INTERPRETERS FOR FUNCTIONAL PROGRAMMING

by
David S. Wise
Computer Science Department

Bloomington, Indiana 47405

TecHNIcAL ReporT No. 111
INTERPRETERS FOR FUNCTIONAL PROGRAMMING

Davip S. Wise

JULY, 1981

¥To appear in Functional Programming and Its Applications
(ed. J. Darlington), Cambridge University Press (1982).

This material is based upon work supported by the National

Sclence Foundation under Grant MCS77-22325.



INTERPRETERS FOR FUNCTIONAL PROGRAMMING

DAVID S. WISE

Indiana University

The title of this tutorial is a bit of a pun. Not only do
I present here a complete "program" for evaluating a "program"
in a functional language (a pure variant of LISP of McCarthy
[1963]) but also I develop a complex program in a style typical
for such languages.

To absorb this material it is not sufficient merely to
understand how the interpreter works; one must appreciate why
the interpreter is written in just this way. Ease of writing
and comprehending is an important (and, to FORTRAN buffs, a
strangely difficult) advantage of this style. Also important
is the ease with which programs can be changed, as we shall see
later when this interpreter is modified slightly with drastic
changes to the semanties of the language. Worth mention (but
not treated) is the ease of proving and of implementing such
programs in various systems, All these points are important
for programming, but the last two are beyond this introduction,

0. INTRODUCTION

This four-part introduction to LISP is built around the
LISP EVAL/APPLY interpreter. (An interpreter is a program that
gives meaning to programs directly - without transforming
source code in any way.) McCarthy [1960] presents such an
operational implementation of the language in the first paper
on LISP, it appears as the "Chapter I intepreter" by McCarthy
et al, [1962], and has since become the easiest way to
understand the language deeply. It has appeared in modified
form in numerous appendices and manuals to clarify
implementation or modification to the original language, so it
is very much a part of LISP lore.

Aside from completely describing a functional language, the
interpreter developed in the first section here is significant
because it demonstrates that both data and program are in the
same memory as lists! A fundamental property of von Neumann
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machines, that program and data are represented in the same
store, reappears in LISP, having been forgotten in numerous
"more sophisticated" programming schemes before and since.
Indeed the plethora of LISP mutations facilitated by accessi-
bility of "program" structures suggests that this convention
has given LISP a vehicle for change that has kept it current
and popular.

The interpreter evaluates an operator to a "closure", a
function which includes static binding information. The second
section shows how closures can be used in a data object to
derive "streams" without altering the language. A stream may
be pictured as a data structure which unfolds as it is
traversed. The facility for streams allows applicative
programming to handle not only ordinary input/output problems,
but also internal structures specified to be infinite. One
example is the list of all prime numbers,

The third section deals with interpreter modifications,
some motivated by stream operations. The interpreter of the
first section is gently altered to facilitate some operations
with pleasantly surprising (i.e. drastic) changes to LISP
semantics. The ease with which these changes are made is
testimony to the power of the applicative style and of
interpretation.

Finally, the fourth section considers storage management.
This is principally an argument that list structure is a viable
elementary data representation, because dereferenced structures
can be recycled automatically., Too many systems (e.g. PASCAL)
depend on the user to return unused structure; this practice is
neither dependable nor necessary. Reliable, efficient,
automatic storage management is possible, particularly for the
simple structures used by LISP.

Two kinds of garbage collection and reference-counting are
reviewed, as well as hybrid schemes that use reference counting
to postpone garbage collection. The demands of parallel
processing architectures, an attractive application area for
functional programming, are considered.

1. THE EVAL/APPLY INTERPRETER

This section builds up to a complete interpreter for LISP
in LISP. Reynolds [1972] describes this approach as "meta-
circular,™ and discusses its utility and limitations. From the
perspective of formal semantics this is dangerous since the
least fixed-point for such an interpreter maps everything to |.
What is wanted is a greater fixed-point, an operational
semantics: if you understand the language then you'll
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understand it. This interpreter wants an implemention in a
lower-level language,

The explanation of the evaluator is built up through
several subsections introducing syntax, environments, functions
and closures, circularities, and then finally introducing eval
and apply. Eval is the half of the interpreter that deals in
special ways with the environment; its decisions deal with
special forms or evaluation strategies that are not ordinary
function invocations. Ordinarily, operands are evaluated first
(called-by-value) and then passed with the function to apply.
Most of apply's decisions deal with identifying primitive
functions; applications of a user-defined function are handed
back to eval after updating the environment with its parameter
bindings.

1.1 Syntax

Before any semantics we need one simple piece of syntax:
the LISP S-expression. An S~-expression is either an atom (i.e.
an ALGOL identifier or a number) or it is a (perhaps null) list
of S-expressions. Atoms are written by their "name":

8 FAR 2 MUCH;
Lists are written enclosed by parentheses:

(AS ROUND BRACKETS (R) (OFT 10) CALLED).
x = (A B C D).

One should not think of S-expressions as "little boxes", al-
though such a picture can be useful later, especially when
considering storage management. So Figure 1 shows x in "little
boxes";

-
f“‘*‘ A | ot—p B| e—t—- C| e D| e

Figure 1: x bound to (A B C D)

Now forget that you saw it! All that matters is that x has a
first element (or car), A, and a suffix (or cdr) that must be a
list: (B C D). What x means depends entirely on how x is
used. (Compare this with the meaning of a memory address
depending upon which register it is in,) As data, x is a list
of four elements; as an expression it is an application of an
operator A to three operands B, C, and D, Thus (car x)
evaluates to an operator and (edr x) evaluates to the list of
operands. .Note that ™(car x)" is not an operator; it's just
another list; if we evaluate it in the right environment it
should derive an operator. Cons is a dyadic operator which
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prefixes (the value of) its first operand to the list that is
(the value of) its second, yielding a list one item longer.
McCarthy [1963] describes cons as a disjoint union operator,
decomposed by car and cdr. (In Section 4 we shall acknowledge
that it does allocate little boxes.)

Thus, LISP S-expressions provide atoms and type-free lists.
If necessary, anything can be a truth value: NIL and () are
false and everything else is true. ’

1.2 Environments

Evaluation of expressions (that aren't constants) requires
some sort of environment. The environment is another kind of
list structure which associates identifiers with values to
which they have been bound during some function invocation that
helped define that environment. In other words, it codes a map
from names to values.

The outermost environment, extant at the top level of the
interpreter, contains all global bindings. The interpreter
given here assumes nothing of that environment -- it could be
empty -- but it does embed much meaning inside the interpreter
itself. Meaning implemented in the interpreter of course can-
not be changed, but implementation on a specific site could
include a local library by providing a rich outermost environ-
ment.,

Since environments are never printed, it doesn't matter
that they look ugly, but we must know their shape. An environ-
ment is a list of zero or more associations; an association is
a list whose first element is a list of identifiers (atoms) and
whose remainder is the list of values to which they have been
bound. For example
E=((QRS)Y1T23)((PQ () 37)) is an environment with Q
bound to 1, R to 2, S to 3, and P to (). Through the second
association of E, Q might have been bound to 37 except that
leftmost associations take precedence. (Figure 2 illustrates
the boxes.) '

E =1y ]e - o
+ .

N

ﬁ;_} 2 ? Q .__:L_ 37 -—-:L
e i

Figure 2. The Environment E
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We build up such "ribcage™ environments [Johnson, 1977]
from older environments with formal parameter lists and actual
(evaluated) parameter lists:

bind = (lambda (parameters arguments oldenvt)
(cons (assct parameters arguments) oldenvt));
assct = cons.

(This lambda notation, inspired by A-calculus, is explained in

the next section.) In building environments we need only
prefix the new set of bindings at the front of the old environ-
ment, where they take precedence. Given an identifier it will
be necessary to look up its binding.

lookup = (lambda (ident envt) (if
if (null? envt) then (error-unbound)
elseif (member? ident (top-idents! envt))
then (search ident (top-idents! envt)
(top~vals! envt))

els (lookup ident (cdr envt)) ));

@

top-idents! (lambda (envt) (car (car envt))
)

L

nn

top-vals! (lambda (envt) (edr (car envt)
search = (lambda (ident params argums) (if
if (null? params) then (error-member)

elseif (null? argums) then (error-too-few)
elseif (eq? (car params) ident) then (car argums)
else (search ident (edr params)(ecdr argums)) )).

Several stylistic conventions are followed in the above
code. All conditionals have commenting keywords if/then/else
interspersed which are inserted purely for legibility; they are
not present in actual code, so the stuttered "(if if" is really
Just "(if" at the top of each conditional., All predicates end
with a question mark; null? and eq? are primitive but member?
is a standard exercise, I use the car and cdr access
primitives explicitly only as part of a recursion pattern or
within probe functions which access one field of a "record”,
These probe functions have meaningful (field) names ending with
an exclamation point and thereby help comment the program. The
arguments to the conditional are paired on one line (forming an
if then pattern) with the last (else) standing alone. In the
common case, as above, where the else line directly reinvokes
the function being defined, that definition exhibits tail
recursion, a simple recursion pattern which is well known to be
equivalent to a simple loop in iterative style programming.
Another common else line invokes some "error™ notification
scheme,

This code is not intended to be perfectly efficient (Member
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and search could be combined as one traversal); it is intended
to be definitive and clear. The interpreter written in this
style is polished (but somewhat non-standard).

1.3 Functions and closures

The user writes an operator as a triple (list) whose first
element is the keyword, lambda. We also may use an identifier
bound to a function that results from evaluation of such a
triple. Borrowed from A=calculus, this triple has as its
second item an identifier list, the formal parameters of the
function, and its third is an expression that is the function
body.

Other than local formal parameters can oceur in the body.
Typically non-local variables and function names can occur
"free"™ there, as well. How to interpret free variables that
are not immediately local parameters is a strange issue in
LISP, which is here handled conventionally (except by LISP
standards) using "static scoping". (This issue relates
syntactically to funarg in ordinary LISPs.) This is effected by
evaluating a lambda triple into a closure quadruple. The last
two items in a quadruple are a formal parameter list and a
body, just as in a lambda triple. The first thing is the word
closure; the second is an environment. That environment will
determine the meaning of all free variables in the body.
Determining that environment is simple: evaluation of a lambda
triple yields a closure quadruple which seizes the then local
environment. Since such triples are evaluated [Steele and

“Sussman, 1976] when functional bindings are established, free
variables can be resolved long before such a function is
invoked., Closures may be returned as, or as part of, values
resulting from function invocation to the caller., (Caveat:
this is extraordinary for LISP!).

As functions, integers are projection functions. For
example 3, as a function, returns its third argument; (3 39 9
33 3) evaluates to the integer 33. For subscripting of vectors
one can use apply, defined below, to extract the i-th element
in a list; e.g. if x is bound to (A B C) then (apply 3 X)
returns C, and (car fred) is synonomous with (apply 1 fred).

1.4 Circular environments

While other, awkward schemes are directly available through
A-calculus, we need a simple and direct scheme for building
circular environments, Such an environment might, for example,
contain the bindings of operator names to their respective
function closures (all closed in the one environment) so that
one function could be referenced freely in the body of any
other simply by using its name. This is necessary because we
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want to use non-trivial (i.e. indirect) recursion patterns
freely with the efficiency of explicit circularity.

We borrow the word letrec from Landin [1966] and introduce

a quadruple associated with it; of course letrec is the first
item in that list. The second and third are two lists of the
same length: one of identifiers and one of expressions. The
fourth item is a single expression whose evaluation yields the
value of the evaluated letrec form, That (fourth) evaluation,
however, proceeds in a very rich environment. That environment
includes the bindings of all those identifiers (second) to the
evaluation of all those expressions (third) -- the evaluations
to proceed in this rich environment.

Terribly circular? Not quite. For now we will allow to
the user only lambda triples in that third list, and they
quickly evaluate to closures establishing only circular
references -- not circular traversals. Later, however, we
shall see how to relax this restriction.

For example the EVAL/APPLY interpreter which follows should
ultimately appear as

(letrec (eval apply...)
(defn-of-eval defn-of-apply...)
eval)

which allows eval to call apply -~ using just that name -- and
apply to call eval. Actually we can also include all "help
functions", 1like lookup and bind, defined in this same
environment and thereby hidden from the top level of the
interpreter which receives the closure for eval from evaluation
of this letrec, without seeing the binding of any names.
Figure 3 is useful here.

closure]
closure = >

Figure 3. Circular Environment
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1.5 Evaluation--EVAL

We now proceed to a fundamental call-by-value interpreter.
An S-expression to be evaluated is either an atom or a list
whose car is an operator, ordinarily evaluating to a function,
and whose cdr is a list of operands that all must be evaluated
to arguments before that function is computed -- as in
conventional call-by-value protocol,

The ordinary case above is that when eval directly calls
apply. There are exceptions however. Constants, such as
integers, evaluate to themselves without further work.
Identifiers are turned over to lookup for evaluation according
to their bindings in the current environment. Lambda forms are
closed quite quickly, Conditional expressions conventionally
have their operands evaluated selectively in sequence: first a
predicate and then a value if that returns "true"; otherwise
another predicate or an else alternative. Evaluation of a
letrec form also results in a second call to eval after
building a circular environment.

One last exception allows evaluation to stop at values
other than constants; we allow quoted values to stop evaluation
by Jjust Mopening"™ the quotation. Thus (guote s-exp) always
evaluates to s-exp for any LISP S-expression (i.e. value) you
want. For legibility we use upper-case to denote quoted
variables Thus (gquote s-—exp) and S-EXP are synonomous., Quotes
are removed in eval.

eval = (lambda (exp env)(if

ig (constant? exp) then exp
elseif (atom? exp) then (lookup exp env)

elseif (quoted? exp) then (dequote exp)
elseif (eq? (oprtr! exp) IF)

then (conditional (opnds! exp) env)
elseif (eq? (oprtr! exp) LAMBDA)

then (close (opnds! exp) env)
elseif (eq? (oprtr! exp) LETREC)

then (selfref (opnds! exp) env)
else (fnapplication (eval# exp env)) ));

eval# = (lambda (explist env)(if
if (null? explist) then ()
else (cons (eval (car explist) env)
(eval# (ecdr explist) env)) )).

Eval# applies eval to every expression in a list, returning the
list of wvalues.

fnapplication = (lambda (evaluated) (apply(car evaluated)
(cdr evaluated) ));



INTERPRETERS FOR FUNCTIONAL PROGRAMMING

oprtr! = car;

opnds! = edr;

selfref = (lambda (suffix env) (eval (exp! suffix)
(circular (idents! suffix)

(values! suffix) env) ));
exp! = (lambda (triple)(apply 3 triple));
idents! = (lambda (triple)(apply 1 triple));
values! = (lambda (triple)(apply 2 triple));
circular = (lambda (formals opnds env)

(letrec (newenv)
((bind formals (eval# opnds newenv) env))
newenv) )

Circular is aptly named since it defines letrec with letrec
(inside eval defined using eval.) It builds the circularities
of Figure 3, where we assume that everything in explist is
trivial (for now a constant, or quoted, or a lambda form) so
eval# does no serious work. (In fact, in Section 1.2 we must
change assct to strcons of Section 2.1 to make this code work.)

close = (lambda (fnpair env)(cons CLOSURE (cons env fnpair))):
conditional = (lambda (condpairs env)(if
$P (null? condpairs) then nil
elseif (singletonelse? condpairs)
then (eval (car condpairs) env)
elseif (eval (predicate! condpairs) env)
then (eval (value! condpairs) env)
else (conditional (elsepart! condpairs) env) ));

singletonelse? = (lambda (c¢) (null? (edr c)));
predicate! = car

value! = (lambda (e¢) (car(edr e)));
elsepart! = (lambda (e¢) (edr(edr ¢)));

quoted? = (lambda (e)(eq? (car e) QUOTE));
dequote = (lambda (quoted) (apply 2 quoted)).

Recall that QUOTE really means (quote guote) in reading these
definitions. We introduce one more primitive and an
abbreviation for it. The form (list a b ¢) will evaluate to a
list of the three values resulting from evaluation of a, b, and
©; this generalizes to lists of any length. Its shorthand will
be angle brackets: <a b ¢> is synonomous with (list a b e).
- Using both conventions <FRED 8 FISH> evaluates to (fred 8 fish)
in any environment.

constant? = (lambda (e)(if
if (null? e) then TRUE
elseif (number? e) then TRUE
elseif (member? e <CAR CDR CONS EQ ATOM NULL LIST>,
then TRUE

else nil)).



D.S. WISE
1.6 Evaluation -- APPLY

The function apply also receives just two arguments: a
function and a list of arguments. Mostly it expends its effort
dispatching primitives, but it also handles user-defined
functions (received as closures). All constants are acceptable
primitive functions.

apply = (lambda (fn args)(if
if (null? fn) then ()
elseif (atom? fn) then (if
if (number? fn) then (index fn args)
elseif (eq? fn CAR) then (car (frst! args))
elseif (eq? fn CDR) then (edr (frst! args))
elseif (eq? fn CONS) then (cons (frst! args)
(scnd! args))
elseif (eq? fn EQ?) then (eq? (frst! args)
(scnd! args))
elseif (eq? fn ATOM?) then (atom? (frst! args))
elseif (eq? fn NULL?) then (null? (frst! args))
elseif (eq? fn LIST) then args
else (errorprimitive))
elseif (closure? fn)
then(eval (bedy! fn)
(bind (params! fn) args (envl! fn))) ));

closure? = (lambda (fn) (eq? (car fn) CLOSURE));
body! = (lambda (closure) (apply U4 closure));
params! = (lambda (closure) (apply 3 closure));:
env! = (lambda (closure) (apply 2 closure));
frst! = (lambda (1is) (apply 1 1lis));

scnd! = (lambda (1lis) (apply 2 1lis));

index = (lambda (i vector) (if

if i = 1 then (ecar vector)
else (index (predecessor i) (edr vector)) )).

Arithmetic is ignored here; it may either be implemented
implicitly using internal representation of numbers or
explicitly using Peano arithmetic with cons, edr, and null?

2. STREAMS

Letrec and function closures are very powerful constructs.
Taken together, as we shall see in this section, they allow the
scope of functional programming to be expanded to include most
conventional programs in the style we have been using above.

This section first develops cons into Landin's [1965]
prefix operator by using closures to delay evaluation, Then it
develops functional combination as a syntactic tool for dealing
with the stream structure that arises from prefix®*, here called

10
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strcons. Several examples develop these ideas.
2.1 Cons for streams

As McCarthy [1963] defined LISP, all arguments must be
evaluated before apply is invoked; specifically the code for
CONS in apply indicates that its arguments are called-by-
value. Static binding offers us an opportunity to change that
convention. The following development is inspired by Henderson
[1980].

Suppose we could define two operators, delay and force,
that could be used together to postpone evaluation:

delay = (lambda (exp) (lambda () exp);
force = (lambda (closure) (closure)).

(This definition does not quite work for delay, as will be
discussed below.) Delay is intended to receive an operand and
turn it into a function of no arguments, without even
inspecting the operand and using only the least time. That
closure is a "recipe" for the value which is an object that can
be passed around the system still unevaluated, or it can be
forced as needed.

This gives the user a nice, but somewhat dangerous facility
since he might delay work that is already delayed. Therefore,
we shall restriect its use to the direct operands of cons,
really the only mechanism at all in this system for
establishing any binding (whether in user structure or in
binded environments). Once delayed at the time binding is
established, a value need never be delayed further.

Landin's approach is a version of cons which delays its
second parameter. This he uses to build streams.

strcons = (lambda (a d) (cons a (delay d)));
head = (lambda (stream) (car stream));
tail = (lambda (stream) (force(cdr stream))).

Rather than giving the user force and delay, we give him
strcons which generates a new "type"; therefore he must use
head and tail to probe streams. We have axioms similar

to McCarthy's [1963] for disjoint union:

(head (strcons x y));
(tail (strcons x y)).

‘(ecar (cons x y))
(edr (cons x y))

X
¥y

(strcons x y) can exist even when evaluation of y doesn't
converge. In other words, ¥ is called-by-name by the
composition tail.strcons, but not called by strcons alone.

imn
nn

Indeed if tail is never applied to a particular stream then

11
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eval is never applied to that second argument of strcons and we
save time, It could be invoked more than once as well (but see
the next section.)

Unfortunately, both delay and strcons cannot be defined as
user functions, because (under the interpreter in Section 1)
they require that an operand be treated carefully. That is the
Jjob of eval, and user-defined functions are only treated in
apply after eval# has evaluated all operands. Therefore, code
involving delay and strcons cannot run properly because their
operands would be evaluated too early through conventions of
user functions. The solution is to envision both delay and,
specifically, strcons as macros to be expanded before the pro-
gram is run. Whenever we write

(strcons element 1lis)
such code will expand to
(cons element (lambda () lis))

before execution, for any operands element and lis. In Section
3.3 this need for macros is elided.

This gives us a mechanism for handling structures that are
not "all there™, such as an external file or a communication
stream. Let us consider a "file™ to be a stream of characters.
Then a function which counts the number of times the letter "g"
appears in a file is :

countq =¥ (lambda (file) (count file 0));
count = (lambda (file cnt) (if
ifr (null? file) then ent
elseif (eq? (head file) Q)
then (count (tail file) (successor cnt))
else (count (tail file) cnt) )).

The use of head and tail in this file traversal, in place of
car and edr is important because it buffers the call-by-value
semantics of LISP for the file stream. It is possible -- even
appropriate -- that the suffix of this stream remain in
secondary storage until tail forces it into main memory. As we
shall see in the fourth section, once a file prefix is
dereferenced, it is erased. Therefore, this program runs in

#More properly this definition appears as
countq = (letrec (count)
((lambda (file ent)(if...) })
(lambda (file)(count file 0)))

but, following the style of eval/apply, I shall continue with
the repeated = symbol and understand that letrec is really used
to "wrap" recursive and mutually recursive function defini-
tions.

12
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time and space resource analogous to FORTRAN code: a small
buffer and a loop (tail recursion) until end-of-file () is
reached.

This behavior is typical of many file filtering utilities
(e.g. text editiors.) The tail-recursive stream style is the
feature in functional programming that provides the facility
for solving such ordinary problems without the operational
analogues of large buffers and deep recursion stacks.

2.2 Multiple streams and functional combination

Let us consider another example: a "decoder" of a file,
which sends all "gq"'s to one output file, and all other
characters in sequence to another, This function has two
results structured as a list -- i.e. an ordered pair of
streams. Since its output is interpreted in two pieces, we
hyphenate the name of the function to suggest the two results:

g-nonq = (lambda (file)(if
I i (null? file) then <<><0>
elseif (eq? (head file) Q)
then <(strcons (head file)
(apply 1 (g-nong(tail file))) )
(apply 2 (g-nonq (tail file))) >
else <(apply 1 (g-nong (tail file)))
(strcons (head file)
(apply 2 (g-nonq(tail file))) )>

).

This is nearly unreadable, so before remarking on its behavior,
we shall introduce "functional combination™ to make it look
pretty.

Let us extend the definition of function from primitive or
lambda=-form to include a list of functions, all of the same
arity. Such a list is a combination of the functions [Friedman
and Wise, 1978]. The number of arguments to such a functional
combinatioh must be equal to the arity of the functions and
each element must evaluate to a list. The actual parameter
list is perceived as a matrix, evaluated and passed from eval
to apply in a row-major representation. The result of such an
. application is the list of the applications of the individual
functions to the columns of that matrix; application is in
column-major order, For example

(< sum product quotient difference>

< =3 3 16 2 >
< 3 2 1 >)
evaluates to ( 1 9 8 1 Y, Af

arithmetic primitives are implemented. We shall see how this is
implemented in Section 3.

13



D.S. WISE

Now we can use functional combination and very careful
vertical alignment to express the same program for g=-nong

g-nonq = (lambda(file) (if
if (null? file) then < <& <> >
elseif (eq?(head file)Q)then(< strcons 2 >
<(head file) ZERO>
(g~nong (tail file)) )
else (< 2 strecons > .
<ZERO (head file)>:
(g-nong (tail file))) )).

Zero is merely a place-holder --like 0 in decimal arithmetiec.
Alternatively, if one can cope with conditionals in the
function position:

g-nonq = (lambda (file) (if
if (null? file) then <3<
else((if(eq?(head file)Q)<strcons 2><2 strcons>)
< (head file) (head file) >
( g-nongq (tail file) 1 Wi B

Either of these latter definitions is crisper than the
first where the recursive call occurred repeatedly due to
difficulties with call-by-value and delay protocol. All three
read a stream until both a "q" and "non-q" character have been

encountered, returning two streams starting with these
characters.

A useful notation for use with functional combination is
the asterisk to imply infinite homogeneous streams.
Semantically <e#> is analogous to

(letrec (stream)
((strcons e stream))
stream)
although we can implement it as in Figure 4, as well. Thus
<0#> evaluates to the zero vector of infinite length.

%
llist]| e——| ¢ |

—= | diana| o

[quote] e—»[diana] -—h_

Figure 4. {DIANA*) and the Result of Evaluating it.

14
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Adopting the convention that the result of a functional
combination is bounded in width by the shortest of the
functional form or any of its arguments, we find the asterisk
notation can abbreviate functional combination further#®. We
could as well have used <(head file)®*)> as the second last line
of the immediately preceeding example. Even more dramatically

eval# = (lambda(opnds env) (<eval¥>
opnds
{env¥# > )).

2.3 Examples

Streams alone are sufficient to express certain infinite
operations. For instance, infinite vectors are possible of
which only a finite prefix can ever be used:

vectorsum = (lambda (vecl vec2) (if
ir (null vec1) then <>
elseif (null vec2) then <>
else (strcons (sum (head vec1) (head vec2))
(vectorsum (tail vec1) (tail vec2))) )).

With recursion we can even define the tail of a vector in terms
of the vector, itself., This use of letrec works because
streams are not manifested completely on evaluation; the effort
to complete evaluation to a stream is constrained to evaluation
of its head. Thus, we can define such'a stream in a letrec as
long as its head is defined independently of the stream; the
delayed tail may be so defined, however. Because the tail is
represented as a closure it can be defined circularly. This
gives rise to a generative style of programming whereby a
structure uses itself to define itself; data bindings as well
as function bindings can be recursive.

naturals = (strcons 0 (vectorsum <1%> naturals))

evaluates to (0 1 2 3 4...) as far as one traverses using head
and tail. Such recursions must be "seeded"™ explicitly with
base values, directly analogous to bases of recursion or of
inductive proofs of their correctness. Larger problems have
complicated bases:

#  There is much familiar about functional combination using
asterisk notation. Backus [1978] uses a "apply to all", LISP
uses MAPCAR, and APL uses nothing, all to expand functions over
structures.
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fibonacei = (strecons 1 (strcons 1 (vectorsum
fibonacci

(tail fibonacei))))
evaluates to (11235 8...).

pascaltriangle = (letrec
(generate)
((lambda(row) (strcons row
(generate(strcons 1 (vectorsum
row

(tail row)) )) )))
(generate (strcons 1 <0%>)) )

evaluates to ( €10 0..,)
{110 Oss)
{72 10 Bisd)
(13310 0cas)
. = ® Jo

More use of functional combination can make these
definitions even shorter, For instance, vectorsum = <sum¥*>.

The Sieve of Eratosthenes is a classic and efficient
generator of prime numbers. It uses only addition to cast out
non-primes from an (ordinarily) bounded list of integers,
leaving a residue of primes. The facility of programming using
infinite streams, however, allows a sieve to be written which
sifts all primes from the stream of all integers (greater than
one.) No bound is necessary. The idea of an open ended sieve
is due to Quarendon [Henderson, 1980].

The next program, a sieve, illustrates a generator which
actually "grows". The stream of integers above one is passed
through a chain of filters. (Initially there are no filters in
the chain.) Any number that sifts through is known to be
prime, and so generates a new filter in the chain that removes
all of its multiples. Such a filter may be defined:

filter = (lambda (nextmultiple prime stream) (if
if (eq? (head stream) nextmultiple)
then (filter (sum nextmultiple prime) prime
(tail stream))
else (strcons (head stream) (filter
(if if (lessthan? (head stream) nextmultiple)
then nextmultiple
else (sum prime nextmultiple))
prime (tail stream))) )).

Such a filter, seeded with a prime for its first two arguments,
will remove all multiples from the third, a stream of
integers. Then
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candidates = (strcons 2 (vectorsum <1#¥> candidates));
sieve = (lambda (stream) (seft(head stream)(tail stream)));

sift (lambda (prime stream) (strcons prime
(sieve (filter prime prime stream)) ));
primes = (sieve candidates);

Primes evaluates to (2 3 5 7 11 13 17 19 ...).

Another example illustrating generators is a solution for a
problem attributed to Hamming: to generate a sequence in
strictly ascending order beginning with 1, such that 2y, 3y,
and 5y each occur in the sequence if and only if y does. The
sequence begins (123 4 56 8 9 10 12 15 16 18 20 24...).

composites235 = (letrec (merge x2 x23 x235)
( (lambda (s1 s2)(if
if (lessthan (head s1)(head s2))
then (strcons (head s1)
(merge (tail s1)s2))
else (strcons (head s2)
(merge s1 (tail s2))) ))
(strcons 1 (<product#>

<2#>
x2 ))
(strcons 1(merge(tail x2) (<product*>
<3%>
; x23  )))
(strcons 1(merge(tail x23)(<product*>
<5%>
x235 ))) )

x235)

Some remarks will help in reading this code. Merge is a simple
binary merge of infinite, sorted streams of numbers. The stream
x2 (respectively x23 and x235) is a monotonic sequence of all
integers, gall of whose prime factors are in the set {2}
(respectively {2,3} and {2,3,5}). These three streams are de-
fined mutually and serially; the seed of 1 in each multiplicand
stream is sufficient to assure that each is infinite.
Monotonicity may be proved by induction for x2, for x23, and
finally for x235. :

The last example is dificult. The problem is to construct
a doubly=-linked circular ring structure from a list. The
object is to allow efficient cyclic traversal in either
direction after the ring is built. The program is to be
written in purely applicative style; one infers that the object
of double-linking is not to facilitate insertion and deletion.
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A "node" in the ring will be a triple composed of its
content (taken from the input list), its left neighbor, and its
right neighbor. The value of the ring function will be the
node corresponding to the head of the input list., In building
these triples I intend structures and environments to be built
using strcons instead of cons. (In Section 3 we see that all
occurrences of cons are well fixed to delay argument
evaluation.) It ought to be clear that the second two members
of a triple have mutually dependent definitions so circulari-
ties will arise through letrec schemes. Therefore, input must
be a finite list to avoid infinite circularities,

ring = (lambda (lis) (if
bl (null? 1is) then <>
elseif (null? (edr lis)) then(letrec (node) (
{(car lis)node node)>)
node)
else (letrec(topnode l-rsuffix)(
<(car lis)(right! l-rsuffix)(left! l-rsuffix)>
(double=link (edr lis) topnode topnode))
topnode) ;
(lambda (pair) (apply 1 pair));
(lambda (pair) (apply 2 pair)).

left!
right!

The "help" function double-link returns two results, the left
and right nodes of a doubly linked chain, whose end elements
have their own left and right pointers each referencing its
second two arguments. The first argument is the list to be
chained:

double-link = (lambda (leftref rightref)(if
Aif (null?(ecdr 1lis)) then((lambda (node)<node node>)
<(car 1lis) leftref rightref>)
else (letrec (node l-rsuffix) (
{(car lis) leftref (left! l-rsuffix)>
(double-link(edr 1lis)node rightref))
<node (right! l-rsuffix)> ) )).

This definition works because the triples are not manifested as
units. It is possible to establish a reference to a triple
without knowing its second two fields; one can imagine the
pointers being filled in only after all triples have been
"allocated".

3. REVISING THE INTERPRETER

In this section I shall modify the interpreter to reflect
the lessons on streams and functional combination above. These
modifications illustrate the ease of manipulating applicatively
specified programs, as they confirm the usefulness of the
facilities being added. As in Section 1, the language is still
used operationally to describe the language.
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3.1 Functional combination

Functional combination fits nicely into apply because
McCarthy [1962, Chapter I] did not specify apply completely
through to its else condition. So these two lines can be added
at its end:

elseif (member? () args) then ()
else (cons (apply (car fn)(<car®> args))
(apply (ecdr fn)(<ecdr®*> args)) );

These lines are all that is necessary to implement functional
combination and its minimal width rule,

Three features already present in Section 1 are used,
however. First, the operand in an expression is already being
evaluated, so that lists like <car#®*> are evaluated to lists
like (car car ....) as functions. Second, since operands are
all evaluated to arguments as eval calls apply (by eval#)
evaluation of the matrix of actual parameters already occurs in
row-major order. Thirdly, like McCarthy's [1962, Appendix B]
this interpreter returns an emply list if the function happens
to be null, ’

All that must be added is a check to see if any argument
row is exhausted, completing the test for minimum width, and
the explicit (recursive) dispatch of comlumn-major evaluation.
Here the language uses itself, as we use functional combination
to select off each column for column-major application. A fact
we have not used may be read from this implementation:
functional combinations may be nested as long as the arguments
are nested properly as well,

3.2 Suspending cons

Since streams proved so useful, they ought to be
implemented within the interpreter. As long as we are delaying
one argument, however, we shall delay them both as Friedman and
Wise [1976] recommend, The correct place to intercept
evaluation is in eval before operands are touched. The
following line is inserted into eval (where the IF test is):

elseif (eq? (oprtr! exp) CONS)
then (cons (suspend (frst! (opnds! exp)) env)
(suspend (scnd! (opnds! exp)) env))
where

suspend = (lambda (form env)<SUSPEND form env>).

What happens then is that a user call to cons is
intercepted immediately in eval, a little box is allocated by
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cons as before, but it is filled with two triples called
suspensions. A suspension is essentially an operand closure,
delayed on creation to be forced on access. Since this change
is in the interpreter rather than in a local library we now
know that every user invocation of cons is so treated. Call
this arrangement "suspending cons®™ or suscons.

Now comes a side-effect == a very benign and natural one
albeit. (This is the first "non-pure" program in the paper.)
A reference to a suspension may be displaced by a reference to
its suspended value at any time. Since suspensions are
determinate and exist only to yield this value, such a
convention turns out to be harmless,

In apply the lines for car and c¢dr must be made sensitive
to suspensions:

elseif (eq? fn CAR) then (first (frst! args))
elseif (eq? fn CDR) then (rest (frst! args)).

First and rest watch for suspensions.

first = (lambda (box) (if
if  (suspended? (car box)) then (car (coercecar box))
else (car box) )):
rest = (lambda (box) (if
if (suspended? (ecdr box)) then (edr (coercecdr box))
else (cdr box) ));
suspended? = (lambda (e) (if
ir (atom? e) then nil
elseif (null? e) then nil
elseif (eq? (car e) SUSPEND) then TRUE
else nil ));

coercecar = (lambda (box) (rplaca box (coerce (car box)) ));
coercecdr = (lambda (box) (rplacd box (coerce (edr box)) ));
coerce = (lambda (triple) (apply EVAL (ecdr triple)).

-

Note here that all car's and cdr's are, as they were before
this enhancement of the interpreter, blind field-accessing
primitives. Rplacd and rplaca are LISP assignments into an

~extant box. (Very dangerous in the hands of novices;
apocryphal stories abound.) This use is controlled, to
displace the suspension by its value, returning the box itself
as its value. Coerce is the analog of force in Section 2.1; it
resumes the suspended computation,

Now the user's instances of car and ¢dr are all interpreted
as described, but the system's car and ecdr are as yet
unaltered. Notice that the user cannot find out whether
something is suspended. In order to access a field he must use
his car or cdr which alters the system by removing any
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immediate suspensions, much like inserting a probe into a
perfect physical system. Suspensions are invisible to him.

Their effects, however, are present. Streams are
implemented by default rather than by request; infinite and
circular structures are programmed using the same vocabulary as
for simple structures. Suspensions are never evaluated twice
since a coerced value is "memo-ized" immediately where it can
be found and reused later. Except for the time to test whether
(each) value is suspended, the interpreter runs faster since
some suspensions may never be evaluated.

3.3 A call-by-need interpreter

If suscons is extended further the language change is even
more remarkable. Having implemented suscons, imagine an
interpreter which uses suscons uniformly in place of cons.
Then all environments are suspended, and argument evaluation is
postponed until lookup actually has been invoked. That is, the
list of arguments given to apply by eval will always be
suspended, so that all of the eval# work has been postponed.
That work does get done at the time the argument list is
traversed, ordinarily by lookup,

This yields a call-by-need protocol [Wadsworth, 1971]; or
call-by-delayed-value [Vuillemin, 1974]. Rigorous call-by-need
for cons is sufficient to impress call<by-need, via Section 2,
on all other functions in the system (because of the way bind
and lookup are written).

When we have call-by-need protocol if becomes an ordinary
primitive function; if becomes a constant, to be picked up in
apply by the new line

elseif (eq? fn IF) then (condscan args)
where
condscan = tlambda (pairs) (if
if (null? pairs) then nil
elseif (null? (cdr pairs)) then (car pairs)

elseif (apply 1 pairs) then (apply 2 pairs)
else (condscan (edr (edr pairs))) )).

Notice that condscan does not invoke eval since eval# has
already suspended that work; the probing coerces it. The IF
line is thereby eliminated from eval, as if CONS and IF traded
spots in the interpreter.

Moreover, the cons in the new last line of applv is also
suspending, so functional combination does not expand except as
needed. The difficulty of using angle brackets in the ring
example is implicitly solved regardless of structure,
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With everything suspended there is a question whether any
computation occurs at all. Any evaluation beyond the top "box"
of a result must be coerced by a probe. What forces work to be
done? The requirement for output!

An answer stream (or list) is handed to an output device
driver still suspended. In order to print (or transmit or
access) that structure car and cdr will be applied, perhaps as
part of a (preorder) traversal of the structure. These probes
force the result structure to appear and, indirectly, to coerce
other internal values, as well. Nothing, however, is coerced
unless it is necessary to a final answer and, moreover, much
structure manifested for the device will be completely
dereferenced as soon as the device has traversed past it.
Therefore, allocation and deallocation are implicitly
overlapped with computation, reducing the total internal space
required to represent user disk structure. 1In effect, UNIX
pipes have been conjured from functional style.

4, STORAGE MANAGEMENT

The interpreter depends very much on the ability to build
list structures. Not only is the user free to invoke cons to
build his 1lists, but also the interpreter uses cons to
establish bindings (through eval# and bind), closures, circular
environments (all in Section 1.5), and functional combination
(Section 3.1). 1Indeed, it is the interpreter's use of cons
which allows lazy evaluation to be impressed on the language so
easily (Section 3.2).

The ability to build structure is, therefore, essential to
the LISP interpreter. Cons allocates from a heap or from
"available space". But where is structure torn down; how is
unused space recovered? These questions ought to be raised by
those students of data structure who are accustomed to explicit
imperatives to return structure to an available space list.
Such imperatives are, of course, alien to the functional
programming philosophy.

The answer is that structure can be (and ought to be)
recycled automatically. Abandonment of a structure is
sufficient to permit an automatic scheme to recover that space
for eventual reallocation by cons. This section is a brief
review of such techniques, invisible in and irrelevant to the
language definition embodied by the interpreter, but implicit
in any implementation. Any of these algorithms would be
imbedded within a serious implementation of cons.

A major contribution of LISP has been the progress it

motivated in automating storage management. Knuth [1975] gives
a good overview. Results outlined there and updated here
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should convince one that automatic techniques are preferable to
trusting the user to identify correctly his own dereferenced
structure; the interpreter, therefore, is freed from explicitly
xcondemning obsolete structure, as well.

4,1 Reference counts

Quite an elementary scheme for storage management is
Collin's [1960] reference counts. Every node in the heap (the
region of memory allocated for linked storage) includes an
extra field capable of holding an integer count of the
references to this node. The range of this count, from one up
to some limit -= the "infinity" of counts -- need not be wide
enough for all data structures (The worst case is all pointers
referencing a single node), but a wider range is better. Every
time a node is borrowed by establishing another binding to it,
the reference count is increased unless it is already
"infinity"; every time such a binding is abandoned the count is
decreased unless it is "infinity" or one., Set to one on
initial allocation by cons, the count of a uniquely referenced
node ought to be one even if a "non-infinite" number of now
obsolete bindings once had shared it. Thus the final
dereflerencing may be detected whereupon, the node is returned
to available space. Nodes whose counts reach "infinity" must
either be recopied in a new node, or they become permanently
allocated.

There are three problems with reference counts. First, not
all circular structures can be managed in this way. A simple
circular list without external reference might still have all
counts set to one, and thus not be returned to available space.
Bobrow [1980], and Friedman and Wise [1979] suggest approaches
to solve this problem, although neither solution is complete.
The fact that circularities can only be established via letrec
is in our favor here; letrec is only rarely used outside of
recursive function definitions., Thus, we might be able to
characterize popular patterns of letrec usage where reference
counts are sufficient using these or other approaches, but they
are not adequate for all applications of letrec. (e.g. the
result of ring in Section 2.3).

A second problem is the overhead for incrementing and
decrementing counts with creation and abandonment of bindings.
While that effort is proportional to structure use rather than
to structure size, it is a good candidate for implementation in
special purpose (parallel) hardware or microcode.

Finally, a reference count field must be quite large to

cover worst-case counts, but only rarely do such counts get
very big. Worst-case engineering requires much unused space «--
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at a premium in this problem. One solution is to tolerate an
"infinity" == a maximum reference count -- that is quite small.
Deutsch and Bobrow [1976] suggest such a choice as part of a
hybrid scheme; reference counts are used to postpone garbage
collection, which can be used to recover such circular
structure when reference counting fails,

In its favor, reference counting is decentralized and does
not increase the address space. There needs to be no central
control of reference count fields in a multiprocessor, as long
as time is allowed for any pending increments to take effect
before an ultimately "dereferenced" node is destroyed. This
suggests a hardware simplicity for use in general parallel
processing, perhaps using a "shadow™"™ memory with the same
addresses as the heap to maintain counts.

4.2 Mark/sweep garbage collection

Garbage collection is an effective, although (at first)
apparently brutal solution to storage management. It presumes
that every node in the heap is available until proven used.
This is effected by a mark bit, initially cleared, in every
node. Every active pointer in a register of the interpreter is
taken as the root of used structure, and every such structure
is traversed and marked. After the mark phase, the heap is
swept sequentially; unset mark bits indicate available nodes
(garbage) to be returned to available space.

The traversal of each structure requires time proportional
to its size. Conventional traversal algorithms treat each
structure as a tree to be traversed in preorder, where atoms,
null pointers, and already marked nodes are taken as external
nodes (leaves). A node is marked on its first visit. Knuth
[1975] explains several algorithms, of which the last, due to
Deutsch, Schorr, and Waite, is the most elegant because it uses
no extra stack in its traversal. Space being at a premium, the
stack is maintained in reversed tree pointers that are restored
as the stack is popped.

A simple sweep phase clears all mark bits and reassembles a
new available space list. L. Morris [Wise, 1979] has described
an elegant two-pass sweep phase (with an extra bit needed in
each pointer) that compacts the used nodes at one extreme of
the heap. This is of interest because a compacted heap
simplifies future allocations, allows for variously sized
nodes, and aids in sharing heap space with adjacent sequential
structures. The sweep phase requires time proportional to the
size of the heap.

Mark/sweep garbage collectors, coded inside the primitive
cons, are invoked when readily available space is exhausted.
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Thus, a random invocation of cons may take very much time,
postponing useful computation while garbage collection
proceeds, That cost, however, should be considered to be
distributed across neighboring invocations of cons which
proceed trivially to allocate available space.

Such unpredictable delays have given garbage collection a
bad name, discouraging its application in real-time
applications. (Section 4.3 treats real-time collectors.)
Mark/sweep remains economical on small machines, however, and
forms a fine hybrid with reference counts. The traversal of
all pointers can be used to reestablish accurate counts beneath
"infinity" even after a node had a count so high. Several
authors have described schemes that allow garbage collection to
proceed in parallel with the user's program (the interpreter);
the best description is by Gries [1977]. Higher scale parallel
processing would require garbage collection to proceed on more
than one processor at once, raising problems of expensive
intercollector communication.

4.3 Recopying garbage collectors

A different class of garbage collectors tracing its history
to Minsky, is best described by Baker [1978]. It uses no
special mark bits within nodes and it runs in one "phase", but
it does require that major portions of the heap are not used.
(This requirement is not offensive in a time-shared environment
where a program can expand its heap temporarily for the purpose

~of garbage collection.,) Easiest to explain is the case in
which only half of the available heap is ever used.

With a sequential array representing each half of the heap,
we picture the lower half as full -- the upper half as
available. The accessible information in the lower half will
be copied into the upper end of the upper half. As each node
is copied, its "forwarding address" will be left in its place
in the lower half. Forwarding addresses are easily recognized
by their magnitude, referencing the other half of the heap.

Recopying begins with all active pointers in the
~interpreter's registers. Those nodes are recopied into the
highest nodes in the heap, leaving forwarding addresses, and
the registers are forwarded directly. These few nodes form the
"seed" of the newly copied active heap. Thereafter the already
copied nodes are traversed sequentially (downwards in the upper
half of the heap) and each pointer is treated. Such pointers
cannot yet refer to nodes already copied; they refer to active
nodes in the originally full (lower) half of the heap. Such
nodes either contain a forwarding address, in which case the
pointer is merely updated, or they are active but yet uncopied.
In the latter case such nodes are treated as the interpreter
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registers were: the node is copied intact, leaving a
forwarding address, and the pointer is updated.

Thus, the size of the recopied heap expands ahead of the
sequential traversal, until all active nodes have been
forwarded. When the traversal is done all pointers have been
forwarded, all accessible nodes are compacted in one end of the
formerly available (upper) half of memory, and the formerly
full (lower) half contains only obsolete forwarding addresses.
Therefore, it can be condemned as a unit, and the halves
reverse roles for the next garbage collection.

In spite of the extra space required, this scheme offers
much. Linear data structures can be recopied in sequential
order using a traversal sensitive to such types. In addition
to the capability to run in parallel with the user's progran,
Baker [1978] has demonstrated that this garbage collector can
run in "real time". That is, the effort of recopying can be
distributed among the various implementations of car, ecdr, and
cons so that each executes a finite share of continuous garbage
collection on every invocation. This is sufficient to assure
that cons never runs out of space until a half-heap is indeed
fully allocated.

Therefore, the space and time distribution of recopying,
real-time, garbage collection seems to compare with that for
reference counting. The space for an extra half-heap compares
with the space for reference counts; the time is distributed
uniformly among invocations which manipulate the heap in both
cases. While circular structures and compaction can be handled
by recopying, it does require a larger address space and
proceeds without the locality of control of reference counting.
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