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ABSTRACT

We are interested in the issues surrounding computer problem
solving in systems of loosely-coupied prucesses. This paper is
a compendium of ideas related to the software issues involved
in programming distributed systems. We discuss two aspects
of this problem: languages and models for distribution, and
heuristics for organizing distributed systems. The second sec-
tion of the paper discusses the nature of distributed languages
and models, and presents a comparison of the attributes of
several of the major proposals for distributed computing. The
third section is a discussion of some heuristics for the or-
ganization of multiple-process systems.

INTRODUCTION

The marvels of miniaturized silicon are leading to a world of
cheap microprocessors. These microcomputers bring with
them the hope of faster and cheaper versions of the con-
ventional, mainframe computer—an army of small automata.
eager to increment and loop. ready to go out and solve our
computing problems. However, as any manager of a large
software project can assure you, a large collection of dumb
computing agents does not add up to a working system. Mi-
croprocessors need to be told not only what to do, but how to
do it. They need to cooperate and communicate in their pro-
cessing task; but their cooperation must not turn into a bu-
reaucracy, expending more energy on communication thanon
production. :

The next generation of computer architectures will provide
users with not just one but many computers to perform their
tasks. But improved computational productivity is not
achieved by processing power alone. Along with muitiple-
processor architectures must come the software facility to
profitably use that computing power. We call such an inte-
grated, multiple-processor system a coordinated computing
system. The integration we require in coordinated computing
is not merely interprocessor communication. but interprocess
cooperation.

This paper discusses the issues surrounding computer prob-
lem solving in systems of loosely coupled processes. Toward
this end, we have been studying models of communication,
programming languages for distributed computing, and heu-
ristics for system organization. In this paper we present a
compendium of ideas related to the software issues involved
in achieving coordinated computing. We discuss two aspects
of the coordinated computing task: languages and models for
distribution and heuristics for organizing distributed systems.
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The second section of the paper discusses the nature of distrib-
uted languages and models and compares the attributes of
several of the major proposals for distributed computing. The
third section discusses some heuristics for the organization of
multiple-process systems. These issues are discussed in great-
er detail in Coordinated Computing: Tools and Techniques for
Distribured Software. '

MODELS AND LANGUAGES

Requirements for Distribution

Every programming language or model makes assumptions
about its computing environment. A programming system for
coordinated computing is no exception. Particularly impor-
tant are the assumptions that such a system makes about the
interface it provides the programmer:

1. First, a distributed programming system has multiple,
independent, concurrently computing processes or supports
some activity that corresponds to doing many independent
activities simultaneously.

2. The processing clements must communicate (transfer
information) between themselves, though there is a cost (time
delay) associated with this transfer. A system that treats inter-
process communication as if it were free is a shared-memory,
or tightly coupled, system. Such systems avoid many of the
difficulties of distribution. !

3. No process should be able to perceive the global state or
global time of the system. Once again, a system that shares
too much information is not truly distributed.

4. Communication should be directed: communications
should have both a specific origin and a specific destination.
This implies that (pseudo-) broadcast communication mech-
anisms are somewhat suspect. If a system wishes to use broad-
cast as a syntactic shorthand for a series of directed communi-
cations, then the cost of that broadcast should be proportional
to the number of destinations.

5. If a system has an explicit notion of process, programs
written in that system should be able to create processes dy-
namically.

These criteria are software criteria, though they have their
origins in the nature of physical computing devices. Our goal
is to define a distributed software svstem to be the program-
ming equivalent of a multiple-processor hardware system,
where the processors. though independent, share the work
involved in some task. These restrictions are designed to limit
discussion to languages and models that can sapport coordi-
nated problem solving on such systems,



There are no mature software systems that exhibit our idea
of distribution. Instead, several languages and models have
been proposed for dealing with various aspects of distribution.
We feel that these languages and models can be characterized
by the choices they make in a multidimensional decision
space. In this section we discuss the dimensions of that space
and plot the location of our sample languages.

Candidate Models and -Lmrgm:gc's

Models are used to describe mathematical relationships.
Programming languages are used to describe processing.
Since the mathematical relationships involved in program-
ming and modeling a processing task are similar, some of our
examples have aspects of both programming language and
model.

Models are constructed to explain and analyze complex
system behavior, It is important that a model abstract out the
“interesting” part of the system it is attempting to model.
Models of concurrent systems usually specify some properties
of the interprocess communication mechanism: they are then
used to prove properties of the resulting systems. For exam-
ple, one can set up a model of the communication relation-
ships among processes and use it to analyze the efficiency of
an algorithm; or one can set up a model of the information
transfer among processes and use it to prove an algorithm’s
correctness.

Informally, a computer language is a way of providing a
sufficiently exact set of directions to a computer. Computer
languages are characterized by their syntax and semantics.
The syntax of a programming language defines the appear-
ance of the set of legal program strings. The semantics of a
programming language specifies the effects of a particular
syntactic structurc. The details of a programming language
syntax (such as the choices of keywords and punctuation) are
unimportant (except for issues of human engineering). In-
stead, itis the semantic actions the programming language can
take that interest us,

There have been many proposals for models and languages
for distributed processing. This paper contains a brief com-
parison of 11 of these proposals. We have selected what we
feel is a representative sample of ideas from the important
systems. Of these systems, we characterize four of these as
pure models: Milne and Milner’s “‘concurrent processes,”
Fitzwater and Zave's “‘exchange functions,”™ and Lynch and
Fischer's “shared variable™ modclj. and “data flow,” by Den-
nis and by Arvind et al.*¥ Typically, models for distribution
describe only the communication relationships between pro-
cesses, without placing limitations on the architecture of the
remainder of a system.

*Many workers have worked on data flow systems; there are important differ-
ences between the models they have developed. Here we cite only a pair of
references. The semantics of data flow models depends on which data flow
maodcl is used. Later comparisons will develop this theme.

Three of our examples are model-language hybrids:
Hewitt's Actors,” Friedman and Wise's frons," and Hoare’s
Communicating Sequential Processes.” Hybrids specify more
of the computing process than models but are not as compre-
hensive as languages.

" Qur final four examples are programming languages:
Brinch Hansen's Distributed Processes,"” Feldman’s PLITS. "
Andrew’s Synchronizing Resources,'? and the Defense De-
partment’s Ada."

Dimensions of Distributed Languages and Models

Every designer of a model or language for distributed com-
puting chooscs the facilities that that system will provide. In
this section we identify several such dimensions and indicate
where cach model and language lies in the choice Sp:!n.‘c‘&:/-
Table 1 examines the general goals and structure of each sys-
tem. Table 11 examines aspects of intrasystem communica-
tion. and Table 111 examines the system perspective of the
remaining dimensions.

**Other papers that have engaged in comparative discussion of distributed
languages include Mohan," Rao.'* and a predecessor of this paper.'

1. Task domain: the most dramatic diffcrences between
these languages and models appears in their choice of prob-
lem domain. The models are directed principally at mathe-
matical concerns, such as proofs of algorithm correctness
(Correctness) and analysis of algorithmic complexity (Anal-
ysis). Some of these systems are concerned with issues of
systems implementation (Systems). Some of the language
proposals are pragmatic—their authors feel that the choice of
constructs eases the task of programming distributed systems
(Pragmatics). Two of our pragmatic systems have particular
interest in programming problems from artificial intelligence
(A1) one is principally concerned with the software engincer-
ing problem of requirement specification (RS). Many systems
have features directed at several of these task domains.

2. Processes: Most models and languages have an explicit
process entity (Process). Others view tasks as the creatures of
program execution, to be solved by the system as a whole,
without keeping the notion of explicit, communicating pro-
cesses (Tasks).

3. Dynamics: In any system the set of processes can either
be statically determined at system generation (Static), or dy-
namically created during system execution (Dynamic). All of
the systems studied that have dynamic process creation can
allocate new processes; one can also generate them by the
recursive, lexical expansion of program text (Lexical). Task-
based systems can, of course, dynamically create new tasks.

Most languages that allow dynamic process creation restrict
the new processes to a type determinable at system initiation
(compilation). Some systems allow the creation of new vari-
eties of processes and tasks during execution (new). A system
that creates new processes invariably provides names for (or,
equivalently, pointers to) these new processes. These names
can be passed around the process network, creating new com-
munication channels. Systems that rely on a static network of
processes usually determine interprocess communication
paths lexically.

4. Synchronization: Systems with explicit processes choose
between synchronous communication, where all wommuni-
cants must attend to every communication (Synch) and asyn-
chronous communication, where processes can begin a com-
munication and continue with other activities (Asynch). This
is the difference between “call”” and **send-and-forget.” Fol-
lowing Ada," we call the period of synchronization in commu-
nication rendezvous.




5. Buffering: A system that supports asynchronous com-
munication can place a bound (Bounded) on the size of the
communication buffer or can allow an unbounded (Un-
bounded) number of mcssages'ﬁe initinted. Systems that re-
quire synchronous communication have no use for unbounded
message buffers; every message is processed when it is sent.

6. Information Flow: In communication, information flow
can be unidirectional (Uni) (from one process to another),
bidirectional simultancous (between processes only at the syn-
chronous time of communication} {Bi-Sim), or bidirectional
delayed (where one process can compute a reply during ren-
dezvous) (Bi-Del). None of our models or language provides
for bidirectional delayed communication where both pro-
cesses compute during rendezvous, though there is no the-
oretical reason to disallow it.

7. Control: The communication process can be initiated by
an active caller to a passive receiver (Act-Pas), by an active
caller to an active receiver (Act-Act), or by two equal commu-
nicators (Equal). The receiver of a request sometimes has
control over the order in which the requests are processed. In
the languages and models studied, this control includes input
and/or output guards (I/0-G), time out on lack of response
(Tm-0). choice of certain classes of requests (Choice), pat-
tern matching on messages (Pat), and selective search and
examination of all pending messages (Ex-Sr).

& Connection: Communicants can refer to a named port or
channel that is external to all processes (Port). the name of
process itself (Name). or a port within a called process (En-
try). The chart details the naming required of both the mes-
sage sender and the message receiver for systems that do not
treat communicators equivalently.

TABLE I—Goals and structures

(©)
(B) Dynamic
(A) Explicit Process
Model Task domain Processes Creation
Concurrent pro-  Correctness Processes  Dynamic, new
4 sses,Milne &
Milner
Exchange func- Pragmatics (RS)  Processes Static
tions, Fitzwater
& Zave
Shared variable, ~ Corrcctness, Processes  Static
Lynch & Fischer ~ Analysis
data flow. Pragmatics Tasks
Dennis; Arvind
et al.
Actors, Hewitt Pragmatics (Al),  Processes Dynamic, new
“orrectness
frons, Fricdman Pragmatics, Tasks
& Wise Correctness
CSP, Hoare Systems, Processes  Static
Correctness
Distributed proc-  Systems Processes  Static
esses, Brinch
Hansen
PLITS. Feldman  Pragmatics (Al),  Processes Dynamic, new
Systems
Synchronizing Systems Processes  Static
resources,
Andrews
Ada, Dal) Systems, Processes  Dymamic, new,

Pragmatics lexical

9. Time and consciousness: In synchronous communica-
tion, the process that initiates a communication may be forced
to complete that communication, or it may have some facility
for aborting the communication (such as a time out). We say
that a process activity that causes uninterruptable waiting isa
loss of consciousness for a process. Languages and models
sometimes provide mechanisms by which a calling process can
regain control. These mechanisms include instantaneous time
outs, time outs, input and output guards (1/0-Guards), input
guards (I-Guards), and rescindable offers. A process that nev-
er loses consciousness is always conscious; a process that only
awakens when invoked is reactive.

10. Fairness: Systems can strive for fairness. Sometimes
this notion of fairness is a weak fairness. the idea that every
attempted action eventually gets its turn (Weak). Alterna-
tively, a system can specify a stronger notion of fairness, asser-
ting that each process will get its “rightful” turn (Strong).
Stronger fairness can usually be implemented with queues.
On the other hand. a formalism may make no claims about
fairness at all (Anti).

[1. Failure: Most models and languages treat processes as
perfect computers and communication as invariably secure
(Fail). Some of the systems have some mechanisms for dealing
with process and communication failure.

12. Shared Memory: Some of the systems have explicit
shared-memory mechanisms, in addition to distributed ones.

TABLE II—Communication

(D) (F) (H)

Synchro-  (E) Informa- (G)  Syntactic-Conn.

Model nization Bulfering  tion flow Control Sender Receiver
Concur-  Synch  Bounded  Bi-Sim  Equal  Port Port
rent Fro-
cesses
Exchange Synch Bounded  Bi-Sim  Equal  Port Port
Fune-
tions
Shared Asynch Bounded  Uni Equal  Port Port
variable
data flow" Asynch Bounded/ Uni Act-Pas Entry none
Unbounded
Actors Asynch Unbounded Uni Act-Pas Name none
frons Asynch n.a. Uni _n.a. Port  Port
Csp Synch  Bounded  Uni Act-Act Name Name
I/0-G pattern—match
Distrib-  Synch  Bounded = Bi-Del  Act-Act Entry none
uted 1-G5. Pat
processes
PLITS Asynch Unbounded Uni Act-Act" Name sender
Filter filter
Synchro-  Asvnch/ Unbounded/ Bi-Del  Act-Act” Entry Entry
nizing Synch  Bounded  Uni [-G. Ex-Sr
Resources®
Ada Synch  Bounded  Bi-Del  Act-Act Entry Entry

[-G. Tm-0O

sDifferent data flow models make different choices regarding infinite buffering,
PPLITS processes can filter messages by sender or “transaction key.™
“Synchronizing resources supports both synchronous (call) and asynchronous
{send) mechanisms.

dgynchronizing resources can examine andd sort calls before selecting which to

SUTVE.




TABLE [1I—Other lssues’

(~L)
(1) Supports
Time & (#)) (K) Shared
Model Consciousness  Fairness  Failure Memory
Concur. Proc. Rescindable Anti
Offer
Exch. Funct. Instantancous Strong
Time Outs
Shared Var,  Always Weak Supports
Conscious
data flow Reactive -n.a.-"
IAnti
Actors Reactive Weak
frons Reactive Weak Convenient
redundancy
CSpP /0 Anti
Guards®
Dist. Proc. I-Guards Strong
PLITS Always Strong
Conscious
Svnch. Res.  I-Guards Anti Supports

A I-Giuard,
Time Outs

Strang  Extensive  Supports

mechanisms

*Some data flow models are deterministic. In a deterministic system, fairness
is irrclevant,

"Hoare’s carliest proposals excluded output guards. Later works on CSP have
included them.

HEURISTICS FOR COORDINATION

Incremental Computation

Despite the paucity of failure mechanisms in our models
and languages, any real system needs mechanisms to cope
with failures. On the statement level, these mechanisms need
to handle the disruptions of lost messages and failing pro-
cesses. On a more global level, a profitable organization of a
distributed system may be performed, not as a sequential
program, but as a set of computing “agents” who make
progress toward solving subtasks.

The idea of useful progress may seem a foreign notion.
Most conventional programming languages are a-step-at-a-
time, imperative formulations. The validity of the successive
steps is entirely dependent on the successful completion of the
previous steps. However, there are other possible formu-
lations for expressing computable functions. Production sys-
tems (such as Newell's'’) are one example. A production sys-
tem consists of two parts: a working memory and a set of
productions. Each production has two pieces, a pattern and an
action. When some part of the working memory matches the
pattern of a particular production, that production fires, exe-
cuting its action. Actions are programs; they typically add
elements to the working memory. Elements are ncver re-
moved from the working memory. Thus, the firing of a pro-
duction never makes another production’s firing cease to be
valid. One possible organization of a distributed system is a

set of productions that communicate through a working
memory. The “blackboard™ of the Hearsay-II model™ is an
example of such a central communication depository.

Other examples of computing systems that make progress
include theorem proving'” and suspending evaluation in Lisp-
like systems.* In a theorem-proving system, the proof of a
theorem does not invalidate the truth of any other theorem.
A task expressed as a theorem to be proved can be worked on
by many inference rules at the same time. In a suspending
CONS system, tasks arc created as the natural action of com-
putation. When a processing element finishes a task, it
“stings™ that task with its value." Sting is an interlock-free
test-and-set primitive. If the particular object to be stung has
already been stung (by someone else), the operation becomes
a “no-op.” Thus, if a swarm of processes are working on a
problem, the first sting of the answer is permitted to succeed.
Later stings have no effect: thus, the system exhibits func-
tional behavior throughout,

Programming languages predicated on this idea of incre-
mental discovery can be more easily distributed than systems
that require the standard sequentiality.

Economic Models

Distributed computing networks are not the only organiza-
tions that require internal cooperation and communication.
Human economic activity shows both some of the same re-
quirements and some of the same goals as a distributed com-
puting network. There are some interesting parallels between
human economic systems and potential organizational models
for distributed systems.

How are economies organized? One important dimension is
centralization. In a centralized system, there is a master direc-
torate (node) that sets the goals of the system and divides the
task into subpieces, with each subtask specified for a particu-
lar worker. When the task is modular and well defined, it is
possible to organize a distributed system in this fashion. Effi-
ciency can be achieved in such a structure if the task is well
understood, and the initial allocation of subgoals and re-
sources can be made to reflect this understanding. However,
central planning does not lend itself well to ill-defined prob-
lems. Additionally, there may be a communication overload
from the planning node to the workers while most of the
communication ability of the system—between the working
nodes—goes unused.

It is only a small step from a fully centralized economy to
a partially centralized (hierarchical) model. The central au-
thority defines the major tasks. These are parceled out to
regional subauthorities, each of whom is allotted a resource of
workers. This structure can be iterated. At the limit, it resem-
bles a corporate hierarchy tree. Hierarchical organization can
respond well to local aberrations. However, its response to
dramatic global changes is somewhat slower, because com-
mand must filter through several command layers. Hier-
archical systems are better matched to the physical distribu-
tion of the world than systems based on pure centralized
control.




An alternat,évapproach to processor organization is a
laissez-faire economy. Each task has certain goals and an
allocation of currency. Currency can be used to purchase
processor power and to generate new tasks. When a task has
exhausted its currency, it can appeal to its own source (bank-
er) for more. Its banker can then decide, on the basis of the
results that the task presents, whether to grant that task more
resources. The scheme can be applied recursively, to the
banker’s banker, and so forth, back to the resources of the
human being who originated the request. Such a scheme lends
itself to ill-defined tasks—ones where a promising line can be
recognized but not necessarily generated—and to useful-
progress programming models. Though such systems are not
fragile, there are difficulties both in focusing the organization
in the presence of a rapidly changing environment and in
terminating the activity of tasks that have ceased to be useful.
A variation of this mechanism was used by the agenda priority
schemes of Lenat.” Our development parallels a remark of
Hewitt. ' ; #

One could also imagine distributed systems organized as
mixed economies (partially centralized and partially free mar-
ket) or as indicative planned systems (with centralized goals
and directives shaping a free-market economy.)

Another proposal for organizing distributed computing is
Smith's contract nets.”' Processes that have subproblems
broadcast their request to the other processes. A free process,
or one that has particular knowledge about that task. “hids™
to obtain the contract. Contract nets are a protocal; Smith
does not claborate on how particular tasks would be organized
in the contract net approach.

CONCLUSIONS

Distribution promises inexpensive and efficient computation.
To realize that promise, much work needs to be done both to
define the right models for distribution and to select the ap-
propriate algorithms for apportioning computations among
processcs.
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