DST Program Description
by
S. D. Johnson
and
A. T. Kohlstaedt
Computer Science Department
Indiana University

Bloomington, Indiana 47405

TecHnicaL ReporT No. 120
DSI ProGRAM DESCRIPTION
Steven D. JOHNSON

AND
ANNE T. KOHLSTAEDT

Novemeer, 1981

Research reported herein was supported, in part, by the National

Science Foundation under grants number MCS77-22325.

ABSTRACT

The programming system DSI, being developed at Indiana
University, 1is a basis for empirical investigations of pro-
gramming and computer architecture. DSI's development is
motivated by a desire to explore in depth the applicative
approach to programming. To do so, a pure and robust "com-
putational medium" is needed, and DSI represents our model
of such a vehicle. The program serves two projects. The
first, called Project Alpha, has as an objective establish-
ing a programming system on a conventional host computer, in
order to experiment with applicative approaches to large
problems. The goal of Project Beta is to specify, build,
and measure a prototype applicative list multiprocessor.

This report is a "programmer's introduction" to DSI, giving
an overall description of the program and reviewing the
concepts that influenced its design. Discussion centers on
the suspension, a transparent processing entity on which the
program's design is based. An informal discussion of
suspensions is followed by description of DSI's overall
program structure and a machine independent 1look at 1its
representation of primitive objects.

To give orientation and perspective to the current state of
bBSI's design, the remainder of the report deals with issues
that guided its evolution and gives directions for further
research and development. This includes a survey of related
outside work as well as extensive references to material
published by this department in the area of applicative pro-
gramming. We conclude with a history of the implementation
effort.

- iji -

IABLE OF CONTENTS

3. - IntEOdUCtiOH e 8800 e0 00000000 a0000SES e S

2-SuspenSionS CRC I I R I R R N B I I R O R B R R R

w w
L]
b= |

(F8]
e ° ®
> w b
1 1 I

The SUPErVIEOR cummnsis eissiaed ¢ nis
Evaluators ® © 9 0 ¢ & & 8 O 0 O 0 O 0 0 9 O 0 O @ @ 9
Datd Space ACCESS .ue s sewesans s i

Summary ® 2 ® 9 0 9 ¢ 0 08 080 B 008 F 6 S O S B 0 88

4 - Further Research and Development ...

4,1 -

4.2 -

=

°

w
1

Planning anc Management ..ecssceoe

Design @ 9 2 9 9 0 8 O 0 ¢ 0 OO0 O QOGS SO0 OO0 0SSO O OT O

Belbacode ASSEMBLY v & aweseiae s sevmmmsee ¥ smwwe

Performance Measurement and Improvement

DeV'iceS ® 8 0 0 ° O 9 0 9 9 @ O O O O O 9 O 9 O O O O O 0w

Applicative methodS ..scceccscccss

S_RelatedI‘.IOrk e * o & ¢ & 0 & O S O & S O O S 0T O OO SO

SCHEBlE .I...l.-t.l‘lll'l...........

The Model of Grit and Page .eesesee

Actors ® ® ® & & O O O O O 0 T O O O S O P O 0 O 0 8 O 8 O B O O

CCS L L R L B O B RN N D R R R R B AN R L A B R I

Clark's empirical study of data-spaces c.ee.

PARLAP’I ® 2 ¢? 29 9% 0000000 e 0T OO0 0008000000 eSS0 00 00

6 - Summary: DSI's Development HiStOry ..eceeescees

References

= xil =

® ® 9P 0 0 2 0 00 OSSO WO e OO e TS T O OO O S OO0 S0 T eSO C OO

LU= S o o]

10
16
17
17
18
19
20
22
22
23
24
25
25
26
26
26
27
32

Al trod ion

DSI is a programming system being developed at Indiaha
University. It 1is intended to serve as an experimental
basis for continuing investigations of progreamming language
semantics and computer architecture. Such investigations
are outgrowths of a more general study of applicative pro-
gramming for systems. Our purpose here is to review the
underlying concepts that motivate DSI's development, and to

illustrate how these concepts are implemented.

By itself, DSI is just a data-space manager. While its
data-space can be manipulated only through a high level pro-
gramming language, the basis of DSI's design is far removed
from high 1level syntax. For the purpose of analogy, con-

33 The term "LISP"

sider DSI's most venerable ancestor, LISP.
actually denotes two entities: a list processing host facil-
ity and a 1language for the interpretation of symbolic
expressions. The role of LISP "the language" as a lingua
Franca for the functional programming community obscures the
contribution of LISP "the list processor"., LISP's facility
in managing its data-space is what makes it so attractive as
a machine model. 1In DSI the issues of language and archi-
tecture are also intertwined. In order to keep them dis-
tinct the access language has a name of its own, Qgigz.Bl

Daisy's interpreter uses DSI to manipulate its program and

data structures,

DSI Program Description 2

DSI plays a part in two distinct but relatéd research
efforts, called Alpha and Beta. The primary goal of the
Alpha Project is to produce an applicative programming sys-
tem around the language Daisy. The Beta Project is a step
toward designing a computer architecture for the efficient
execution of applicative programs.

31,26 It is @&

Daisy's syntax is described elsewhere,
functional programming languagde in which the basic form of
expression is a system of mutually recursive equations,
Daisy has a call-by-name semantics and its interpreter com-
putes by graph reduction. Since the language is side-effect
free, call-by-name is implemented efficiently and tran-

B DSI-alpha implements

sparently using a "suspending CONS".
an underlying list processor that supports Daisy's computa-

tional mechanisn.

The Alpha Project

| abstraction | implementation |
——————— e Ll
con- | Daisy | suspending |
trol | semantics | constructors |
——————— R
mech- | graph | DSI-alpha |
anism | reduction | |

| I |

At the same time, DSI is a design model for a prototype
applicative multiprocessor. Implemented on a conventional

host machine, DSI-beta emulates a target architecture that

3 DSI Program Description

exploits the non-sequential character of functional pro-
grams. Techniques to introduce concurrency have evolved

30 Design

from the "demand driven" approach to computation.
alternatives are implemented and tested with software in
DSI-beta, eventually to be realized in the hardware of a

list multiprocessor.

The Beta Project

| abstraction | implementation |
~~~~~~~ e o
con- | DSI-beta | uniprocessor |
trol | | emulator I
------- | Esmradis sy | s s s st e |
mech- | demand driven | 1list I
anism | computation | multiprocessor |

| | I

Thus DSI 1is in the intersection of two research
efforts, and plays a different role in each. While Daisy's
semantics guides DSI-alpha's implementation, its interpreter
is merely a program to the underlying system. Similarly,
while DSI-beta strives to emulate a multiprocessing "compu-
tational medium", it does not yet simulate a fixed architec-
ture, While the differing roles may eventually lead to con-
flicting objectives, for the present DSI-alpha and DSI-beta
are the same program. Below we give a "programmer's intro-
duction” to DSI, presenting its design without delving into

the surrounding issues.



DSI Program Description &

Returning to the LISP analoay, we note thatlone intent
of DSI is to do with process what LISP does with data. LISP
"the list processor" is a primeval data management system:
it "factors out" some of the complexity of data manipulation
by reducing structure to an elemental form -- the binary
list cell, Similarly, we seek a "lowest common denominator"
for the notion of process, The focal point of our discus-

sion 1is the suspension, a kinetic counterpart to the inert

list cell. Where, in our view, data is fixed and immutable,

suspensions evolve in the presence of processing.

In managing a data-space enriched with suspensions DSI
must manage process as well. One of the tenets of our work
is that process is embedded in data. Thus, aspects of pro-
gram behavior, nondeterminism for example, arise instead as
attributes of data. It becomes the responsibility of the
underlying system, DSI, to manage events only weakly speci-

fied by programs,

At a higher level of discussion we would elect to keep
any notion of a processing gbject hidden. However, here we
will concentrate on these transparent entities. The
description of DSI begins with a informal discussion of
suspensions in Section 2, which also serves to introduce a
vocabulary. Section 3 considers DSI's overall design and
discusses representation. In Section 4 some extensions are
proposed. Section 5 discusses related work. The summary in

Section 6 reviews DSI's development history.



5 DSI Program Description

2. Suspensions

Consider the expression E = "<A ! B>", E's value is a
list whose head 1is the value of "A" and whose tail is the
value of "B"., The evaluation of E involves three sub-

computations:

(i) Evaluate "A".
(ii) Evaluate "B",
(iii) Obtain a free list cell and initialize it with
the results of (i) and (ii).

The limitations of most computers (the fact that they have
only one CPU) dictate that these sub-computations occur in
some order, Typically, (i) and (ii) precede (iii), and in
any event all three would occur before a value was produced.
This is not the case in Daisy however. No order is speci-
fied for the sub-computations, and in general the result of
(iii) is returned before (i) or (ii) takes place. This
behavior 1is obtained by distinguishing a process's creation
from its execution, Computations are created and stored in

the data-—space.8 When a particular computation is performed,

however, depends on its relation to other computations.

-

The data-space is a mixture of mani t objects and
suspended computations. In pictures we depict the former as

boxes and the latter as clouds.



DSI Program Description

compute
“rest:

Choose a distinguished process,

progress, S8's computation,

R
compute

" cons:{(A B)"

say S, and assume it is in

"first:L", is a probe, which

exposes the suspension R. This has the effect of dispatch-

ing R to converge, or produce a value, (If R diverges, or

fails to produce a value, so does S.) Convergence has a

side effect: R is replaced by (or

value,

compute
| “rest:

replaces itself with) its

—
S,
/\.\ g2
compute



7 DSI Program Description

Should S ever become active again, it converge§ te the

result of its probe.

compute
n B "

compute
i A n

The fundamental attribute of manifest data 1is 1its
value. A process is ordinarily characterized by its state,
which consists of a label (its state of behavior) and an
environment (the state of its world). It is sometimes use-
ful to think of a manifest object as a process in the (ter-
minal) T"state of being.a value". In the original implemen-
tation "suspension" was a type, a record consisting of -a
form to evaluate and an environment. A probe was a coer-
cion” from "type suspended" to "type manifest". 1In effect,
each convergent object went through a length-two sequence of

states.8

To get an operational basis for indeterminism12 inter-

mediate states are allowed in the sequence. An iterative

*In the technical sense of reference [35]



DSI Program Description 8

form of coercion, called coaxing, is introduced,  where the
referent suspension need not converge, but only advance its
state, A new type of list-object, called a mnultiset, is
added to the set of manifest data types. When multisets are
probed their elements are coaxed concurrently until one con-
verges., Some convergent element 1is promoted, via an in-

place sort, to head the list,>’°r29/27

It is natural but misleading to describe a suspension's
relation to 1its environment in terms of verbs like "probe"
and "coerce". Actually the underlying system is the agent
of change. DSI applies processors to processes: the selec-
tion of which process to activate is based on many criteria,
including the dependencies established by coercions and
coaxes. The process dependency relation is referred to as
the schedule. 1In DSI-alpha, where there is only one proces-
sor available, the schedule is a data structure; but in a
processor—rich system, such as DSI-beta, the distribution of

the scheduling responsipility is an obvious goal.

3. Design

DSI's program design is divided into three levels of

coding:



9 ' DSI Program Description

/ super— \
/ vision \

7 data-space X
7 access N

At the base level is a collection of pseudo instructions
that are wused to explore and manipulate the data-space.

Processes —-- we use the term evaluators synonymously -- are

implemented at the middle level. The schedule is maintained
at the supervisory level. 1In this section these levels are
discussed individually, starting with the supervisory level.
Each discussion begins with an overview, followed by a look
at the Beta Project's prototype design, then, where
relevant, a description of the Alpha Project's implementa-

tion.

3.1. The supervisor

Excluding the garbage collector, the supervisor is the
only component of DSI that "knows" about suspensions. Every
probe issued by an evaluator is validated, and if the result
is manifest the process may proceed. Otherwise, the probing
process is interrupted, its state is saved, 1its suspension

is rescheduled, and some pending suspension is activated.



DSI Program Description 10

Figure 3.,1-1 is a high level diagram of the Beta Pro-
ject prototype. It 1is a multiprocessor with a monolithic
list store, accessed through a bus. Components on the bus
include an operator's console, some number of I/O devices
and a set of list processing units (LPUs). The supervisory

function is done by an eavesdropping component that monitors

all transactions with the store. The eavesdropper inter-
cepts probes of suspensions and schedules their activation.

It applies available LPUs to pending processes,

In DSI-alpha, a single processor, the host CPU, does
both scheduling and computation. A reentrant routine called

the supervisor maintains the schedule in a data structure.

The physical representation of the schedule varies, depend-
ing on the global behavior being modeled. It now consists
of a set of stacks, one for each device of the system (file,
printer, keyboard, terminal screen), and a collection of

queues, each representing an LPU.

3.2. Evaluators

The central level of DSI consists of a collection of
LPU program segments, which perform the higher level func-

tions of the virtual machine:

i) the interpretation of Daisy,

ii) scanning, parsing, and de-parsing Daisy programs,
iii) garbage collection,

iv) device handling.

Evaluators assume a manifest environment and rely on the

supervisor to intercede when they attempt to interact.



E % |

M=
pm<omw

Console

DSI Program Description

—H W=

LPU LPU LPU| 000

The Beta Prototype

Figure 3.1-1

<xn0<mX

Eavesdropper




DSI Program Description 12

Their "instruction set" is a collection of predefined tran-
sactions with the store. Whether it succeeds or fails,
every transaction is designed to make an evaluator's state
recoverable. Thus the supervisor may freely interrupt and

deactivate an evaluator at any point in its computation.

Figure 3.2-1 is a high level diagram of an LPU. In the
Beta Project general purpose microprocessors emulate this
architecture, 1Its internal configuration is a collection of
registers organized on a bus and contreclled by a microcode
sequencer. Other components include an interface to the
global store and an arithmetic/logical function unit. Of
the twelve internal registers, six are for transient
storade. The remaining six, including the microprogram
index register, constitute the storable state of the proces-

sor and coincide with the record structure of a suspension.

Suspensions are held in three contiguous binary 1list
cells, Thé first, called STK, is the topmost cell in a
linked evaluation stack. A push on STK saves the contents
of register B, a small integer, and the reference in rggié-
ter X. ENV holds a computatiocnal environment that usually
consists of a formal part (register F), and an actual part
(register A).zg The VAL cell contains the suspension's

label, K, and an accumulator, register R.



13

DSI Program Description

e TGrKINg _information

1yping _information

- __...:,T_____ _‘\\\

control

Microprogram
Seqiencer

&

Centrel
Legic

| 8
é¢ﬁ:aﬁa:=::DOW¢er information F:=*b3=:Wf":*x:—_}§

S O0000 0D

= Arith -
] metic
Logic
Unit
E 2% Fl1A R P MM

D le—— process state

Microprogram

Store

—

(suspension )

DSI List Processing Unit (LPU)

Figure 3.2-1

Memory
Access
Contro!
Logic *




DSI Program Description 14

1
STK cell B: ,
. B L: pointer niretersnge
(evciuation stack ) 25 405
_— ;
g B a!l =
=V ¢ ¢ F:reference A:retference
(environment ) 1 |
=
VAL cell
: ) y K: labe! R:reference
accumanator : I

DSl's Suspension

A process, then, is an LPU "running" a suspension.
Evaluators are written in an intermediate language called
betacode that defines the allowable LPU register opera-
24

tions. Each instance of an evaluation is, from its per-

spective, executing autonomously in a manifest environment.

Figure 3.2-2 shows the betacode for a portion 6f
Daisy's interpreter in flowchart form. Evaluator control is
based on register content (e.g. Branch Point C in Figure
3.2-2) or on the type of a referent cell (e.g. Branch Point
E). Typical instructions include register transfer, probes,

and stack operations,



15

DSI Program Descripticn

jggawnent‘!
\.‘_______,.a/.‘_‘
| {orench |
lncme:E
R -
APPL NULL
NMBR
XeR: :
B:=EVALENY RETURN
push;
R ¢ rest:R \
____ﬂu_thrcnch
incme: G
s iR ' i
B ~—
] I
EVALEN APPLS

; 7
<o R %
B = GFFLY [\/

nush
R« first: R

application

Figure 3.2-2

A Portion of Daisy's
Interpreter in betacode




DSI Program Description 16

3.3. Data Space Access

The lowest level of DSI is a collection of procedures,
functions, and macros that implement betacode. The instruc-
tion set includes fetches, stores, probes, and constructors.
It maintains a free space of binary cells and emulates the

list-store component of the Beta prototype.

A typical list cell has two primary subfields, each a
reference to another cell. The remainder of the record
holds some bits of cell typing information and storage rec-
lamation "marks". There is a reserved area for experimenta-

tion, especially with reference counts.ll'49

B e 18t CO e —
| ~=——— LF T: reference ————=>| [<< RGT:reference — ——-———=2=|
f'l.{‘f‘_-‘! LI} [] T 1
R’;; TYP PTR GCI|S| TYP PFTR
: ////v/iff 1 1 L1
= |<referance count ' =| |==— storage reclamction marking bits
=== |==-— referent type == |==- cell type modifier
|q.::._':.....-....,-_ po:nter Pt Rt .._.__:_'_.-‘_3,]

A reference consists of a pointer together with some
typing information, Although placing type indicators in the
reference costs some space, it diminishes the number of

45

store accesses required for interpretation. *null®, “iden~

tifier", ‘"application", and "error" are example ground



17 DSI Program Description

types. These indicators are the primary means of contrel in

the LPU, where they index microinstructicn fetches,

3.4. Summary

DSI's program structure exhibits two kinds of informa-
tion hiding, The data-space access routines implement the
store as an abstract object, suppressing the implementation
dependent details of storage management. The supervisor
hides the interference among processing entities, allowing
each evaluator to proceed autonomously in its computation.
Process interaction 1is represented by a data structure
called the schedule, which can be altered to explore dif-

ferent generic behaviors.

4. Further Research and Development

Clearly, DSI's behavior resembles that of an operating
system, Its supervisor organizes a collection of "tasks"
arcund some schedule, The distinction is in the fine grain
of process decomposition. On a single-CPU architecture the
size of tasks is kept large to reduce the overhead of multi-
tasking. Ultimately, DSI-alpha will supplant its host's
operating system. 1Its elementary operations subsume many of
the functions of a general purpose host. While conventional
CPUs have hardware that is well suited to the LPU function,
it is often the case that privileged operations are needed
to implement DSI's betacode efficiently. The host system

gets in the way.



DSI Program Description 18

Since suspensions are ubiquitous in the. data-space
their management is a dominant factor in the cost of compu-
tation., Even with total control over the CPU, DSI-alpha
could not compete with operating systems that maximize the
size of their tasks. The payoff comes through multiprocess-
ing, and DSI-beta is a step in that direction. Owing to the
transparency of suspensions, we look for a graceful metamor-
phosis from multitasking to multiprocessing., Since there is
no direct notion of process in the access language, the exe-
cution of a given program does not depend on processing
resources, Moreover, interaction among processes is
indirect, taking place through the medium of a manifest con-
text. There is never a communicative "contract" between
individual processors to perform subtasks and thus the

failure of an individual LPU is not critical.

Further work can be classified by the Alpha/Beta dis-
tinction, although in most cases both projects are served by
é single well conceived undertaking. This section summar-
izes those directions‘in research and development that can

be based on the model of computation established in DSI.

4.1. Planning and Management

An orderly approach to advanced design requires a
stable development environment, File organization and
release procedures have already been established on DSI's
current host, a Digital Equipment DEC/10 computer. Our

department's newly acquired VAX 11/780 offers improved



19 DSI Program Description

management facilities and a transfer of DSI to the VAX is
already underway. Once it is complete we can begin the pro-
cess of incorporating the model at a lower level, beginning
with the local optimization of primitive functions. The
system will be 1in constant transition for the foreseeable
future, as more of the underlying host mechanisms are sub-

sumed,

Although the Beta prototype is still in the modeling
phase, DSI's dual role continues even after design refine-
ments make emulation impractical. Software aids are needed
for the assembly, modification, and documentation of the
prototype. Ancillary investigations, such as a study of
process—-memory _connection schemes now underway25'48 should
be inteqgrated, It is crucial that the development environ-

ment remains flexible enough to accommodate both projects.

4.2. Betacode Assembly

Presently, betacode is translated by hand into the
implementation language. An assembly program would be an
obvious imprgvement, but as yet there 1is neither a fixed
source language nor a unique target language for assembly.
A betacode assembler must produce target code for at least
two machines: the DSI-alpha's VAX host and the Beta
prototype's general purpose LPU emulator (not yet selected).
The greatest danger in writing this assembler is that it
tends to freeze the LPU design. While we cannot defer a

precise LPU specification indefinitely, the absence of a



DSI Progream Descripticn 20

concrete specification allows us to explore alternative
architectures without much additional cost. A behavioral
model "cast in software" dampens this flexibility. However,
once a consensus is reached about details of LPU architec-
ture the situation changes. Standardization becomes neces-
sary and conformity can be enforced through automatic assem-

bly.

While any function of the programming system, an editor
for example, could be compiled to betacode and introduced in
DSI as an evaluator, we do not intend to make betacode a
"source language" for the machine., Daisy should perform
well enough for most applications. Thus we do not expect
the assembler project to evolve into a compiler project,
where Daisy "specifications" are reduced to betacode. We
are more interested 1in program transformation techniques,
where clear but inefficient applicative programs aveput into

a form that may be efficiently interpreted.é?'46

4.3. Performance Measuiemgnt and Improvement

Suspended computation is based on phenomena so far
removed from program text that it is tempting to seek gen-
eral laws governing data-space behavior. Toward this end,
work 1is underway to measure the observable properties of

psI32

and to compare its spatial behavior with results
obtained for a LISP based system.3 One can make inferences
about temporal behavior by looking at process objects, but

to measure activity through simulated concurrency takes



21 DSI Program Description

enormous resources., The Beta prototype should create enough
real concurrency to study its effects. Thus its design must

incorporate measurement tools from the start.

With respect to Project Alpha, a number of performance
improvements are straightforward. Suspensions f£it into the
register file of contemporary CPUs and could be activated
quickly through a register transfer operation. Presently,
the activation of suspensions is still a matter of software.
Because it happens so often, the interruption of probes
should also be at hardware level, probably through some form
of forced memory access trap. We know of no high level pro-
gramming language which allows us both to generate an excep-
tion and to capture the program state once this is done. BY
moving these primitives to assembly level, we expect a per-

formance improvement of about one orcder of magnitude.

While substantial performance gains can be achieved
through lower level coding, a more interesting challenge is
the relaxation of DSI's-fully demand-driven properties. (In
other words, how can we safely make DSI less lazy?) Hethods

to introduce "partial strictness" range from compilation39

6,40 BEach addresses some

to glcbal processing heuristics,
aspect of expected program behavior and assumes some mechan-
ism for efficient implementation. Thus the selection of a
specific method has a profound influence on design. Here

again, empirical study is needed to establish criteria for

appraising methods.



DSI Program Description 22

4.4. vices

The greatest single barrier to cohesive development in
DSI is the behavior of conventional I/0O devices. Input is
almost universally viewed as the driving force of computa-
tion., Yet we regard computation as output—drivenlo, and are
constantly engaged in & battle to make the host architecture
behave accordingly. Based on our experience, reversing the
predilection for "input causality" requires major involve-
ment with the host operating system. The problem may be

eased by DSI's transfer to the VAX, since UNIX "pipes" have

some of the properties we seek for file flow,

Ultimately a device is just a process that produces or
consumes a stream,. The overt behavior of a keyboard or a
printer is indistinguishable from that of an LPU. The only
difference 1is that these processes are dedicated to the
peripheral devices they serve. Especially in the case of
output, they place a "locad" on the schedule by autonomously

probing its environment.‘l0

4.5. Applicative methods

While there are many claims about the benefits of
applicative programming, there are few accounts of its prac-
tice "in the large"., Efforts to improve DSI's performance
on a conventional host reflect our desire to establish a
laboratory for experimentation with larger applications.

Project Alpha must address the breadth of the programming



23 DSI Program Description

experience and provide alternatives to imperative tech-
nigques. In some areas, error recovery for example, there is

38

no established basis for an applicative approach. In oth-

ers, such as file organization, the solutions offered are

tentative and seem costly.7

In the absence of a truly applicative programming vehi-
cle it is difficult to test hypothetical approaches. There
is always a side-effect that fixes the problem. We believe
that good programmers will invent good methods if they are

"constrained" to a purely functional environment.

5. Related Work

DSI is the beneficiary of numerous other investigations
into programming language semantics, operating systems
research, and multiprocessor design, This section discusses
the more prominent influences. Omissions are inevitable; we
are continually finding projects, even areas of study, that

are applicable to our work.

The foundations of our work differs from others' in a
couple of ways. First is the semantic distinction of call-
by-value and call-by-name approaches. It seems appropriate
to take one of these mechanisms as basic and the other as
exceptional. HMost choose call-by-value; we have chosen
call-by-nane. As the prefix "call-by" suggests, the basis
for multiprocessing is often assumed to lie in the relation-

ship of a function and its argument. Instead, we view



DSI Program Description 24

call-by-need as a symptom of a generic relationship between
any process and its environment. It is not yet clear
whether anything substantive is gained by this distinction,
although it cdoes allow us to concentrate on a computational

model incdependent of language constructs.

Either approach can lead to a spectrum of control
methods. At one extreme is an interrupt paradigm: a process
is "awakened", or notified of the completion of a subtask,
usually through the communication of a result. Alterna-
tively, we adopt a polling paradigm, where the waiting pro-
cess repeatedly tests its context for the emergence of mani-
fest data. We are striving to minimize, or at least factor
out, all assumptions about the communicative aspects of com-
putation, By forcing interaction to occur through contexts,
the outcome of a program hever depends on the availability

of an individual processing component,

5.1. SCHEHE [42,44 ,43,45]

Sussman and Steele's implementation of the LISP dialect
SCHEME has had a profound effect on DSI's design. Its
influence continues through their recent work and through
local SCHEHE-based investigations., The most notable
representational difference is the suspension's lack of a

K, or continuation pointer. In DSI this information is
kept in the schedule, a result of the belief that control is
not necessarily a matter of direct communication. For the

same reason, the SCHEME-frame's accumulator 1is absent;



25 DSI Program Description

suspensions pass their results through their contexts.

5.2. The HMHodel of Grit and Page [17,18,19,40]

Grit and Page have done extensive simulation on a model
for general purpose suspension-based multiprocessing,
Theirs is a large experimental effort born from and of
direct consequence to our work., They have projected perfor-
mance targets for an architecture similar to the Beta proto-
type, and have begun a study large scale communication
architectures. They introduce (and inhibit) concurrency
through function-arcument interaction, and have explored the
multiset construct. It is not clear to what extent, if any,
our perception of the data-space differs from theirs, but it
is likely that operational differences exist. Once these
differences have been isolated their gquantitative results
should serve as guideposts to the Beta project design

effort.

5.3. Actors [23,22,21,4]

Hewitt's work, and that of his colleagues, addresses a
wide range of issues including syntactic constructs, process
recovery schemes, and formal foundations for concurrency.
So far, the effects on DSI have been'indirect. The most
straightforwaré application of the Actor model may be
descriptive, For instance, DSI's supervisor is an object
that manipulates continuations, and Hewitt's syntactic con-

structs have great facility in this regard., Clinger's



DSI Program Description 26

semantics for Actors4 will likely direct our semantics for

feggs.g

5.4. CCS [34,36,37]

Milne and Milner have developed a formal model of com-
munication that manages to deal with state and still appear
applicative, Theirs is the most attractive formal descrip-
tion technique we have seen. In defining process interac-
tion as a coincidental message exchange rather than a
directed communication, they have rendered the question of
causality moot. But this does not solve the problem of
cause and effect, and we do not presently know how to
proceed gracefully from a formal description of behavior

under their model to an implementable operational semantics.

5.5. Clark's empirical study of data-spaces (2,1 ;3]

Clark's measurements result from a comprehensive empir-
ical study of LISP's data-space. A number of DSI design
decisions, the hashing of small numbers for instance, were
based on his observations. His approach gives a comparati&e
basis for our own investigation and measurement of DSI's

data-space behavior,

5.6. PARLAH [41]

Prini's applicative language PARLAIM contains primitives
for the scheduling and inspection of suspended objects. 1In

our own terminolcgy, he has elected to dissect the data-



27 DSI Procram Description

space along different 1lines than we have, making exposure
explicit and context implicit. 1If we regard PARLAM as a
high level language, it reveals the very entities we set out
to hide. However, PARLAHM does isolate relational c¢perators
needed to build a schedule, This set of "dependency primi-
tives™ may in fact be minimal with regard to a language like

Daisy.

6. Summary: DSI's Development History

In an article published in 1976 Friedman and Vise
describe how a "suspending CONS" transforms a call-by-value
LISP interpreter to call-by-need semantics.8 The defini-
tional interpreter they present was implemented in LISP, and
used to demonstrate the effects of a lazy constructor.50
While Wise's program, called SLISP, gave a succinct defini-
tion, it executed so slowly that even simple examples took
minutes to run. Using SLISP as a specification, Cynthia

Brown undertook a project to remove one level of interpreta-

tion by implementing an interpreter in Pascal.

In the spring of 1976 a seminar was held on the frame
model of computation. It was there that the foundations of
bSI's design began to take shape. The course was taught by
Daniel Friedman, who, through considerable syntactic slight
of hand, crafted a single-page definitional interpreter for
SCHEME called CODA. CODA has evolved continually since then
(it is now called ALONZO) and is still a guiding force in

DSI's development.



DSI Program Description 28

Brown's implementation of SLISP was running by the sum-
mer of 1976, and when she accepted a faculty position, Steve
Johnson took over the project. ©One of his first tasks was

to find out why SLISP was still disappointingly slow.

Throughout the 1977 academic year, Friedman and Wise
explored further implications of output-driven computa-

5,12,7,13,14,11

tion, A research assistant, Tom Grismer, used

SLISP to implement &a number of systems level algorithms

applicatively.15

It was clear that CONS was too strong a
function to handle problems in real-time programmning. A
weaker probing operator to do coaxing was rejected in favor
of a weaker constructor, frons. The constructor frons was

20 yhile retaining

to deliver "call-time-choice" semantics
delayed evaluation. There are numerous ways to obtain this
behavior, and the operational semantics of frons is still

being discussec’i.27

In order to add frons to SLISP it was necessary to
reconsicder the role of suspensions 1in the systemn. They
evolved from being a type and acquired the temporal aspects
of state. This was such a fundamental change that it
invalidated much of SLISP's design., Multisets were incor-
porated anyway, and SLISP continued to be used throuch

1980.16

But the program proved tco unwieldy a tool for
deeper research into architecture, and too slow for use in
the study of large algorithms. When Johnson left to work at

Bell Leboratories, SLISP died from lack of interest.



29 DSI Program Description

A year later Anne Kohlstaedt and Casper Martin joined
the project. They implemented a language they called
Suspense in Pascal, using CODA as a specification., Suspense
performed much better than SLISP on deterministic programs,
due to a cleaner underlying design, But because it used
Pascal's recursion to do scheduling, there was no easy way
to capture state. Kohlstaedt and Martin experienced the
same difficulties in adding multisets that Johnscn did in

SLISP,

In the fall of 1979, Johnson returned to replace MMartin
on the research team. Design was begun on DSI with several
specific goals in mind. Multiprocessing would be incor-
porated at the outset, to avoid the inevitable complications
of adding it to a deterministic system. We were determined
to establish a development environment that would withstand
changes in personnel, and be flexible enough to serve as a
foundation for 1long term research and development. The
frentier of suspended computation was to g¢go beyond the
language interpreter to include parsing, compiling, deviée
handling, in brief, everything. DSI's primitive operations
had to fit existing host architectures well enough to exe-
cute much faster than its predecessors. Finally, it was to

provide a medium for guantitative study.

By mid-1980, the list processing subsystem, DSI, was
running. Betacode began to evolve, and shortly after the

1980 academic year an interpreter for Daisy was implemented.



DSI Program Description 30

Over the next year & multiprocessing scheduler was
developed, an interface to the file system was added, and

about thirty benchmark programs were developed and measured.

At this time, further development has been postponed in
orcder to transfer the system to the Computer Science
Department's newly acquired VAX 11/780, operating under
UNIX. DSI falls short of our performance goals by about two
orders of magnitude. We believe a tenfold increase in speed
can be gained by optimization of DSI at the assembly level.
More improvement will come through refined scheduling tech-
niques. But to meet and exceed our expectations, DSI's

future depends on new architecture,

The "applicative premise" -- the hypothesis that appli-
cative languages are more promising in practice than impera-
tive languages -- is based partly on the belief that appli-
cative programs can compete with their imperative counter-
parts, Support cof this premise entails finding ways to make
expressed algorithms confcrm to the physical constraints of
the hardware that executes them. When hardware was the dom-
inant cost in computing this meant allowing the program text
to wvary, through compilation. Mow the situation has
changed, software costs dominate, and we are looking for
ways to let the hardware vary with the demands of & program.
Cne approach is to remain in a general purpose setting and
design extensible machines. This is the direction of the

Beta Project. However, at this stage we are not out to



21 DSI Program Description

build a faster or a bigger computer, but a measurable one.
We do so in order to find ways of appraising the overwhelm-
ing number of design decisions needed to build a machine

that "runs applicatively"”.



DSI Prodram Description : 32

References

l.

18,

1l

125

Clark, D. W. and Green, C, C., "An empirical study of
list structure in LISP," Comm. ACM, Vol. 20, (2) pp.
78-87 (February 1877).

Clark, D. W., List Structure: lMeasurements, Algorithms,
and Encodings, Ph.D. dissertation, Carnegie-kMellon
Univ., Pittsburgh, PA (August 1976).

Clark, D. W., "Feasurement of dynamic 1list structure
use in LISP," IEEE Trans. on Software Engineering, Vol.
SBE-5;3 (1] Pp. 51-59 {Jan. 1979)

Clinger, W. D., Foundations of Actor Semantics, Ph. D.
dissertation, MIT HMathematics Dept. (iMay 1981).

Friedman, D, P, and Wise, D, S., "Applicative multipro-
gramming," Technical Report No. 72, Indiana Univ. Com-
puter Science Dept., Bloomington, Indiana (revised:
April 1979). :

Friedman, D. P. and Wise, D. S., "Aspects of applica-
tive programming £for parallel processing," IEEE Tran-—
sactions on Computers, Vol. C-27, (4) pp. 28%5-296
(April 1978).

Friedman, D. P. and Wise, D. S., "Aspects of applica-
tive programming for file systems," Proc. ACM Conf. on
Language Design for Reliable Software, ACH SIGPLAN
Notices, Vol. 12, pp. 41-55 (March 1977).

Friedman, D. P. and Wise, D. S., "CONS should not
evaluate its argquments," pp. 257-284 in Automata,
LLanguages and P ramming, ed. S. Michaelson and R.
Milner, Edinburgh University Press, Edingurgh (1976).

Friedman, D. P. and Wise, D. S., "Fancy ferns redquire
little care," Technical Report No. 106, Indiana Univ.
Computer Science Dept., Bloomington, Indiana (March
1981). ’

Friedman, D. P. and Wise, D. S., "Output driven
interpretation of recursive programs, or writing
creates and destroys data structures," Information Pro-
cessing Letters, Vol. 5, (6) pp. 155-160 (December
1976). Erratum: Information Processing Letters, Vol. §
(2) p.101 (August 1979).

Friedman, D. P. and Wise, D, 8., "Reference Counting
can manage the circular environments of mutual recur-

sion," Information Processing Letters, Vol. 8§, (1) ep.
41-44 (January 1979).

Friedman, D. P. and Wise, D. S., "An approach to fair
applicative nultiprogramming," pp. 203-226 in Semantics

of Concurrent Computation, ed. G. Kahn, Springer-
Verlag, New York (1279).




33

13

14.

15.

16,

l?-

20 .

215

225

23.

24.

283

DSI Program Description

Friedman, D. P, and Wise, D. 8., "An indeterminate con-
structor for applicative programming," pp. 243-250 in
Seventh Annual Symposium on Principles of Programing
Languages, (January 1980) .

Friedman, D. P. and Wise, D. S., "A note on conditional
expressions," Comm. ACH, Vol. 21, (1) pp. 931-933
(November 1978).

Grismer, T. FHM., Solving common programming problems
with an applicative programming language, i.S. Thesis,
Indiana Univ. Computer Science Dept., BRloomington,
Indiana (1980).

Grit, D. M., Harwell, J. C., and Page, R. L., "An
operating system in an applicative language," Technical
Report, Colorado State Univ. (1979).

Grit, D. M. and Page, R. L., "Compiling LISP for a mul-
tiprocessor system," Technical Report, Colorado State
Univ. (September 1979).

Grit, D. M. and Page, R. L., "Eager beaver evaluation
on the R-ary N-cube," Technical Report, Colorado State
Univ. (HMarch 1981).

Grit, D. H. and Page, R. L., "Performance of a mul-
tiprocessor for applicative programs," Performance 80,
(May 1980).

Hennesy, M. and Ashcroft, E. A., "Parameter passing
mechanisms and nondeterminism,”™ Procedings of the Ninth
Annual ACH Symposium on Theory of Computing, pp. 306-
311 (HMay 1977).

Hewitt, C. and Baker, H., "Actors and continuous func-
tionals," IFIP Working Conference on Formal Description
of Programming Concepts, pp. 16.1-16.21 (August 1977).
Hewitt, C. and Baker, H., "Laws for comnunicating

parallel processes," pPP. 987-992 in IFIP-77, . .
Toronto, Canada (August 1977).

Hewitt, C., "Viewing control structures as patterns of
passing messages,"” Artifical Intelligence, Vol. 8, pp.
323-363 (1%77). Also in Winston and Brown (ec¢s.)
Artificial Intelligence: an MIT Perspective, MIT Press
1976.

Johnson, S. D., "Betacode specification," Technical
Report, Indiana Univ, Computer Science Dept., Bloom-
ington, Indiana. In progress

Johnson, 8. D., "Connection WNetworks for Output-driven
List Multiprocessing," Technical Report No. 114, 1Indi-
ana Univ. Computer Science Dept., Bloomington,
Incdiana (October 1981).



DSI Program Description 34

26.

27,

28,

29.

30

< 1

32.
33.

34,

35

36.

37.

38.

39

40,

Johnson, 8. D., "Daisy programmer's reference card,"
Technical Report, Indiana Univ., Computer Science
Dept., Bloomington, Indiana. In progress

Johnson, S, D, and Friedman, D. P., "A semaphore-free
promotion strategy for frens," draft report,
unpublished (HMarch 13, 1980).

Johnson, S. D., "Variable association in Daisy," Techn-

ical Report, Indiana Univ. Computer Science Dept.,
Bloomington, Indiana. In progress
Johnson, S. D., An interpretive model for a language

based on suspended construction, M.S. Thesis, Indiana
Univ. Computer Science Dept., Bloomington, Indiana
{1977) %

Keller, R. M., Lindstrum, T., and Patil, S., "A
loosely-coupled applicative multi-processing system,"
Proc, National Computer Conference, 1978, pp. 613-622
L1995}

Kohlstaedt, A. T., "Daisy 1.0 Reference lanual," Techn-
ical Report HNo. 119, 1Indiana Univ. Computer Science
Dept., Bloomington, Indiana (November 1981).

Kohlstaedt, A. T., in progess.

McCarthy, J., Abrahams, P. W., Edwards, D. J., Hart, T.
P., and Levin, ¥, I., Lisp 1.5 Programmer's HManual, The
MIT Press, Cambridge, Massachusetts (1973).

Milne, G. and Hilner, R., "Concurrent processes and
their syntax," Jourm. ACH, Vol. 26, (2) pp. 209-222
(April 1977).

liilne, Robert and Strachey, Christopher, A ZTheory of

Programming Language Semantics, Chapman and Hall, Lon-
don (1976).

Milner, R., "On relating Synchrony and Asynchrony,"
Technical Report No. CSR-75-80, Univ. of Edinburch,
Edinburgh (1980).

Milner, R.,, "A calculus of communicating systems," Lec-
ture Hotes in Computer Science, Vecl., 92, Springer-
Verlag, (1980).

forris, J. H., "Real programming in functioneal
languages," Technical Report No., CSL-81-11l, Zerox Palo
Alto PResearch Center (July 1981).

Mycroft, Alan, "The theory and practice of transforming
call-by-need into call-by-value," pp. 269-281 1in
Proceedings of the Fourth International Symposium on
Programming, ed. B. Robinet, Springer-Verlag, HNew York
(1980).

Page, R, L., Conant, M, G., and Grit, D, M,, "If-the-
else as a concurrency inhibiter in eager beaver




35

41.

42.

43,

44,

45,

46.

47,

48,

49‘

50,

DSI Program Description

evaluation of recursive programs," Proc. 1981 ACH
Conference on Functional Programming Languages and Com-—
puter Architecture, pp. 179-186 (Cctober 1981).

Prini, G., "Explicit parrallelism in Lisp-1like
languages," Conf. Record of the 1980 LISP Conference,
pp. 13-18 The Lisp Conference, (February 1980).

Steele, G. L. Jr. and Sussman, G. J., "Scheme: an
interpreter for extended lambda calculus," Femo 349,
MIT Artificial Intelligence Laboratory (December 1975).

Steele, G. L. Jr. and Sussman, G. J., "The dream of a
lifetime: a lazy variable extent mechanism," Conf.

Record of the 1980 LISP Conference, pp. 163-172 The
Lisp Conference, (February 1980).

Steele, G. L. Jr. and Sussman, G. J., "The revised
report on Scheme: a dialect of Lisp," Memo 452, HIT
Artificial Intelligence Laboratory (January 1978).

Sussman, G, J. and Steele, G. L. Jr., "Design of a
LISP-based microprocessor," Commi. ACHM, Vol. 23,
(11) pp. 628-645 (HNovember 1980).

Wand, Mitchell, "Continuation based program transforma-
tion strategies," Journ. ACM, Vol. 27, (1) pp. 164-180
(January 1980).

Wand, Mitchell and Friedman, D. P., "Compiling lambda
expressions using continuations and factorizations,"

Journ. of Computer Languages, Vol. 3, pp. 241-263
(1978).

Wise, D. S., "Compact layouts of banyan/FFT networks,”
pPp. 186-195 in VLSI Systems and Computations, ed. H. T.
Kung, B. Sproull, and G. Steele, Computer Science
Press, Rockville, Haryland (October 1981).

Wise, D. S. and Friedman, D. P., "The one-bit reference
count;" BIT; Vol. 17, pp:. 351-359 (1977).

Wise, D. S., "Interpreters for functicnal programming,"
pp. 186-195 in Functional Programming and its Applica-
tion, ed. J. Darlington, P. Henderson and D. Turner,
Cambridge University Press, Cambridge (1982).




36

INDEX

ACLEINATE &« weimmmme 5 § wwsasees

ALONZO GNe ¥ BIESEEE § F 8
betacode .sadaanisese
COAK: 5545 & bmmciinmn = » a
BODA. camminse 5 soasasarminio v o »
CONVREEE ; « sewains 5 o &
DEisSY s s wiwwanes v
BeVi0E sicisauvaasiae
GIVEETE wie « sisuassacsics 5 o »
DEI-Alpha  sevvwis s ss
DSI-beta sevewsnneiss
CavVEeSAropper c.eceasss
environment ..c.eescee
EVaAlUAaEOY & sewmwen s
1abel viicevenuvovins
TP wowams s swmeanssva
manifest ..eecencecsiae
MILEISEL .4 vwnwwne s san
PLobe wessssvsesssses
PEONOLICH & sowswese ¥ &4
register: B, L, X, F,
schedule .sevecesesas
SLISP tveescoccccsccs
STK; ENV, VAL seens s
supervisor ;.........
suspended ,.eeessce0e
SUSPENse «secvvevossas

SUSPENSLON s emwone n oo

e 5 e 0 0

Program

® 8 8 2 0 0 0

Description

co

L 8

e 00 0 8 2?
e e 8 8 e @ 12

= @ & 8 @& 8 lU

e ® 9 9 9 9 0 008 O 000 5
& 8 0 ® 9 0000 000 O 29
® 8 &6 9 0 0 0 8 O S0 0 8 5



DSI Program Description

HOTES



DSI Program Description

NOTES



DSI Program Description

HOTES



DSI Program Description

HOTES



DSI Program Description

HOTES



DSI Program Description

HOTES



