Abstract 1

Polynomial Average-Time Satisfiability Problems
by

Paul Walton Purdom, Jr. and Cynthia A. Brown

Abstract

A class of random conjunctive normal form (CNF) predicates is characterized
by v, the number of variables from which literals may be formed (giving 2v literals); p(v),
the probability that a given literal is in a random clause; and #(v), the number of random
independently selected clauses in a random predicate. Determining satisfiability on such
a class using backtracking takes polynomial average time under the following conditions:

(1) vl_ii'lc',lovp(v) = 0 and t(v) > jn%‘;%; and (2) lim vp(v) = oo, lim p(v) = 0, and
o) > (In2+)
ep(v
analysis by Goldberg showed that problems for which p{v) is constant can be solved in
polynomial average time by a simplified Davis-Putnam procedure. We give an algorithm
for solving problems with {(v) < Inlnv/In3 in polyromial worst-case time. Thus all
problem sets for which p(v) or i(v) grows extremely rapidly or extremely slowly can be
solved in polynomial average time. We also show that backiracking requires exponential

average time when lim vp(v) = 0 and t(v) < —_m%%)%ﬂj) and when lim vp(v) = oo,
i = 0, and t(v) < 22=¢ 2 :
Jim vp(v) = 0, and t(v) < 2252 expl20p(o)

exp[2vp(v)] for any fixed € > 0. Additional cases are also covered. An

This work was supported in part by The National Science Foundation under grant number
MCS 7906110.

1. Introduction 2

§1 Introduction

The amount of time needed to solve NP complete problems is a2 major open
question. Much theoretical work has been done on this problem; see Garey and Johnson
[7] for a summary. Naive methods for solving NP complete problems with v binary
variables typically take time 2¥. Recently, methods have been developed by Monien and
Speckenmeyer and by Schoeppel and Shamir for solving some problems in worst—case
time ¢’, where 1 < ¢ < 2 [11,18].

While there is no known way to solve NP complete problems in subexponential
worst—case time, most methods used in practice combine a worst—case time of g(v)2”
(where g(v) is a polynomial in v) with the ability to solve many problems rapidly. Evaluation
and comparison of these methods hinges on an average time analysis of their performance.
An average time analysis of backtracking over random satisfiability problems is given in
[1,12]. An analysis of simple search rearrangement backtracking (equivalent to backtracking
combined with the pure literal rule from the Davis-Putnam procedure [3]) using the model
of satisfiability problems from [1] is given in [13]. The performance of the pure literal
rule from the Davis-Putnam procedure was studied by Goldberg [8,9] using a different
random model. A preliminary analysis of several algorithms on both types of models is
given in [2]. Methods which take polynomial time and which nearly always find solutions
were studied by Franco and Paull in [4] (based on stopping at the first solution) and [5,6]
(based on the pure literal rule). Satisfiability of conjunctive normal form (CNF') predicates
is a representative NP complete problem and it is straightforward to generate random
problem instances, so it is a natural choice for a model of random NP complete problems.

The CNF predicates can be classified by the number of variables from which
literals can be formed (if there are v variables there are 2v literals), the probability
p that a given literal appears in a random clause, and the number ¢ of clauses. The
studies mentioned above were based on specific models of CNF predicates obtained by
parameterizing p and ¢ in terms of v and studying the behavior of the algorithm in question
as v becomes large. For this paper we use a very simple model of CNF predicates (adapted
from [8]), but we generalize the analysis so that the probability p(v) and the number of
clauses t(v) are arbitrary functions of v.

This work was motivated by the observation that the functional values of p(v)
and ¢(v) for which backtracking can solve CNF predicates rapidly are quite different from
those for which the pure literal rule is effective. This suggests a program of categorizing
satisfiability algorithms according to the points in [p(v), t(v)] space for which they can
solve the corresponding problems in polynomial average time. It will be interesting to
see whether there is some such algorithm for each set of values. Algorithms which
can rapidly solve problems that no other analyzed algorithm handles efficiently are of
particular interest.

This paper begins such a program. Figure 1 summarizes our results. Imagine a
rectangular space with various functions p(v) labelling a vertical axis along the left edge,
and functions ¢(v) labelling a horizontal axis along the bottom. The functions are arranged
so that the most rapidly growing ¢(v) are at the right and the most slowly decaying p(v)
are at the top. It should be pointed out that this quasi-graphical representation should
not be taken too literally; the functions for {(v) and p(v) do not form a complete ordered
field.

A model is represented by a point on this diagram. The formulas derived in this
paper from the study of backtracking define a roughly diagonal line from top to bottom on
this figure such that functions ¢(v) to the right of and below the line result in polyromial

2. The Probability Model 3

average time while those to the left and above give exponential time. The points near
the top of the diagram, where p(v) is constant, represent problems that can be solved in
polynomial average time using the pure literal rule, while those at the extreme left, where
t(v) < Inlnv/In3, can be solved in polynomial time using an algorithm presented in this
paper. One interesting characteristic of a model is the expected number of solutions for
a problem. If ¢ is slightly smaller than (vIn2)/(— In(1— (1 — p)*)) then the number of
solutions per problem is exponentially large; if ¢ is slightly larger than this, the number of
solutions is exponentially small. (See the Appendix for details.) The dashed line in Fig.
1 shows this critical value of ¢ . Points below and to the right of the dashed line (which
coincides with the boundary of the hard problem region in part) have an exponentially
small number of solutions; points above and to the left have an exponentially large number
of solutions.

For purposes of this diagram, “time” means “number of major steps of the
algorithm in question”, measured as a function of v. Problems in the upper right
corner have an exponential number of clauses, and the pure literal rule cannot solve such
problems in an average number of steps polynomial in v. On the other hand, the problems
can be solved in an average time polynomial in the problem size.

The remaining hard problems (those where none of the algorithms analyzed so
far take polynomial average time) occupy a roughly triangular region in the center of the
diagram. The aim of future work will be to further reduce the size of this central region.
(See [15]).

§2 The Probability Model

A model for average time analysis consists of a set of random problems and a
probability for each problem in the set. For this study the problem set is satisfiability
of random CNF predicates over v variables. Random clauses are formed by selecting
each literal independently, with probability p(v). The probability that neither literal for
a variable is included is (1 — p(v))? and the probability that both literals are included
is p(v)?, so trivial clauses are common when p(v) > v—# and relatively rare when p(v) <
v—3% . Random predicates are formed by independently selecting (v) random clauses.

This method of forming predicates is similar to that used in [8,9]. In those
models, however, the probability of neither variable occurring in a clause was set at
1 — 2p(v), and tautological clauses (clauses containing a variable and its negation) were
excluded. The models in [1,4,6,13] use random clauses with a fixed number of literals per
clause. The model used in [2] was the same as that used here. (In [2] we erroneously
stated that this model was identical to the one in [8].)

The present model has the advantage of being easy to analyze, and the transition
from polynomial time to exponential time as the parameters are varied is rapid. It
probably gives results that are less indicative of the average time required for solving
typical problems than the models used in [1,4], but the advantages of easy analysis and
rapid transitions are particularly useful in our present effort to identify good features of
algorithms and to characterize the hard problems.

To analyze backtracking it is necessary to specify not only the set of problems
but also the predicates to be used for testing partial solutions (intermediate predicates).
We use the convention of [1], where the intermediate predicate to use after the first i
variables have been set is the conjunction of the clauses in which only the first ¢ variables

4. Asymptotic Analysis of Backtracking 4

appear. We use the standard convention that an empty CNF predicate is frue and an
empty clause is false.

§3 Exact Analysis of Backtracking

See [1 or 10] for a discussion of backtracking. We consider the version of
backtracking that searches for all solutions to a problem. The backiracking algorithm,
when used with binary variables, generates a binary tree. We use the number of nodes
in the tree as a measure of the running time of the algorithm. The following derivation
follows the pattern of the derivation in [1], where more details are given.

The probability that a random clause has all false literals after { — 1 variables
have been set is (1 — p(v))>*~**!. The probability that a random predicate contains no
clause consisting of all false literals (i.e., the probability it reaches the node on level § on
a particular branch of the tree) is [1 — (1 — p(v))2*~*+!]**). There are 2’ nodes on level
i, so the expected time (expected number of nodes) is

Tp=1+ Y. 21— (1- p)p—*+). (1)
1<i<v

§4 Asymptotic Analysis of Backtracking

An asymptotic analysis of (1) reveals its ultimate behavior. Since the analysis
is long and complex, it is given in the appendix. Here we discuss a few aspects of the
analysis and give the results.

The analysis has two cases depending on whether the maximum term in the sum
in (1) is the § = v term or a term with { < v. In the first case the asymptotic analysis
depends on whether lim vp(v) = 0, a, or co, where a is a positive constant. In the

—

second case the results depend most directly on whether lim #(v)p(v) = 0, a, or oo, but
Y=
these cases turn out to be equivalent to the corresponding cases for lim vp(v). The two
U—00

cases lead to two curves, each of which has three segments. The curves intersect where
lim vp(v) = In2. If we regard the model problems, parameterized by t(v) and p(v), as
U— 00

forming a space (as in Figure 1), then when lim vp(v) is below In2 the curve from the
v—00

{ = v case separates the regions of the space where backtracking uses exponential (e¥)
average time (the small {(v) side) from regions where polynomial time is used. Above In 2
the curve for the i < v case separates the two regions. In the limit the separating curve
has four segments.

There are some functions, such as (In v)'®?, that represent a running time that
is neither exponential nor polynomial under the above classification. In our diagram such
functions represent a vanishingly small portion of the space, and we will not mention
them again.

The results of the analysis are summarized below; in each case ¢ is a positive
number.

5. Other Algorithms 5

1. For lim vp(v)=0

v—00

exponential time is used when #(v) < % (2)

polynomial time is used when t(v) > —_(::(?T*.:);)_p) (3)
2. For lim vp(v)=a < In2

v=—+00

exponential time is used when t(v) < :(%:nl(zl:—?i‘) (4)

polynomial time is used when ¢(v) > -_(::(21%)2” (5)
3. For lim vp(v)="5b2> In2

v—00

exponential time is used when t(v) < &2;& (6)

polynomial time is used when t(v) > w (7)

where d is the solution of In(1 + d)+ dIn(1 + 1/d) == 2b. (8)
4. For lim vp(v) = o0

U= 0O

exponential time is used when t(v) < %%—Tfl exp[2vp(v)]. (9)

If lim p(v) =0 then

v—+00
L In2(1+ ¢)
polynomial time is used when t(v) > T(v)—— exp[2vp(v)]. (10)

(See the appendix for the case lim p(v) > 0.)
v=—+00

These results are illustrated in Figure 1, where the line dividing the exponential and
polynomial regions has been sketched.

§5 Other Algorithms

Backtracking is by no means the only algorithm that can solve some classes of
satisfiability problems in polynomial average time. Goldberg [8,9] showed that when p(v)
is constant, a simplified version of the Davis-Putnam procedure that essentially uses only
the pure literal rule solves the problems in the class in average time polynomial in the
problem size. Although a different model was used in [8,9], the same result holds for the
model used in this paper. The degree of the polynomial increases as the constant value of
p(v) becomes smaller. This allows us to draw a line across the top of Figure 1. The solid
portion of the line shows where the average time is polynomial in v; the dashed portion
shows where it is exponential in v but polynomial in the problem size.

Another algorithm allows us to solve problems for which t(v) is small (less than
In In v/ In 3) in polynomial worst-case time. We call it the pattern of occurrences algorithm.
The pattern of occurrence of a variable w is a vector with £(v) components. The ¢
component is + 1 if the positive literal w appears in the i** clause, -1 if the negative

5. Other Algorithms 8

literal = w occurs, and O if neither literal occurs. (Tautological clauses are dropped in
the first step of the algorithm.) We define the opposite pattern of occurrence to be the
pattern of occurrence obtained by reversing the signs.

To use the pattern of occurrence algorithm first apply the following reduction:
1. Drop any tautological clauses.
2. Form the pattern of occurrences vector for each variable that occurs in the predicate.

3. If any two variables have the same pattern of occurrence, remove all the clauses
containing them. (These clauses can be made true by setting one of the variables to
true and the other to false, without affecting any other clauses.)

4. If any two variables have opposite patterns of occurrence, remove all clauses contain-
ing them. (The clauses can be made true by setting both variables to the same value,
without affecting any other clauses.)

5. Drop any variables that don’t occur in any of the remaining clauses.

After the reduction each variable has a unique pattern of occurrence, and no two
variables have opposite patterns. The number of clauses remaining, ¢, and the number
of variables, v', obey the relation

g1 _at—1
' < e .
VETg =73

Such problems can be solved by enumeration in time

st—1

v < 973

For polynomial time we must have, for fixed o,

2%__1519

t_
(—3—2-—l)ll12§o:lnv

2clny
< T——+1
— In2 *

In(2alnv+ In2)— Inln2

<
= In3

So for

= 3’
this method requires polynomial time. (Notice that this is a worst-case time, unlike our
other results.)

The pattern of occurrence algorithm, and rules 6 and 7 of the algorithm of
Monien and Speckenmeyer [11], are related to the pure literal rule of the Davis-Putnam
procedure [3]. The pure literal rule applies to variables for which only one of the two
possible literals actually occurs in the formula. If the variable is set to the value that
makes that literal true, all the clauses in which it appears become true, regardless of

8. Discussion 7

the value of the other variables. The variable that occurs as a pure literal thus has a
safe value. The idea of a safe value can be generalized to sets of variables, which may
interact in such a way that they have safe values as a set, even though none of them has
a safe value individually. Both the patiern of occurrence algorithm, and rules 6 and 7
of the algorithm of Monien and Speckenmeyer, identify special patterns of occurrences
of variables that result in interacting safe values. A different generalization of the pure
literal rule is given in [16].

§6 Discussion

Formulas 2-10 demonstrate that backiracking can solve random CNF problems
in polynomial average time when t(v) is sufficiently large. The pure literal rule and related
algorithms discussed in the previous section can solve problems where ¢(v) or p(v) is small.
As Figure 1 illustrates, the regions covered by these algorithms include all the extreme
values of p(v) and t(v).

The algorithms we analyzed for this paper were quite simple. It will be interest-
ing to see how much the “island” of difficult problems can be reduced when more sophis-
ticated algorithms are analyzed. It is also possible that combinations of techniques will
be more effective than the individual techniques are when used alone. This is particularly
likely to be the case when the cases that the techniques handle well individually are not
too far apart. The algorithm of Monien and Speckenmeyer [11] shows that a judicious
combination of the best currently known techniques can be significantly better in the
worst case than simple approaches (worst-case time O(1.62") versus ©(2") for problems
with 3 literals per clause).

Future work will concentrate on attempting to reduce the size of the regions of
hard problems in [p(v),¢(v)] space. It seems unlikely that all the hard problems can be
eliminated using presently available algorithms, but it will be interesting to see how far
back the boundaries can be pushed.

Figure 2 summarizes the most recent results of our research, including work
completed after that reported in this paper. The useless variable analysis is reported in
[14]. The improved analysis of the pure literal rule is reported in [15]. A similar analysis
of search rearrangement backtracking is reported in [17].

6. Discussion 8

Figure 1. A diagram showing the regions of [p(v),#(v)] space where random CNF
predicates can be solved in polynominal average time. Problems outside the quadrilateral
can be solved in polynomial average time. The various boundaries are labeled with the
algorithm for producing polynomial average time in that region of the diagram. Along
the backtracking boundary, we have shown that exponential average time is required (by
backtracking) just inside the boundary. The other boundaries represent upper bound
analyses only; they are therefore indicated using hash marks. The dashed line separates
the region where problems have an exponentially large expected number of solutions
(above the line) from the region where the expected number of solutions is exponentially
small. Formulas on the diagram are approximations, simplified to show main features.
We use ¢ for a very small positive constant. Along the vertical axis are the various
functions for p(v) , between 0 and 1, arranged by their asymptotic rate of growth. Along
the horizontal axis are various functions for t(v).

6. Discussion 9

Figure 2. Figure 2 uses the same conventions as Fig. 1. The additional lines show
the results of more recent upper bound analyses of the pure literal rule and a rule that
discards useless variables. (See [15] and [14] respectively.)

Appendix 10

Appendix

This section gives the proofs of the formulas in the main text. The expected
number of solutions per problem in our model is given by

S=2"(1- (1-p)")", (A1)

which can be rewritten as
S =¢'lR 2+t 1n(1—{1—p)"). (A.Q)

For § = €Y, we have
ev=vmn2+ th(l— (1- p)’),or (A3)
v(ln2— ¢

= : A4
“h(i- - 7)))

Notice that if ¢ is slightly smaller than (vIn2)/(— In(1 — (1 — p)*)) then the
number of solutions per problem is exponentially large; if ¢ is slightly larger than this, the
number of solutions is exponentially small. In discussing asymptotic behavior, we use lim
as an abbreviation for lim . The asymptotic behavior of this formula may be analyzed

Y=—r00
using results obtained later in this Appendix. The results of the rest of this paragraph
depend on the rest of the Appendix through formula (A.27). In the case lim pv = 0, we
can apply (A.21) to (A.4) to obtain (A.24). In the case limpv = a for some constant
a > 0, apply (A.25) to (A.4) to obtain (A.27). In the case lim pv = oo, lim(1 — p)* =0,
so the number of terms needed so that the average number of solutions is ¥ is given by

t=1v(n2— €)(1- p)~"(1+ of1)). (A.5)
When lim pv = co and limp = 0, (A.5) can be simplified to
t=v(ln2— €)e’*(1+ of1)). (A.6)

In equations (A.3) - (A.6), when ¢ is close to In 2, almost all of the 2" potential leaf nodes
are solutions.

The expected time for backtracking on our model is given by

Tg=1+ Y. 2(1- (- p*~*). (A7)
1<i<v

Notice that Ty is a decreasing function of ¢t and an increasing function of p and v. To
simplify the notation we use p and ¢ instead of p(v) and ¢(v) ; p and ¢ are understood to
be functions of v. We are interested in characterizing the functional values of p and ¢ for
which T is subexponential for large v. Our first step is to find the value of the maximum
term in the summation in (A.7). Define

Tp(i) = 21— (1— p)**~*+)’, (438)

considered as a function of a real variable ¢ . Let iy« be the value of ¢ that maximizes
Ts(i), and let i, be the value of i in the range 1 < ¢ < v that maximizes Tp(i) . Since

Appendix 11

Tp is greater than the largest term on the right side of (A.7), and less than v times the
largest term, we have

Tg=1+ M(U}TB(8'¢ + 5) [A.Q)
where 1 < M(v) < v and 6 is some number in the range —1 < § < 1; § compensates
for the fact that ¢, may not be an integer.

In what follows we will assume that 0 < p < 1, and that { > 1.

To calculate iy, We use

LLEY] (A.10)

di tmax

(the natural log of T(¢) is easier to work with than the original formula). The derivative
of In Tg(i) at #mq, is given by

_ (1= p)frfmetl(—In(1— p)) _

- = 0. z
In2 1— (1— p)2r—itmmtl (A.11)

Solving for (1 — p)?¥~fmax+1 t¢aking logarithms, and solving for imax gives

Inf1 + A=E0=e)

— In(1- p)

imax =204 1— (A.12)

Formula (A.11) shows that ¢'272() j5 5 decreasing function of i, so the place where the
derivative goes to zero is a maximum.

Now, 1, = min(v, imax). This is fmax When v 2> inay, ie.

In[1 + 4=10(-2))

V2204 1— —— in(l_‘_“zp] (A.13)

Solving for t gives
In|1+ E{——I%IQ—_I}—)) > (v+ 1)(— In(1 - p)), or (A.14)
t2 —prlenel+ (= (1= 2] - 1] (4.15)

When ¢ is below this limit, i, = v . We now derive a formula for Tz using each of the
two values of 1, .

When i, = imax , (A.9) becomes

In[1 + g_—lﬁl(lz—_m]

Ts =1+ M(v)exp “Ta(i- p)

(n2)(2v+ 1+ 6)— (In2)

(A.16)
+ tlu[l— (1- p){"' [1+‘-‘“—'|"-.‘%‘—'”]/(—1n(1—p))}—a]]

Appendix 12

Since

_ o [148= 202D | f(—m(1—p))} __ In2
- piebr lfe-mo-r }_m2+t(ln(1—p))’ 5

formula (A.16) may be written as

Tg=1+ M(v)exp[(ln2)(2v+ 1+ 6)— ﬁaln[l+ W
(A.18)
(ln2)(1— p)~°
. (1_ In2+ t(— In(1 - p)))]‘
Formula (A.18) gives Tp for the case iy = fmax. When i, = v, (A.9) becomes
Tp =1+ M(v)exp[(ln2)v + tl[1 - (1— p)*+!]]. (A.19)

We are interested in the asymptotic behavior of Tg when p and ¢ are functions
of v. In particular, given p(v), we wish to characterize the functions ¢(v) that give T the
form

Tg = 1+ M(v)exp(ev). (A.20)
When ¢ = 0, T is polynomial; it is exponential for ¢ > 0.

We divide the possible functional values for p into cases depending on the value
of lim v(— In(1 — p)). The values we consider are 0, a constant a greater than zero, and
oo . To find the critical functional form for ¢ we equate (A.18) or (A.19) to (A.20) with
¢ = 0 or a small positive number and solve for .

The choice of whether to use (A.18) or (A.19) depends on the value of
lim v(— In(1— p)) under consideration; for each case one of the two formulas is appropriate.
We present the calculations for the correct case; once an answer is obtained, the fact that
Tg is 2 monotone function of ¢ means that the case is unique.

Consider (A.19) when lim v(— In(1— p)) = 0 (equivalent to lim pv = 0). We use
the assumption on the limit of v(— In(1— p)) to simplify (A.19). The derivation proceeds
as follows. Equating the simplified expression and the functional form for a just barely
exponential function (A.20) allows us to obtain the value of ¢ that makes Tz exponential.
The value we obtain for ¢ does not satisfy (A.15), s0 imax is greater than v. Thus the
derivation is consistent, since (A.19) is the correct formula for the case i, = v. Now,
Tg is 2 monotone decreasing function of {. Since we have a value of ¢ that separates
exponential from non-exponential behavior, that value must be unique.

We begin, then, with (A.19) and the assumption lim v(— In(1 — p)) = 0. Under
the assumption we can write

(1= p)**! = exp|(v+ 1)In(1 — p)]

=1- (v+ 1)p+ O(vp?). (A.21)

Substituting this in (A.19), we have

Tg = 1+ M(v)exp|(In2)v — ¢(— In((v + 1)p))1+ O(p))] (A.22)

Appendix 18

For (A.22) and (A.20) to be true simultaneously, we have ev = (In2)v — ¢(— In((v +
1)p)) + (1 + O(p)), giving

_ (In2— €)v

‘= T+ Do) + 0G) L
_ (n2- €)v

t= oG et o6 (A.24)

This value of ¢ fits the case i, = v, since it satisfies (A.15). (That it does so can be seen
from the analysis leading to (A.31)). We were therefore justified in using (A.19) to derive
it.

Functions that satisfy (A.24) with ¢ = 0 result in a polynomial value for Tp.
Adding a small positive quantity to compensate for the O terms gives that for ¢ > (In 2+

€)/— In((v+ 1)p), for any € > 0, Tp is polynomial. For ¢ < :'?Tn(f-;_—:%ﬁ, Tg is exponential

and, under our assumption that lim vp = 0, the critical function for ¢ gives limpt = In 2.
This completes the derivation of equations (2) and (3) in the text.

Now consider (A.19) when lim v(— In(1 — p)) = a, where a is a constant greater
than zero. (This assumption is equivalent to limvp = a. The general form of the
argument is similar to the limpv = 0 case, as are the subsequent cases.) Using the
assumption we have

(1= p)**! = exp[— (v + 1)(— In(1 = p))]
= exp(—a+ o(1))

= %1+ of1)). (A.25)

Using this in {(A.19) we have
Tg =1+ M(v)exp[(In2)v+ tIn(1— e™*)(1+ of1))]. (A.26)
For (A.20) and (A.26) to hold simultaneously,

ev = (In2)v + tln(l — e *) 1+ o(1)), or

(In2- ¢

‘T -

v(1 + o(1)). (A.27)

To have lim pv = a we must have limp = 0, and (A.15) becomes

2 = fexpla(t + o{1)] = {1+ o(1), or

t> ‘lpg—[ea ~ 1)1+ of1)). (A.28)

Now, (A.27) comes from (A.19), which is the i, = v case. Formula (A.15), and therefore
(A.28), is the condition for iy = ipax . We want iy = v (equivalent to reversing the

Appendix . 14

inequality in (A.28)). Thus, for (A.27) to hold, we must have

(In2— ¢) v In2 oo r
sy (e* — 1)(1+ of1)). (A.29)

We are concerned with small ¢ > 0 . Since pv = a + o(1),
a < (e — 1)(— In(1— e™?))(1 + o(1)). (A.30)

In the limit, (A.30) is satisfied by

a< In2 (A.31)
Thus, for ¢ < In2,Tp is polynomial for ¢ > ﬁ'fff:.—.)v and exponential for ¢t <

In2—e

TTa(1—s=e)? - This completes the derivation of equations (4) and (5).

For the case of lim pv > In 2, the result depends on the value of lim ¢(— In(1— p)).
Assume limt(— In(1 — p)) = a, where @ is a constant, and consider formula (A.18), the
f+ = Imax case. It gives

Tg =1+ M(v)exp[(an][2v+ 1+ 6)— %ln [1-1- ﬁ+ 0(1)]
+ th [1—- % + 0{1)”

(A.32)
=1+ M(v)exp [(ln 2)(2v+ 1+ 6)— tln; In [1 + é](l + o(1))

_Iln2(1-p)*

tin|1
+ n[In2+ a

o+ otw)]
Satisfying both (A.20) and (A.32) requires that

n a ~)
= (n2)(2v+ 1+ §)— t!alen(l - iﬁ)_ tln(l— %)[H of1)], or

s (2ln2— €)v[1 + o(1)]
a2 hn (1+ g&y) - In1- 4Gz}
For (A.33) to hold we have lim¢ = co (since ¢ is proportional to v), so for

limt(— In(1 — p)) = a, which is equivalent to lim pt = a, we have lim p = 0. We use this
to replace (1 — p)~% by 1in (A.33), giving

(4.33)

_ (2In2 — €)v[1+ o(1)]
B2n(1+ %)+ In(1+ 12)

(4.34)

Thus T is polynomial for

(2In2+ €

T 2ip(1+ %)+ In(1+ B2)

Appendix 15

and exponential for
< (2ln2— €v
= B2n(1+4 &)+ In(1+ 2)

When limpt = ¢ and limpv = b > In2, we have lim £ = £. Using this in
(A.34) with ¢ = 0 gives a relation between a and b:

a_ (2In2+ of1))
b WZip(l+ &)+ n(1+ =2) 7
b [%m(l+ 2)+ 21121n(1+ "‘f)][n o). (4.35)

When b = In 2 this formula gives a = In 2; substituting this value in (A.27) and (A.34)
shows that in the critical region ¢ is approximately equal to v. Since (4) (in the main text)
is equivalent to (6) (and (5) to (7)) when @ = In2 and b = In 2 either can be used at this
one point. This completes the derivation of equations (6), (7), and (8).

Now consider (A.18) when lim¢(— In(l — p)) = oo (which is equivalent to
lim pt = o0). (We still have lim pv > In 2.) First notice that

In|1+ t(—_klf]lg—_gn]=ln[i:%ﬁ]+ l“[” E(-—l;%:ﬁ]

o[o) @

and

___(m2)1- p)~° _ _(m2)1-p)° L. X
oL In2+ #(— In(1— p)]] o ln[l t(— In(1 — p)) (1 + O(t(— In(1 - P)))ﬂ

__(m2)1-p)* 1
=" (= (- p) (” O(t(— In(1 = p))))l' -

Thus from (A.18) we get

Tg =1+ M(v)exp|(In2)(2v+ 1+ &) — In2 {ln[t(_ In(1 — P))]

- In(1- p) In2

+ 0=t o)i 4

Satisfying both (A.20) and (A.38) requires that

e =(In2)(2v+ 1+ 9)
e U ML AR CE)

Appendix 18

or

o[B0 (o Y- tala = o)+ (14 8- ala = p) - (1 B

R Cmrre)

Solving for t gives

(In 2)e~(-»)~*

e e () L R Farrer) |
(A.39)

Multiplying through (A.39) by (= In(1— p)) shows that lim pt = oo iff limpv =
0o . Thus (A.39) implies that if lim pv = co then Tg is polynomial for

(In 2)e=1=2)(1 + ¢)
~ (= In(1- p))1- p)

5 €xp[2v(— In(1 — p))|

2)e=(1-27'(1 - ¢)

and is exponential for ¢t < fln exp[2v(— In(1 — p))]. When limp = 0

(= In(1 - p))
: g g : ; In2(1+ €) -
this can be simplified; T is polynomial for t > T exp[2vp| and exponential for
t < a2l — 4} exp[2vp] . This completes the derivation of equations (9) and (10) in the
text.

Careful consideration shows that we have now taken care of all the cases that can
arise; we have characterized the boundary between sets of formulas for which backtracking
is exponential and those for which it is polynomial.

References 17

References

1-

4‘

5.

g.

10.

11.

12.

13.

14.

15.

16.

Cynthia A. Brown and Paul Walton Purdom, Jr., “An Average Time Analysis of
Backtracking”, SIAM J. Comp. 10 (1981), pp. 583-593.

Cynthia A. Brown and Paul Walton Purdom, Jr., “How to Search Efficiently”,
Proceedings of the Seventh Int. Joint Conf. on Artificial Intelligence, 1 (1981), pp.
588-594.

Martin Davis and Hilary Putnam, “A Computing Procedure for Quantification
Theory”, J. Assoc. Comput. Mach. 7 (1960), pp. 201-215.

John Franco and Marvin Paull, “Probabilistic Analysis of the Davis Putnam Pro-
cedure for Solving the Satisfiability Problem”, Case Institute of Technology Report
No. CES-81-3 (June 1981).

John Franco and Marvin Paull, “Probabilistic Analysis of the Davis Putnam Proce-
dure for Solving the Satisfiability Problem”, Discrete Applied Mathematics 5 (1983),
pp. 77-87.

John Franco, “Average Analysis of the Pure Literal Heuristic”, Case Institute of
Technology Report No. CES-81-4 (August 1981).

Michael R. Garey and David S. Johnson, Computers and Intractability, W. H.
Freeman and Co., San Francisco (1979).

Allen Goldberg, “Average Case Complexity of the Satisfiability Problem”, Proceed-
ings of the Fourth Workshop on Automated Deduction (1970), pp. 1-6.

Allen Goldberg, Paul Walton Purdom, Jr., and Cynthia A. Brown, “Average Time
Analyses of Simplified Davis-Putnam Procedures”, Information Processing Letters
15 (1982), pp. 72-75.

Donald E. Knuth, “Estimating the Efficiency of Backtrack Programs”, Math. Comp.
29 (1975), pp. 121-136.

Burkhard Monien and Ewald Speckenmeyer, “Three-Satisfiability is Testable in
0(1.627) Steps”, Report No. 3, Theoretical Informatics Series, University of Pader-
born (1979).

Bernard Nudel, “Consistent-Labeling Problems and their Algorithms: Expected-
Complexities and Theory-Based Heuristics”, Artificial Intelligence 21 (1983), pp.
135-178.

Paul Walton Purdom, Jr. and Cynthia A. Brown, “An Analysis of Backtracking
with Search Rearrangement”, Indiana University Computer Science Dept. Tech.
Report No. 89 (1980), to appear in SIAM J. Comp.

Paul Walton Purdom, Jr. and Cynthia A. Brown, “Evaluating Search Methods
Analytically”, National Conference on Artificial Intelligence (1982), pp. 124-127.

Paul Walton Purdom, Jr. and Cynthia A. Brown, “The Pure Literal Rule and
Polynomial Average Time”, Indiana University Computer Science Dept. Tech. Re-
port No. 128 (June 1982).

Paul Walton Purdom, Jr., “Solving Satisfiability Problems with Less Searching”,
Indiana University Computer Science Dept. Tech. Report No. 117 (1981).

References 18

17. Paul Walton Purdom, Jr., “Search Rearrangement Backtracking and Polynomial
Average Time”, Artificial Intelligence 21 (1983), pp. 117-133.

18. Richard Schoeppel and Adi Shamir, “A T = 0(2"/2), S = 0(2"/*) Algorithm for
Certain NP Complete Problems”, SIAM J. Comp. 10 (1981), pp. 456-464.

