Solving Satisfiability Problems with Less Searching
by

Paul W. Purdom, Jr.

Computer Science Department
Indiana University

Bloomington, Indiana 47405

TECHNICAL REPORT NO. 117

SOLVING SATISFIABILITY PROBLEMS WITH LESS SEARCHING

Paul W. Purdom, Jr.

Revised July 1982

*Research reported herein was supported in part by the National Science Foundation under grant number MCS
7006110.



1. Introduction : 1

Abstract

A new technique, complement searching, is given for reducing the amount of
searching required to solve satisfiability (constraint satisfaction) problems. Search trees
for these problems often contain subtrees that have approximately the same shape. When
this occurs, knowledge that the first subtree does not have a solution can be used to reduce
the searching in the second subtree. Only the part of the second subtree which is different
from the first needs to be searched. The pure literal rule of the Davis-Putnam procedure
is a special case of complement searching. The new technique greatly reduces the amount
of searching required to solve conjunctive normal form predicates that contain almost
pure literals (literals with a small number of occurrences).

1 Introduction

The generalized satisfiability problem is to determine whether there exists any
assignment of values to variables such that a predicate with the following form evaluates
to true:

P= A Rf(.?:ﬂ,n-rzt'j‘i) (1)
1<i<gt

where the variables 7 are elements of a finite set {z; | 1 < j < v}, each R; is a
relation that depends on some of the variables, and the values for each z; are elements of
a corresponding finite set Y;. The set of problems with form (1) is obviously NP-complete.
Garey and Johnson [6] give many interesting and important problems with this form.

Two special cases of (1) are conjunctive normal form (CNF) predicates where
each R; is a clause and constraint satisfaction problems [9] where each R; depends on
only two variables. These special cases are as difficult as the general problem; they have
the advantage that certain algorithms are easier to state for the special cases. It is usually
straightforward (but at times tedious) to reexpress such algorithms for the general case.

Two basic approaches have been developed for solving problems with form (1).
The first approach is called searching. In searching, some variable (called the splitting
variable) is selected, and a subproblem is formed for each value of the variable. Each
subproblem is formed by using the corresponding values of the splitting variable to
simplify each R; that depends on the splitting variable. (For example, to simplify an
R; which is a clause, if R; contains a true literal associated with the value of the splitting
variable, then R; is replaced with frue, while if it contains a false literal, then R; is
replaced with the clause that results from dropping the false literal.) The original problem
has a solution if and only if one or more of the subproblems has a solution. The version
of the Davis-Putnam procedure in [3] is an example of a searching algorithm.

The second basic approach to solving problems of form (1) is to replace the
relations by an equivalent set of relations. If repetition of this process leads to the constant
relation false, then the original problem does not have a solution. The original version
of the Davis-Putnam procedure [4] and resolution [14] use this approach. Bibel [1] has a
unified presentation of several recent advances in resolution type methods.

The method developed in this paper, which I call complement searching, com-
bines these two approaches. Complement searching is a searching method in which all
the subproblems (except the first) are modified to avoid researching some parts of the
subproblem which are known to be the same as the corresponding parts of previous sub-
problems. Complement searching is a generalization of the pure literal rule [3].



3. Searching 2

The pure literal rule says, in effect, that if some value for a variable makes all
of the relations that depend on the variable simplify to true (such a value is called a
safe value), then one does not need to consider any other values for that variable. If the
problem has a solution then it has a solution in which the variable is assigned its safe
value. This paper develops the following generalization of the pure literal rule: if some
value for a variable makes almost all of the relations that depend on the variable simplify
to true, then one can greatly reduce the amount of searching needed to investigate the
remaining values for the variable. The general insight that leads to this result has been
noticed before [2,5]: the various subproblems generated by a searching algorithm are often
similar. Here I use one aspect of the similarity to speed searching on problems with almost
pure literals.

2 An Example

The techniques of this paper will be illustrated with the relations:

Rl_—'l‘lv _'bV i - Re=bv_'CVd R11=_'bVCVd
Ry==aVbV ne R;=0bV -cVe Rip=-bVecV ~d
R3=“0V _'de R8=bv =GV =e R13=_le"dV ba i -
R4=ﬂﬂ»\f _'bV"E Rg=bV"‘dVB R14=CV _'dV gl
.H5=5VOVd Rl():—bv_'dv € R15=_'CVdVB (2)

For these relations problem (1) is satisfied with a,b, ¢,d = frue and e = false.

Consider solving (2) using a as the first splitting variable. Let @Q; be the result
of simplifying R; by setting @ = false and let Q;2 be the corresponding result for a =
true. Then

1=-bV -e¢ o1 = frue 3y == true 41 = true
812=£rue 822=5V"6 832="5V<’1I 842="5V“‘3 (3)

Qn =Qp=R;for5< i< 15

The search algorithm reduces problem (2) to determining whether A;Qq or A; Qg is
satisfiable. Figure 1 shows the search tree that results for problem (2) when the splitting
variables are selected in alphabetical order. Each non-solution leaf node is labelled with
the R; of smallest index which has terminated the search by simplifying to false.

The following parts of this paper explain why there is no need to search the
dashed and dotted portions of the tree in Fig. 1. It will be shown that, since R; = a V
< bV = cis the only clause with the literal a, and since the a = false branch does
not contain a solution, the @ = true branch does not contain any solution with b = false
or ¢ = false. Also, using Rs and R;4 one can conclude that the dotted part of the
tree contains no solutions. This type of observation can greatly reduce the amount of
searching that is required to solve some large problems.

3 Searching

The ordinary search method for determining whether a predicate P in form (1)
is satisfiable is:



4. Complement Searching 8

1. If P is obviously satisfiable (all R; = true) or if P is obviously unsatisfiable (some
R; = false) then stop.

2. Select a splitting variable. For each value of the splitting variable form a subproblem
by simplifying P. Simplifying P consists of replacing each R; with R’ where R is
R; restricted by assigning the chosen value to the splitting variable.

3. Solve the subproblems recursively. If one or more of the subproblems is satisfiable,
then the original problem is satisfiable; otherwise it is not. (It is possible to stop this
step as soon as one satisfiable subproblem is found.)

The following definitions are useful:

z; = the splitting variable.

Y; = the set of possible values for z;.

yjr = the rth element in Y; for some ordering of Y;.

k = the number of elements in Y;.

Q:» = R; simplified by replacing z; with its value y;..

R; depends on z; if and only if Qi; # Q, for some r and s.
S = {i| R; depends on z;}.

Po = Aigs Ri.

Pr=ViesQirfor 1 <r <k

Notice that the arguments to functions denoted by capital letters P, @ and R are often
suppressed in this notation. Also, the definitions depend on the choice of z; and the
ordering of Yj. Moreover, a different ordering of Y; may be used each time z; is used for
splitting.

To illustrate the definitions consider problem (2) with splitting variable ¢ and
ordering (false, true). Then the Q;, are given by (3), S = {1,2,3,4}, P, = /\55‘.515 R;,
Py = @1, and P, = Q22 A Qs2 A Qua.

Searching tests whether P is satisfiable by testing each disjunct in
V (P AP (4)
1<n<k
Step (2) of searching computes the simplification of P for each value y;, of zj; the

simplification is Py A P,. Step (3) of searching ors the result from the subproblems.
Stopping at the first solution corresponds to using a short-circuit evaluation of the or in

(4).

4 Complement Searching
First I will give the mathematical basis for complement searching.

Theorem 1.

XV(AAB)V(AAC)=XV(AAB)V(AA ~BAC) (5)



4. Complement Searching i

Proof: The left and right side have the same truth table. §

When X, A, B and C are relations (with unspecified arguments) Theorem 1 says
informally that if the A A B part does not lead to a solution then in the A A C part one
can ignore the possibility that B is true.

Theorem 2.

V ®AP)= \/ [(PBoAP)A(A -P)] (6)

1<r<k 1<r<k nEl,

where I, is any subset of the integers from 1 to r — 1. (The conjunction A, ., - P, is
true if I, is the empty set.)

Proof: Apply Theorem 1 repeatedly to (4). First use Theorem 1 to convert
[ V (PoAP)V (P AP

1<r<k—1
to
| V @APIVIPAP)A(A ~Pa)-
1<r<k—1 nel,
Continue in like manner forr=%k— 1,k— 2,...,1. 1

Theorem 2 shows how the idea of Theorem 1 can be applied repeatedly.

Corollary 3.

V BoAaP)= \ [(PBoAPIA( A -P) (7)

1<r<k 1<r<k 1<n<r—1
The corollary is the special case of Theorem 2 that uses complement search to the fullest
extent possible. However, complement search can result in extra overhead as well as
reduced searching. Theorem 2 permits one to vary the extent to which complement
search is applied by selection of the I, so that large overhead can be avoided (by using
I, = empty) in unfavorable situations.

The complement search method is the same as the ordinary search method given
in section 3 except that step 2 is modified in the way suggested by Theorem 2. Whereas
ordinary searching uses

Po AP, (@)
as the r-th subproblem, complement searching uses
PoAP- AN -Pn) 9)
nel,

with some set I,. Under favorable conditions complement searching can be much faster
than ordinary search because the extra conjuncts (A,¢; = Pn) in (9) (as compared to
(8)) can eliminate much of the searching. In unfavorable cases little or no savings will
result, and moreover substantial overhead may be needed to process (A,g; — Pn). The
overhead (along with all of the savings) can be avoided by using I, = empty. To obtain
a fast complement searching algorithm it is necessary to choose I, wisely.



8. Clauses 5

5 Efficient Complement Searching

Define the number of unfaverable occurrences of the splitting variable to be

min {number of i such that i € S and Q;, F# true}. (10)

Assume for the rest of this section that Y; is ordered so that r = 1 gives the minimum
value in (10).

Suppose the splitting variable has zero unfavorable occurrences. Then P, =
true. For r > 2 let each I, contain the index one. Then Py A Pr A (A, ¢;, = Pn) = false
for r > 2, so in this case complement searching reduces testing P to testing Py A Py
(which has one less variable than P). Using complement searching (with I, formed
as indicated) is extremely effective when the splitting variable has zero unfavorable
occurrences. In fact, for this case, complement searching is reduced to the pure literal
rule [3] for CNF problems.

For many sets of random CNF problems use of the pure literal rule can reduce the
average search time from exponential in the number of variables to polynomial [8,12,13].
The pure literal rule is also an important component of the algorithm of Monien and
Speckenmeyer [10], which has a good worst case time for CNF problems with three literals
per clause. So previous work has established that complement searching is an important
algorithm, at least in the special case where it coincides with the pure literal rule.

Suppose the splitting variable has one unfavorable occurrence. Then P; = @z,
where z is the index of the Q;; that is not true. Again let each I;(j > 2) contain the
index one. Suppose P, is true for most values of its variables. Then = P, is usually false
and complement searching will operate rapidly on all but the first branch of the search
tree. Moreover, = P, is easy to compute. If P, is false for most values, then complement
searching (and also ordinary searching) is fast on the first branch. For splitting variables
with one unfavorable occurrence, complement searching guarantees that a fast search is
possible for at least one branch of the search tree. This generalizes the pure literal rule
to almost pure literals—those that have one unfavorable occurrence.

An algorithm that uses complement searching whenever the splitting variable
has no more than one unfavorable occurrence will clearly be fast whenever it is used on
problems with many variables that have no more than one unfavorable occurrence. It will
take about the same time as ordinary searching when used on problems with few such
variables. Analytical studies should be done to determine how much better this version
of complement searching is than the version that uses complement searching only when
variables have no unfavorable occurrences.

As the number of unfavorable occurrences of the splitting variable increases, the
advantages of using complement searching decrease because - P, becomes more complex.
It is less likely to help reduce the search, while it is more time-consuming to process it
(see section 6). Anyone using complement searching on large problems will probably want
to investigate further the relation between the number of unfavorable occurrences of the
splitting value and the use of complement search.

6 Clauses

Now let us consider complement searching when P is in CNF and when each
- P, from (6) is expressed in CNF. In this case each R; is the disjunction of a set of
literals, and the definitions in section 3 simplify as follows:



7. Relation to Worst Case Time 8

S = {i| R; contains z; or - z;}

y. — Jeither (false, true)
T or (true, false)

true if R; contains z; and yj, is frue or
Qir = if R; contains - z; and yj;, is false, otherwise
R; with z; and - z; omitted.

If Q;, contains no literals, then it is false. When no @y, is false, the effort required to
convert = P; to CNF is proportional to the length (in literals) of the Q;, that are not
equivalent to frue.

Suppose some R; contain the literal z; and none contain -~ z;. One then has
no unfavorable occurrences of z;, so (6) with Y; = (true, false) and I, = {1} shows that
there is no need to search for solutions with z; = false. A similar savings occurs when
no R; contain z; and one uses Y; = (false, true). In this case complement searching is
the same as the pure literal rule.

Suppose one R;(i € S), say R, contains z; and some of the rest contain — z;,
i.e., there is one unfavorable occurrence of z;. For the ordering (false, true), = Py == Q.
If R, contains w literals, then =~ P, is the conjunction of w — 1 literals. For example, in
(2) the literal a occurs only in Ry = a V bV ¢so = Py = b A ¢. Thus, if one uses (6)
with I, = {1}, on the @ = true branch of the search one can set b = frue and ¢ = true,
greatly speeding up the search of the a = true branch. Notice that the larger w is, the
more the search of the second branch is speeded up.

If there are z unfavorable occurrences of the splitting variable then -~ P; (when
expressed in CNF) is the conjunction of a set of clauses, where each clause has z literals
(unless some Qy; is false, in which case = P, = true). The number of clauses in the set is
equal to the product of the lengths of the Q;; that are not equivalent to {rue. The time
to convert = P; to CNF increases exponentially with z. When 2 is small (particularly for
z < 2) complement searching can be done with modest overhead, and it can lead to great
reductions in searching time. When z is large, large overhead results, and complement
searching does not lead to significant savings on the searching. To produce an efficient
algorithm it is therefore important to bypass complement searching (by setting I, to the
empty set) at those nodes where the splitting variable has a large number of unfavorable
occurrences.

7 Relation to Worst Case Time

The work of Monien and Speckenmeyer [10] suggests that an algorithm with a
fast worst-case time for CNF problems should combine several techniques. Their work
also suggests that steps that generate lots of short clauses are good. Usually the splitting
rule has this effect, but when the splitting variable has a small number of occurrences
only a few shorter clauses are generated. For this reason they included the pure literal
rule in their algorithm, so that the algorithm could make rapid progress even when all
variables had only a few occurrences.



References 7

Complement searching was developed when I was trying, along with Edward
Robertson and Cynthia Brown, to develop an improved algorithm for solving CNF prob-
lems. Complement searching appears to be particularly important for anyone trying to
improve on the algorithm of Monien and Speckenmeyer, because it can be used to generate
short clauses whenever the splitting variable has a small number of occurrences. It will
be necessary, however, to do additional work on algorithm development and on algorithm
analysis before one has an algorithm that is provably better than that of Monien and
Speckenmeyer.

8 Conclusions

Rapid searching methods, such as the one in [10], use clever ideas both to limit
which branches of the search tree need to be explored and to select which variable to use
for splitting. Complement search is quite suitable for use with earlier methods. Since
complement searching includes the pure literal rule as a special case, use of complement
searching does not greatly complicate searching algorithms which already need the pure
literal rule.

Complement searching is quite different from other techniques for speeding
searching. The methods in [9,11] concentrate on discovering that there are no solutions
at a node, rather than using the fact that one branch has no solutions to limit searching
on a second branch. The method of Gaschnig [7] does use the fact that a failure is found
to short-circuit part of a search, but it is less powerful than the method of Haralick and
Elliot [9].

The algorithm of Monien and Speckenmeyer [10] contains a feature that is a
generalization of the pure literal rule, but their generalization is quite different from mine.
They search for safe combinations of values-combinations that result in all the clauses
that depend on any variables in the combination evaluating to {rue. My generalization
provides speed when a variable has an almost safe value—a value that makes most of
the relations evaluate to true. Both generalizations are important for developing fast
algorithms.

Acknowledgement

I wish to thank Doctors Edward Robertson and Cynthia Brown for the intellec-
tual stimulation that led me to produce this algorithm. Also, their advice on various
aspects of this paper is greatly appreciated.

References

(1] Wolfgang Bibel, On Matrices with Connections, JACM 28 (1981), pp. 633-645.

2] D. G. Bobrow and B. Raphael, New Programming Languages for Artificial Intel-
ligence Research, Comput. Surv. 6 (1974), pp. 153-174.

3] Martin Davis, George Logemann, and Donald Loveland, A Machine Program for
Theorem-Proving, CACM 5 (1962), pp. 394-397.

[4] Martin Davis and Hilary Putnam, A Computing Procedure for Quantification
Theory, JACM 7 (1960), pp. 201-215.



References 8

(5]
[6]
[7]

8]

[9]
(10]

[11]

12]

(13]

[14]

Eugene C. Freuder, A Sufficient Condition for Backtrack-Free Search, JACM 29
(1982), pp. 24-32.

Michael R. Garey and David S. Johnson, Computers and Intractability, W. H.
Freeman and Co., San Franciso (1979).

John Gaschnig, Performance Measurement and Analysis of Certain Search Algo-
rithms, Ph.D. Thesis, Carnegie-Mellon (1979).

Allen Goldberg, Paul Walton Purdom Jr., and Cynthia A. Brown, Average Time
Analysis of Simplified Putnam-Davis Procedures, Information Processing Letters
(to appear).

Robert M. Haralick and Gordon L. Elliot, Increasing Tree Search Efficiency for
Constraint Satisfaction Problems, Artifical intelligence 14(1980), pp. 263-313.

Burkhard Monien and Ewald Speckenmeyer, Three-Satifiablity is Testable in
0(1.627) Steps, Theoretical Informatics Series, University of Paderborn (1979).

Paul Walton Purdom Jr., Cynthia A. Brown, and Edward L. Robertson, Back-
tracking with Multi-Level Dynamic Search Rearrangement, Acta Informatica 15
(1981 ), pp- 99-113.

Paul Walton Purdom Jr. and Cynthia A. Brown, Evaluating Search Methods
Analytically, Proc. National Conference on Artificial Intelligence, (to appear).

Paul Walton Purdom Jr. and Cynthia A. Brown, The Pure Literal Rule and
Polynomial Average Time, Indiana University Computer Science Technical Report
No. 128 (1982).

J. A. Robinson, A Machine-Oriented Logic Based on the Resolution Principle,
JACM 12 (1965), pp. 23-41.



Fig. 1. The backtrack tree for problem 2 in the text. There is no need to search
the dashed part of the tree because of the lack of a solution on the a = false branch
implies that the a = true branch does not have a solution when b = false or ¢ = false.
Also there is no need to explore the dotted branches.



uoyn|os 2y
*
o
....._nmn_ N_W_ nW_
v
,
1\P/4 bf
1\2/4
1N\ 9

\ /
V%Y .:
*

.._.D:

hf hph_

OW_ hm O_m mW_

* 2
Lo o
2y Ny ._. oy 4\/4 5y
P P P
. \/4 1\"/4 L\"/4
1\9/4 1\%/4



