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Abstract

We prove that if T 1is any endofunctor on the
category of complete lattices which satisfies a weak con-
tinuity condition, then there 1is a canonical solution to

the isomorphism L = T(L)



The idea of defining data types recursively dates back at
least to [4](*), €.g8., "A list is either an atom or a pair of
lists.” 1In general, we want to find an object X such that X = T(X) ,
in this case, X = A U X x X . Scott pointed out [8§,9 & 10] that
certain transformations T , such as T(X) = x* , had no solutions
in the category of sets, but there was a solution to the (weakened)
equation X = T(X) 4in the category of complete lattices. Scott
also provided solutions for a number of interesting T's
Reynolds [7] pointed out that Scott's constructions could be
unified. In this note, we prove that the unified construction

is essentially categorical in nature: if T is an endofunctor on

the category of complete lattices, and T satisfies a certain

e

continulty condition, then the equation X T(X) has a solution
L, which is canonical, i.e., if M = T(M) , then there exists a
canonical morphism L_+ M . This continues the program suggested

by Scott [10].

¥0f course, defining sets by induction is a much older idea, in
general. Here we mean the application of this idea to computer
programming.



1. Definitions

We presume familiarity with the following standard concepts:
category, morphism, functor, and colimit. There are a number of
elementary expositions of this material, notably [5] and
[3, appendix].

On the other hand, there are several distinct notions of

the category of complete lattices. A complete lattice is a

partially ordered set (L,<) with the property that every sub-
set S of L has a least upper bound, denoted |IS . A subset
D of L 1s called directed iff every finite subset of D has
an upper bound in D . (Thus every directed set is nonempty).
If (L,<) and (M,<') are complete lattices, with least upper
bounds denoted |J and |]' , we say a function f: L + M is
continuous iff for any directed DC L ,

£(LID) = U {f(x)|xeD}

The set of all continuous maps from L to M forms a complete
lattice under the ordering

f<g iff (VxeL)[f(x) =<' g(x)]

This lattice is denoted [L » M] . We will use the terms "lattice"
and "complete lattice" interchangeably.

Let CL denote the category of complete lattices, with
morphisms the continous maps. Let CLP be the category whose ob-
Jects are those of CL and with morphism sets given by
CLP(L,M) = CL(L,M) x CL(M,L) . If ¢ = {(,g € CLP(L,M) , let
¢+ = {g,f) € CLP(M,L) with <(f,g)(f',g» = <ff',g'g> . Let CLR

(the category of retractions) be the subcategory of CLP of




morphisms ¢ € CLP(L,M) such that ¢¢+ <1, and ¢+¢ = 1L s

where the ordering is the natural one on CLP(L,M) = [L*M] x [M+L]

We say a functor T: CLP + CLP is continuous on morphism sets

ife [JT(¢1) = T(u¢i) for any directed set of morphisms. Let

w be the free category generated by the graph

{w, {(n,n+1) |new}} . Note that any functor F: w =+ C 1is uniquely
specifled by its values on the objects and its values on the
(unique) arrows n = n+l .

Proposition 1 (i) (¢°¢)+ = w+«¢+

(1i) (f,g}) € CLP(L,M) 1is a retraction iff fg < lM
and gf = lL
(111) ¢ € CLR(L,M) is an isomorphism iff ¢¢% = 1

M
(iv) If T:CLP + CLP is an endofunctor continuous
on the morphism sets, then T preserves
retractions.
(v) If (f,g) and (f',g) are retractions, then
£ = £
(vi) {1} 4is an initial object of CLR
Proof. All trivial except (v): If <f,g) € CLR(L,M), then
f(x) = [HyeM|g(y) = x}. (vi) follows from (v) and the fact that
{1} is a final object in CL.
If there is a retraction (f,g) € CLR(L,M), then L 1is
embeddable in M wvia f, and every x € M has a unique best
approximation in the image of L, given by fg(x). So if CLR(L,M)

is nonempty, we may think of L as a sub-datatype of M.



2. Lattice-Theoretic Lemmata

Throughout the following let F be a functor w - CLR
given by F(n) = L and F(n »+ n+l) = = (f g0 Let Lo
denote the complete lattice whose underlying set is given by

{(xo,xl,...)lx eL; & x,= gi(xi+1)}
under the ordering x <y 1iff (Vi)[xisyi] « Ifm <n ¥l
write <fnm’gmn> for the image under F of the unique morphism
in w(n,m)

Lemma 1. L is a complete lattice.

=]

Proof. Let Sc<L,. Let S_={x|xeS}el

k i

fhen for eacth kK. 5.8

has a least upper bound LJSk > Ly

k

Let 'y, = kgignk(LJSn) - Setting n =k , we see y, > LJSk \

and y 1is a member of L, by the construction of the 8k *

If x e S, then for each k , x, < LS <y, , 50 x <y

Hence y 1is an upper bound for S in L_. Let 3z be another

upper bound for S in L_. Then for every n , L_ISn < gz

n
Now ze L, , so for every n > k , Zy,, ® gnk(zn) - So 1z =
ngm ngmJLH )-yk. So y <z, and y = US. O
n>k n>k

Define a morphism ¢ = (f .8, > € CLP(L ,L.) by
gmn((xo,xl,...)) - %

Coe '3 ) = B (y) AL k <n

fnk(y) o =



Thus

Lemma 2. ¢n € CLR(Ln,Lm)

Proof. We must first show that the range of fho 18

in fact L_, and not just HLn 5 that 1s, that (fnm(y))k =

B (The(¥) ey » IT k< n, then g (£,,(3))yy, = ey (e ke1 (7)) =

gnk(y) & (fnm(y))k « If k¥ P»n , then gk(fnm(y)}k+l =

Befn, ka1 Y) = Birn fn 11 () = Brag ol werafn 1(¥) = Ty () =
(£f,,(¥)), « We may now show that ¢, 1s a retraction:

+ — ® - =
Sy ® B BT (fnmgmn’fnwgmn>' £ oBon (XgsFysees)

A CID I - TP € 0 TS C ) FRUNNIE SIS SNENURY ¢ S0 IR AR 30 PR

For k simg, = . (x )= X, 3 for k >n, fnk(xn) = fnkgkn(xk) Spcuy
_ +
since (fnk,gkn) € CLR(Ln,Lk) . ¢n¢n < lL

o

by = €8 0 08 T > . 86 g £ (y) = (£ (¥)) =g (3) =y

n hne’“wn neo on” ne
Hence ¢+¢ = 1 = 190 " % is a retraction. [
n'n Ln n

< <
Proof. For each n , fnwgwn < le , SO [}g f g < lLa:

Furthermore, if x = (xo,xl,...) € L, , then T (x) =

gmnfnwgmn(x) = (fnwgwn(x))n s (%l fnwgcun(x))n . 86

Eoix) & [

f
Noe~xn

% < Ljfnmgwn(x) 3 and.thus 1

<
+ “w
Corollary. ] |¢n¢n = lL



Lemma 4. The morphisms ¢n¢; e CLR(L_,L_ ) form a
directed set.

Proof. It will suffice to show that for each n and k 5

8oy L ooy < gwkfn+l,m > for then we would have Lol S fn+1,m >

and consequently fnwgwn = fnmgngm s T

,n+l ntl,o8o n+1 - THIS, in

turn, guarantees that ¢n¢; < ¢n+l¢;+l , from which the lemma

follows.

If k < n , then gwkf £

no®n = EnkBn T Bn+l k T Bwkln+l,e -

If k = n+l , then £ =

gMKfnmgn . fnkgn - f‘1'1+1,ch1'1gn = n+l,k

gWKfn+l,w =3



3. Existence of limits

Then

cone.

Theorem 1. Let F: w » CLR , L

L&J

o » and ¢ be as before.

is the colimit of F , and the ¢n form the limiting

Proof. We must prove (A) that the ¢n form a cone,

i.e. for all n,me w and u € w(n,m)

F(u)

and (B) if ¢' is a cone from F to some M , then there is a

unique

and

¥ e CLR(L_,M) such that for all n e w

To show (A), we need only show that for each n

£
n
S ey,

(1)

£ fht1,
N
LCD
gn
Ln‘ Ln+l
(41}
&en gm,n+l



To show (i): Let y ¢ L - If k<n, (fn+1 m(fn(y)))k =
gn+1’k(fn(y)) = B tmel (y) = gnk(y) = (fnw(y))k . If k>n,
a1, D) = g "0 (9) = £, (9) = (£, (¥)), . So for

all k5 (£ &5y = (£, (3))) 5 and £, of = fo -

To show (i1), if x e L, g (g .,(x)) =g (x 1) =
3

. %ﬂn(x)
To show (B), let ¢' be a cone from F to M , with ¢ﬁ
an +
— = 1 =
given by L —=M . Let ¥ =|[¢!¢ , that is ¥ =(h,j) , where
EMn
h =Uangwn
J =l B

We must first show that ¥ 1is a retraction:

J +h= (L] fnngn)'(L_j answn)
n n
= LﬁjfnmgMnanQ»n (by continuity of composition)
= [Elfnwawn (since <an,gMn> is a retraction)
=1, (by Lemma 3)
e e

heJ= (1 fng ) (L] £, 8
n n

E¥ angnnfn¢EMn

1A

£
L FrBuan

1
La

IA

To show that ¥ 1is the required mediating arrow, we must show

for each n



Tk

fnw go—'»n
L, ——L, Ly—— L.,

h J
fnml (111) gm\ (1iv)
M M

To show (i11): If y ¢ Ln "
h(f, (y)) = LBJ prgmpfnin)
= | ({prfnp(y)lpzn} U {f Mgnp(y)lpm})

P
= L1 HE () lpenl U {fpmgnp(y)lpm})

The last equality comes from the fact that the an form a cone.
So (iii) will be established if only we can show that for p < n ,

i % £ But f_.g = f

ngnp nM pMEnp anpngnp < an . Here the equality
comes from the cone property and the inequality from the definition
of a retraction. This completes the proof of (iii).

To show (1iv):

*® B

%J gmnfp&gMp(m)

‘15_; (fp' gMp(m))n

L (e (M} U (8, g

Again, we need only verify that for p > n , fpngMp < gMn .

T o=
If p >n , since the g's form a cone, we have fpngnp fpngnngn <

(m) |[p>n})

8y © This completes (iv).
Last, we must verify that V¥ 1is unique. It will suffice

to show j 1is unique. So let ¥' = (h',j" be another mediating



s

arrow. Then gan| = &y ° So j' = (Lanmgwn)J' = Lanwgwnj' =
LIf, 8y =3 - O

Theorem 2. Let T: CLP » CLP be a functor continuous
on the morphism sets with T(¢+) = (T(¢))+ . Let Lj be a com-
plete lattice, and 6y € QQE{LO,T(LOJ) . Define a functor
F: w » CLR as follows:

F(0) = LO
F(k+1) = T(F(k)) k20
F(O - 1) = BO

F(k+1l » k+2) = T(F(k » k+1)) k 20
Let L denote F(n) , Gn = <fn,gﬁ) denote F(n + n+l) , and
let L_ be as before. Then L_.= T(L,)

Proof. By Proposition 1, the range of F does lie in
CLR . Let ¢, € QEE(LH,;M) be the components of the limiting
cone. Define retractions ¢5: L, T(L) by

g, = 'T(¢n_l) if n> 0

aT(%)'eU if n=0
We claim that the ¢ﬁ form a cone from F to T(L_ ) , that is

for each n :

e
n
Ln—) I"n+1
¢r'1 \/ 1'1+1
T(La)

For n =0, ¢5 = T(cbo)'B0 = ¢1°8q -



=7 Bl

For n > 0 , we have ¢} = T(¢, ;) = T(¢ -6 ;) = T(¢,) T(6,_4)

' L]
n+l 8

n °

So, by Theorem 1, we have a retraction ¢:L_ + T(L_)

By Proposition 1, we need only show that ww+ = 1T(L )

py’

L[}

"

(UoroD) (Ugret

b

(Qolor) - (UWort.(o1)™)

(Uorer)- (Lo (61)F)

Uotete (o1)7

ol o)™

SLICTINICIE IO

UT(s,_)T(6r 1)

, +
Ur(e,_ 0, ;)

T(LJ¢n_1¢;_l)

'I‘(lL )

[--]

pr,y O

4. Uniqueness Results

Theorem 3 With the hypothesis of the previous theorem,

let L0 = {1} and let 60 be the unique retraction {1} =

T({1})

Let M be any "partial solution" to x = T(y) ,

that is, there is a & e CLR(T(M),M)



Then there is a retraction VY ¢ CLR(Lm s M) . Further-
more, there is a unique Yy with the following property:
let o be the unigue member of CLR({1} , M) . Define

£ € CLR(TS(M) , M) by g, = 1y Eipy™ §°T(E) . Then

for each n , V¥-¢ = gn-Tn(a)

Proof. All this follows merely from the definition of
colimit and the fact that the gn-Tn(a) form a cone from
F to M . To verify the cone property, we need only show
that for each n > 0
T (8,)
P i P g7y

\ /

3 /

+1
el N f B He)

1.e., gn-Tn(a) = g Tn*l(a)-Tn(BO)

n+1l"

For n = 0 , we have gO-T(O)(a) = g = El-T(a)-BO by unique-

ness of o . Assume the required identity holds for n . Then

n+2

-

™2 () 7™ (0y) = &m(g ) - TR (0) - T ()

tn+2

[}

BTl & o T ()R 8 )

£T(g ~T"(a))  (by IH)

n+l(a)

£T(g ) T

tne1” ™ o

=



i

Theorem 4. (Main Result). Let T:CL » CL be any endo-

functor continuous on the morphism sets. Then there exists

e

a solution L to the equation x = T(x) which is canoni-

e

cal in the sense that if M = T(M) , then there is a retrac-
tion ¥ e CLR(L_ , M) .
Proof. T extends to T' : CLP + CLP wvia T'({f,g)) =

{Tf ’ Tg) ; then T' satisfiles the coﬂditions of Theorem 2. [J

5. Examples

1. Let A be a lattice of "atoms." Let T(L) = {1}4(A x L)
L, is the lattice of stacks of A's . The image of {1} is
the empty stack.

2. Let A be a lattice of atoms. Let T(L) = All(L x L) .
L, 1s the lattice of "first-rest" lists.

3. If we wisﬁ the null list to be distinguishable, then
we may set T(L) = {1}MAM(L X L) . The choice of T depends
on the use to be made of the data type, the operations desired,
and the type of partial information needed. Note that
{1}0AM(L * L) , ({1310A)I(L x L) , and {1}M(ANCL x L)) are
distinct, non-isomorphic lattices [1] .

4, Let {9 , r) be a ranked set [2] . Let T(L) =

ﬂILr(s)|s e Ql. Then L, 1is the lattice of ranked Q-trees [31,12].

5. Let Hom: CL°P x CL + CL be the internal Hom-functor
given by Hom(L,M) = [L » M]; if f e CL(L,M) and g e CL(N,P)
then Hom(f,g) e CL([M - N],[L - P]) is given by Hom(f,g)(h) =
ghf . Now let T(L) = [L + L] ;3 T(Kf,g>) = Hom(g,f) . Hom(f,g)> .
Then L_ should be a model for the lambda-calculus; in fact,

L_= {1} . To get Scott's model [10] one must set Lige= T

and use Theorem 2.



6. Let D be a lattice, let T(L) = DII[L » L] , T(LF,g))
{lDﬁHom(g > £) , 1 llHom(f g)y . Then L, is a model for a
programming language based on the primitive data type D .

7. Hierarchical graphs (similar to [6]). Let G be a
fixed set of unlabelled graphs. A hierarchical graph is to
be a graph from G whose nodes are labelled with atoms A
or other hierarchical graphs. For g e G , let |g| be the
number of nodes in g . So a hierarchical graph is either
an atom or a graph g with [gl other hierarchical graphs
as the node labels. So we have T(L) = AH{L|g||g gid} ;  This

gives a representation of these objects as trees.

6. Conclusions

Scott's fixed-point construction is put in a categori-
cal setting, following the approach of [9,10]. The main
theorem is seen to be a generalization of the Tarski fixed-
point theorem to the category CLR . The result is put in

a form which is easy to apply to practical data structures.

-
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