i) . Therefore the average running time for algorithm 5 is

. 2t i i
2 22D i-a-p* rtra-p?ttT - -t
i

To obtain polynomial time, this average must be no more than v for some =n . Im

Lt]v £ vi or 1n[2—(1—p)2t] < % in v . Since

other words [2-(1-p)

ln[Z-(l—p)Zt] nust be small we can use 1n[2"(1—p)2t} = 1-—-(1"13)2t , which

2 =
gives (1-p) 3 (e % In v or (using In(l-x) = xz for small x)
n_ln v _ @
€< 2vp T 2p

5. Conclusions

For rardom problem sets where p(v) or t(v) is extremely large or small
there are search aigorithms that solve the problems in an average time that is poly-—

nomial in the size of the problem. The time for these extreme cases is also polyno-—

mial in the number of variables except wher p(v) is large and t(v) is exponen—

tial or larger.

Each of the algorithms 2-5 has a region of p(v),t(v) space where it is much

better than any of the other azlgorithms. Algorithm 1 is as good zs algorithm Z for

some regions. A diagram such as Fig. 1 gives a useful display of the strengths andé

weaknesses of each algorithm.

Figpure 1. A diagram showing the regioms of p(v),t(v) space where rardom CNF
predicates can be solved in polynomial average time. A portiomn of the contour
separating the region of polynomial behavior from the region of exponential behavior
is shown for several algorithms. The part of the space where ezch algorithm per—
forms best is labelled with the name of the algorithm. The central regior contains
problem sets for whick no polynomial average time algorithm is krown. In most of
this region, the problems have an exponential number of solutions, but below the
line marked "solutions” the average number of solutions is polynomial. The region
marked "pseudo—hard” contains problem sets for whick the analyzed algorithms take
average time exponential in the number of variables but polynomial in the problem

size (the typical problems are exponentially large there).

pV

10 +

Exponential II||||||
llll l

t/v

(& Il|
o
J AV
10/
/|
|'||Il || Polynomial
4“'
/‘
__,’/
00 100 108 10°

Figure 2. A graph giving more details on the performance of backtracking algo-
rithms. The vertical axis is pv , the average number of literals per clause. The
horizontal axis is t/v , the number of clauses per variable. The curve mnarked
Solutions separates the region where the average number of solutions per problem is
exponential from where it is polynomial. The curve marked Level 0 separates the
region where the average running time of ordinary backtracking is exponertial from
where it is polynomial. The analysis for simple search rearrangement backtracking
produces only limits on its performance. The shaded region marked Level 1 separates
the region where the average running time of simple searck rearrangement backtrack—

ing is exponential from where it is polynomial.

References

[1] James R. Bitner and Edward }. Reingold, "Backtrack Programming Technigues"”,

Comm. ACM, v. 18 (1975) pp. 651-655.

[2] Cynthia A. Brown and Paul Walton Purdom Jr., "An Average Time Analysis of

Backtracking”, SIAM J. Comput. 10 (1981) pp. 583-593.

[3]1 Hertin Davis and Hilary Putnam, "A Computing Procedure for Quantification

Theory"”, JACM, v. 7 (1960) pp. 201-215,

[4] Johr Franco, "Average Analysis of the Pure Literal Heuristic"”, Case Institute

of Tecknology Report No. CES-81i-4 (1981).

[5] Joha Franco and Harvin Paull, "Probabilistic Analysis of the Davis—Putnam Pro-—
cedure for Solving the Satisfiability Problem”, Case Institute of Technology Report

No. CES-81-3 (June 1981).

[6] Eugene C. Freuder, "A Sufficient Condition for Backtrack-Free Search”, JACH,

vel. 292, No. 1 (Januvary, 1982) pp. 24-32.

[7] Michael B. Garey and David S. Johnson, Computers and Intractability, W.H. Free-

man and Co., San Francisco (1979).

[8] Jokn Gasching, "Performance leasurement and Analysis of Certain Search Algo-

rithms"”, Thesis, Carnegie-llellon (1979).

[8] Allen Goldberg, "Average Czse Complexity of the Satisfiability Problen”,

Proceedings of the Fourth VWorkshop on Automated Deduction (197%9), pp. 1-6.

[10] Allen Goldberg, Paul Walton Purdom, Jr. ané Cynthia A. Drown, "Average Time
Anzlysis of Simplified Putnam—David Procedures”, Indiana University Computer Science

Technical Report No. 101 (1981),.

[11] Robert }. Haralick and Gordon L. Elliot, "Increasing Tree Search Efficiercy
for Constraint Satisfaction Problems”, Report from Virginia Polytecknic Institute,

1978,

[12] [Robert M. Haralick and Linda G. Shapiro, "The Consistent Labeling Problen”,

IEEETPAMI, v. 1 (1979), pp. 1773-184, v. 2 (1980), pp. 193-203.

[13] DBurkhard Monien and Ewald Speckenmeyer, "Three—Satisfiability is Testable in
0(1.62r) Steps"”, Report No. 3, Theoretical Informatics Series, University of Pader-

born (19279).

f14] E. T. Parker, "Computer Investigatior of Orthogonal Latin Sguares of Crder

Ten"”, Proc. Sym. Appl. Hath., v. 15 (1963), Amer. Math. Soc., Providence, E.I. p.

13

[15] Paul Valton Purdom, Jr. "Solving Satisfiability Problems with Less Searching”,

Indiara University Computer Science Technical Report No. 117 (1981).

[16] Pauvl Walton Purdom, Jr., "Search Rearrangement DBacktracking and Polynomial

Average Time", Indiana University Computer Science Technical Report MNo. 123 (1982).

[17] Paul VWalton Purdom, Jr. and Cynthia A. Brown, "An Analysis of Backtracking

with Search Eearrangement”, SIAM J. Comput. (to zppear).

[18] Paul Walton Purdom Jr. and Cynthia A. Brown, "Polynomial Average—time Satisfi-
ability Problems"”, Indiana University Computer Science Technical Report HNo. 118

(1981).

[19] Paul Purdom, Edward Robertson, and Cynthia Brown, "Multi-Level Dynemic Search

learrangement”, Acta Informatica v. 15 (1981), pp. 99-114.

[20] Themas J. Schaefer, "The Complexity of Satisfiability Problems”, Proceedings

f the Tenth Annual ACH Symposium on Theory of Computing, (1978) pp. 216-226.

[21] David Valtz, "Understanding Line Drawings of Scenes with Shadows”, in The

Psychology of Computer Vision, edited by Patrick Henry Vinston, lcGraw-Eill, New

York (1975).

10

