Daisy 1.0 Reference Manual
by
Anne T. Kohlstaedt
Computer Science Department
Indiana University

Bloomington, Indiana 47405

TecHnicAL ReporT No. 119
Darsy 1.0 ReFerence MaNuAL

ANNE T. KOHLSTAEDT
Novemser 19, 1981

This work was supported by NSF Grant MCS77-22325.

Indiana University Applicative Programming for Systems Project (APS)
APS Memo 2

Daisy 1.0 Reference Manual
by

Anne T. Kohlstaedt

Revision 5

Abstract: This manual describes the PDP-10 Daisy 1.0 system developed
by the IU APS Project. It is intended as a reference manual

to help programmers already familiar with the Project's work
to use the Daisy 1.0 implementation.

This work was supported by NSF Grant MCS77-22325.

Table of Contents

CHAPTER

l.

INTRODUCTION

1.1 Notation in this Manual

1.2 Miscellaneous Daisy Information

1.3 Returnable System Atoms
true, beta, |?2|
1.4 wWhere to Address Comments

SYSTEM USE

2.1 Logging into and out of Daisy
2.2 Control Characters

2.3 Comments

ATOMS

3.1 Identifiers
3.2 Numbers

LISTS AND TAETR SPECIFICATION

4.3 Mixed Structures
APPLICATIVE FORMS

5.1 Functional Combination
ENVIRONMENTS AND BINDINGS

6.1 Lambda Expressions
6.2 Definitions and Declarations

6.2.1 Declarations
6.2.2 Definitions

6.4 Structured Parameters

PAGE

=2
1-2
1-3

2-1
2-3
2-4
3=1

3-1
3-3

4-1

4-1
4-3

9.

lO.

11.

12.

13.

SIMPLE FUNCTIONS ON LISTS AND FERNS

7.1 Constructors
cons, frons

7.2 Probing Functions
first, rest, 1-N

FANCY LIST/FERN FUNCTIONS
issue, parse, consol, screen, dski,
dsko

FORM EVAILUATION FUNCTIONS
evlst, quote, @, 3

CONDITIONAL FUNCTIONS
1f

PREDICATES

atom?, same?, empty?, nmbr?, 1ltrl?, list?,

1t?, le?, eq?, ne?, ge?, gt?, and, or

ARTTHMETIC FUNCTIONS

neg, inv, num, den, sgn, quo, rem, rdc,
inc, decr, add, sub, mpy, div, sigma, pi

MISCELIANEQOUS FUNCTIONS
$sgt, Sclk, S$trc

ALPAABETIC INDEX OF SYSTEM FUNCTIONS

BIBLIOGRAPIY

INDEX

10-1

=]

12-1

L3=1

Page 2

CHAPTER 1

INTRODUCTION

This is intended to be a user manual for the 1.0 interpreter of the
language Daisy. Daisy was designed and implemented by the Indiana
University Applicative Programming for Systems Project. Daisy is based
on the "applicative premise", that is, that an applicative language can
be designed that is not only sufficient for all the programming one
would ever want to do, but moreover is the language of choice for this
programming. Daisy is a dynamic language. At any point in time she
reflects the current state of our thinking. The 1.0 interpreter is a

snapshot of Daisy circa 1980.

If you know LISP, learning Daisy should not be difficult, since
Daisy is a LISP descendant. If LISP is unfamiliar, then you should
probably get camfortable with LISP first and then come back to this

manual to learn Daisy.

Daisy has her roots in some early work by Friedman and Wise on the
ramifications of modifying the semantics of LISP's cons. Since then,
another constructor (frons) has been added and the syntax changed
considerably. If you read the body of literature that has been produced
along the way (the bibliography also serves as a reading list), you'll

get a good feel for why we like the language that we've implemented,

INTRODUCTION Page 1-2

what it buys you in terms of ease in programming, possible efficiency on
a multiprocessor, etc.. In these papers, too, you'll find same
excellent programming examples. I recommend reading through the papers,
using this manual to translate programs into the syntax currently in

vogue, and then trying out the translated examples.

1.1 NOTATION IN THIS MANUAL

=5 means "evaluates to"

means "is the same thing as"

id means a particular instance of "id". Either "id" is a
system function or else it has been specifically referred
to in a previous example. Function names are not actually

underlined when you run Daisy.

1.2 MISCELIANEOUS DAISY INFORMATION

You need an upper/lower-case terminal to run Daisy since Daisy's

system function names are all lower-case identifiers.

INTRODUCTION Page 1-3

1.3 RETURNABLE SYSTEM ATOMS

There are several special Daisy atoms that are retwrned as the

result of certain evaluations, but that don't evaluate to themselves as

in LISP.
|21 |2| is returned as the result of an error- producing
camputation.
true true is returned as the value of some functions. Unless

you bind true to some value though (like, say, true), true

=3 |‘Dl

beta beta is returned as the value of a lambda expression.

1.4 WHERE TO ADDRESS COMMENTS

Your critical camments will be carefully considered in shaping future

editions of this manual. They should be directed to

Anne Kohlstaedt
Camputer Science Dept.
101 Lindley Hall
Indiana University

Bloanington, IN 47405

CHAPTER 2

SYSTEM USE

2.1 LOGGING INTO AND OUT' OF DAISY

The following dialog is an annotated Daisy session. In it, a

system user logs into Daisy, evaluates three forms (I, which is unbound,

<1 2 3> which evaluates to (1 2 3), and evlst:parse:dski:édA'.l which

reads in a file), and then logs off. Characters that would have been

typed by the user are underlined. Control characters are preceded by a

~

.RU Daisy[50105,5004]

TRC: I1, 000000000000

LIMIT: 7604

A systems programmer can open an output
file here and turn on various internal
traces. These are propbably useless to
anyone not involved in debugging the
interpreter itself. Type a carriage return

to default to "no output file, no trace".

Daisy runs with a maximun of 7604 fern
cells. You can enter another (smaller)

memory size here or type a carriage return

SYSTEM USE

(12!

‘evlist:parse:dski:@A'.

Page 2-2

to default to 7604.

' is the prampt character, though this may
change from terminal to terminal. The user

has now logged into Daisy.

The user types a T and hits RETURN.

Notice the (. Since Daisy's output is
considered to be a list of characters, when
output first begins to strean fran the

terminal it is preceded by a (.

1?1 represents 'error', the result of an
error producing camputation. In this case,

12! is returned because T is unbound.

The user types in <1 2 3> and the system
returns (1 2 3), the list in wnich each
element of the specification has been

evaluated (see Section 4.1).

The user types a form that causes the file
A.l to be read in and evaluated. dski
turns the file into a list of characters,
parse parses the list into a list of fomms,

and evlst evaluates each form in turn,

SYSTEM USE e =4

2.2

returning a list of the results.

(world The file, A.l, contained two function

interpolate) definitions - one called world and one

called interpolate.

& To log off Daisy and return to the host
operating system, type the end-of-file
character, control-4.

) The systemn input function (see consol,
Chapter 3) converges to nil, ultimately
closing off the initial (of Daisy's output
stream.

DSI EXIT. The user has now logged out of Daisy.

CONTROL CHARACTERS

“Z Console input stream terminator / end of file character

“D Detach character. When followed by a carriage return, it

allows a call of Daisy's console input function to detach
without converging to a value. This permits instantiations

of consol:praompt within multisets to simulate proper

behavior with the user's help. (We would like to be able to

periodically strobe the keyboard to detemmine whether a key

SYSTEM USE Page 2-4

has been depressed and let consol to detach if not, but we

are unaple to do so because of Fortran's I/O interface.) For

further details see consol, Chapter 8.

"C,"T, etc. BAs per the user's operating system.

2.3 COMMENTS

Comment lines are preceded by a | and terminated by a carriage return.

Ex: | This is a camment line
| So is this
<A B | Comments don't have to begin a line

DE> | or terminate a form.

CHAPTER 3

ATOMS

Atoms in Daisy, as in LISP, are indivisible chunks of information.

There are two categories, identifiers and numbers.

3.1 IDENTIFIERS

An identifier is a character string, taken as a unit, that serves
as the name of some Daisy form. Normally, an identifier must begin with
a letter (upper or lower case) or one of the characters ", §, =, or .
It may contain in addition to letters and digits, the characters ", #,

$: 3, +, =~ /; P, @.r \; A:afﬂ\-

NOTE
Whiie " may be typed as part of an
identifier name, it causes Daisy's
character input routine to cease trimming

blanks until another " 1is encountered.
See consol, Chapter 8 for details.

If an identifier is desired which contains some other character,
that character must be preceded by a '. (rhe ' does NOT became part of

the identifier.) Thus, '4HAND is a way to type in the identifier 4HAND,

ATOMS Page 3-2

and POLKA'.'. a way to specify POLKA.. . The character ' might be
used to handle characters 1like tab, linefeed, backspace, etc.. o
thorough investigation has been made of just what characters are allowed
through the operating system and implementation language's I/O

interface, though, so experimentation on your part will be necessary.

BNF':
<identifier> ::= <start char> <follow char string> |
' <any character> <follow char string>
<start char> ::=A -2 |l a-z|"131 1"
<follow char string> ::= <follow char> <follow char string> |
' <any character> <follow char string> |
<follow char> | ' <any character>
<follow char> ::= <start char> | 0 -9 | # |l & | + | -1/ |
i@l NI

Ex: B4, after, $SPAYROLLS$, DIRECT@, cons, Y?, '103

Identifiers are used to hold onto ("bind") other Daisy forms.
Binding may be accamplished explicitly by means of the mechanisms
described in Chapter 6 or implicitly by the pairing of formal parameters
to actual arguments during function application. when an identifier

evaluates, it returns its current (static) binding.

Ex: B4 => whatever B4 is bound to

after ==> whatever after is bound to

ATOMS Page 3-3
3.2 NUMBERS

Daisy's numbers are represented internally as rationals, although
they may be typed in as integers or rationals (a rational number is the
quotient of two integers, like 5/2). MNumbers evaluate to themselves.
No automatic reduction is done during evaluation although the results of
certain arithmetic functions are returned in reduced form. Integer

values are limited to the range [-134217728, +134217723].

BNF':
<number> ::= <integer> | <integer> / <integer>
<integer ::= <sign> <digits> | <digits>
<digits> ::= <digit> <digits> | <digit>
<sign> =+ | -
£x: Input form Output form
3 => 3
3/2 == 3/2
+3/2 = 3/2

3/-134217728 => -3/134217728

-134217728/+134217728 ==> -134217728/134217728

CHAPIER 4

LISTS AND THEIR SPECIFICATION

4.1 LISTS

Lists and atoms camprise the Daisy data space. Atons and the
primitive 1list [], also called nil, (), and <>, make up the base-level
data while lists are "constructed” fram base-level objects and other
lists. A 1list is an ordered sequence of elements and is written

bracketed with parentheses (). Lists evaluate to themselves.

Ex: (dookie (zeleika goliath) bub) ==> (dookie (zeleika goliath) bup)
(dog cat witchety-grub) ==> (dog cat witchety-grub)

O = [Ld

Lists with infinite homogenous tails may be defined by writing a

"¥!" a5 the last element. Thus

(add *)

with one "explicit" element, is conceptually an infinite list of adds,

(add add add ...). (Actually it is constructed as a cyclic list.) rThe

list of four explicit elements

LISTS AND TAEIR SPECIFICATION Page 4-2

(add sub mpy div *)

is also infinitely long. It's first three elements are the atoms add,

sub, and mpy, while its remaining infinite tail is the list

(div *)

@very list except [] has a first and a rest.

EX: list first rest
(a) A ()
{1 *] 1 (1. ¥)
(A B) A (B)

Probing functions are used to access the contents of a list. The two
primitive probing functions, in terms of which all other such functions
can be written, are first and rest (see Chapter 7.2). first, when
applied to a list, returns the lists' first element if it has one. rest

returns what would remain of the list if its first element were removed.

Often the rest of a list is another list, but it 1is possible to
define a list whose rest is of arbitrary type. This is like LISP's

dotted pair, but the character "!" is used rather than ".".

LISTS AND THEIR SPECIFICATION Page 4-3

(A ! B)

is a list whose first is A and whose rest is B. The lists

(ait (B! (ct)
(ascit ()

(A B C)

are identical. In typing input to Daisy, any of the three expressions
may be used. On output, Daisy prints the representation with fewest

wypn

= S.

When Daisy builds a list, it suspends the evaluation of the 1list's
elements. That is, canputation of an element's value is deferred until
a probe attempts to access it. This allows functions that create and
manipulate non-finite 1lists to run and return results [10].
Furthermore, accessing the rest of a list causes no evaluation of the
first, and vice versa. Thus lists with elements whose evaluation might
not terminate (called "divergent" elements) may be constructed and
manipulated without the manipulating camputation itself necessarily

diverging (see Chapter 7.1).

4.2 LIST SPECIFICATIONS

There are two ways to define a 1list: by naming its elements
explicitly, as in the exanples of Chapter 4.1, or by writing a

construction specification for the list, called a fern. There are two

LISTS AND THEIR SPECIFICATION Page 4—4

types of ferns: sequences and multisets.

Ferns look like lists but are written with different bracketing
characters that indicate how the list is to be constructed. Like lists,
ferns admit the use of "!" to specify structure and "*" to specify
extent. The value of a fern is a list whose content depends on the
environment in which the fern specification is evaluated. In other
words, fern elements are themselves specifications (although not

necessarily of lists) and must be evaluated.

4.2.1 Sequences

A sequence is enclosed in angle brackets <> and specifies both the

order and content of a list.

Ex: Suppose an environment in which A => dookie, B => zeleika,

C ==> goliath, D => bub, and E ==> (zeleika goliath)

<A <B C> D> ==> (dookie (zeleika goliath) bub)
<AE ! D => (dookie (zeleika goliath) ! bub)
B > => (zeleika *)

<> => []

LISTS AND THEIR SPECIFICATION Page 4-5

4.2.2 Multisets

A multiset is enclosed in curly brackets {}, and specifies only the
content of a list and not the order of its elements as well. Whenever a
multiset is probed, all it's elements are allowed +to evaluate
concurrently ("coaxed"). When one returns a value ("converges"). That
element is pramoted to the head of the list (remember, a multiset
specifies a list) and is thereby excluded fram future consideration as a
member of the rest of the list. Elements converging to |?| (error
producing computations) are not praonoted until all other elements have

converged.

Ex: Suppose an environment in which A => Schroedinger's, B => cat,
¢ => |2|, and D diverges, that is cannot produce a result
{A B} ==> (Schroedinger's cat)
or

(cat Schroedinger's)

{A BCccC}] ==> (Schroedinger's cat 12| |2])
or

(cat schroedinger's 2| 121])

{a ¢ D} ==> (Schroedinger's

{} =3 &4

Multisets allow programmers to deal with “"indeterminite" real time
behavior in an applicative fashion [7]. Elements are devised that
converge to values in response to some external event taking place, such

as a key being depressed at a terminal; first and rest then serve as

LISTS AND TARIR SPECIFICATION Page 4-%

polling functions, picking out elements as they converge (see Chapter

Tells

Multisets can also be used to collect sub-camputations whose order
of convergence is not important. This allows programmers to specify
their algorithmns as weakly as possible, and avoid introducing the notion

of sequentiality when it is not necessary.

4.3 MIXED STRUCTURES

Daisy permits the specification of structures which are a mixture

of sequence and multiset.

Ex: Suppose an environment where A => a, B => b, C=> ¢,

and L is bound to {A | <B C>}

fal e} = (aboa), (bac), or (bc a)
Note that the expression <B C> specifies that
B's value must precede C's value. If B diverges

then C is not promoted.

CHAPTER 5

APPLICATIVE FORMS

Function application in Daisy is right associative and denoted by

an infix colon.

Ex: consol:A The function consol is to be applied to the

argument A.

or:{A B C} The function or is applied to the multiset

{A B C}.

X1y:Z The function x is applied to y:z.

5.1 FUNCTIONAL: COMBINATION

Functional combination [6] is a syntactic tool that makes it easy
for a programmer to express recursions that accunulate multiple results.
A functional cambination is indicated by the presence of a 1list of
function names in the "function" position (or a formm that evaluates to a
list of function names). A list of lists, called the parameter matrix,
(or a form that evaluates to such a list) must occur in the argument

sition. The "colums" of the parameter matrix becaome argument lists
o P

APPLICATIVE FORMS Page 5-2

to respective elements of the list of functions. The result of the
functional combination, then, is a list of the results of the individual

applications. For example:

(add mult):
<1 3 » = <add:<l 0> mult:<3 4>> ==> (3. 12)
<0 4 >>»

By adopting the style used in the above example, with elements of
argument rows aligned vertically beneath the respective elements of the
function list, programs that are both clear and concise may be written.
The special identifier # may be used as a place holder in writing a row

and is ignored as an argument in interpreting a column of the parameter

matrix:
(cons sigma):
«< 1 2 > = <cons:<l (2)> sigma:<2 3 4>> => ((1 2) 9)
< (2) 3 >
< ¥ 4 >>

The following example taken fram [3] illustrates the use of
functional cambination in a more representative setting. This is a
program for dealing a deck of cards to two players in a game like War.
The function deal takes a list deck as its argument and returns a list
of two lists as its result, each camposed of alternate elenents fram

deck. The recursive call to deal is embedded within the functional

APPLICATIVE FORMS Page 5-3

cambination, and evaluates to the final row of the parameter matrix,

namely the rest:rest:deck dealt into two lists.

deal :deck = if:< ampty?:deck <t iii>
empty? :rest:deck <deck {]>
(cons cons):
<< l:deck 2:deck >

deal :rest:rest:deck > >

where the functions if, 1, 2, empty?, cons,

and rest are as defined in subsequent chapters.

Starred structures combined with “guillotine rules" are
particularly useful in expressing functional cambinations. Daisy's
guillotine rules differ slightly fram those described in [6] and [4] but
serve the same purpose - they allow you to write a starred structure

where you really mean "as long as necessary" rather than "infinitely

long". For example,

(add *): (add add add):

¢l * 3 << 1 1 1>

<123>> 40 | 2 3 >>

adds 1 to each element of the list <1 2 3>, returning

(2 3 4).

APPLICATIVE FORMS Page 5-4

The implemented guillotine rules are camplicated. They break down
into two cases, depending on whether the function list is starred or

r]ot.

l. Function list not starred Parameter rows longer than the

function list are truncated. sShorter rows are right filled with

#s.

Ex: (£1 £2 £3 £4):< (f1L f£2 £3 f£4):<
<all al2 * > = <all al2 al2 al2>
<a2l a22 a23 a24 az25> <a2l a22 a23 a24>
<a3l»>»> a3l # # $ >>

2. Function list is starred

a. There is a non-starred parameter row

The guillotine rule is applied, based on the first

non—-starred row of the parameter matrix.

i. There are more explicitly named elements (i.e the
non-starred elements) in the function list than in the

first non-starred parameter row (or the same number) .

The function list is truncated just before the star.
Parameter rows longer than the truncated function list are

cut off at the same length. Shorter rows (including

APPLICATIVE FORMS Page 5-2

perhaps the first non-starred parameter row) are right

filled with #s.

Ex: (£l f£2 £3 *jsx (f1 £2 £3)¢
<all al2> = <all al2 # >
<a2l a22 a23> <a2l a22 a23>
<a3l *>> <a3l a3l a3l>>

ii. There are fewer explicit elements in the function 1list

than in the first non-starred parameter row.

The function list and longer parameter rows are truncated
to be the same length as the first non-starred parameter

row. Shorter parameter rows are backfilled with #s.

Ex: (f1 £2 *):< (f1 £2 £2):<

<all al2 al3> <all al2 al3>

Nl

<a2l> a2l # # >

<a3il *>> <a3l a3l a3l»>>

b. All rows of the parameter matrix are starred.

The result is starred.

APPLICATIVE FORMS Page 5-o

Bx: (fL £f2 *).
<<all al2 *» = <fl:<all a2l> f2:<al2 a2l> *>

<a2l *>>

CHAPTER ©

ENVIRONMENTS AND BINDINGS

The Daisy interpreter evaluates expressions read framn the console
device. In order to evaluate each expression, however, values must be
assigned to the variables occurring in the expression. Environments
serve to store this association or "binding" information. Certain
identifiers have already been bound when you initially log into Daisy.
(Conceptually, this is true although these bindings are not implemented
in the same way as other bindings discussed in this chapter.) These
include numbers (bound to themselves), the empty lists [], <>, () and {}

(bound to []), and the primitive functions described in Chapters 7 - 13.

Daisy has two environment types, a "shallow" environment where most
global function definitions are stored, and a "deep" environment where
global non-function declarations, some global function definitions, and
local function amd non-function (let and rec) definitions are bound.
When an identifier's binding is sought, the shallow environment is
always searched first. Thus a shallow global functional binding for an

identifier will hide subsequent local bindings to the same identifier.

ENVIRONMENTS AND BINDINGS Page o-2
6.1 LAMBDA EXPRESSIONS

Function definitions are bindings of lambda expressions to

identifiers. A lambda expression in Daisy has the syntax:

<lambda expr> ::= \(<formal parm> . <body>)
<formal parm> ::= <identifier> | <list> (see Section 4.1)

<body> ::= <any valid Daisy expression>

Ex: \(X . add:<2 X>)
\((A L) . if:<empty?:L [l
same? :<A 1l:L> @true
MEMBER: <A rest:L> -

NN . if:<eq?:<¥ 0> 1 mpy:<y FACTORIAL:dcr:N> >)

Lambda expressions evaluate to closures, returning a reference to
the identifier beta. A closure consists of the lambda expression and an
environment. The closing environment may be the "current" environment,
but when the lambda expression's body contains no free variables, as is
usually the case, the current environment may be discarded and the

lambda expression closed in a new, empty environment. The user must

recognize the situation though. If a function body contains no free
variables, the alternate colon syntax

\(<formal parm> : <body>)

is used to signal the fact. By not carrying environments around except

ENVIRONMENTS AND BINDINGS Page 6-3

where necessary, a more efficient use of available space can be made.
You should be careful, though, when using this feature. An intemmediate
function in a chain of invocations, defined to have no free variables,
will cause inner functions to lose their bindings to free variables

bound outside the scope of the intermediate function.

Ex: \(LOST . \(X : \(Y . LOST):1):2):3
this : prevents \(Y.LOST) from finding
a binding for LOST since \(X:(Y.LOST):1)

is closed in an empty environment.

6.2 DEFINITIONS AND DECLARATIONS

Definitions and declarations create “permanent" global bindings.
As side-effect producers, they live at top level, philosophically just

"outside" Daisy's clean inner functional world.

6.2.1 Declarations

Declarations bind identifiers to non-functional values in the deep
global environment, permanently extending it. Two alternate syntaxes

exist to handle problems of lookahead in parsing.

<identifier> <fonn>

<form>.

and <identifier>

ENVIRONMENTS AND BINDINGS Page o—4

Ex: A = add:<5 6>

A = add:<5 6>.

NOTE

The . serves to indicate that a : is NOT
to follow, the result being that the

declaration is done a little sooner.
Otherwise, the scanner must look at the

next line to make sure that :<more form>
isn't trailing along.

6.2.2 Definitions

Definitions can create function bindings in either the shallow or
deep global environment. Again there are several alternate syntaxes.

To shallowly bind a function definition, write:

<identifier> : <formal parm> = <body>

or <identifier> : <formal parm> = <body”>.

.« here serves the same
purpose as in a

declaration.

ENVIRONMENTS AND BINDINGS Page -5

Ex: FACTORIAL:N

if:<eqg?:<N 0> 1
mpy: <N FACTORIAL:dcr:N>>

FACTORIAL:N

if:<eqg?:<d¥ 0> 1

mpy: <l FACTORIAL:dcr:N>>.

To place a functional binding in the deep global enviromment, bind

a lambda expression to an identifier:

<identifier> = <lambda expr>

Ex: FACTORIAL = \(N . if:<eq?:<N 0> 1

mpy : <N FACTORIAL:dcr:N>>)

A programmer can specify that a function carries no free variables

either by adopting the

<identifier> = <lambda expression>

syntax and specifying a lambda expression with no free variables, or by

writing

<identifier> : <formal parm> =: <body>

or <identifier> : <formal parm> =: <body>.

ENVIRONMENTS AND BINDINGS Page 6-6

Ex: ADD2 = \(N:add:<2 N>)
ADD2:N =: add:<2 N>

ADD2:N =: add:<2 N>.

6.3 LET AND REC

The functions let and rec establish new local bindings, extending
the current environment long enough to execute the expressions specified

in the let or rec.

6.3‘1 Let

let allows the Daisy programmer to extend the current environment

with local nonrecursive definitions and declarations and evaluate an

expression in this extended environment. The syntax is
<let expr> ::= let:(<local var> <local def> <expr>)
<local var> ::= <identifier> | <list>

<local def> 3= <expr>

<expr> ::= <any valid Daisy expression>

A let expression is equivalent to

\(<local var> . <expr>) : <local def>

ENVIRONMENTS AND BINDINGS Page 6-7

The expression making up the local definition, <local def>, is evaluated
in the current environment and bound to the corresponding local fonmnal
parameter structure, <local wvar>, to create a temporarily enriched
environment in which the expression, <expr>, is allowed to execute. On
campletion, the value of the expression is returned as the value of the

let, and the local bindings are undone.

Ex: let:(A 2 add:<A 10>) extend the current environment

by binding 2 to A, and evaluate

add:<A 10> in that environment.

\(A . add:<A 10>):2

=> 12
let:{ (A ! B) <2 3> - extend the current environment
add:<A first:3>) by binding 2 to A, <3> to B, and

evaluate add:<A first:B> in the

extended environment.
=\((A ! B) . add:<A first:B>):
<2 3>

= 5

ENVIRONMENTS AND BINDINGS Page 6-3

let:((ADD2 ADD3) - bind ADD2 and ADD3 to the
<\(N.add:<2 N>) respective lambda expressions,
\(N.add:<3 N>)> and evaluate the form
<ADD2:5 ADD3:6>) <ADD2:5 ADD3:6> in the

resulting environment.

\((ADD2 ADD3).<ADD2:5 ADD3:6>):

I

<\(N.add:<2 N>) \(N.add:<3 §>)>

=> (7 9)

©.3.2 Rec

rec is similar to let except that the local definitions and

declarations are allowed to refer to themnselves and each other.

Ex: rec:(FACTORIAL
\(§ . if:<eq?:<N¥ 0> 1 mpy:<N FACTORIAL:dcr:N>>)
FACTORIAL:10)
- this expression always returns 10 factorial

i.e. 10%O*B*T*GF5RgN3%0*] .

ENVIRONMENTS AND BINDINGS Page -9

RSFF: (R S) =: rec:((Qhi Qlo) < <1 ! (NAND *):<R Qlo>>
<0 | (NAND *):<S Qhi>> >
< /(x . x) * >:<0hi Qlo>)
- RSFF models the behavior of a synchronous RS flip flop [13l].
R and S represent lists of values that are presented to the R
and S inputs, respectively. ¢hi and Qlo represent the lists

of values presented by the flip flop's outputs.

6.4 STRUCTURED PARAMETERS

Each Daisy function takes only ONE argument. Consider the function

definition

MEMBER: (A L) = if:< empty?:L L]
same? : <A first:L> @true

MEMBER: <A rest:L> >

and the function call

MEMBER: < person APPEND-ALIL:<NAACP NOW NRA> >.

In each, there is one argument or parameter. The one parameter of the
function definition is the list (A L). The one argument of the function

call is the list <person APPEND-ALL:<NAACP NOW NRA>>. The structure of

the function call's argument, though, matches the structure of the

function definition's parameter. A binds to person and L binds to the

ENVIRONMENTS AND BINDINGS Page 6-10

form APPEND-ALL:<NAACP HNOW NRA> because they occupy corresponding

positions in the argument and parameter structures. So when you write
the formal parameter part of a function definition, you are specifying

the macroscopic structure of that parameter.

In Daisy we carry this further and allow you to define a
parameter's microscopic structure, that is the internal structure of its

constituents. For example, an alternate definition of MEMBER

MEMBER: (A (LA ! LD)) = if:< same?:<A IA> @true
empty? :LD LJ
MEMBER: <A LD> >

specifies that the second element in the argument structure of a
function call to MEMBER should be a nonempty list, and that the first of
that list is to be implicitly bound to LA and the rest of that list to
LD. (Since Daisy is suspended, these implicit firsts and rests are not
done unless an element is "needed" during execution of the body of the
function.) Notice, though, that you've lost a way to talk about the list
as a whole. In particular, you can no longer check to see if the list

is empty. You can only check the status of its rest, LD.

The function let (or rec), however, deals with this problem,
allowing you to specify the detailed structure of an argument without
losing a handle on its larger structural camponents. 'These final
definitions of MEMBER, then, give both a name for the list L and its

major constituents, LA and LD

ENVIRONMENT'S AND BINDINGS

MEMBER: (A L) =: let:((LA ! LD) L
if:< empty?:L £
same? :<A [A> @true

MEMBER: <A LD> >)

MEMBER: (A L) =: if:< empty?:L L]
let:((LA ! ILD) L
if:< same?:<A LA> @true

MEMBER: <A LD>

Page 6-11

>) »

CHAPTER 7

SIMPLE FUNCTIONS ON LISTS AND FERNS

7.1 CONSTRUCTORS

cons:<element list>
cons is a system primitive that allocates and defines the contents
of a new binary 1list cell. Initially, all elements of a consed
list are in a state of suspended evaluation, awaiting outside
probing by the function first to converge to an ultimate value [5].

For example, consider the following:

NATURALS :N = cons:<N NATURALS:inc:N>
where inc is a function that increments its

nuneric argument by 1.

The function NATURALS builds an infinite 1list of natural
nunbers, starting from the number N. In conventional LISP, a call
to NATURALS say, NATURALS:1, will never converge since neither
argunent to cons is suspended, and evaluation of the second leads
to immediate unbounded recursion. In Daisy, though, since cons is
suspended, NATURALS:l converges immediately. Only relentless

probing by the system's "printer process" causes convergence of

SIMPLE FUNCTIONS ON LISTS AND FERNS Page 7-2

each natural number in turn, driving the recursion only as far as
the next (suspended) cons [11]. NATURALS can, in fact, be printed
with constant memory space since old list cells are reclaimed by
the garbage collector as the natural numbers that they contain are

printed and the printer's pointer into the structure moves on [9].

The system's own cons is suspended, as well as the user's.
This results in call-by-name semantics since argument structures
are never built until their elements are accessed in a function

body. Thus

first:rest:<forever:1 plus:<3 4>>

where forever:X = forever:X
returns the answer 7. The fact that forever:1l diverges has no
effect on the result.

There is a shorthand notation using "!" for defining lists

that avoids the explicit use of cons:

(ONE TWO) = cons:<@ONE cons:<@IWO nil>>
(ONE ! MORE) = cons:<@ONE @MORE>

<ONE TWO> = cons:<ONE cons:<TWO nil>>
<ONE ! MORE> = cons:<ONE MORE>

where @ is equivalent to LISP's function guote.

frons:<element multiset>

frons [1,2,7] is the suspended constructor used to build multisets.

SIMPLE FUNCTIONS ON LISTS AND FERNS Page 7-3

The content of a multiset is defined when built, but the order of
elements within it remains unspecified until they are accessed by
means of first and rest. As the multiset is probed, the first
element to converge takes its place at the front. Gradually, as
the multiset acquires order, it becames a list whose contents and

order are immutable.

Thus

first:{A B C}

causes enough evaluative effort to be distributed to A, B, and C to
force at least one of them to converge (if possible). The
convergent element (or one of them if several should converge
simultaneously) is promoted to the first of the multiset {A B C}

and is returned as the value of 1:{A B C}.
Like lists, there is a short notation for fronsing together

miltisets:

{ELEMENT ANOTHER} frons: <ELEMENT frons:<ANOTHER nil>>

{ ELEMENT ! MORE} frons: <ELEMENT MORE>

Notice that this is NOT the same thing as
frons: {ELEMENT MORE}. The first definition
builds a multiset with one more elemnent
than MORE, whereas the latter builds one

with just two elements.

SIMPLE FUNCTIONS ON LISTS AND FERNS Page 7-4

In the following example, adapted fram [7], a multiset of I/0O
sequences is specified and the sequences interleaved. E£ach I/0 sequence

is a list of characters read fram a terminal.

{read:ttyl read:tty2 read:ttyx}

where read:terminal cons:<readch:terminal
read:termminal>

readch:terminal = a function that reads a character

fran the specified temminal and

side—effects the terminal's buffer.

We would like to choose an I/0 sequence in which a character has
been read, snatch the character, arxd frons the remainder of the sequence
back into the multiset. This requires that an invocation of read not
converge until a character is ready. But, since cons is suspended, such
will not be the case. cons may converge regardless of wnether readch
has successfully read a character or not. In order to obtain the
desired behaviour fram I/O sequences, the function strictify must be

introduced.

strictify:<a b> = if:<a b b>

strictify returns the value b if the evaluation of a terminates. If a's

evaluation does not terminate, neither will strictify. strictify may

now be used to process each I/0 sequence before it is placed in the

multiset.

SIMPLE FUNCTLONS ON LISTS AND FERNS Page 7-5

{streamify:read:ttyl streamify:read:tty2 streamify:read:ttyx}

where streamify:seq
= if:<empty?:seq ()
strictify:<l:seq
cons:<l:seq
streamify:rest:seg>>>

and l:x = first:x

Now a merge function that flattens the multiset of streamified 1/0

sequences can be defined, effectively interleaving the sequences.

merge:M = if:<empty?:M |
empty?:1:M merge:rest:M

cons:<l:1:M merge:frons:<rest:1:M rest:M>>>

Further examples of the use of frons in writing systems style programs

may be found in (1,7,13,15].

7.2 PROBING FUNCTIONS

first:L
first coerces and returns a reference to the lst element of L. In
the case of a 1list or sequence, L's order is defined at

construction time and its predetermined first element is coerced

SIMPLE FUNCTIONS ON LISTS AND FERNS Page 7-6

into existence on invocation of first. If L is a multiset,
however, then its elements are all coaxed simultaneously until one
converges [1,2,7]. The f£first one to converge is returned as the
value of first:L and pramoted to the head of L (so that subsequent
probes return consistent values). 2!, however, is never pramoted

(see Chapter 4).

Ex: first:(1l |?2] 3) => 1
first:<l |?] 3> = 1

Firat:{l 7] 3} => 1 &£ 3

1l:L, 2:L, ..., 134217728:L
Placing an integer, N, in a functional position is a way of

selecting the Nth element fram L.

Ex: 1:(ABC) = first:(ABC) = A

2:(A B Q) => B

3:<1 3 add:<3 4>> => 7

rest:L

rest returns L without its first element. If L is a 1list or
sequence then no evaluation of any suspensions in a first field are
driven [5]. Thus

rest:rest:< div:<l 0> add:<3 4> >

coerces neither div:<l 0> nor add:<3 4>.

SIMPLE FUNCTIONS ON LISTS AND FERNS Page 7-7

In the case of a multiset L, its elements begin evaluation in
parallel until one converges (unless some element is already
convergent) [1,2,7]. That convergent element is pramoted to be the

head of L and a reference to the rest of the multiset is returned.

Ex: rest:(1 |2| 3) == (|2| 3)
rest:<l |2]| 3> => (|2]| 3)

reste{l 2 3} =5 (1 2), (2 3); (3 1), (1.3); (3 2) e (24)

v

rest:{l [2| 3} == (3 I2]) or (1 [2])
rest:{forever:1 add:<3 4>}
= {forever:1l}
if forever:X = forever:X, since forever:l

is a camputation that never converges to a

value.

CHAPIER 8

FANCY LIST/FERN FUNCTIONS

NOTE

In the examples in this chapter, the characters <new line>
and <blank> may occur for various reasons. A <blank> may
be typed by a user, returned as a list element by Daisy, or
used by the printer to separate other list elements.
Similarly, a <new line> may delimit a line of user input, a
line of Daisy output, or itself be an element in a list.
To help the reader differentiate among the various aspects
of each character, same additional representations of
<blank> and <new line> will be introduced. The character
" " will stand for a blank that has been typed by the user
or returned as a list element. " " will continue +to
represent blanks generated by the print routine for
readability. Likewise, ""M" followed by an effective <new
line> will represent a <new line> that has either been
typed by the user or returned as a list element by Daisy,
while an effective <new line> alone will represent one
generated by Daisy's print routine.

consol :prampt
The function consol takes a prampt character as its argument. It
sets up a suspended input channel fraom the programmer's console,
writing the prampt on the console screen whenever it is ready to
process a line of input data. consol returns a list of the
characters read, suspending itself after each carriage return/line

feed. When “Z is typed, consol immediately converges to nil.

FANCY LIST/FERN FUNCTIONS Page 3-2

Ex: consol:@'3 ==> 3when in the™M
(_When_in_the ™™
% course™M
course M
372

)

NOTE

when ~Z follows other characters on the same line, however,
those characters are lost. Type “Z on a separate linel

Ex: consol:@'3 => 3When in the course "Z

()

consol processes input lines in stages. First, lines longer
than 72 characters are truncated (due to the Fortran I/0O interface)
and lines shorter than 72 are padded to the right with blanks.

Then sequences of blanks are campressed to one blank.

NOTE
If a " has been read, consol 1is supposed to forego

campression of blanks until another " is encountered. This
feature has not been released yet, though.

Finally, lines ending with a blank have a carriage return inserted

at the right. To continue a short input line on the next line

FANCY LIST/FERN FUNCTIONS Page 3-3

without picking up any untyped blanks or carriage returns, end the

initial line with a camment symbol |.

o

Ex: consol:@'3s ==> 3all A o’ gars

{ all (¥ * gars "9
%eat) :cash™™
eat)scdash_ ™

37z

)

consol:@'3 => 3%aaal™™M
3cccee™
{ asaaescesece "M
37z

)

Instantiations of functions like consol within multisets
should allow you to write applicative programs whose behavior is
governed by indeterminite real time events (see Chapter 7.1). The

form

first:{ rest:rest:consol:@A rest:rest:consol:@B }

should cause consol:@A and consol:@B to run in parallel, and return
a stream of characters fram the first input channel to converge.
For example, if a user begins typing characters at channel B, while

channel A remains quiescent, the form should converge to B's

FANCY LIST/FERN FUNCTIONS Page 3-4

stream. However, because of the I/0 interface of Daisy's
implementation language, it is impossible to simulate running
consol:@A and consol:@B concurrently without some outside help from
the user. To execute a Fortran READ is to cause the system to hang

until a line of data becames available. We designed consol so that

typing

"D <carriage return>

in response to a consol input prompt, causes consol to detach
without converging to a value. This permits other instantiations

of consol to then run (conceptually in parallel).

dski:filename

dski: <filename>

dski:<filename project#/programmers>
dski is essentially the same function as consol except that input
lines are read fram a disk file rather than fram a terminal.
filename names a DEC-10 file. Unlike LISP, file extensions are
part of the filename. Thus DETKJO.LOG is represented as

DETKJO' .LOG rather than as the dotted pair (DETKJO . LOG).

The location of filename may be specified by adding the
project and programmer numbers to the argument list. They should
be entered (in octal) as a fraction with the project # as numerator
and the programmer # as denaninator. If no project/programmer
nunber is specified, the current account is searched for filename.

If filename is not found, the DEC-10 Fortran I/O error recovery

FANCY LIST/FERN FUNCTIONS Page 3-5

routines take over.

Ex: dski:@test'.fil
dski:(test'.fil)
dski :<@test' .fil>
dski:<@test' .dsi 50105/5002>

dski:a where a => to sane file specification

parse:charstream
The function parse takes a list of characters, such as that

produced by consol or dski and returns a list of forms in Daisy's

internal representation, the first element of which is a carriage

return.

Ex: parse:consol:@'z => (
3all (" " gars™™M
3eat): cash
"M
all (" " gars eat):cash
372

"M

FANCY LIST/FERN FUNCTIONS Page 38-o

parse:consol:@'s => (

donce _upon a time™M
M

once upon a time
3there was a'M

M

there was a
372

~

M

parse:consol:8'3 => (

issue:form
issue takes a form in Daisy's internal representation and returns a

list of the characters in that form.

Ex: issue:(A:B <12 3>) ==> ((A:B_<123>))

FANCY LIST/FERN FUNCTIONS Page 3-7

screen:charlist
screen is (almost) the inverse of consol, however, consol
canpresses blanks that screen cannot restore. It takes a list of
characters, writes them at the programmer's console, and returns [|

as its value.

NOTE

screen has a known bug that is scheduled to be fixed in the
next release - the first element of charlist is lost.

dsko:<charlist>

dsko:<charlist filename>

dsko:<charlist filename project /programmer >
dsko writes the elements of the list of characters charlist to a
disk file. If no file is specified, then the default file written

to is DSI.DAT. filename and project /programmer are specified as

in dski. If the file does not exist, it is created. If it does,
dsko appends to it. dsko writes to the specified file
determministically (as a side effect) and returns [] after the write

has occurred.

CHAPTER 9

FORM EVALUJATTION FUNCTIONS

@ form

The macro function @ returns form without evaluating it.

Ex: cons:<@A ()> ==> (A)
@remark ==> remark
@x:q => x:q
@ <ab c

Evaluation of a list of forms can also be prevented by the use of

the parentheses as bracketing characters.

Ex: (ab c) => (ab c)

(remark x:q) ==> (remark x:q)

3 form
3 is a macro character that specifies that the form following it is

to be evaluated.

Ex: let:((a b) (forty-two a) <@b b 3b @a a %a>)

==> (b a forty-two a forty-two !?!)

FORM EVATLUATION FUNCTLIONS Page 9-2

evlst:L
evlst returns a list of the results of evaluating each of the forms

in the list/fern L.

Ex: evlst:parse:dski:filnam reads a character stream from the file
specified by filnam, parses it into a list

of forms, and evaluates each in turn.

NOTE
There are only subtle textual differences between the forms

in the next two examples. () and <> have been used
carefully to cause the desired evaluation to take place.

let:((x z) (z two) evlst:< 2:<z x> 2:(z x)
2:<x 2> 2:(x z)>)

=> (two z l?! two)

let:((x z) (z two) evlst:(2:<z x> 2:(z x)
2<% 2> 2:(% 2)))

=> (z x two z)

CHAPTER 10

CONDITIONAL FORMS

if:<PRED1 CONSEQL PRED2 CONSEQ2 ... PREDN CONSEQV>

if:<PRED1 CONSEQL PRED2 CONSEQ2 ... PREDN CONSEQN ALIERN>
if is Daisy's conditional function. Each PREDicate is evaluated in
turn (fran left to right) until one evaluates to something beside
[] or [?|. The value of the CONSEQuent immediately following that
PREDicate (or the value of the ALIERNative, if all PREDicates

evaluate to [] or |?]) is returned as the value of if. ‘The fom

if:<A B C D>

is Daisy's syntax for the more conventional

if A then B

elseif C then D,

if:<kA B C D B>

represents

CONDITIONAL FORMS

if A then B

«Q

elseif then D

else E.

Currently, only the formal if:<...> syntax is accepted.

Ex: if:<[] @VEVER 1 @DULL [] @MOMENT> ==> DULL

if:411 1 £3 2 L] 3 42 => 42

Page 10-2

CHAPTER 11

PREDICATES

ard:fern
The value of and is [] if any of the fern's "first" elements
evaluate to [] or |2?|, and true otherwise (if none of them do).

Its semantics (in Daisy) are

and:L = if:< empty?:L @true
enpty?:1:L []

and:rest:L >.

Thus, and looks at successive elements of its argument until either
it finds one that is [] (i.e. empty?) or it runs out of argument

elements.

and is a function which can be applied to a multiset with very

interesting results. For example, consider

and:< forever:1 [] [1] >

where forever:X = forever:X.

The value of this function call should be [] but won't be since the

PREDICATES Page 11-2

evaluation of forever:X proceeds forever, 1locking out the

possibility of finding any of the L]s. The invocation

and:{ forever:1 [] (]}

however, DOES return [] since the evaluation of each element
proceeds 1in parallel, and discovering a [] element isn't precluded

by forever:l's camputation.
or:fern
The value of or is true if any one of the "first" elements of the
fern is not [] or |2|. Otherwise, or returns [J. Its semantics in
Daisy are
or:L = if:< empty?:L []

1:L @true

or:rest:L >.

Like and, or is most powerful when given a multiset argument.

Furthermore,

or:{ and:{LF1 LF2 LF3} and:{LF4 LF5 LF6} and:{LF7 LF3} }

specifies a breadth-first evaluation of the state space

KLF1 LE2 LF3> <LF4 LF5> LF6> <LF7 LF3>>

PREDICATES Page 11-3

or:< and:<Lf1l LF2 LF3> and:<LF4 LF5 LF6> and:<LF7 LF3> >

specifies a depth-first evaluation.
same? : fern
same? checks for pointer equality between the first two elements

of the fern.

Ex: same?:<@A first:(A B C)> =>

: I

same?: (L L} =>

same?:<(1 2 3) (1 2 3)> == []

same?:<(a b) a> => []

same? :<21 21> => true or [J depending on Thow
nunbers are implemented in the

current release.

atom? : X
The value of atom? is true if X is a number or an identifier and

[] otherwise.

Ex: atam?:10 => true
atom?:{1 2 3} => []
atam? : @A ==> true

atam? :A => depends on what A is bound to

PREDICATES Page 1l1-4

empty? :X

empty? returns true if X => [] or |?| and returns [] otherwise.

Ex: empty?:[] => true

enpty?:<> =—> true

empty?:{} ==> true

empty?:A => true if A is bound to a null 1list OR if
evaluating A causes an error (e.g. if A is
unbound)

empty?:(A) => (]

enpty?:5 => []

1trl?:X => true if X is an identifier

==> [] otherwise

nmbr?:X => true if X is a number

==> [] otherwise

list?:X => true if X is a fern

> [] otherwise

1t?:<a b> => true if a<b, (a and b both numbers)

==> [] otherwise

le?:<a b> => true if a<=b, (a and b both numbers)

=> [] otherwise

PREDICATES

eg?:<a b>

ne?:<a b>

—— |

=

ge?:<a b> =

gt?:<a b» =

true if a=b, (a and b both numbers)

[] otherwise

true if a<>b, (a and b both numbers)

L] otherwise

true if a>=b, (a and b both numbers)

{] otherwise

true if a>b, (a and b both numbers)

[] otherwise

Page 11-5

CHAPTER 12

ARITHMETIC FUNCTIONS

neg:N

neg negates N (returns the additive inverse).

Ex: neg:5 => =5

wi

neg:-5 =>
neg:-7/10 => 7/10
neg:-3/-2 ==> -3/2

neg:4/2 => -4/2

inv:N

inv inverts N (returns the multiplicative inverse).

Ex: inv:5 => 1/5
inv:-5 => -1/5
inv:-7/10 == -10/7
inv:-3/-2 == 2/3
inv:4/2 =y 2/4
num:N

nun returns a number representing the numerator of N.

ARITHAMETIC FUNCTIONS Page 12-2

Ex: nun:5 => 5
num:-5 => -5
nun:-7/10 => -7
num:-3/-2 => 3

num:4/2 => 4

den:N

den returns a number representing N's denaminator.

Ex: den:5 => 1
den:-5 => 1
den:-7/10 ==> 10
den:-3/-2 => 2

den:4/2 => 2

sgn:N
sgn returns 1, -1, or O depending on whether the value of N is

greater than, less than, or equal to 0.

Ex: sgn:5 = 1
sgn:0 => 0
sgn:-7/10 => -1

sgn:-3/-2 => 1

quo:N
Juo returns a number representing the integral gquotient of N's

ARITHMETIC FUNCTIONS Page 12-3

numerator and its denaminator. In the case of N<O, the integral

quotient is such that the remainder is always positive.

w

Ex: quo:5 =>
quo:7/10 => 0
quo:-7/10 => -1

quo:-3/-2 == 1

rem:N

rem returns a number representing the remainder on division of the
numerator of N and its denaninator. This remainder is always a

positive integer.

Ex: rem:5 => 0
ram:7/10 ==> 7
rem:-7/10 => 3

rem:-3/-2 => 1

rdc:N

rdc returns a number representing N but reduced to lowest terms.

Bx: rdec:5 => 5
rde:5/10 => 1/2
rdc:-7/10 => -=-7/10

rdc:-9/-3 ==> 3

ARITHMETIC FUNCTIONS Page 12-4

inc:N

inc returns a number one greater than N.

inc:-7/10 => 3/10
inc:7/10 => 17/10

inc:4/2 =a% 3

dcr:N

der returns a number one less than N.

Bx: dcr:5 => 4
der:=5 => -5
der:-7/10 => -17/10
der:7/10 => -=3/10

dcr:4/2 ==> 1

add:<NUML NUM2>

add returns the sum, NUML-HIUMZ2.

Bx: add:<l1/2 1/2> = 1
add:<-1/2 1/2> => 0

add: <3 4> => 7

ARITHMETIC FUNCTIONS

sub: <NUML NUM2>

sub returns a humber

Bx: sub:<1/2 1/2>

sub:<-1/2 1/2>

sub:<3 4>

sub:<3 4>

mpy : <NUML NUM2>

representing NUM1-NUM2.

= 0
= -]
=> -1
O

mpy returns the product, NUML*NUM2.

Bx: mpy:<l/2 1/2>

mpy:<-1/2 1/2>

mpy:<3 4>
mpy:<3 —4>

div: <Ml NUM2>

=> 1/4
=> -1/4
=> 12
=> 12

div returns the quotient, NUML/NUM2.

Ex: div:<l/2 1/2>
div:<-1/2 2>
div:<3 4>

div:<3 -4>

=> 1
=> -1/4
=> 3/4
=> -3/4

sigma:<NUML NUM2 ... NUMN>

sigma returns the sum, NUML+NUM2+...+HUMN.

Page 12-5

ARITAMETTIC FUNCTIONS Page 12-6

Ex: sigma:<l 2 3 4 5> => 15
sigma:{1 1111} = 5
sigma:<l -1 1 -1> => 0

sigma:(-1 -1 -1) ==> =3

pi:<NUML NUM2 ... NUMN>

pi returns the product, NUML*NUM2¥...*NUMN.

Bx: pi:<l 2 3 4 5> => 120
pi:<1 111 1> = 1
pi:{l -1 1 -1} == (i

pi:(-1 -1 -1) = -1

CHAPTER 13

MISCELLANEOUS FUNCTIONS

$sgt:N/M

$sgt is used to set various system tuning parameters. It takes a

rational number N/M as its argument.

N=0 => M

Stre:N/M

probe count
how strict the printer is

closure sergeant paraneter

$trc sets the system trace flag. This is the same flag that can be

set when Daisy is first entered. $trc is provided mainly for use

by APS internal systems programmers, producing a low level trace of

the Daisy interpreter.

M is the (octal) unit number of the device to which tracing

information should be sent (1 => screen, other unit numbers as per

IU DEC-10 installation). N is the logical and of the traces

desired (in octal).

M/N is entered as a rational number.

MISCELIANEOUS FUNCTIONS

traces = I

10

20

40
100
200
400

1000
2000
4000
10000
20000

40000

$clk:X

$clk returns X after doing a garbage collection.

stings
loads
news
probes
probes +
scheduler
device handlers
parser
printer
evlst
evlst

evlst

garbage collector — top level

garbage collector — mark phase

garbage collector

Page 13-2

Alphabetic

Function name

ARCIND i v i o W w
A o & owe mow @ u
AR 5 5 e o e B E
SIS 4 s o o W @
agomsol & & W
G & 5 % e oA
den ¢ i 5 5 o5 o 4
AEZ 2 o & o oo e
dski . « ¢ o o
AT & e e e o e
anpby? <« & wow o
elgt v 5 W oo e
= T
FIESE. & e co e o
EXOn=. 5 5 5 W 6 b
5 (=1 U
gEZ & & oW s e e @
1E ¢ & m wow o s
iBe & & & a oW o s
I & 5 B B @ e
iSSUEe & & o . o
ek ¢ : 5 5 % % .
P& o & o e o
LESER o o e e e
EEE2 & & o o e
162 & % 5 o @ % @
BBV & « & w e s s
Nneg « « «

NSY ¢ ¥ 2 5 95w
NrE? ¢ & s % W e
N 5 5 « & & % s
(oo o

PArse .« .« s . o

- T =

UG o e & & o @

PAC & & & w = oo o
FeC « « @ & @& w e
Y & W W % W
regh + % % & % s
SANE2 ¢ 5 & W oW e
SCreen . « « » -«
SGO. o & o o om o m

SIGHIA. « = « & i o
SUD ¢ & ¢ o e e o
L= « u & = w0 s
S5 ¢ v oo s
Segbt & % 4 @ o
SEEC oz 5 om e
@mie 8 8 7 5@ 5

Index

= @
= &
® s 8

® ®
s e s
s @ s
s e =
= e =
= 8 =

of System

® = & =
s e ® s e
s e ®

Functions

Page
. 11-3
. 12-4
. 11-1
s i
s B-1
. 12-4
o 12-2
» 12-5

. 8-7
. 11-4
. 9-2
. 11-5
. 13
i W2
v LE=D
. 11-5
. 10-1
. 124
. 12-1

. 66
v L1=5
. 114
. 11-4
. 11-4
v 2=5
« k2=
i 11=5

. 12-1
11-2

. 83
12-6
12-2

v 12-3

¢ 2k=3

- L2=0
. 25
o 12-5
. 7-6
. 13-2
¢ A3-1
. 13-1
s 91

Bibliography

[1] Friedman,D.P. and Wise,D.S., Applicative Multiprogranming,
Technical Report No. 106, Computer Science Department, Indiana
University, Bloamington, Indiana (revised: April 1979).

[2] Friedman,D.P. and Wise,D.S., An approach to fair applicative
multlprogramulng. , in Semantics of Concurrent Computation, G.

Kahn (ed.), Berlin, Springer (1979), pp.203-226.

[3] Friedman,D.P. and Wise,D.S., Aspects of applicative programming for
file systems., Proc. ACM Conf. on Language Design for Reliable
Software, ACM SIGPLAN Notices 12:41-35 (March 1977)+

[4] Friedman,D.P. and Wise,D.S., Aspects of applicative programming for
parallel processing., IEEE Transactions on Computers
C—27(4):239-296 (April 1978).

[5] Friedman,D.P. and Wise,D.S., CONS should not evaluate its
arguments., in Automata, Languages and Programming, S.Michaelson
and R.Milner (eds.), Bdinburgh, Edinburgh University Press
(1976), pp. 257-284.

[6] Friedman,D.P. and Wise,D.S., Functional cambination., Computer
Languages 3(1):31-35 (1978).
L 7] Friedman,D.P. and Wise,D.S., An indeterminate constructor for

applicative programming., Seventh Annual Symposium on Principles
of Programming Languages, (January 1930), pp. 243-250.

[8] Friedman,D.P. and Wise,D.S., A note on conditional expressions.,
Comm. ACM 21(1):931-933 (November 1978).

[9] Friedman,D.P. and Wise,D.S., Output driven interpretation of
recursive programs, or writing creates and destroys data
structures., Information Processing Letters 5(6):155-160
(December 1976)., Erratum: Information Processing Letters
9(2):101 (August 1979).

[10] Priedman,D.P. and Wise,D.S., Unbounded camputational structures.,
Software - Practice and Experience 8:407-416 (1978).

[12] Grismer,T.M., Solving camnon programming problems with an
applicative programming language., M.S. thesis, Indiana
University, Bloanington Indiana (1980).

[13] Johnson,S.D., Circuits and systems: implementing cammunication with
streams., Technical Report No. 116, Computer Science Department,
Indiana University, Bloomington, Indiana (October 198l).

Page 2

[14] Johnson,S.D., An interpretive model for a language based on

suspended construction., M.S. thesis, Indiana University,
Bloanington (1977).

[15] Smoliar,S.W., Using applicative techniques to design distributed
systems., Proc. IEE£ Symposium on Specifications of Reliable
Software., 1979, pp.150-160.

[16] Friedman,D.P. and Wise,D.S., Fancy ferns require little care.,
Technical Report No. 106, Computer Science Department, Indiana
University (March 1981).

