Circuits and Systems: Implementing Communication with Streams*

by

Steven D. Johnson

Computer Science Department
Indiana University

Bloomington, Indiana 47405

TECHNICAL REPORT NO. 116

CIRCUITS AND SYSTEMS:

IMPLEMENTING COMMUNICATION WITH STREAMS

Steven D. Johnson

Revised July 1982

#Research reported herein was supported in part by the National Science Foundation under grant number MCS
77-22325.

To appear in the Proceedings of the 10th IMACS World Congress on Systems Simulation and Scientific Computation to
be held in Montreal, Canada, 8-13 August: Edited by W.F. Ames and R. Vichnevetsky (Volume 5) Parallel and Large
Scale Computers: Systems, Applications and Performance Evaluation.

Cireuits and Systems: Implementing Communication with Streams

1

Steven D. Johnson

Indiana University Computer Science Deptartment
101 Lindley Hall
Bloomington, Indiana, 47405

Models for a basic electronic circuit and a small time sharing system are implemented applica-
tively in Daisy, an output-driven list processing language. Rather than using shared variables to
handle communication, these recursively delined systems use data streams, interpreted as chang-

ing over time.

1. Introduction

Friedman and Wise propose applicative language con-
structs{8] and a new data constructor[ll] to address con-
currency and indeterminism. The programming language
Daisy, being developed at Indiaua University, incorporates
these features. Its novelty lies in the fact that it is purely
output-driven. All data creation, hence all computation, is
on a call-by-need basis. Other terms for this approach to
computation are delay rule[21] demand driven computa-
tion,[17] lazy evaluation,[l] lenient functions[25] and
suspending evaluation[7] Tt is assumed that the reader is
familiar with this idea, but not necessarily its practice;
that is the subject of this report.

Algorithms are implemented below that are distri-
buted in nature. Since communication in such “‘circuits”
tends to be regarded as mutual access to a shared variable
(the wires connecting components[19]). programming them
applicatively (without side effects) is a challenge. We shall
instead implement the communication links as streams
(non-finite lists), viewed here as functions-over-time. This
is not an original approach; other proponents of applicative
style adopt the same technique.[4, 13,16, 2]

The experience of implementing these circuits refines
an understanding of technique and semanties, for which we
pay very little syntactically. We use the only tool at hand
~ systems of recursion equations — and find that it is
nearly ideal for describing some ecircuits. Daisy’s inter-
preter “solves” recursive systems lazily. Consequently, we
are able to build and compute with non-finite as well as
finite objects. without having to make a distinction
between them. IHere, we are concerned with stream-like
objects — non-finite sequences of finite elements®.

Section 2 discusses Daisy’s syntactic eccentricities.
(Appendix A is a review of the language; Appendix B lists
those primitive functions used in this report.) Sections 3, 4
and 5 each present a program and its implementation.
Since we are concerned with a variety of issues about these
programs, each section concludes with a number of loosely
connected discussions. Section § is a summary.

This report has two recurrent themes. First is the
idea of program-as-schematic. Circuit drawings are a
venerable algorithmic langunge, having evolved much
longer than other programming languages. Expositions of
ordinary algorithms usually start with some kind of picture
— a state machine, flow diagram, efe — but these descrip-
tions are pure syntax. It is becoming increasingly clear
that the meanings of these pictures can be found in

systems of equations, just as finite-state processes are
described by their transition matrices. Sections 4 and §
model examples from two disparate areas of computer sci-
ence: circuits and operating systems. Yet their schematies
reveal their structural similarity.

Second, the duality of process and data, reflected in
the manipulation of streams, leads to a “type conflict”™. At
lower levels, the content of a stream is viewed as the out-
put of a function-over-time. Some functions describe com-
ponents; a value change on their input stream results, a
short time later, in a value change on their output stream.
More complex functions are combinations of components.
They simply express councctivity (that is, they describe
schematics) and manipulate streams as objects.

2. Elements of Daisy’s Syntax
For more details, see Appendix A.

Functions are denotable objects in Daisy. The
expression \x.E denotes the function “Ax.E7, whose
value when applied to an argument a, is E's value with all
occurrences of x replaced by a.

All Tunctions take one argument, which may be
“structured” by a pure data description. This is analogous
to a Pascal RECORD declaration or a ertran EQUIVALENCE
statement. Since the interpreter is output-driven, argu-
ments are not compelled to match their declared structure,
however, unless and until they are accessed according to it.
Users partial to LISP might define®:

car:fa L d] <= a.
edr:fn 1 d] <= d.
consifa d] <= <ald>.

or:l. <= let[La!Ld] =L in
if null?:L. then <>
else if L.a then La
else or:Ld.

Sequences of the form “<...>" are determinate in the
sense that they specify an order for their elements. Mul-
tisels. which are sequences surrounded by braces: “{ ... }"
speeily their elements, but not their order. When an order
is needed, one is selected based on the relative cost of com-
puting the elements. Divergent elements never precede
convergent ones.[6.10, 11]

An exclamation point is the list concatenator. An
asterisk is a primitive stream builder: <x +> is equivalent
to

recletL = <x!L> inL.

Both expressions yield a non-terminating sequence whose
elements are identical. i

|
Examples: i

<x *> where x =5 evaluates to [555..]
<123+> evaluates to [1 2333 ..]

Structures are applied to arguments in a manner
analogous to vector arithmetic [10,14]. The argument,
assumed to be in “‘row major” format (a list of rows). is
transposed. The function-vector is applied coordinate-wise
to the transposed argument. The key word “#" deforms
argument-matrices; #'s are skipped during transposition.

Examples:
dotproduct:[V1 V2] <= sum:[multiply+]: <V1 V2>.

matrixadd:[M1 M2] <= [[add #] #]: <M1 M2>.

[cons cons]:[

{ ; ﬁi]] is equivalent fo <cons:[a ¢] cons:[b d]>.
[¢ d]]

wire:s <= <(\x.x)*>:5.
The reader should pause here to become comfortable with
the definition of wire, which is used throughout. We
would like to identify functions that return streams of
sequences with functions that return sequences of streams.
{This is the “type conflict” alluded to in the Introduction.)
Functional combination transposes the (possibly non-finite)
argument for us; all that is needed is to apply the identity
function \x.x repeatedly. I X contains no #5,
wire:wire:N is equivalent to X.

3. Generating Streams

We may think of streams either as objects or
processes. Correspondingly, there are at least two ways to
build them: with “‘functional recursion” and with “data
recursion”’[9] This is primarily a syntactic distinction,
although an implementation may favor one technique over
the other. To illustrate, consider a stream of increasing
integers. The non-finite sequence can be expressed as the
result of a function:

rec N:0 where Nii <= <i! Nadd:<i1>>.
However, the expression
rec N where N = <0! [add+[:<N <1+>>>.
vields the same result.

Regardless of their semantic equivalence, there is a
subjective difference between these expressions. In the first
expression N is a stream transformer, a function that itera-
tively computes its output.

INcrement

In the second expression, N is just the name of a stream,
specilying the connectivity of an expression-circuit.

EQ A

D
1 &)

The second schematic is composed of more primitive com-
ponents:

1. A constan! stream that supplies a source of 1's
to...

2. ..the component ADD, a stream transformer that
distributes the primitive add operation pair-wise

on its input streams, [adds]:<U V>,

Discussion: Implementation? (Figure 1)

Figure 1 shows an interactive session with Daisy in
which both stream builders are implemented. The opera-
tor requests an infinite stream of integers and one is
printed: the program must be aborted. (The host is a
Digital Equipment computer, where the system interrupt.
character is EXT, typed “ C".) Daisy is restarted, and the
alternative expression yields the same behavior.
Discussion: Call-by-need

Still in Figure 1, Daisy is entered a third time. This
time we ask for an element of the integer stream. Since all
that is needed (for output) is a single element; interaction
can continue. Normal termination follows, brought about
by typing an end of file character on the keyboard stream.
It is not the fact that an object is infinite that ties up the
system. rather that the system has been asked to print an
infinite object.[12]

Discussion: Mapping

The form of functional combination implemented in
Daisy. a LISP-like “mapping” operation.[8] subsumes some
commonly used recursion patterns. For example, it con-
tains an implicit conditional to check for list termination.
Mapping has always been the preferred way to deal with
lists and arrays, and it is the preferred way to deal with
streams, too. However, this form of combination is not the
only way to map functions.[3,15,22] Often a stream
transformer must carry some history (state) across itera-
tions. When this is the case, we shall see occurrences of
functional circularity (see the functions SELECT and
MERGE in Section 3).

4. Feedback

In the previous section a system of one recursive func-
tion ({data) symbol is associated with a schematic of one
component. Recursion is expressed as a feedback loop in
the circuit. This generalizes immediately to systems of
more than one recursive symbol. In this section we pro-
gram a model of a “reset/set flip-flop™.

% Daisy

& rec:(N \(i . <i ! N:add:<i 1>>)

& N:0)

(0123 %56T7849 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 2

6 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 L3 b4y 45 46 4T 4 L9 5

0 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 T2 T3 T

; 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89°CInterrupt

% Daisy

& rec:(N <0 ! <add#®*>:< <1%¥> N>>

& N)

((012345678910 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 2

6 27 28 29 30 31 32 33 34 35 36 37 38 39 LO 41 42 43 44 45 46 4T 48 49 5

9 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 T1 72 73 7

CInterrupt

%

4 Daisy

& TO0O0:rec:(N <0 ! <add®>:< <1%¥> N>>

& No)

(699

&

& "D

& “p

) 2

DSI exit. Figsed

Interaction with Daisy
But this expression does not work. The mutually depen-
dent outputs, Qhi and Qlo, are deadlocked. As is demon-
strated in Figure 2, deadlock is alleviated by initializing
R both streams.

Qhi

S Qlo
RSFF

The components are identical:
NAND:[L R]| <= [nand#]:<L R> where

nand:[u v] <= if eq?:<u 0> then 1
else if eq?:<v 0> then 1 else 0.
The “logic” function nand takes truth levels, 1 or 0, and
interprets 1 as frue. NAND | like ADD in Section 3, distri-
butes nand across a pair of streams.

We would like the program RSFF to be a transcrip-
tion of its schematic:
idealRSFF:[R 5] <= rec <Qhi Qlo>
where
Qhi = NAND:<R Qlo>
Qlo = NAND:<S Qhi>.

RSFF:[R §] <= rec <Qhi Qlo>

where
Qhi
Qlo

<1!NAND:<R Qlo>>
<0 ! NAND:<S Qhi>>.

Discussion: Implementation of RSFF (Figure 2)

Figure 2 shows an interactive test of RSIF'F in Daisy.
Wire (defined in Section 2) converts RSFF's two outputs
to a single stream of pairs so they can be printed in paral-
lel. To test the function, two channels are established with
the operator's keyboard. To the prompts “R" and “S",
streams of 1's and 0's are typed. Each output line reflects
the two keyboard inputs immediately preceding it.

Line (1) RSFF retains its state (the values on Qhi and
© Qlo) as long as its inputs (the values on R and
5 are held high.

Line (2): A pulse on S (a burst of 0's) leads to a change
in state. After a moment of confusion, Qhi and
Qlo reverse their values.

Line (3] A spike on one of the input streams (a single 0)
is captured by the system. The outputs start
oscillating...

Line ({} .. and continue to do so until a “reset” is
asserted.

Line {5); RSFF issues ambiguous output (Qhi = Qlo) if
both R and S are asserted...

Line (6): ... and becomes “metastable” if R and S return

to high values simultancously.

format:

[Re

RSFF:< keyboard:@R

keyboard:€3 >

B4 1 ¥ % 19
S1 1T 1TT98% 199
(€1 0) (1.0) (1.0) (1.0) (1. 0) (1 0) (180) (1 0) (1 0)
R 1°F9 %4 14
S$1110001 11
(10) (1.0) (10) (10) (1 1) (0 1) (0 1) (0 1) (o 1)
BT 190 01 199
21 11311194
(0 1) (0 1) (0 1) (0 1) (0 1) (1. 1) (0 0) ¢(1 1) (o 0)
Rl 11000914
81 199 1 19 %y
(1.1) (0 0) (1 1) (0 0) (1 1) (1 0) (10) (1 0) (1 0)
R111000000
81T T9%91 1000
{10) C1 0) €1 0) (1 0) (1 0) €1 03 €1 0) 1 a) €11
ROG 04 1.8 43
B0 009 1 %1 UG
€1 1) C1 2) (3 1) €1 1) (o 0) (1 1) (o0) ¢ 1) (o o)
R

Figure 2

An Interactive Test of RSFF

Discusston: Idealized Behavior

Both of RSFF's outputs vary over time, subject to
the condition of its inputs. The graininess of the model
depends on how time is quantized in its streams. RSFF's
behavior is similar to that of a real flip-flop. It is ambigu-
ous on invalid inputs, and in extreme conditions goes into
a kind of metastable state.[20] Because it is a discrete
model, there are no thermal fluctuations or manufacturing
disparities to attenuate its oscillation. Nor does it manip‘u-
late voltage levels in detail. Some of these discrepancies
can, of course, be eliminated by refined modelling.[5.21]

Discussion: The Principle of Stream Cons-ervation

Disregarding any notion of causality, RSFF works
best when its outputs are consumed at the same “rate” as
its inputs are supplied. Were RSFF to be used as a com-
ponent in a system that, over the long run, needed two
Qhi values for every Qlo value, we would have to adjust
RSEF's code accordingly; and we could do so for amy
known ratio of rates. This has the flavor of an equilibrium
assumption, and is an analytic property of RSFF’'s compu-
tation. A sketch of a proof that RSFF produces no faster
than it consumes uses the circuit’s structure.

RATE(Qbi)

= MIN(RATE(R), RATE(Qlo))

= MIN(RATE(R), MIN(RATE(S), RATE(Qhi))

= MIN(MIN{RATE(R). RATE(S)) RATE[{Qhi))

< MIN(RATE(R), RATE(S))
The first equality comes from axiomatic properties of prim-
itive components. The second is by symmetry of the cir-
cuit. The rest come from facts about MIN.

Discussion: Coercion

This system contains both stream transformers and
stream” handlers. The functions RSFF and NAND are just
connectivity expressions; they steer their stream-arguments |
to more primitive components. The expression [nand ¢]:X |
uses the underlying system (via functional combination) to
compose two stream-arguments into one afgument-stream-
of-pairs, which in turn is transformed by sequential appli-
cations of nand.

Discussion: Stream Initialization

The need to put initial values on streams is analogous
to the need to code termination conditions in numerical
functions. Since our real interest is in RSFF's running
behavior, it scems like a bothersome detail. Of course |
these values form the inductive basis for any assertion !
about the program, so they are necessary. For example. to
prove the invariant: “Qhi differs logically from Qlo as long
as R and S remain high,” Qbi and Qlo must be dilferent to
begin with.

5. Indeterminacy
RSFF is “synchronized” by stream construction.
While this property can be preserved within a system,
there is no guarantee that its inputs and outputs be_h:n'e so
well. This section describes a technique to handle indeter-
minacy. Suppose we are to write a system with the
hypothetical specification:

“..MSG is a full duplex message sending system
for two computer terminals, A and B. Input from
A's (respectively B's) keyboard, K| (K,) is echoed
on A's (B's) screen, 31 {Sz}, However, when [\'l 1s=
sues a ‘“send"”, the ensuing form should be
displayed in a timely fashion on S, (and conversely
for K, and 5)...."

Kl 8l

The schematic for MSG has roughly the same connec- |

tivity as RSFF’s, except that its ROUTE components have
two outputs instead of one — for screen display and for
message feedback.
MSG:[KA KB] <= rec <SA SB>
where
[SA MA] = ROUTE:<KA MB>
[SB MB] = ROUTE:<KB MA>.

MGS's components are themselves circuits. The fune-
tion ROUTE takes keyboard (K) and message input (Min),
combines them, and delivers screen output (S) and message
feedback (Mout).

ROUTE:[K Min] <= rec <S Mout>
where
[Mout Dplx] = wire: < <GOn #> ! SELECT:RK>
S8 = MERGE:<Dplx Min>.

ROUTE takes care of stream initialization, as well as the
extraction of distinct streams from SELECT. MERGE
manages indeterminacy in a manner similar to that of{11] .
SELECT:K <=
rec let [Kh!Kt] = K
[Kth!Ktt] = Kt
in
Jif same?: <Kh Gsend>
then < <# ! <! Kth>> ! SELECT:Ktt>
else < <Kh!#> ! SELECT:Kt>.

MERGE: [L R] <=
let [LallLd] =L
[RalRd] = R
in
(]
{ strictify:<La <La ! MERGE:<R Ld>>>

strictify:<Ra <Ra ! MERGE:<L Rd>>> }.

Of concern is whether MSG meets the informal
specification “*..in a timely fashion...". Not only must
MSG avoid deadlock (a data dependency like that in
idealRSFF, Section 4), it must aveid lockout as well.
Lockout would result if the system were to wait determin-
istically for input from a specific terminal.

Discusston: Implementation of MSG (Frigure 3)

Lines beginning with the prompt “A" (respectively
“B7) are the keyboard input for terminal A (B). The
remaining lines show the output to terminal A's screen.
B3's screen is not shown.

We may think of the keyboard inputs as concurrent.
B only sends messages, which appear on A's screen
prefixed with the character “?". A’s first entries (“hm hm
hm™) are echoed on his screen with B's first messages inter-
spersed. As A joins in the round. B's next messages are
coming through. This continues as long as B transmits to
A's sereen.

|R=

Lo}

(On
A hm hm hm hm

N((SA SB).SA): MSG:< keyboard:€B

keyboard: 88 >

send ROW send ROW send (ROW YOQUR BOAT)

hm (? ROW) hm (? ROW) hm hm (? (ROW YOUR BOAT))

A row row row your boat

B send GENTLY send (DOWN TEE STREAM)
B send MERRILY send MERRILY send MERRILY =send MERRILY
row (? GENTLY) row row (? (DOWN THE STREAM)) your boat (? MERRILY)

A gently down the stream

gently (? MERRILY) down (? MERRILY) the stream (? MERRILY)

A merrily merrily merrily merrily

B send LIFE send IS send BUT send (A DREAM)
merrily merrily (? LIFE) merrily (7 IS) merrily

A life is but a dream
B HM HM HM HM

&

Figure 3

(? BUT) life (? (A DREAM)) is but a dream

An Interactive Test of M5G

The Role of 4"

The system avoids deadlock because it is internally
synchronous: the multivalued functions always produce
values for each of their outputs. It is at the innermost
component, MERGE, where the indeterminacy is resolved.
SELECT's stream of pairs is coerced by ROUTE to a pair
of streams. But SELECT creates pairs containing #'s,
which functional combination skips during transposition.
So while SELECT is synchronously producing its stream,
that stream is deformed to present “‘real time” data to
MERGE.

Discussion: Is MSG Fair?

A heuristic discussion on the fairness of MSG has the
form of a subgoal induction.[23] At any level, we shall
assert that if the system is unfair, it is the fault of its com-
ponents.

The function MSG is fair by symmetry. Its connec-
tivity precludes favoritism for either keyboard.

ROUTE is a function composition. Its components
are connected, more or less in series, so if either induces
lockout, ROUTE may. SELECT waits for its input to
converge, but SELECT has only one input! Surely it is all
right for a function to wait for its only source of informa-
tion.

This brings us to MERGE. The form:

(\[x]x):{ strictify:<u v> strictify:<x ¥y> }
is analogous to the guarded command
fu—v[x—yf

Identifiers x and ¥ play the role of mput guards.[14]
MERGE is fair modulo the “{ ... }" construction.[10] In
fact it is probably fairer. MERGE swaps its inputs occa-
sionally (note carefully the recursive calls). Suppose that
the underlying system is neither fair nor malicious, rather
that it is brased — Favoring multiset arguments according
to their textual order. Then by switching that order from
time to time MERGE amecliorates the bias.

6. Summary

In Sections 4 and 5 models are implemented for a fun-
damental electrical cireuit and a small timesharing system.
That they were implemented in the same language speaks
not so much for the language itsell as for the similarity of
their schematic structure. Both are circuits of two auto-
nomous components; both have about the same feedback
relationship.

The translation from schematic to program is tes-
timony to the expressive power and usefulness of recursive
systems of equations. [n these systems, communication is
achieved by encoding time in streams. Since the inter-
preter used is output-driven, streams are built without spe-
cial language primitives.

For completeness, designers of applicative languages
must choose an interpretation for the application of a
structure to an argument. The form of combination used
in Daisy works well in these examples because it provides
the right transformation to implement the connectivity of
schematic programs.

Where the behavior of input producers and output
consumers is known, systems are synchronized by the rate
at which they build streams. Multisets can be used to
model lockout avoidance in systems with indeterminate
input behavior.

Notes

"Research reported herein was supported (in part) by the
National Science Foundation under grant number MCS77-
2222325.

 Daisy’s infinite lists are not “legitimate” streams (in the
sense of[18]) since they are not strict in their elements.
But until Section 5 there is little need to make a distine-
tion.

3The versious of car and edr defined here, however, are not
strict, since cons is suspended. Consequently, the laws:

car:cons:<a b>
edr:cons:<a b>

]

a
b

hold, even if a or b diverges.

‘Daisy’s full parser is still under development. The syntax

of programs run to generate the Figures differs from what
is presented in this report.

References

1. P. Henderson and J.H. Morris, Jr., “A lazy evalua-
tor,”" Third ACM Symposium on Principles of Pro-
gramming Languages, pp. 95-103 (1976).

2. Ed Ashcroft and Bill \WWadge, “Lucid, a nonprocedural
language with iteration,” Comm. ACM 20(7) pp.
519-526 (July, 1977).

3.). Backus, “Can programming be liberated from the
von Neumann style?,” Comm. ACM 21(4) pp. 613-
641 (August 1978).

4. W. H. Burge, Recursive Programming Techniques.
Addison-Wesley, Reading, Pa. (1975).

o

L. Cardelli. “*Analog processes,” Proceedings of the

Ninth Symposium on Mathematical Foundations of

Computer Science, pp. 181-193 Springer-Verlag,

(1980).

6. D. P. Friedman and D. S. Wise, “Applicative mul-
tiprogramming,” Technical Report No. 72, Indiana
Univ. Computer Science Dept., Bloomington,
Indiana (revised: April 1979).

7. D. P. Friedman and D. S. Wise, “CONS should not
evaluate its arguments,” pp. 257-284 in Awufomata.
Languages and Programming, ed. S. Michaelson and
R. Milner, Edinburgh University Press, Edinburgh
(1976).

8 D. P. Friedman and D. S. Wise, “Functional combi-
nation,”" Compuler Languages 3(1) pp. 31-35 (1978).

9. D. P. Friedman and D. S. Wise, “Unbounded compu-
tational structures,” Seftware - Practice and Erperi-
ence 8 pp. 407-416 (1976).

10. D. P. Friedman and D. §. Wise, ““An approach to [air

applicative multiprogramming,” pp. 203-226 in

Semantics of Concurrent Computation, ed. GG. Kahn,

Springer-Verlag, New York (1979).

11

14.

15.

16.

18.
19.
20.

21.

23.

24.

D. P. Friedman and D. S. Wise, “An indeterminate
constructor for applicative programming.” pp. 213-
250 in Seventh Annual Symposium on Principles of
Programing Languages, (January 1980).

D. P. Friedman and D. 3. Wise, A note on condi-
tional expressions,” Comm. ACM 21(1) pp. 931-933
(November 1978).

Peter Henderson, “Purely functional operating sys-
tems,” pp. 177-192 in Functional Programming and its
Applications, ed. J. Darlington, P. Henderson. and
D.A. Turner, Cambridge University Press, Cam-
bridge (1982).

C. A. R. Hoare, “Communicating sequential
processes,” Comm. ACM 21(1) pp. 666-677 (August
1978).

K. E. Iverson, “Notation as a tool of thought,”
Comm. ACM 23(8) pp. 414-169 (August, 1980).

G. Kahn and D. MacQueen, “Coroutines and net-
works of parallel processes,” [FIF 77, pp. 933-938
North-Ilolland, (1977).

R. M. Keller. T. Lindstrum, and S. Patil, “A loosely-
coupled applicative multi-processing system,” Proe.
National Computer Conference, 1979, pp. 613-622
(1979).

P. 1. Landin, “A correspondence between ALGOL 60
and Church’s lambda notation - part 1, Comm. ACM
8(2) pp. 89-101 (February, 1965).

N. A. Lynch and M. IL Fischer, “On describing the
behavior and implementation of distributed systems,”
Theoretical Computer Science 13(1) pp. 17-43 (Janu-
ary, 1981).

C. Mead and L. Conway, Introduction to VLSI Sys-
fems. Addison-Wesley, Reading. Massachusetts
(1980).

R. Milner, “On relating Synchrony and Asynchreny,”
Technical Report No. CSR-75-80, Univ. of Edin-
burgh, Edinburgh (1980).

James H. Morris, “Real programming in functional
languages,” pp. 177-192 in Functional Programming
and its Applications. ed. 1. Darlington. P. Henderson,
and D.A. Turner, Cambridge University Press, Cam-
bridge (1982).

1. H. Morris and B. Wegbreit, “Subgoal induction,”
Comm. ACM 20 pp. 209-222 4, (April, 1977).

J. Vuillemin, “*Correct and optimal implementations
of recursion in a simple programming language.”
Journ. Computer and System Sciences 9(3) pp. 332-
351 (1974).

¢, Whadsworth, Semantics and Pragmatics of
Lambda-caleulus, Ph.D. dissertation, Oxford (1971).

Appendix A
Dalsy Syntax

EXP = atoM | FErx | APPL | FNTN [COND || S¥5

EXP = (£xp) | @ Exp
The six forms of expression are described below.
Parentheses are used for parser direction. The special sym-
bol & means “quote™, that is, inhibit evaluation.

ATOM = LTRL | NMBR

Numerals are expressed and represented as rational
numbers. They evaluate to themselves. Literals are
strings of characters and evaluate to their bindings in the
current environment.

FERN:=[ELST) | < ELST > | { ELsT} |

ELST = empty | EXP * | EXP ! EXP | EXP ELST
A fern is a list specification. The three enclosure symbols
express progressively weaker specifications of content and
order. The [...] comstruct is a structural quotation; it
evaluates to precisely the list expressed. The <..> con-
struct evaluates to a list of values in the order specified.

However, computation of these values does not take place |

unless and until the list is accessed.

Ferns of the form {...} specify content but not order. The
interpreter chooses an order at run-time, by evaluating the
elements concurrently. The ordering of the element values
list depends how fast they converge.

The exclamation point is the list concatenation operator;

an asterisk denotes a stream of identical elements.

APPL i:= EXP t EXP
The left-hand expression in an aepplication is interpreted as
a function and applied to the argument on the right. If
the function is primitive. it is exccuted by the interpreter.
For example, numeric functions denote list access, so i
evaluates to x's fifth element. Some of the literals reserved
to name primitive functions are shown in Appendix B.

If the function-expression evaluates to a list, the inter-
preter first transposes the argument, which is assumed to
consist of a list of “rows”. Any instances of the kevweord
Y47 are removed during transposition, The elements of
the function are then applied coordinate-wist to the tran-
sposed argument’s “columps™.

FNTNuz=\ EXP.EXP

A function is analogous to a lambda-expression. When
applied. the function’s formal argument (to the left of the
dot) is superimposed on the actual argument of the appli-
cation. This associates identifiers in the formal argument
to their relative positions in the actual argument. The
association is suspended, and so is not enforced until the
binding for the identifier is actually used in the computa-
tion.

The wvalue of a function is its eclosure, a non-printable
object that saves the environment in effect when the func-
tion was created. All free variables are bound in the
closure's environment, making the language lexically
scoped.

COND :=if EXP then EXP else EXP

The predicate (if part) is evaluated. If the result is non-
null the conditional returns the value of its consequent
(then part). Otherwise, the value of the alternate (else
part} is returned. Ewaluation of the consequent and alter-
nate are deferred until the predicate converges.

SYS:u=popy | rec pODY

BODY ::=let DCL in EXP | EXP where DCIL .
DCL = empty | DFN DL .
DFN:=EXP = EXP | LTRL : EXP <= EXP

"

A typical Daisy program is a system of defining equations,
followed by an expression to be evaluated in that system.
If the defining equations are not recursive, they are
equivalent to a lambda-expressions. That is,

let (x =a)(y=b)(z=c)ine
is equivalent to

(\[xyz.ek<abe>

The “let...in"" and “where..." forms have equivalent mean-
ings. i
Systems preceded with the keyword rec are recursively
defined.

The defining equations may define eitlier functions or data;
their left hand sides may be either atomic or lists. The
symbol <= makes function definitions easier to read. One
may write

Fix ==wu;
rather than

F=\x.ce

Global assiguments are allowed at top level. Thus the
operator can extend the sct of basic operators with
definitions of his own.

Appendix B

Operators

The following primitive Daisy operators are used throughout this

report.

add

console

eq?

Sformat

keyboard

nmbr?
null?
parse

same?

strictify

Returns the arithmetic sum of the first two ele-
ments of its argument.

Takes a single character argument and estab-
lishes an independent channel to the operator's
keyboard, using that character as a prompt.
Returns a stream of characters,

A test for numeric equality.

A user defined Tunction that inserts carraige
returns in a stream. Used in Figure 2.

A user defined function to convert operator
input to a useful format. In Section 4,

keyboard:p <= filter:parse:console:p where
filter:S <= let [Sh I St] = S in
if null?:S then <> else |
if nmbr?:5h then <Sh ! filter;St> |
else filter:St. |

In Section 5,

keyboard:p <= parse:console:p. |

A test for a numeric argument.
A test for the empty list.

Daisy’s parser from character stream to internal
representation of expressions.

A test for reference equality.

Functions éannot test whether a value is
suspended, but can exploit Daisy’s interpreter
to force a value into existence.

strictify:<x y> <= il x then y else y.

